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ABSTRACT

Keywords: Content based medical image retrieval; classification; sparse representa-

tion; dictionary learning; clustering; modality; multi-level classification; support vector

machines; on-line dictionary learning; K-SVD; OMP; ℓ1-lasso; multi-scale dictionary

learning; adaptive dictionary learning.

Due to the increase in the sources of image acquisition and storage capacity, the

search for relevant information in large medical image databases has become more

challenging. Classification of medical data into different categories is an important

task, and enables efficient cataloging and retrieval with large image collections. The

medical image classification systems available today classify medical images based on

modality, body part, disease or orientation. Recent work in this direction seek to use

the semantics of medical data to achieve better classification. However, representation

of semantics is a challenging task and sparse representation has been explored in this

thesis for this task.

In this thesis, we explore new methods for grouping of medical data into different

classes based on sparse representation and dictionary learning. The sparsity seeking

dictionary learning approaches typically exploit the framework of under-determined

setting and hence work on some implicit assumptions on the database. The methods

proposed here vastly reduce the search time and improve accuracy of retrieved images.

In application, however, one often encounters databases which are not so big that the

sparsity promoting under-determined framework cannot be efficiently deployed.

An algorithm for classification of medical images based on edge information ex-

tracted from various body parts using ℓ1-lasso sparse representation and on-line dic-

tionary learning (ODL) is proposed. Edge information is extracted from an image by

dividing the image into patches and each patch into concentric circular regions to pro-



vide discriminative information useful for classification of medical images. The ability

of on-line dictionary learning to achieve sparse representation of an image is exploited

to develop dictionaries for each class using edge-based features.

A single classifier may not be suitable for classification of various kinds of medical

image datasets. Most of the medical datasets have the problem of data imbalance

i.e. unequally distributed training samples among all the classes, which gives rise to

poor classification performance with any of the standard single classifier. We aim to

address the problem of data imbalance of medical data using multi-level classification

approach. A multi-level classifier combines correctly classified examples in the first

level with the training data and supplies them as input to the next level classifier. So,

if there is any imbalance in the data, it can be alleviated by this approach. For the

first stage of classification, on-line dictionary learning (ODL) is used. Support vector

machine (SVM) is used for the second level of classification and together with on-line

dictionary learning forms the multi-level classification approach.

Another problem in medical imaging is the classification of medical images cap-

tured by acquisition source (i.e modalities). Capturing images using different modal-

ities suffers from significant contrast variation among the images of the same organ

or body part. Due to this large variation, existing image classification and retrieval

algorithms do not perform well for different modality images. We propose to address

this issue by using multi-scale wavelet representation and dictionary learning. Wavelet

features extracted from an image provide discriminative information useful for classi-

fication of medical images. Multi-scale wavelets are employed to compensate for the

varying scale of intensity in the images captured by the aforementioned sources. Car-

diovascular diseases (CVD) are a leading cause of unnecessary hospital admissions.

Hence, automated detection of abnormal heartbeats captured by electronic cardio-

gram (ECG) signals is vital. We employ an approach to classify abnormal heartbeat

patterns from standard heartbeat patterns using adaptive dictionary learning on a

standard ECG database.

We propose a method for clustering of medical image datasets using sparse rep-
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resentation and dictionary learning. The basic idea is to group similar images into

clusters that are sparsely represented by the dictionaries and simultaneously learn

dictionaries from the clusters using K -SVD. The mean and variance over concentric

circular regions in the image are calculated and used as features for providing a rotation

invariant image retrieval scheme.

In summary, this thesis opens up the area of sparse representation and dictionary

learning to a lot of medical applications particularly in classification and retrieval. The

main idea of this work is to explore the applicability of sparsity and dictionaries on

various medical datasets like IRMA (X-ray), ICBM (MRI, DTI, MRA, FMRA), MIT-

BIH (ECG) and UCI (PIMA, SPECTF, WBC, Heart SATALOGS). We have shown

that sparse representation with any of the dictionary learning algorithms like K-SVD

and on-line dictionary learning (ODL) is quite suitable for a myriad of classification,

clustering and retrieval tasks on different medical datasets.
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CHAPTER 1

INTRODUCTION TO CONTENT BASED IMAGE

CLASSIFICATION AND RETRIEVAL

In the last few years, thousands of millions of images have become available on the

Internet. The increase of these image collections is compelling people in various profes-

sions, for example, medicine, architecture, geography, design, computer aided design,

advertising and publishing to use them in various applications. Meanwhile, the study

of image classification and retrieval, which is concerned with efficiently accessing sim-

ilar type of images from large image collections, has become a more interesting and

challenging task. Nevertheless, one cannot utilize the information in these image col-

lections unless they are organized for efficient search and retrieval of data. Image

classification and retrieval is all about techniques for storing and retrieving images

both efficiently and effectively.

Previously, searching and retrieving similar images an image database was based

on human annotation, i.e. each image in a database is given some keywords to de-

note the semantic meaning of the image. Thus, classification and retrieving images

was based on the keywords of images. This type of image retrieval is called as text

based image retrieval (TBIR) [1]. Now, many search engines that claim to do image

retrieval perform text based image retrieval like Google, QBIC and AltaVista. These

search engines search the text around the image, such as captions, file names, and

paragraphs located close to the image to search for relevant items to the query. This

text based image retrieval method has many limitations, namely, as the size of image

collection gets increasingly large manually annotating each image becomes very diffi-

cult. Annotating an image based on human perception is very subjective. Different

0



people may assign different annotations to images with similar visual contents. The

problem of searching for similar images in a large image repository based on content

is called Content Based Image Retrieval (CBIR) [2]. The term content in CBIR refers

to colors [3], shapes [3–5], textures [3, 4], or any other information that can be pos-

sibly obtained from the image itself. Indexing remarkably affects the speed of data

access besides supporting the accuracy for retrieval process and thus, is a significant

factor in cataloging image database systems. Content based image indexing tends to

facilitate automatic identification and abstraction of the visual content of an image.

CBIR has the potential to greatly enhance the functionality of Picture Archiving and

Communication Systems (PACS).

In the early 1990s Content Based Image Retrieval (CBIR) was proposed to over-

come the limitations of text based image retrieval. There are many differences between

content based image retrieval systems and classic information retrieval systems. The

major differences are that in CBIR systems images are indexed using features extracted

from the content itself and the objective of CBIR systems is to retrieve similar images

to the query rather than exact matches. The similarity in most CBIR systems is quan-

tified and the database entries are ranked based on their similarity to the query image.

Similar images are retrieved as the result of a query. Different users may be interested

in different parts of the same image. So, similarity based retrieval is more flexible

than exact matching, and gives better performance in case of queries such as finding

the images similar to the given image. The capability of present CBIR systems has

been limited by their use of only primitive features like, color, shape, texture, spatial

relationships among objects and these features can be used in most CBIR applications.

In Section 1.1, we briefly describe various tasks involved in content based image

classification and retrieval. In Section 1.2, we discuss certain issues related to medical

image classification and retrieval that are addressed in this thesis. Section 1.3 outlines

the organization of the thesis.

1



1.1 TASKS INVOLVED IN MEDICAL IMAGE CLASSIFICATION AND

RETRIEVAL

The objective of content based image retrieval is to develop techniques to automatically

extract and retrieve relevant similar images from the large database. In conventional

content based image retrieval systems, the query image is given to the CBIR system

where the CBIR system will retrieve images from raw (unstructured) image database

related to query image. Content based image retrieval involves three major tasks as

shown in Fig. 1.1.

Fig. 1.1: Process diagram for CBIR.

The major functions of a CBIR are as follows:

• Analyze the contents of the source information and represent the contents of the

analyzed sources in a way that will be suitable for matching user queries. This

step is normally time consuming since it has to process all the source information

(images) in the database.

• Analyze user queries and represent them in a form that will be suitable for

matching with the source database, which is similar to the source images in the

database.
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• Define an approach to match the search queries with information in the stored

database. Retrieve the images relevant to the query image.

1.1.1 Feature extraction

Feature extraction technique is the process of describing the image by considering

parameters known as features (color, edge, texture etc.) from a given image. A

feature is defined as a descriptive parameter that is extracted from an image [6].

The effectiveness of medical image classification and retrieval mainly depends on the

effectiveness of features used for the representation of the content. An important issue

is the choice of suitable features for a given task. Effective image retrieval can be

achieved by collaboratively using color, edge density, boolean edge density, texture

and histogram bins. These features are discussed in this section.

1.1.1.1 Color

Color has proven to be the most importent feature and almost all methods used color

information. Although most of the images are in the RGB (Red, Green, Blue) color

space, this space is only rarely used for indexing and querying as it does not relate well

to the human color perception. It only works well for images taken under exactly the

identical conditions each time. Other spaces such as HSV (Hue, Saturation, and Value)

or the CIE Lab and Luv spaces are much better with respect to human perception

and are used more commonly. This means that differences in the color space are close

to the differences between colors that humans perceive. There are different types of

color spaces available which are appropriate for different purposes. Some of the color

spaces that we often come across are RGB, HSV, CIE Lab and Luv [3]. Color feature

can be comprised of histogram bins or average, standard deviation or variance in an

opted color space.
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1.1.1.2 Texture

Texture [7] is another important property of images. Texture features [8] of images

refer to the visual patterns that have properties of homogeneity that do not result from

the presence of only a single color or intensity. Image texture content provides informa-

tion of image properties such as smoothness, coarseness, and regularity which is useful

in a CBMIR system. Basically, texture representation methods can be classified into

two categories: structural and statistical. Structural methods including morphological

operator and adjacency graph, describe texture by identifying structural primitives and

their placement rules. They tend to be most effective when applied to textures that are

very regular. Statistical methods, including Fourier power spectra, co-occurrence ma-

trices, shift-invariant principal component analysis (SPCA), tamura feature, Markov

random field, fractal model and multi-resolution filtering techniques such as Gabor [9]

and wavelet transform, characterize texture by the statistical distribution of the image

intensity.

1.1.1.3 Shape Retrieval

Shape features [8] of objects or regions have been used in many content-based im-

age retrieval systems. Compared with color and texture, shape features are normally

described after images have been segmented into regions. Since, accurate and ro-

bust image segmentation is onerous to achieve. The use of shape features for image

classification and retrieval has been restricted to some applications where objects or

regions are readily available. The methods for shape description can be classified into

boundary or region- based methods. A good shape representation feature for an object

should be invariant to translation, rotation and scaling. More information is given in

[8].
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1.1.1.4 Semantics

Current CBIR systems retrieve similar images from a collection on the basis of the low

level features of images, such as shape, color and texture. Nevertheless, some systems

attempt to finding similar images that are semantically relative to a given query.

Semantically similar is meant in the sense of human visual similarity perception (or

called high level in CBIR).

1.1.1.5 Edge Information

Another choice for characterizing an image is its edge information. The advantage

of this feature is that it is sufficiently invariant to illumination changes. Its main

disadvantage is computational cost, noise sensitivity, and when not post-processed,

high dimensionality.

1.1.2 Indexing for retrieval and browsing

Effective indexing and fast searching of images on basis of visual features pose a sig-

nificant issue in content based image retrieval. Commonly, a tree structure is utilized

to store image information since it has high dimensional metric space. R-tree [10],

R*-tree [11], VP-tree structure [12] and Hybrid Tree [13] are some of the widely used

tree structures. A majority of these multi-dimensional indexing methods perform sig-

nificantly well for dimensions up to 20. A variant of R-tree employed in the indexing

of spatial information is known as R*-tree. Both point and spatial data are supported

at the same instant by an R*-tree but they are more complex compared to R-trees.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard Seeger put forth

the concept of R*-tree in 1990. Though R*-tree displays significant improvements over

the R-tree variants its reinsertion method poses a considerable overhead. Database

systems organizing both multidimensional points and spatial data can benefit from

the R*-trees. Reduction of the area, margin and overlap of the directory rectangles

are the basis for an R*-tree. The R*-tree utilizes an algorithm analogous to that of
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the R-trees for query and delete operations. The primary difference lies in the insert

algorithm. To be precise the mode of selection of which branch to insert the new

node into and the methodology for splitting a full node in an R*-tree differs from that

of the R-tree [11]. The Indexing tree structure can perform efficiently in dictionary

operations. But, it can not be used for finding similarity among the images in the

database. So, indexing tree structure was limited to structure the image database so

that efficient retrieval is possible.

1.2 ISSUES ADDRESSED IN THIS THESIS

The previous section briefly described the various issues involved in content based

image retrieval. The objective of this research work is to develop methods for clas-

sification of medical data. The motivation for this objective stems from the need to

organize large collection of medical images, for efficient classification and retrieval.

The problem of image classification is addressed in the context of medical images.

Classification of medical images into various genres or categories is an important task

and most of the medical image classification systems available today classify medical

images based on modality, body part, disease or orientation. In this thesis, we address

two issues which are important for efficient classification and retrieval of medical data,

namely, representation and classification. Representations can entangle and hide more

or less the different explanatory factors of variations in the data. The objective of im-

age classification is to categorize a given image into one of the predefined categories.

Medical image classification is an important task in content based medical image re-

trieval. With the help of classification, the accuracy and retrieval speed of relevant

images in content based image retrieval vastly improves. Classification of medical im-

ages based on various body parts using on-line dictionary learning (ODL) and ℓ1-lasso

sparse representation on edge-based features is performed since different body parts

are distinctly characterized by edge information.

Another important issue is the classification of imbalanced data. Most of the med-
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ical datasets pose data imbalance problems which give poor classification performance

with single classifiers. In this thesis, we propose a method to address the problem of

data imbalance in medical images using multi-level classification approach. A multi-

level classifier combines correctly classified examples in the first level with the training

data and supplies them as input to the next level classifier.

Another issue in medical imaging is classification of medical images captured by

different sensors. Capturing images using different modalities suffers from significant

contrast variation between the images of the same organ or body part. Due to this

large variation, existing image classification and retrieval algorithms do not perform

well for different modality images. In this chapter, we propose a new classification tech-

nique, namely, sparse representation based multi-scale dictionary learning to classify

the different type of modality images. Wavelet features extracted from an image pro-

vide discrimination useful for classification of medical images obtained from different

sensors. Another important application area which is explored is automated detection

of abnormal heartbeats captured by electronic cardiogram (ECG) signals. We employ

an approach to classify abnormal heartbeat patterns from standard heartbeat patterns

using adaptive dictionary learning on a standard ECG database.

Content based medical image retrieval (CBMIR) is the process of extracting rele-

vant images to a query image, based on content rather than annotation. The key issues

with CBMIR are the choice of features for representation of images, similarity/distance

metric and a generic algorithm for retrieval of rotation invariant based similar images.

The proposed CBMIR approach concentrates on retrieving rotation invariant resultant

images and improving the accuracy of retrieved images with the help of clustering. A

given image is partitioned into concentric circular regions of equal area and the mean

and variance of each such area are considered as features for rotation invariant repre-

sentation of images. These features are then used for the proposed dictionary learning

based clustering and sparsest representation based classification algorithms.
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1.3 ORGANIZATION OF THE THESIS

An overview of the existing approaches to image classification and retrieval is pre-

sented in Chapter 2. Some research issues are identified in both these tasks which are

addressed in this thesis. In Chapter 3, content based medial image classification is

performed using on-line dictionary learning (ODL) and ℓ1-lasso sparse representation

on edge-based features. In Chapter 4, the problem of imbalanced data problem in

medical image classification is addressed by using multi-level classification approach.

A new method for classification of medical images based on modality is proposed in

Chapter 5, using the framework of multi-scale dictionary learning algorithm. In Chap-

ter 6, the problem of automated detection of abnormal heartbeats captured by elec-

tronic cardiogram (ECG) signals is addressed. An adaptive dictionary learning based

classification technique is used to classify the normal and abnormal heartbeats from

ECG medical database. In Chapter 7, dictionary learning based clustering method

is proposed for content based medical image retrieval. An approach to group similar

images into clusters that are sparsely represented by the dictionaries and simultane-

ously learn dictionaries from the clusters using K-SVD method is proposed. A query

image is matched with the existing dictionaries to identify the dictionary with the

sparest representation using OMP algorithm. Then, images in the cluster associated

with this dictionary are compared using a similarity measure to retrieve images similar

to the query image. Considering mean and variance over concentric circular regions as

features facilitates rotation invariance based image retrieval. Chapter 8 summarizes

the research work carried out as part of this thesis, highlights the contributions of the

work and discusses directions for future work.
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CHAPTER 2

OVERVIEW OF APPROACHES FOR CONTENT BASED

MEDICAL IMAGE CLASSIFICATION

This chapter reviews some of the existing approaches to content based medical image

classification and retrieval. The problem of content based image retrieval is briefly

described in Section 2.1. The two important components of algorithms for image

classification, namely, features for representation of images, and similarity/distance

metric, are discussed in terms of the commonly made choices for these components.

The existing algorithms for content based image retrieval are then reviewed. In Section

2.3, the existing approaches to image classification are reviewed, with particular focus

on the classification of medical images. Some research issues arising out of the review

of existing methods are identified, which are addressed in this thesis.

2.1 EXISTING METHODS FOR CONTENT BASED MEDICAL IM-

AGE CLASSIFICATION AND RETRIEVAL

There are hundreds of millions of images available on the Internet. Nevertheless, one

cannot utilize the information in these image collections unless they are organized

for efficient search and retrieval of data. Therefore, the need of an efficient method

to retrieve digital images is recognized by the public. There are two approaches to

image classification, namely, text based approach and content based approach. The

former solution is a more traditional approach which indexes images by using keywords.

The keyword indexing of digital images is useful but requires a considerable level of

effort and often limited for describing image content. The alternate approach, the
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content based image retrieval indexes images by using the low level features of the

digital images and the searching depends on features being automatically extracted

from the image. Content based image retrieval [2], is the term used to describe the

process of retrieving images from a database on the basis of the internal features of

images. In CBIR, digital images are indexed [11] by summarizing their visual contents

through automatically extracted features such as texture, color, and shape. There

exist different ways to express the query. The query can be defined by submitting one

or more example images, providing a rough sketch of the desired item or by providing

textual description of the object. CBIR retrieves stored digital images from a collection

by comparing features extracted from the images. The most common features used

are mathematical measures of color, texture or shape [2]. The CBIR system identities

those stored images whose feature values match those of the query most closely and

displays these found images to the user. In the following section, some of the frequently

used types of features used for image retrieval will be described. The first step in

content based medical image retrieval is to select an appropriate feature set for the

image database. The selection of the feature set should be done in such a way that it

should approximate images which are semantically similar to be as close to each other

as possible in the feature space. The next step is to prepare a query image for retrieval

i.e. extract features from the query image. Finally, an appropriate similarity measure

is employed for retrieving the most similar images from the database. A block diagram

of traditional content based image retrieval is shown in Fig. 2.1.

A common approach to feature extraction is to segment the images into regions

[14] based on a certain similarity criterion. Regions from the segmentation result can

then be used in region based queries for CBIR. This enables the user to include only

the relevant regions when formulating a query. Chu et al. [15] described a knowledge

based image retrieval of computed tomography (CT) and magnetic resonance imaging

(MRI) images. In this approach, the brain lesions were automatically segmented and

represented to form a knowledge based semantic model. Cai et al. [16] proposed a

CBIR system for functional dynamic positron emission tomography (PET) images of
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Fig. 2.1: Traditional content based image classification and retrieval
system.

the human brain, where segmented clusters of tissue time activity curves from the

temporal domain were used in the computation of similarity measure for retrieval.

In [17], the delineations of the regions of interest were manually performed on the

key frame from the stack of high resolution CT images and were used as features to

represent the entire image. Some CBIR systems use segmentation to represent the

regions, such as the ones used for retrieval of tumor shape and the shape of regions in

spine X-ray images.

Guimond et al. [18] introduced user-selected volume of interest (VOI) for the re-

trieval of pathological brain MRI images. In [19], group sparse representation with

dictionary learning for medical image denoising and fusion was used. Wavelet opti-

mization techniques for content based image retrieval in medical database were de-

scribed in G. Quellec et al [20]. Linear discriminate analysis (LDA) based selection

and feature extraction algorithm for classification and segmentation of one dimensional

radar signals and two-dimensional texture and document images using wavelet packet

was proposed by Etemand and Chellappa [21]. Recently, similar algorithms for simul-

taneous sparse signal representation and discrimination were proposed [22]- [23]. In

[24], Yi. Chen et al. proposed in-plane rotation and scale invariant clustering using
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dictionaries. This approach provides Radon-based rotation and scale invariant clus-

tering as applied to content based image retrieval on Smithsonian isolated leaf, Kimia

shape and Brodatz texture datasets. Fei et al. [25] described a CT image denoising

based on sparse representation using global dictionary. This approach improves low

dose CT abdomen image quality through a dictionary learning based denoising method

and accelerates the training time at the same time. Some of the existing medical CBIR

systems as follows:

ASSERT : This system was developed in the school of electrical and computer engi-

neering at Purdue University [17]. It is designed specifically for high resolution com-

puted tomography images of the lung, since it uses some perceptual features specific

to those images. It also includes gray-level features, such as the gray-level mean and

standard deviation, texture features such as contrast, entropy and homogeneity and

shape features such as the area. The feature vectors are indexed using the multi-hash

method described in [26]. In Fig. 2.2, shows the some of the query related images

with the ASSERT tool.

Fig. 2.2: Some of the retrieved images with ASSERT tool.

IRMA : The IRMA system [27] was developed on the Aachen University of Tech-
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nology. It is focused on the querying of medical images using manually defined proto-

types in a first stage and features are extracted from frequency, texture and structure

analysis in regions segmented in a multi-scale blob-representation (blob tree). Those

features are then indexed using a cluster-based approach.

The strategies adopted in the field of medicine often are (a) to use of more complex

gray-level features (e.g. increase the number of gray level bins in the histogram), (b)

to limit searches by creating prototypes for several well defined categories and (c) to

use features that are specific of those images. MedGIFT uses the first strategy, IRMA

uses the second and ASSERT uses the third. In Fig. 2.3, shows the some of the query

related images with the IRMA tool.

Fig. 2.3: Some of the retrieved images with IRMA tool.

2.2 COMPONENTS OF CONTENT BASED IMAGE CLASSIFICATION

AND RETRIEVAL METHODS

An important component of content based image retrieval algorithms is the set of

features extracted from a image or from a region of the image. Another component
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is the similarity measure that is used to detect the presence of a image retrieval. We

present below the different choices that can be made for each component, along with

their advantages and disadvantages. A content based image retrieval algorithm can

then be designed by suitably choosing each component.

2.2.1 Features used for representation of an image

Feature extraction is the process of describing the image by considering parameters

known as features (color, edge, texture etc) from a given image. A feature is defined as

a descriptive parameter that is extracted from an image [6]. The effectiveness of image

retrieval depends on the effectiveness of features/attributes used for the representation

of the content. An important issue is the choice of suitable features for a given task.

Effective image retrieval can be achieved by collaboratively using color, edge density,

boolean edge density, texture and histogram bins. These features are discussed in this

section.

2.2.1.1 Extraction of gray-level features

Color has been the most effective and most widely used feature in CBIR [28, 29]. In

medical CBIR, the color of each pixel is restricted to a gray levels intensity, which

is already available, so it is quite straightforward to extract meaningful gray-level

features. The objective is to transform the local gray-level information of each pixel

into a global gray-level distribution of the full image, where visually similar images

have similar representations.

Gray-level histogram

The most popular method of extracting gray level features of an image is to con-

struct its histogram [29,30]. A histogram is a statistical description that captures the

gray levels distribution of an image. To construct an histogram, we discretized the

intensity of the gray levels into a set of bins, and count the number of pixels whose

intensity is in that bins range [31, 32]. In CBIR, the histogram is discretized into 256
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bins, where the first bin has the number of black pixels (absence of color) and the last

bin has the number of white pixels. Mainly, histograms suffer from two problems that

limit their reliability. Perceptually, similar colors problem [30] is due to the very small

difference between intensity values in neighboring bins. Sometimes, almost identical

intensities are not assigned to the same bin, but to a neighbor. This means that the

difference between the histograms of perceptually similar images (such as two images

taken with different light conditions) can be quite big . An even bigger problem is the

absence of any spatial information [33]. We can shuffle all the pixels in an image but

the histogram remains untouched and therefore, the images are considered equal.

Partition-based histograms

Partition-based histograms incorporate spatial information by splitting the picture

into k × k partitions, each one with its own histogram to store the local area gray-

level information [34]. The spatial information emerges because only the corresponding

pairs of local histograms are compared.

Color coherence vectors

Due to the absence of any spatial information in a histogram, an image with a large

area of a given gray-level can be considered similar to another image that has many

small areas of the same gray level scattered. To solve this problem, Pass et al. [33]

proposed the Color Coherence Vectors (CCV) method. We start by identifying all the

similar gray-level regions (connected components) in the image and count the number

of pixels they have. If the number of pixels in a connected component is bigger than

a given threshold, then they are classified as coherent. Otherwise, they are classified

as incoherent. Not only a CCV has all the information present in histograms (i.e. we

can convert a CCV into a histogram simply by adding the coherent and incoherent

pixels for each pair), but it also measures if a gray-level is in a large area or scattered.

A big number of coherent pixels are able to distinguish images with big similar gray

levels areas from images with small scattered areas, even if both histograms are equal.

Unfortunately, we still miss important spatial information. We do not know how many

regions are present, how big they are or their location. Another potential problem is
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the definition of the threshold used to classify the pixels coherence. Too low and even

pixels in small regions will be coherent, too high and there will only be coherent pixels

in large regions.

2.2.1.2 Extraction of texture features

Texture [35] is another important property of images. Texture features [36] of images

refer to the visual patterns that have properties of homogeneity that do not result

from the presence of only a single color or intensity. Image texture content provides

information of image properties such as smoothness, coarseness, and regularity which

is useful in a CBIR system. Basically, texture representation methods can be classified

into two categories: structural and statistical. Structural methods including mor-

phological operator and adjacency graph, describe texture by identifying structural

primitives and their placement rules. They tend to be most effective when applied to

textures that are very regular. Statistical methods, including Fourier power spectra,

co-occurrence matrices, shift-invariant principal component analysis (SPCA), tamura

feature, world decomposition, markov random field, fractal model and multi-resolution

filtering techniques such as Gabor [37] and wavelet transform, characterize texture by

the statistical distribution of the image intensity. Three classical approaches have

been developed to describe textures, namely, structural, spectral and statistical. The

structural approach assumes that the elements of a texture (textels) are placed under

some rules. The spectral approach converts the image to the frequency domain to

obtain features from its power spectrum. The statistical approach uses the statistical

distribution of the pixels gray-level intensity to identify features. More recently, other

methods were proposed inspired by human visual system (HVS) using multichannel

filtering at different spatial frequencies and orientations.
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2.2.1.3 Extraction of shape features

Shape features [36] of objects or regions have been used in many content-based image

classification systems. Compared with color and texture features, shape features are

usually described after images have been segmented into regions or objects. Since ro-

bust and accurate image segmentation is difficult to achieve, the use of shape features

for image retrieval has been limited to special applications where objects or regions are

readily available. The methods for shape description can be classified into boundary

or region-based and contour-based methods. A good shape representation feature for

an object should be invariant to translation, rotation and scaling.

Region based features

Methods that extract region based features take into account all the pixels within

the shape. Each shape is mapped onto a fixed sized grid or circle to achieve scale,

rotation and translation invariance. This normalized shape is viewed as a probability

density of a two-dimensional variable, from which orthogonal moments that describe

some global properties of the shape can be computed [38, 39]. However, they are un-

able to capture its local properties, thus failing to achieve partial occlusion invariance.

Contour based features

Methods that extract contour based features are more popular, since they extract

both global and local features using only the shape boundary coordinates (x (t), (y(t)),

t = 0, 1, ..., L-1 where, L is a fixed number of samples (data points). All shapes are

sampled into these data points so that (a) each shape signature (i.e. the representa-

tion containing the features) has the same size, to facilitate the comparison between

shapes and (b) to smooth the shape, reducing unwanted details, and increasing the

computational efficiency [38]. Some of counter based features are complex coordinates,

centroid distance, curvature and cumulative angular function.
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2.2.2 Measure of similarity

Similarity measurement [3] is one of the key point in content based image classification

and retrieval. An important step in most clustering is to select a distance measure,

which will determine how the similarity of two elements is calculated. In CBIR, images

are represented as features in the database. Once the features are extracted from

the indexed images, the retrieval becomes the measurement of similarity between the

features. Commonly used similarity measures are :

• The Euclidean distance (also called distance as the crow flies or 2-norm dis-

tance). A review of cluster analysis in health psychology research found that

the most common distance measure in published studies in that research area

is the Euclidean distance or the squared Euclidean distance.

• The Manhattan distance (one-norm)

• The maximum norm (infinity norm)

• The Mahalanobis distance corrects data for different scales and correlations in

the variables

• The angle between two vectors can be used as a distance measure when clustering

high dimensional data.

• The Hamming distance measures the minimum number of substitutions required

to change one member into another.

Euclidean distance [32] is the most common metric for measuring the distance

between two vectors, and is given by the square root of the sum of the squares of the

differences between vector components.

2.3 EXISTING METHODS FOR MEDICAL IMAGE CLASSIFICATION

Efficiently searching and retrieving of data in the large image collections poses sig-

nificant technical challenges as the characteristics of the medical images differ from
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other general purpose images. Some methods have been explored in recent years to

automatically classify medical image collections into multiple semantic categories for

efficient retrieval [40]. For example, in [41], the automatic categorization of 6231 radi-

ological images into 81 classes is achieved by utilizing a combination of low level global

texture features with low resolution scaled images and a K-nearest neighbor (KNN)

classifier. Although, these approaches demonstrate promising results for medical im-

age classification and retrieval, classification and searching similar images in a large

database is still a challenge.

An X-ray image categorization and retrieval method using patch-based visual

word representations is proposed in [42]. The feature extraction process is based

on local patch representation of the image content and a bag-of-features approach for

defining image categories, with a kernel based support vector machine (SVM) classifier.

The method is especially effective in discriminating orientation and body regions in

X-ray images, and in medical visual retrieval. In [43], a descriptor is proposed which

combines local features with global shape features. The descriptor combines edge

of whole image with edge density of sub-images and it is known as the edge density

histogram descriptor (EDHD). The image retrieval and classification is then done based

on euclidean distance and with the help of support vector machines.

A learning based classification framework based on local binary pattern (LBP)

feature is proposed in [44]. Local binary pattern is extracted from each image in

database with the help of an LBP operator which labels image pixels by thresholding

neighborhood of each pixel with the center value and considers the result as a binary

number, which is then classified using a maximum margin SVM. Moreover, a merging

technique is applied on the overlapped classes. These overlapped classes are detected

in merging scheme with the help of measures such as correctness rate of each class,

similarity of imaging body organ and misclassification ratio. In [45], a least square

support vector machines is used for breast cancer classification. Least square SVM

(LSSVM) simplifies the required computation by solving a linear equation set. This

equation set embodies all available information about the learning process. The most
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important difference between SVM and LSSVM is that LSSVM uses a set of linear

equations for training, while SVM uses a quadratic optimization problem which greatly

reduces the computational cost. Wavelet optimization techniques for content based

image retrieval in medical database are described in [20].

In, [46] shape and texture features are extracted from breast MRI images and

genetic algorithm is applied to select the best feature to be used for classification

process. To improve classification performance three different classifiers, namely, multi-

layer perceptron (MLP), generalized regression neural network (GRNN) and support

vector machine (SVM) are combined to from a multi-classifier system. Bartosz et

al. [47] introduced under sampling balanced ensemble method to solve the imbalance

problem. The construction of multiple independent classifiers is typically a non-trivial

problem. In, [48] a cost-sensitive ensemble classification algorithm is proposed. The

data imbalance problem is addressed by employing cost-sensitive decision trees as base

classifiers which are trained on random feature subspaces to ensure diversity, and an

evolutionary algorithm for simultaneous classifier selection and fusion. Marco Vannucci

et al. [49] described a binary classification method named Labeled SOM Classification

Unbalanced Sets (LASCUS) that can be applied to uneven datasets and sensitive

problems such as malfunction detection. LASCUS method is based on the use of a

self-organizing map (SOM) and fuzzy inference system (FIS). The SOM creates a set

of clusters to be associated either to frequent or unfrequented situations while the FIS

determines such association on the basis of data distribution.

Modality classification and its use in text based image retrieval in medical databases

is proposed in [50]. Visual descriptors and text features are used for classifying the

medical images. Medical image classification is then done with the help of support

vector machines classifier. In [51], explore different type of medical image modality

and retrieval strategies. Bags of visual words and fisher vectors representations are in-

tegrated to perform medical modality classification. Wavelet optimization techniques

for content based image retrieval in medical database are described in [20].
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2.4 ISSUES ADDRESSED IN MEDICAL IMAGE CLASSIFICATION

This thesis is mainly focused on the issues related to the efficient classification and

retrieval of medical images. Image classification and retrieval which is concerned with

efficiently accessing similar type of images from large image collections, has become

more interesting and more challenging as the medical datasets have grown over the

years. The existing medical image search and retrieval techniques are not very efficient

in terms of time and accuracy of search result because most of the existing tools for

searching medical images use text based image retrieval techniques.

Text based image classification suffers from some serious limitations, namely, when

the size of image collection gets increasingly large, annotating each image manually

is very difficult. Also, different people may give different annotations to images with

similar visual content. Improving the classification accuracy and reducing the retrieval

time are important issues in medical images.

In most medical imaging systems, the same body part is captured from different

orientations and magnification by the same sensor. Devise a rotation and scale invari-

ant classification and retrieval system is a real challenge. Medical images are captured

by different sensors (modalities). Images captured from various modalities suffer from

significant contrast variation between the images of the same organ or body part. Due

to this large variation, existing image classification and retrieval algorithms do not

perform well for different modality images.

In addition, most of the medical datasets pose data imbalance problem i.e. un-

equally distributed training samples among all the classes, which gives rise to poor

classification performance with standard single classifiers. Finally, one of the most

important problems in medical CBIR is to find images with similar anatomical regions

and diseases which can greatly reduce the effort exerted by physicians to manually

analyse and annotate the disease region.
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2.5 SUMMARY

This chapter reviewed some of the existing approaches to content based medical image

classification and retrieval. Various steps involved in content based image classification

and retrieval system and the related work is briefly described. Also, the existing

approaches for all the components of content based image retrieval system are reviewed.

Some research issues arising out of the review of existing methods are addressed in

this thesis.
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CHAPTER 3

CLASSIFICATION OF MEDICAL IMAGES USING

EDGE-BASED FEATURES AND DICTIONARY

LEARNING

In this chapter, an approach for classification of medical images using edge-based

features is proposed. We demonstrate that the edge information extracted from an

image by dividing the image into patches and each patch into concentric circular re-

gions provide discriminative information useful for classification of medical images by

considering 18 categories of radiological medical images, namely, skull, hand, breast,

cranium, hip, cervical spin, pelvis, radiocarpaljoint , elbow etc. The ability of on-line

dictionary learning (ODL) to achieve sparse representation of an image is exploited to

develop dictionaries for each class using edge-based feature. A low rate of misclassifi-

cation error for these test images validates the effectiveness of edge-based features and

on-line dictionary learning models for classification of medical images.

Digital image retrieval techniques are becoming increasingly important in the field

of medical image databases. The increasing dependence on modern medical diagnos-

tic techniques like radiology, histopathology and computerized tomography has led to

an explosion in the number of medical images stored in hospitals. Images of vari-

ous body parts and modalities are becoming an important source of anatomical and

functional information for the diagnosis of diseases, medical research and education

[52]. However, one cannot utilize the information in these image collections unless

they are organized for efficient search and retrieval of data. Efficiently searching and

retrieving of data in these large image collections poses significant technical challenges
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as the characteristics of the medical images differ from other general purpose images.

Some methods have been explored in recent years to automatically classify medical

image collections into multiple semantic categories for effective retrieval [40]. For ex-

ample, in [41], the automatic categorization of 6231 radiological images into 81 classes

is achieved by utilizing a combination of low level global texture features with low res-

olution scaled images and a K-nearest neighbor (KNN) classifier. Although these ap-

proaches demonstrate promising results for medical image classification and retrieval,

classification and search of similar images in a large database is still a challenge due to

the enormity of the search space. Searching similar images in a large image repository

on the basis of their visual content is called Content Based Image Retrieval (CBIR)

[53]. The traditional text based image classification and retrieval (TBIR) approach

has many practical limitations like the images in the collection have to be annotated

manually which becomes very difficult as the size of the image collection increases and

time consuming. Another important limitation of TBIC and TBIR is inadequacy in

representing the image content [54]. Content based image classification and retrieval

approaches are proposed to overcome the limitations of text based image classification

and retrieval. Digital image retrieval techniques are crucial in the emerging field of

medical image databases for clinical decision making process.

Medical image classification is an important task in content based medical image

retrieval (CBMIR). Automatic medical image classification is a technique for assign-

ing a medical image to an appropriate class among a number of medical image classes.

In medical image classification, several methods have been proposed in the literature

[55]- [56]. One approach to content based medical image retrieval is proposed in [55],

in which medical images are classified based on body orientation, biological system,

anatomical region and image modality. The performance of the classification is evalu-

ated on IRMA database and the best classification result is achieved by using distorted

tangent distance in a kernel density classifier. The CBMIR system can achieve better

performance by filtering out the images of irrelevant classes from the medical database

through classification. This significantly reduces the search space and time for retriev-
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ing similar type of images. So, image classification is indeed an important stage in a

CBMIR system.

The major limitations associated with existing text based image classification and

retrieval techniques are: 1) It is time consuming as the physicians have to search

through a large number of images for identifying similar images. 2) Most of the existing

tools for searching medical images use text based image classification and retrieval

techniques. These text based image classification suffer from several limitations [51]

and the most important one is the need for manual annotation. Thus, the existing

medical image search and retrieval techniques are not very efficient in terms of retrieval

time and accuracy of search results.

In this chapter, we address the some issues in text based image classification and

retrieval. The content based image classification techniques serve as an alternative

to text based image classification. Moreover, CBMIR overcomes the need for manual

annotation and human perception. Also, finding similar images in large volumes of

medical image databases is a difficult task. Classification of medical images enables

the efficient retrieval of relevant images from the large database and reduces the search

space and time.

Selection of features for adequately representing the class specific information is an

important process in medical image classification. An X-ray image categorization and

retrieval method using patch-based visual word representations is proposed in [42].

The feature extraction process is based on local patch representation of the image

content and a bag-of-features approach for defining image categories, with a kernel

based SVM classifier. The method is especially effective in discriminating orientation

and body regions in X-ray images, and in medical visual retrieval. In [43], a descriptor

is proposed which combines local features with global shape features. The descriptor

combines edge of whole image with edge density of sub-images and is known as the

edge density histogram descriptor (EDHD). The image retrieval and classification is

then done based on euclidean distance and with the help of support vector machines.

A learning based classification framework based on local binary pattern(LBP) feature
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is proposed in [44]. Local binary pattern is extracted from each image in database with

the help of an LBP operator which labels image pixels by thresholding neighborhood

of each pixel with the center value and considers the results as a binary number, which

is then classified using a maximum margin SVM. Moreover, a merging technique is

applied on the overlapped classes. These overlapped classes are detected in merging

scheme with the help of measures such as correctness rate of each class, similarity

of imaging body organ and misclassification ratio. In [45], a least square support

vector machines is used for breast cancer classification. Least square SVM (LSSVM)

simplifies the required computation by solving a linear equation set. This equation set

embodies all available information about the learning process. The most important

difference between SVM and LSSVM is that LSSVM uses a set of linear equations

for training while SVM uses a quadratic optimization problem which greatly reduces

the computational cost. The extracted feature database is constructed by merging

some already existing features in the original database with some new visual content

features that are extracted from the medical images using image processing techniques.

Wavelet optimization techniques for content based image retrieval in medical database

are described in [20].

In most cases, medical images can easily be classified based on edge information. In

this chapter, we propose a novel feature extraction method using the edge information.

Medical images of different body parts contains different edge information. An edge

image is divided into patches and each patch into concentric circular regions. Mean and

variance of pixel intensity values in each region is computed. Mean and variance are

global measurements and these are more suitable with deterministic methods. In this

method, different orientations of same shape images are combined into a single class, in

order to achieve better classification. The reason for combining multiple classes to solve

a given classification problem is due to the fact that in medical applications, numerous

classes of any given medical image database have considerable overlap. Hence, a single

class with limited features cannot classify images correctly [54].

Sparse representation has received a lot of attention from the research in signal
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and image processing. Sparse coding involves the representation of an image as a

linear combination of some atoms in a dictionary [57]. Sparse representation is a

powerful tool for efficiently representing data. This is mainly due to the fact that

signals and images of interest tend to enjoy the property of being sparse in some

dictionary. These dictionaries are often learned directly from the training data. Several

algorithms like on-line dictionary learning (ODL) [58], K-SVD [59] and method of

optimal directions (MOD) [60] have been developed to process training data. Sparse

representation is used to match the input query image with the appropriate class.

Linear discriminant analysis (LDA) based selection and feature extraction algorithm

for classification using wavelet packet has been proposed by Etemand and Chellappa

[21]. Recently, similar algorithms for simultaneous sparse signal representation and

discrimination have also been proposed [22], [61]. In [62], a method for simultaneously

learning a set of dictionaries that optimally represent each cluster is proposed. This

approach was later extended by adding a block incoherence term in their optimization

problem to improve the accuracy of sparse coding.

In this chapter, we propose an approach for classification of medical images on

image retrieval in medical applications (IRMA) database [63] using on-line dictionary

learning approach. Learned dictionaries are used to represent datasets in sparse model

of IRMA medical images. Dictionaries are designed to represent each class. For a given

N number of classes, we design N dictionaries to represent the classes. Each image

associated with a dictionary provides the best sparsest representation. For every image

in the given set of images {yi}
n
i=1 , ODL is used to seek the dictionary D that has

the sparsest representation for the image. We define l(D̂ , Φ̂) as the optimal value of

the l1 -lasso sparse coding problem [64]. This is accomplished by solving the following

optimization problem:

l(D̂ , Φ̂) = argmin
D ,Φ

1

N

N
∑

i=1

1

2
‖Yi − DΦi‖

2
2 subject to ‖Φi‖1 ≤ λ, (3.1)

where Y is the matrix whose columns are yi , and λ is the sparsity parameter. D de-
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notes the learned dictionary, Φ represents the sparse representation vectors, N denotes

the number of classes, and Y represents the training database. The ODL algorithm

alternates between sparse coding and dictionary update steps. Several efficient pur-

suit algorithms have been proposed in the literature for sparse coding [60], [65]. The

simplest one is the l1 -lasso algorithm [64]. The main advantage with ODL algorithm

is its computational speed as it uses l1 -lasso algorithm for sparse representation. In

sparse coding step, dictionary D is fixed and representation vectors Φi are identified

for each example yi . Then, the dictionary is updated atom by atom in an efficient way.

The rest of the chapter is organized as follows. Section 3.1 presents the proposed

method. Experiments of content based medical image classification application are

described in detail in section 3.2. Finally, we draw the conclusions in section 3.3.

3.1 MEDICAL IMAGE CLASSIFICATION USING DICTIONARY LEARN-

ING

The present work provides a method for medical image classification using dictionary

learning. There are many advantages to this approach. Firstly, the edge and patch

based feature extraction method proposed to classify the data. Secondly, the entire

dataset is represented with the help of fixed small size of dictionary which greatly re-

duces computational time. Moreover, the classification performance improves because

of the uniform dictionary size irrespective of number of training images.

The proposed CBMIR framework is shown in Fig. 3.1. First, the features are

extracted from the images of the each training dataset. A dictionary is generated for

each class using the on-line dictionary learning (ODL) algorithm. Then, given test

data is compared with the existing dictionaries to identify the dictionary with the

sparest representation using l1 lasso algorithm. Finally, test data is assigned to the

class associated with the sparsest dictionary. Fig. 3.2 (a) shows some of sample IRMA

medical images.
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Fig. 3.1: Block diagram of the proposed medical image classification.

3.1.1 Feature extraction

The performance of a CBIR system depends on how well the extracted features cap-

ture the semantics of an image. Generally, content based medical image classification

and retrieval techniques use fundamental visual features like image colour, shape and

texture yielding vector with thousands of features. However, use of multiple features

should give better classification accuracy. We consider two types of feature extraction

methods to represent the content of medical images. In the first method, edge based

feature extraction is used to extract edge information of the medical images. Since,

medical images of different body parts contains different shapes and different edge

information, medical images can be easily be classified based on the edge features.

Canny edge [66] detection algorithm is used for finding the edges of the images as

shown in Fig. 3.2 (b). This feature extraction method is more suitable for medical

image databases. In the second method, patch based feature extraction method is

used on edge images. An edge image is divided into equal size of patches as shown in

Fig. 3.2 (c). Each patch of the image is partitioned into concentric circular regions of
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equal area as shown in Fig. 3.2 (d). The mean and variance of pixel intensity in each

Fig. 3.2: (a) Samples of IRMA medical images. (b) Edge images of samples in
(a). (c) Images are divided into equal size of patches. (d) A patch is divided into
concentric circular regions.

circular region becomes a component of the feature vector using equations (2) and (3),

where P is the number of pixels in each region, m is the mean of pixels intensity

values and S is the variance of pixels intensity values in each region. This approach

accomplishes the best representation of the contents of an image.

m =
1

P

P
∑

k=1

(yk) (3.2)

S =
P
∑

k=1

(yk −m)(yk −m)t, (3.3)

The procedure for feature extraction is as follows:

1. Extract edge information from medical images.

2. Divide each edge image into 16 equally sized (50× 50) patches.
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3. Partition each patch of the every image into 4 concentric circular regions, such

that each circular region has the same number of pixels as the other regions.

4. Calculate mean and variance of each circular region and use them as components

of the feature vector. The size of the feature vector for each image is 128× 1 (

16 (patches) × 4 (regions) × 2 (features - mean and variance)).

3.1.2 Proposed method

In this proposed method, we introduce a sparsity based medical image classification

by representing the test data as a sparse linear combination of training data from a

dictionary. In this work, class C = [C1, . . . ,CN ] consists of training samples collected

directly from the image of interest. In the proposed sparsity model, images belonging

to the same class are assumed to lie approximately in a low dimensional subspace.

Given N training classes, the pth class has Kp training images {yN
i } i=1,. . . , Kp . Let

b be an image belonging to the pth class, then it is represented as a linear combination

of these training samples:

b = DpΦp , (3.4)

where Dp is m × K p a dictionary whose columns are the training samples in the pth

class and Φp is a sparse vector. The proposed method is summarized in algorithm 1.

Proposed method consists of two steps:

1) Dictionary Construction: Construct the dictionary for each class of training im-

ages using on-line dictionary learning algorithm [58]. Then, the dictionaries D =

[D1, . . . ,DN ] are computed using the equation:

(D̂i , Φ̂i) = arg min
Di ,Φi

1

N

N
∑

i=1

1

2
‖Ci − DiΦi‖

2
2 + λ‖Φi‖1,

satisfying Ci = D̂i Φ̂i , i= 1, 2, . . . ,N .

2) Classification: In the classification process, the sparse vector Φ for given test image

is found in the test dataset B = [b1, . . . , bl ]. Using the dictionaries of training samples
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D = [D1, . . . ,DN ], the sparse representation Φ satisfying DΦ=B is obtained by solving

the following optimization problem:

Φj = argminΦ
1
2
‖bj − DΦj‖

2
2 subject to |Φj‖1 ≤ T1, and

î = argmini ‖bj − Dδi(Φ
j )‖22 j = 1 , · · · , t ,

(3.5)

where δi is a characteristic function that selects the coefficients. A test image

bj is assigned to class Ci if the i th dictionary that is associated with Ci class gives

maximum sparsity for bj among all the dictionaries while considering l1 - distance.

This procedure is summarized in algorithm 2.

Algorithm 1 : Dictionary Construction for each training class dataset using on-line

dictionary learning algorithm (ODL)

Input : Training class dataset N ǫ Rm×n( C1, ..., CN), and TǫR (regularization pa-

rameter)

Output : Construct N Dictionaries DǫRm×k =[d1, ..., dN ] (k≪ n).

Dictionary construction:

Step 1. For i=1 to N do

Step 2. Construct dictionary Di for each training class Ci using on-line dictionary

learning algorithm (ODL).

(D̂i , Φ̂i) = arg min
Di ,Φi

1

N

N
∑

i=1

1

2
‖Ci − DiΦi‖

2
2 + λ‖Φi‖1

satisfying Ci = D̂i Φ̂i , i= 1, 2, . . . ,N .

Step 3. End for

Step 4. Return Di
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Algorithm 2 : Classification based on sparse Representation

Input: A dictionary matrix DǫRm×k =[d1, . . . , dN ] for N classes, and a test data

BǫRm×z.

Step 1. Normalize the columns of D to have unit l2- norm

Step 2. Solve the l1- norm minimization problem by:

Φj = argminΦ
1
2
‖bj − DΦj‖

2
2 subject to‖Φj‖1 ≤ T1,

î = argmini ‖bj − Dδi(Φ
j )‖22 j = 1, · · · , t

(3.6)

Step 3. Assign test data bj to class Ci

3.2 EXPERIMENTAL RESULTS

Experiments are carried out on IRMA medical database, in which each image is of size

200 × 200 pixels. Majority of medical images are generally gray-scale images such as

X-ray, CT, etc. Fig. 3.2 (a) shows some of the sample ImageCLEF images of IRMA

database. For classification of medical images, 5400 sample images of skull, breast,

chest, hand etc., spanning 44 different classes with different orientations are used and

these classes are described in Table 3.1. The main problem in classifying medical

radiological images is high inter class overlap and intra class variability in some of

the classes [54]. To address this problem, different merging techniques are used in

literature [54]. In our proposed work, a merging technique is devised where different

orientations of the same shaped image are merged into a single class (i.e. number

of classes are reduces from 44 to 18) as shown in Table 3.2. Moreover, the proposed

method works for images with different orientations. Each class consists of 300 training

and 50 testing images, and experiments are run through 5-fold cross validation. The

results obtained from these experiments are presented in Table 3.3.

The performance of the proposed method is compared with other classification

techniques and given in Table 3.3. The proposed method gives best classification per-

formance of 98.5% as compared to other image classification techniques such as linear

discriminant analysis (LDA), kernel SVM, neural network (NN), K-Nearest neighbor
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(KNN) and Bayes classifier (BC). The classification performance of different classifiers

are shown in Fig. 3.3 in terms of a confusion matrix.

Fig. 3.3: Confusion matrix using (a) LDA classification (b) Bayesian classification
(c) ODL classification (d) KNN classification (e) K-SVM classification (f) NN
classification

Linear discriminant analysis classifier and Bayes classifier give the classification

performance of 77% and 74%, respectively. Neural network classifier is tested with

different number of hidden layers. Among these, neural network classifier gives the

classification performance of 82%. KNN gives best performance of 88.1% with K=5.

When K value increases, the KNN classification performance decreases. The perfor-

mance of KNN with different K values are shown in Fig. 3.4.

Kernel SVM gives highest performance of 94% using polynomial kernel function.
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Fig. 3.4: Performance of KNN classifier using different K values.

Further, kernel SVM is explored with different types of kernels, namely, linear, polyno-

mial, RBF, and sigmoid. The best classification results among all classes with various

kernels is shown in Fig. 3.5. Also, the performance of all kernels on each individual

class is shown in Fig. 3.6. From the experimental results, it is observed that the

feature vector selected from multiple features and on-line dictionary based classifiers

gives the best performance among all the other classifier methods.

Fig. 3.5: Classification performance of different types of SVM kernels.

Over the years, various methods have been done by taking different number of
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Fig. 3.6: Classification performance of each class using (a) linear kernel SVM.
(b) polynomial kernel SVM. (c) sigmoid kernel SVM. (d) RBF kernel SVM.

images from the IRMA medical database. In [55], best classification error rate of 8.0%

was achieved for a set of 1617 images from IRMA database. Database consisting of

9100 medical x-ray images of 40 classes are considered in [54]. It provides accuracy

rate of 90.83% on 25 merged classes in the first level. Next, if correct classes were

considered within the best three matches, then the performance increases to 97.9%.

In [41], medical images are classified into 80 classes describing the image direction and

modality. In this, 6231 training images are used for classification of medical images and

85.5% correctness is obtained. In [67], for a database consisting of 5000 medical images

of 20 classes, classification accuracy of 81.96% is achieved. In [56], an evaluation on

a dataset of 1500 images of IRMA database achieved a classification rate of 97.5% in

a 17-class classification problem. Fesharaki et al. [68] used the IRMA database for

medical image classification. Database includes 4937 X-ray images belonging to 28

different classes. Classes are separated based on the angle of photography and the

anatomical area and an accuracy rate of 82.87% was achieved.
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3.3 SUMMARY AND CONCLUSIONS

In this work, we have presented an approach for classification of X-ray images using

edge-based features and have leveraged the ability of dictionary learning to achieve

sparse representation of an image in order to develop dictionaries for each class. Also,

a comparative study with other classifiers like kernel SVM, NN, LDA, KNN and Bayes

classifier was conducted. The X-ray images database containing 18 categories, namely,

skull, hand, breast, cranium, hip, cervical spine, pelvis, radio-carpal joint, elbow etc.

were used for training and testing the models. The experimental results indicate that

the edge-based features can provide better discrimination among the classes when used

in conjunction with on-line dictionary learning. Preliminary computational results are

promising and have the potential for practical applications in image classification. The

proposed method has achieved best performance of 98.5% which is significantly better

than the existing classifiers on the same images.

37



Table 3.1: X-ray image classes: anatomical, direction. [6](A=Coronal, B=Axial, C=Other orien-
tation D=Sagittal and E=Rotated)

Class Anatomic Direction Class Anatomic Direction

1. Abdomen gastrointestinal A 23. Pelvis C

2. Abdomen uropoietic A 24. Foot A

3. Left Breast B 25. Radiocarpaljoint A

4. Left Breast C 26. Radio carpal joint D

5. Right Breast B 27. Knee A

6. Right Breast C 28. Knee D

7. Hand A 29. Knee B

8. Hand C 30. Elbow A

9. Hand E 31. Elbow D

10. Neck A 32. Upperleg A

11. Neck D 33. Lowerleg A

12. Neck C 34. Chest bones A

13. Cranium A 35. Facial cranium C

14. Cranium D 36. Weber ankle C

15. Cranium C 37. Weber ankle A

16. Hip A 38. Shoulder A

17. Thoracic spine D 39. Shoulder C

18. Spinal card D 40. Fibrous dysplasia A

19. Cervical Spin D 41. Fibrous dysplasia C

20. Chest A 42. Fibrous dysplasia E

21. Chest D 43. Anklet joint A

22. Pelvis A 44. Anklet joint D
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Table 3.2: Merged classes of same images with different orientations.

Class Anatomic numbers Class Anatomic numbers

C1 1, 2 C10 25, 26

C2 3, 4, 5, 6 C11 27, 28, 29, 30, 31

C3 7, 8, 9 C12 32, 33

C4 10, 11, 12 C13 34

C5 13, 14, 15 C14 35

C6 16, 17, 18, 19 C15 36, 37

C7 20, 21 C16 38, 39

C8 22, 23 C17 40, 41, 42

C9 24 C18 43, 44
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Table 3.3: Comparison of classification performance (%) using different classifiers.

Classes

Classifiers
NN K-SVM BC ODL KNN LDA

C1 76 88 82 90 88 86

C2 94 94 76 100 98 28

C3 54 78 88 100 76 60

C4 68 88 44 100 78 44

C5 84 98 80 100 92 96

C6 80 100 60 92 78 100

C7 94 94 96 100 94 90

C8 100 100 100 100 100 100

C9 70 80 44 100 74 44

C10 88 100 88 100 100 100

C11 74 82 54 92 64 48

C12 80 96 74 100 86 96

C13 74 100 52 100 94 74

C14 92 96 78 100 92 70

C15 94 96 84 100 88 90

C16 98 98 92 100 98 98

C17 64 96 72 100 90 56

C18 98 100 64 100 96 100

Average 82 94 74 98.5 88.1 77
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CHAPTER 4

CATEGORIZATION OF MEDICAL DATA USING A

GENERIC MULTI-LEVEL CLASSIFICATION APPROACH

Classification of medical data is one of the most challenging pattern recognition prob-

lem. As stated in literature, a single classifier is unable to solve all medical image

classification problems due to high sensitivity to noise and other imperfections like

data imbalance. So, several individual classifiers have been studied to solve the differ-

ent types of classification problems arising in medical datasets but all have proven to

be useful on some specific datasets. Hence, in this chapter, we propose a generic multi-

level classification approach for categorization of medical data using sparsity based dic-

tionary learning and support vector machine. The proposed technique demonstrates

the following advantages: 1) It shows encouraging performance over all the datasets

considered. 2) It addresses the problem of data imbalance. 3) It needs no fusion

and ensemble of methods in multi-level classification. The results presented on the 5

standard UCI medical datasets demonstrate the efficacy of the proposed multi-level

classification approach.

The increasing dependence on modern medical diagnostic techniques like radiology,

histopathology and computerized tomography has led to an explosion in the number

of medical images stored in hospitals. Several medical image classification systems

are available today that categorize medical images based on modalities, body parts,

disease and orientation. However, one cannot utilize the information in these image

collections unless the data is organized for efficient search and retrieval. With a single
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classification technique, it may not be possible to solve all medical image classifica-

tion problems due to imbalanced data problems. So, different classification techniques

have to be employed to classify specific datasets. Combinations of multiple classifica-

tion techniques have been found to give better classification performance than a single

classifier. In this chapter, we use two different types of classification approaches to

correctly classify various types of medical data. Here, support vector machine (SVM)

and sparse representation based on-line dictionary learning (ODL) classification ap-

proaches are used to categorize the different types of medical data.

In [46], shape and texture features are extracted from breast MRI images and

genetic algorithm is applied to select the best feature to be used for classification pro-

cess. To improve classification performance three different classifiers, namely, multi-

layer perceptron (MLP), generalized regression neural network (GRNN), and support

vector machine (SVM) are combined to from a multi-classifier system. Influence of

different types of distance measures on the performance of a multiple classifier sys-

tem consisting of one-class classifiers were described by Bartosz et al. [69]. One of

the problems in medical image classification is that medical datasets are often im-

balanced i.e. more samples of some classes compared to others. Bartosz et al. [47]

introduced under sampling balanced ensemble method to solve the imbalance prob-

lem. The construction of multiple independent classifiers is typically a non-trivial

problem. In [70], atlas-based segmentation and multiple classifiers methods are pro-

posed to solve this problem. The application of performance based decision fusion

methods to multi-classifier atlas-based segmentation method is evaluated. Each of

20 subjects is segmented using each of the remaining 19 as the atlas. The resulting

19 segmentations per subject are combined into a final segment. The classification

methods proposed in literature often have difficulties with breast cancer datasets. The

main reason being that training data is imbalanced with more benign cases recorded

than malignant ones.

In [48], a cost-sensitive ensemble classification algorithm is proposed. The data

imbalance problem is addressed by employing cost-sensitive decision trees as base
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classifiers which are trained on random feature subspaces to ensure diversity, and

an evolutionary algorithm for simultaneous classifier selection and fusion. Yok-Yen

Nguwi et al. [71] introduced an unsupervised self-organizing learning with support

vector ranking for imbalanced datasets. This model uses support vector machines for

selecting variables so that the problem of imbalanced data distribution can be relaxed.

Then, the ranker features are clustered using emergent self-organizing map (ESOM)

so as to provide clusters for unsupervised classification. Marco Vannucci et al. [49]

described a binary classification method named labeled SOM classification unbalanced

sets (LASCUS) that can be applied to uneven datasets and sensitive problems such

as malfunction detection. LASCUS method is based on the use of a self-organizing

map (SOM) and fuzzy inference system (FIS). The SOM creates a set of clusters to

be associated either to frequent or unfrequented situations while the FIS determines

such association on the basis of data distribution.

Single classification method is not suitable for classification of various medical im-

age datasets as can be seen in literature [47,48,70]. For example, WBC dataset is best

classified by KNN classifier and other datasets with KNN classifier gives less classifi-

cation performance. An extensive literature review revealed the following problems:

1. A single classifier system caters to only a specific medical dataset and performs

poorly on others as can be seen in literature [47]. Moreover, it is very susceptible to

noise in the data and the performance degrades considerably when noise data is fed

as input to any of the individual classifiers.

2. Most of the medical datasets pose data imbalance problems. The imbalanced

datasets usually give poor classification performance with standard single classifiers

[71]. A multi-level classifier combines correctly classified examples in the first level

with the training data and supplies them as input to the next level classifier. So, if

there is any data imbalance regarding less number of training samples then it can be

alleviated by this method.

3. Main problem with multi-classifier system is how to select classifiers to form an

ensemble, and how to fuse the individual decisions of the base classifiers into a single
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decision [48].

The problems stated above could be addressed by using multi-level classification

approach which does not require ensemble or fusion methods for combining multiple

classifiers. Combining the training data along with correctly classified test samples

could address the problem of data imbalance. The lack of training data for a given

class is compensated by the test samples incorporated in the training data after correct

classification.

One of the dictionary learning algorithms, namely, on-line dictionary learning is

used in conjunction with support vector machines in the proposed method. Support

vector machine is a robust method that has been widely used for classification in various

pattern recognition applications. This method was first proposed for classification and

regression tasks by Vapnik [72]. We demonstrate the efficacy of our approach on various

UCI datasets [73] meant for medical applications. Initially, sparsity based dictionary

learning algorithm is applied to classify medical data. Next, correctly classified test

data and training data are merged into a single training dataset and given as input to

the SVM classifier.

The rest of the chapter is organized as follows. Section 4.1 gives a brief account

on dictionary learning. Section 4.2 presents the proposed multi-level classification

based on dictionary learning and support vector machine. Experiments on different

medical applications are discussed in section 4.3. Finally, in section 4.4, we present

the conclusions.

4.1 SPARSE REPRESENTATION AND DICTIONARY LEARNING

Sparse representation has received a lot of attention from the research in signal and

image processing. Sparse coding involves the representation of an image as a linear

combination of some atoms in a dictionary [57]. It is a powerful tool for efficiently

processing data in non-traditional ways. This is mainly due to the fact that closely

related images tend to enjoy the property of being sparse in some dictionary. These
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dictionaries are often learned directly from training data. Several algorithms like on-

line dictionary learning (ODL) [58], K-SVD [59] and method of optimal directions

(MOD) [60] were developed to process this data. A sparsity measure is used to match

the input query image with the appropriate class.

Learned dictionaries give sparse models to represent various datasets in UCI med-

ical data corpus. For a given number of classes N , we design an equal number

of dictionaries to represent the classes. Each image is associated with a dictionary

that provides the sparsest representation. For every image in the given set of images

{yi}
n
i=1 , on-line dictionary learning (ODL) is used to seek a dictionary D that has the

sparsest representation for the image. We define l(D̂ , Φ̂) as the optimal value of the l1

sparse coding problem [64]. This is accomplished by solving the following optimization

problem.

l(D̂ , Φ̂) = argmin
D ,Φ

1

N

N
∑

i=1

1

2
‖Yi − DΦi‖

2
2 subject to ‖Φi‖1 ≤ λ, (4.1)

where Y is the matrix whose columns are yi and λ is the sparsity parameter. D denotes

the learned dictionary, Φ represents the sparse representation vectors, N denotes the

number of classes and Y represents training database. The ODL algorithm alternates

between sparse coding and dictionary update steps. In the sparse coding step, the

dictionary D is fixed and the representation vectors Φi are identified for each example

yi . Several efficient pursuit algorithms [60,65] have been proposed in the literature for

sparse coding. The simplest one is the l1 -lasso algorithm [64]. In the next step, the

dictionary is updated atom by atom.

4.2 MULTI-LEVEL CLASSIFICATION APPROACH TO MEDICAL DATA

In this section, we explain the multi-level classification scheme to improve the per-

formance on imbalanced medical datasets. The motivation for present work is to

overcome some problems involved in single and multiple classifier systems related to

medical database classification problems which are stated in the previous section.
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The proposed multi-level classification scheme for medical datasets is depicted in

Fig. 4.1. In the training phase, dictionaries are developed based on sparsity of training

feature vectors for each class using on-line dictionary learning and all the dictionaries

are combined to form a single dictionary. During testing, the sparsity of a test data

is computed with the dictionaries of each class using the l1 -lasso distance. The class

which exhibits maximum sparsity is then assigned as the class for that test data.

Then, correctly classified results are merged with original training dataset to form a

new training dataset. The updated training data and the original test data sets are

given as input to support vector machine classifier to classify medical database. The

three different phases of the proposed classification system, namely, feature extraction,

sparse coding based on dictionary learning, and SVM are described in the following

subsections.

Fig. 4.1: Block diagram of the multi-level classification framework using on-line
dictionary learning and support vector machine.

4.2.1 Feature extraction

In this work, five different types of medical image datasets are used, namely, SPECTF

(Heart), Heart-Statlog, Wisconsin Breast Cancer Diagnostic (WBCD), Pima Indians
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Diabetes (PIMA) and Wisconsin Breast Cancer (WBC) all from the UCI repository.

Different medical datasets contain different types of feature values. A brief description

of the features extracted from various datasets are presented below:

Dataset 1: Wisconsin Breast Cancer Diagnostic (WBC):

This data set contains 30 continuous features, computed from a digitized image

of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the

cell nuclei present in the image, such as the perimeter, the area, the symmetry, and

the number of concave portions of the contour.

Dataset 2: Pima Indians Diabetes:

The Pima Indians Diabetes data set contains 8 features. The features include

age, number of times pregnant, diastolic blood pressure and body mass index, among

others.

Dataset 3: SPECTF (Heart):

The SPECTF data set contains 44 continuous feature patterns which was created

for each patient.

Dataset 4: Wisconsin Breast Cancer (WBC):

The Breast data set contains 9 features. The features include clump thickness,

uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial

cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses.

Dataset 5: Heart-Statlog :

The Breast data set contains 13 features. The features include age, sex, chest pain

type, resting blood pressure, serum cholesterol, fasting blood sugar, resting electro

cardio graphic results, maximum heart rate achieved, exercise induced angina, old

peak, the slope of the peak exercise ST segment, number of major vessels.

Now the features extracted from the above datasets are given as input to form a

sparse dictionary using on-line dictionary learning. The following subsection describes

about dictionary construction and sparsity based classification approach.
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4.2.2 On-line dictionary learning and sparsity based classification

In the proposed method, we introduce, at the first level, a sparsity based medical image

classification algorithm by representing the test data as a sparse linear combination of

training data from a dictionary. On-line dictionary learning is a data-driven approach

which provides the best possible sparse representation for the image thereby improving

the accuracy of classification. Class C = [C1, . . . ,CN ] consists of training samples

collected directly from the image of interest. The images related to the same classes

are assumed to approximately lie in a low dimensional subspace. For a given N classes,

the pth class has Kp training images {yN
i } i=1,. . . , Kp . Let b an image belongs to

the pth class, then it is represented by a linear combination of these training samples.

b = DpΦp , (4.2)

where Dp is a m ×Kp dictionary whose columns are the training samples in the pth

class. And, Φp is a sparse vector. On-line dictionary learning and sparsity based

classification method mainly consists of two steps:

• Dictionary Construction: Construct the dictionary for each class of training

images using on-line dictionary learning algorithm [58]. Then, the dictionaries

D = [D1, . . . ,DN ] are computed using the equation.

(D̂i , Φ̂i) = arg min
Di ,Φi

1

N

N
∑

i=1

1

2
‖Ci − DiΦi‖

2
2 + λ‖Φi‖1

satisfying Ci = D̂i Φ̂i , i = 1,2, . . . ,N .

• Classification: In the classification process, find the sparse vector Φ for given

test image in the test dataset B = [b1, . . . , bl ]. The dictionary of training sam-

ples D = [D1, . . . ,DN ], the sparse representation vector Φ satisfying DΦ=B is

obtained by solving the following optimization problem:
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Φj = argminΦ
1
2
‖bj − DΦj‖

2
2 subject to ‖Φj‖1 ≤ T1, and

î = argmini ‖bj − Dδi(Φ
j )‖22 j = 1, · · · , t ,

(4.3)

where δi is a characteristic function that selects the coefficients. A test image

bj is assigned to class Ci if the i th dictionary that is associated with Ci class

gives maximum sparsity for bj among all the dictionaries while considering l1

- distance. The following subsection describes the second level classification

approach using SVM.

4.2.3 Multi-level classification approach

In a single-level classification system, the classes having more examples achieve better

representation than the ones having fewer examples in order to achieve generaliza-

tion. This leads to lower classification performance for imbalanced datasets. In multi-

classifier approach, choosing a suitable method for combination of results from various

classifiers involved requires exhaustive testing. Fusion and ensemble techniques are

widely used as combination methods [74], but they are ill defined and dataset spe-

cific. Multi-level classification eliminates this whole process of choosing combinations

and delivers better performance on all the datasets considered here. The new training

dataset is formed based on the first level classification results obtained using dictionary

learning. After first level classification, correctly classified results are merged with ini-

tial training dataset members to form a new updated training dataset. In the second

level of classification, support vector machine classifier is used to categorize test data

based on new updated training dataset. The training set in multi-level classification

is augmented by correctly classified examples, the dependence on noisy training data

as well as the bias towards highly populated classes is significantly reduced. This

multi-level classification approach is more suitable for imbalanced medical datasets.

The proposed method is different from adaboosting method. Adaboosting method

uses the weighted voting technique and a weight assigned to a classifier depends on its

error on the training set.
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4.3 EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments, we have used five different types of medical datasets, namely,

SPECTF (Heart), Heart-stalog, Wisconsin Breast Cancer Diagnostic (WBCD), Pima

Indians Diabetes (PIMA) and Wisconsin Breast Cancer (WBC) selected from UCI

database. Different medical data contain different types of objects and feature values

shown in Table 4.1.

Table 4.1: Datasets used in experiments.

Dataset name # of objects # of attributes # of classes

WBC 699 9 2

WBCD 569 32 2

SPECTF 267 44 2

PIMA 768 8 2

Heart-Statlog 270 12 2

In our experiments, we have used two different types of breast cancer datasets.

Both datasets represent binary classification problems (i.e benign and malignant),

and both are highly imbalanced datasets. Wisconsin Breast Cancer original (WBC)

is a well known and publicly available breast cancer dataset made available by the

University of Wisconsin hospitals [75]. In total, there are 699 samples of which 241

are malignant and 458 are benign. Another breast cancer dataset is Wisconsin Breast

Cancer Diagnostic (WBCD) data. WBCD data consists of 569 instances with 32

binary attributes. Single Proton Emission Computed Tomography (SPECTF) heart

data set is composed as normal and abnormal classes. It consists of 267 instances with

44 attributes. There are 40 samples of each class in the training datasets and test

datasets composed of 172 normal samples and 15 abnormal samples. PIMA dataset

contains the data from all female patients of at least 21 years old. The database
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consists of 768 instances, each with 8 attributes. Heart-Statlog dataset is composed

as absence and presence classes. It consists of 270 instances with 12 attributes.

The performance of the proposed system is evaluated by measuring classification

accuracy, sensitivity and specificity. Sensitivity and specificity are statistical measures

for the performance of a binary classification test. The sensitivity and specificity are

calculated from true positive (TP), false negative (FN), false positive (FP), and true

negative (TN).

Accuracy =
(TP + TN)

(TP + TN + FN + FP )
, (4.4)

Sensitivity =
(TP )

(TP + FP )
, and (4.5)

Specificity =
(TN)

(TN + FP )
. (4.6)

The proposed method gives better classification performance than existing single

and multiple classifier methods applied on five different type of UCI medical datasets.

Experiments on theWBCD,WBC, PIMA and Heart-Statlog datasets were run through

5 -fold cross validation. The experimental results obtained from these experiments are

presented in Table 4.2 - 4.4.

Table 4.2 shows the performance evaluation obtained on WBCD data. In this ta-

ble, F-BP, F-kNN, F-SVM, F-Bayes and multi-agent classifiers give good classification

results because they use multi-classification technique. However, determining the right

ensemble for fusion is a difficult task. This problem is alleviated in our implementa-

tion which utilizes multi-stage classification and hence, the true performance of both

classifiers is explored giving rise to 99.1% accuracy. Table 4.3 depicts the results of the

proposed method and various classifiers on Wisconsin Breast Cancer original (WBC)

dataset. It can be noted that the proposed method gives highest performance of 98 %

compared with the existing single and multiple classification methods.

Table 4.4 represents the performance of proposed method with existing meth-

ods on Heart-StatLog dataset. The performance of the proposed method gives 88%,

which is the best classification accuracy when compared to other single and multiple
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Table 4.2: Performance comparison of multi-level classification with state-of-the-art
approaches on Wisconsin Breast Cancer Diagnostic dataset.

Author Method/Classifier Accuracy (%)

Balasubramanian, V. et al. 2009 [76] Random Sampling 92.8

Margin-based SVM 83.6

Query by Committee 80

Ho-WechslersInitial QBT 46.8

GQBT 28

Fangqing Peng et al. 2009 [77] Multi-agent 96.58

F-Bayes 96.32

F-BP 96.11

F-KNN 96.26

F-SVM 96.04

Jing Wei et al. 2013 [78] k2 94.03

SDBNS 95.59

ECFBN 95.76

Proposed ODL+SVM 99.1

classification methods including the state-of-the-art methods. Table 4.5 enlists the

various classification schemes applied on the Pima indians diabetes dataset including

our proposed method. The PIMA database consists of 768 instances, each with eight

attributes. A total of 268 patients were diagnosed as having diabetes and 500 patients

are healthy persons without diabetes. Performance of proposed method on this dataset

depicts the classification accuracy close to state-of-the-art.

Table 4.6 represents the performance of proposed method with existing methods

on SPECTF (Heart) dataset. The performance of the proposed method gives 97.8%,

which is the best classification accuracy when compared to other single and multiple

classification methods including the state-of-the-art approaches. In Table 4.7, the
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Table 4.3: Performance comparison of multi-level classification with state-of-the-art ap-
proaches on Wisconsin Breast Cancer original (WBC).

Author Method/Classifier Accuracy(%)

Myungraee Cha et al. 2014 [79] Support vector data description 94.8

Density weighted SVDD 96.2

Liu et al. (2013) [80] 96.6

Yuwono, M. et al. 2012 [81] Multi-agent 96.8

RCE 96

RCE+ 96.08

Swarm RCE+ 95.89

Duch, W. et al. 2012 K2MLP 97

Yuanyuan Guo. et al. 2012 [82] 1-NN 92.46

LLGC 65.52

SVM 96

TSVM 97

Ramos-Pollan, R. 2010 [83] Grid based 95.8

Sheng-Yi Jiang et al. 2009 [84] C4.5 96.09

RIPPER 95.99

Naive-Bayes 97.32

Proposed ODL+SVM 98

performance of various single classifiers on different medical datasets is presented. It

can be noted that on PIMA dataset QDA gives best performance of 83.3%. However,

in all other datasets, the proposed classification scheme out performs all others, making

it reliable for use over a variety of medical applications.

Figs. 4.2 and 4.3 show the sensitivity and specificity measures of different type

of classifiers on various UCI medical datasets. Proposed method gives best sensitivity

and specificity results among all classifiers.
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Table 4.4: Comparison of performance of classification with state-of-the-art approaches
on Heart-StatLog dataset.

Author Method/Classifier Accuracy(%)

Christoph F. Eick et al. 2004 [85] Nearest representative 83.8

Wilson 80.4

1-NN 76.7

C4.5 78.2

Rodda, S et al. 2007 [86] Associative Classifier 82.81

Sheng-Yi Jiang et al. 2009 [84] C4.5 81.48

RIPPER 82.33

Naive-Bayes 84.33

Kemal Polat et al. 2009 [87]

Combining of RBF kernel

F-score feature selection

and LS-SVM classifier

83

Yuanyuan Guo. et al. 2010 [88] 1-NN 53.26

LLGC 70.4

SVM 57.8

TSVM 83.93

Koji Ouchi et al. 2011 [89]
Logistic Regression with

a ridge estimator
83.7

Naive Bayes 83.7

Wodzisaw Duch et al. 2012 [82] LVQ 85.07

Proposed ODL+SVM 88

4.4 SUMMARY AND CONCLUSIONS

In this chapter, a multi-level classification approach using on-line dictionary learning

and SVM classification methods for UCI medical data classification is proposed. In
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Table 4.5: Performance comparison of multi-level classification with
state-of-the-art approaches on Pima Indians Diabetes dataset.

Author Method/Classifier Accuracy(%)

Yuwono, M 2012 [81] RCE 65.64

RCE+ 65.64

Swarm RCE+ 65.6

Duch, W. et al. 2012 [82] Naive Bayes 75.3

SVML 77.08

Ouchi, K. et al. 2011 [89]
logistic regression with

a ridge estimator
77.21

Yuanyuan Guo. et al. 2010 [88] 1-NN 64.84

LLGC 65.1

SVM 70

TSVM 71

Sheng-Yi Jiang et al. 2009 [84] C4.5 77.73

RIPPER 77.3

Naive Bayes 77.28

Chen, S.-C et al. 2006 [90] SA+BPN 82.16

Zhongwei Li et al. 2006 [91] Cascade Structure 79.89

Christoph F. Eick et al. 2004 [85] Nearest representative 74.5

Wilson 73.4

1-NN 69

C4.5 74.5

Proposed ODL+SVM 82

all the datasets barring one (PIMA), the performance of the proposed multi-level clas-

sification scheme is significantly better than the single classifiers. On-line Dictionary

learning being a data-driven approach provides the better possible sparse representa-
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Table 4.6: Performance comparison of multi-level classification with state-of-the-art ap-
proaches on SPECTF (Heart) dataset.

Author Method/Classifier Accuracy(%)

Myungraee Cha et al. 2013 [79] support vector data description 82.7

Density Weighted SVDD 95.4

Liu et al. (2013) [80] 90

Jing Wei et al. 2013 [78] k2 94.03

SDBNS 95.59

ECFBN 95.76

Kumar, R. et al. 2013 [92]
mc-MKC Matrix Completion -

Multiple Kernel Completion
79.9

mc-SVM Matrix

Completion -SVM
79.1

Duch, W et al. 2012 [82] SVMG 80.18

Cui Li-lin et al. 2010 [93] TCM-IKN N 90

Tian, D. et al. 2007 [94] C-GAME+Johnson+c4.5 84.4

RMEP+Johnson+c4.5 41

C4.5 81.7

Proposed ODL+SVM 97.8

tion for the images thereby improving the accuracy of classification. Also, multi-level

classification scheme works better than other multiple classifier schemes which suffer

from the problem of ensemble selection. Thus, this method proves to be an all-round

strategy for medical image classification.

56



Table 4.7: Comparison of performance (in %) using individual classifiers on
different medical datasets.

Method

Dataset
WBCD WBC Heart-StatLog PIMA SPECTF

KNN 94.6 96.5 72.5 68.5 70.5

Neural Network 89.3 86.1 82.3 83.3 73.26

Naive Bayes 92 97.2 71.2 75.9 81.8

LDA 89.3 91.6 74.5 81.4 58.2

QDA 92.1 90.2 74.5 83.3 53.4

SVM 96.2 85.4 76 81.3 73.4

ODL 96.5 96.5 79 81.4 94.1

(ODL+SVM) 99.1 98 88 82 97.8

Fig. 4.2: Sensitivity measure of proposed method (ODL+SVM) on various UCI medical datasets.
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Fig. 4.3: Specificity measure of proposed method (ODL+SVM) on various UCI medical datasets.
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CHAPTER 5

CLASSIFICATION OF MEDICAL IMAGES CAPTURED

BY DIFFERENT SENSORS BASED ON MULTI-SCALE

WAVELET REPRESENTATION USING DICTIONARY

LEARNING

In this chapter, we propose a method for classification of medical images captured

by different sensors (modalities) based on multi-scale wavelet representation using

dictionary learning. Wavelet features extracted from an image provide discriminative

information useful for classification of medical images, namely, diffusion tensor imaging

(DTI), magnetic resonance imaging (MRI), magnetic resonance angiography (MRA)

and functional magnetic resonance imaging (FRMI). The ability of on-line dictionary

learning (ODL) to achieve sparse representation of an image is exploited to develop

dictionaries for each class using multi-scale wavelet features. The experimental analysis

performed on a set of images from the ICBM medical database demonstrates efficacy

of the proposed method.

Modern medical diagnostic techniques like radiology, histopathology and comput-

erized tomography generate a lot of medical images that need to be indexed, archived

and stored for future use. The medical image classification systems available today

classify medical images based on modality, body part, disease or orientation. The

enormous amount of medical images with a wide variety of image modalities such as

diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), magnetic reso-

nance angiography (MRA) and functional magnetic resonance imaging (FRMI) are

available on medical databases. Effectively and efficiently searching and retrieving of
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medical image data in these different modality image collections poses significant tech-

nical challenges as the characteristics of the medical images differ from other general

purpose images. Traditional text based image retrieval (TBIR) cannot handle these

problems because of its many practical limitations [51]. One of these problems is that

images in the collection have to be annotated manually which becomes very difficult as

the size of the image collection increases and time consuming. Another important lim-

itation of TBIR is inadequacy in representing the image content [54]. Content based

image retrieval approaches were proposed by [53] to overcome the limitations of text

based image retrieval. Content Based Image Retrieval (CBIR) gives a way of searching

similar images in a large image repository on the basis of their visual content. When

applied for medical images, CBIR can retrieve images of similar nature (like same

modality and disease) and characteristics and this process is known as Content Based

Medical Image Retrieval (CBMIR).

Medical image classification is an important task in CBMIR. Automatic medi-

cal image classification is a technique for assigning a medical image to an appropriate

class among a number of medical image classes. In medical image classification, several

methods and algorithms have been presented in the literature [55]- [56]. One approach

to content based medical image retrieval is proposed in [55], in which medical images

are classified based on body orientation, biological system, anatomical region and im-

age modality. The performance of the classification is evaluated on IRMA database

and the best classification result is achieved by using distorted tangent distance in a

kernel density classifier. The CBMIR system can achieve better performance by filter-

ing out the images of irrelevant classes from the medical database because it reduces

the search space and time for retrieving similar type of images. This establishes the

importance of image classification in a CBMIR system. In literature, it has been sug-

gested that modality is one of the most important filters that can limit the search and

retrieval time [95].
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Content based medical image classification (CBMIC) overcomes the need for man-

ual annotation and human perception. Also, finding similar images in large volumes

of medical image databases is a difficult task. Modality based classification of medical

images enables the efficient retrieval of relevant images from the large database and

reduces the search space and time. Multimodality during capturing images suffers

from significant contrast variation between the images of the same scene. Due to this

large variation, existing image classification and retrieval algorithms do not perform

well for different types of modality images.

Selection of features for adequately representing the class specific information is

an important process in medical image classification. The classification performance

mostly depends on the extracted features. Commonly, there exists a semantic gap be-

tween the content of an image and its visual features. Thus, decreasing the semantic

gap through extracting more effective features has still remained as a challenging topic

in content based image classification and retrieval task. Wavelet features were used

to overcome the semantic gap between low level and high level features [96]. Features

extracted from sub-bands in a multi-resolution space are useful for extracting some

high level features. And, capturing images of various modalities suffers from significant

contrast variation between the images of the same organ or body part. Due to this

large variation, existing image classification and retrieval algorithms do not perform

well for different modality images. In this chapter, we propose a new classification

technique, namely, sparse representation based multi-scale dictionary learning to clas-

sify the different type of modality images. Multi-scale image representation can handle

the semantic gap between low and high level features and intensity variations of the

different modality images.

An X-ray image categorization and retrieval method using patch-based visual word

representations is proposed in [97]. The feature extraction process is based on local

patch representation of the image content and a bag-of-features approach for defining

image categories. These features are then applied to a kernel SVM for classification.

The method is especially effective in discriminating orientation and body regions in X-
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ray images, and in medical visual retrieval. Modality classification and its use in text

based image retrieval in medical databases is proposed in [50]. Visual descriptors and

text features are used for classifying the medical images. Medical image classification

is then done with the help of support vector machines classifier. In [51], different types

of medical image modality classification and retrieval strategies are explored. Bags

of visual words and Fisher vectors representations are integrated to perform medical

image modality classification. Quellec et al. [20] proposed a CBIR system where each

image is represented by its wavelet transform. The distribution of wavelet coefficients

in each sub band defines a signature. The signature thus obtained is compared to the

signature of the query image using a distance measure based on pathology and image

modality. The similarity is also weighted between sub-bands and the procedure to

obtain weight is guided by an optimization procedure.

5.1 FEATURE EXTRACTION

The performance of a content based image classification system depends on the repre-

sentation of an image as a feature vector. Generally, content based image classification

techniques use fundamental visual features like image’s color, shape and texture yield-

ing vectors with thousands of features. But, using these features directly, one cannot

classify images easily. In the proposed method, multi-scale wavelet packet decomposi-

tion based feature extraction method is used. Wavelet features were used to overcome

the semantic gap between low level and high level features [96]. Wavelet packet de-

composition can be implemented by progressively applying two channel filter banks.

At every stage each filter bank comprises of a low-pass (L) and a high-pass (H) filter

and whose sampling frequency is half of that of the previous stage. As a consequence,

the original image can be decomposed into four sub-images, namely, both horizontal

and vertical directions have low-frequencies (LL), the horizontal direction has low fre-

quencies and the vertical one has high-frequencies (LH), the horizontal direction has

high frequencies and the vertical one has low frequencies (HL) and both horizontal and
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vertical directions have high-frequencies (HH) sub-images. Next, construct a gradient

vector for each sub-image. Similar approach applied for the entire training and testing

database images to form a feature vector. The procedure for feature extraction is as

follows:

1. Apply the wavelet packet decomposition on an original image to obtain the LL,

LH, HL and HH sub-images.

2. Construct a gradient vector for each sub-image.

3. Repeat step (1) and (2) for all original training and testing images to form a

gradient feature vector

4. Combine the similar sub-bands (e.g. LL) from all the images of each class to

form a feature vector matrix. This will generate four feature vector matrices for

the four sub-bands for each class.

The following subsection describes introduction about sparse representation.

5.1.1 Sparse representation

Sparse representation has received a lot of attention from the research in signal and

image processing. Sparse coding involves the representation of an image as a linear

combination of some atoms in a dictionary [57]. These dictionaries are often learned

directly from the wavelet coefficients of training data. Several algorithms like on-line

dictionary learning (ODL) [58], K-SVD [59] and method of optimal directions (MOD)

[60] have been developed to process training data. Sparse representation is used to

match the input query image with the appropriate class. Linear discriminant anal-

ysis (LDA) based selection and feature extraction algorithm for classification using

wavelet packet has been proposed by Etemand and Chellappa [21]. Recently, simi-

lar algorithms for simultaneous sparse signal representation and discrimination have

also been proposed [22], [61]. In [62], a method for simultaneously learning a set

of dictionaries that optimally represent each cluster is proposed. This approach was
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later extended by adding a block incoherence term in their optimization problem to

improve the accuracy of sparse coding. Multi-scale dictionary learning is proposed in

[98]. It combines the advantages of generic multi-scale representations with the K-SVD

dictionary learning method.

In this chapter, we propose a modality based classification method for Interna-

tional Consortium for Brain Mapping (ICBM) database using wavelet based on-line

dictionary learning approach. Learned dictionaries are used to represent datasets in

sparse model of ICBM medical images. Dictionaries are designed to represent each

class. For a given N number of classes, we design N dictionaries to represent the

classes. Each image associated with a dictionary provides the best sparsest represen-

tation. For every image in the given set of images {yi}
n
i=1 , ODL is used to seek the

dictionary D that has the sparsest representation for the image. We define l(D̂ , Φ̂)

as the optimal value of the l1 -lasso sparse coding problem [64]. This is accomplished

by solving the following optimization problem:

l(D̂ , Φ̂) = argmin
D ,Φ

1

N

N
∑

i=1

1

2
‖Yi − DΦi‖

2
2 subject to ‖Φi‖1 ≤ λ, (5.1)

where Y is the matrix whose columns are yi and λ is the sparsity parameter. D denotes

the learned dictionary, Φ represents the sparse representation vectors, N denotes

the number of classes and Y represents the training database. The ODL algorithm

alternates between sparse coding and dictionary update steps. Several efficient pursuit

algorithms have been proposed in the literature for sparse coding [60], [65]. The

simplest one is the l1 -lasso algorithm [64]. Main advantage with ODL algorithm is its

computational speed as it uses l1 -lasso algorithm for sparse representation. In sparse

coding step, dictionary D is fixed and representation vectors Φi are identified for each

example yi . Then, the dictionary is updated atom by atom in an efficient way.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed

method. Experiments of modality based medical image classification application us-

ing sparse representation are discussed in detail in section 5.3. Finally, we draw the

conclusions in section 5.4.
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5.2 MEDICAL IMAGE CLASSIFICATION USING SPARSE REPRE-

SENTATION ANDON-LINE DICTIONARY LEARNING (ODL) AL-

GORITHM

The present work provides a method for medical image classification using the frame-

work of multi-scale dictionary learning. There are many advantages to this approach.

Firstly, the feature extracted from sub-bands in a multi-resolution space are useful for

extracting some high level features. With the help of high level features to overcome

the semantic gap. Secondly, the entire dataset is represented with the help of fixed

small size of dictionary which greatly reduces computational time.

The following subsection describes sparse representation based classification method.

5.2.1 Sparsity based medical image classification

In this proposed method, we introduce a sparsity based medical image classification

by representing the test data as a sparse linear combination of training data from a

dictionary. In this chapter, each class Ci = [cib1 , . . . , cib4 ] (each class contains 4 sub-

bands feature vector matrices i.e. for class C1 = [c1b1, c1b2, c1b3, c1b4]) consists of all

classes training samples collected directly from the wavelet coefficients of same sub-

bands. In the proposed sparsity model, images belonging to the same class are assumed

to lie approximately in a low dimensional subspace. Given N training classes, the pth

class has Kp training images {yN
i } i=1,. . . , Kp . Let r be an image belonging to the

pth class, then it is represented as a linear combination of these training samples:

r = DpΦp , (5.2)

where Dp is m ×Kp a dictionary whose columns are the training samples in the pth

class and Φp is a sparse vector.

Proposed method consists of two steps:
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1) Dictionary Construction: In the wavelet packet decomposition, domain contains a

collection of coefficient images or sub-bands. The different wavelet coefficients capture

data at different scales and orientations. As such it makes sense that separate dictio-

naries be used to represent these images. Construct the dictionary for each sub-band

of class (Dib), where i is the number of classes (i.e. i=1,..,4) and b is the number of

sub-bands in each class (i.e. b=1,...,4) using on-line dictionary learning algorithm [58].

Then, the dictionaries for all training class on same sub-band is Db = [D1b , . . . ,D4b ] (if

b=1, then D4b means fourth class and first sub-band dictionary) and computed using

the equation:

(D̂i , Φ̂i) = arg min
Di ,Φi

1

N

4
∑

b=1

N
∑

i=1

1

2
‖Cib − DibΦib‖

2
2 + λ‖Φib‖1,

satisfying Ci = D̂i Φ̂i , i = 1,2, . . . ,N .

2) Classification: In this classification process, the sparse vector Φ for given test image

is found in the test dataset Z = [z1, . . . , zl ]. The dictionaries of training samples of each

class on same sub-band are given by Db = [D1b , . . . ,D4b ]. The sparse representation

Φ satisfying DbΦ=Z is obtained by solving the following optimization problem:

Φl = argminΦ

∑4
b=1

1
2
‖zlb − DbΦbl‖

2
2 subject to ‖Φl‖1 ≤ T1,

and î = argmini ‖zl − Dδi(Φ
l)‖22 l = 1, · · · , t ,

(5.3)

where δi is a characteristic function that selects the coefficients. Then zl is assigned

to Ci associated with the i th dictionary. It means, finding the sparsest dictionary for

a given test data using l1 -lasso algorithm. Then, test data is assigned to the class

associated with this sparsest dictionary.

In the classification phase, each sub-image acquired from the test image is matched

with the trained dictionaries of only that sub-image. The class which yields maximum

sparsity is chosen as the class for that sub-band. Once all the sub-images are evaluated,

the class which agrees with the majority of the sub-bands is chosen as the category

for the test image.
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5.3 EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed modality based medical image

classification method using multi-scale dictionary learning and sparse representation.

Data used in the preparation of this work were obtained from the international con-

sortium for brain mapping (ICBM) database (www.loni.usc.edu/ICBM). The ICBM

project (principal investigator John Mazziotta, M.D., University of California, Los An-

geles) is supported by the national institute of biomedical imaging and bioEngineering.

ICBM is the result of efforts of co-investigators from UCLA, montreal neurologic insti-

tute, university of texas at san antonio, and the institute of medicine, juelich/heinrich

heine university - germany.

Experiments are carried out on ICBM medical database, in which each image is

of size 200 × 200 pixels. Majority of medical images are generally gray scale images

such as X-ray, FMRI, MRI etc. The main problem in classifying medical radiologi-

cal images is high inter class overlap and intra class variability in some of the classes

[54]. For tackling this problem, wavelet packet decomposition based feature extraction

method is used to overcome semantic gap between low level features and high level fea-

tures. Moreover, the proposed method works for images with various sensors. ICBM

database consisting of a four different type of image modalities such as diffusion tensor

imaging (DTI), magnetic resonance imaging (MRI), magnetic resonance angiography

(MRA) and functional magnetic resonance imaging (FRMI). Entire database of im-

ages are divided into 70% training and 30% testing for each class and experiments

are run through 5-fold cross validation. Each class consists of 5587 training and 1482

testing images. Proposed method tested with various wavelet families, namely, Harr,

Daubechies, Coiflets, Symlets, Discrete Meyer, and Biorthogonal. The experimental

results are presented in Table 5.1. The proposed method was tested with dictionar-

ies size of 60, 80 and 100. Generally, accuracy improves for larger sized dictionaries.

However, after a certain point, increase in dictionary size does not yield better clas-

sification accuracy. The dictionary size at this point of time gives the best possible
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sparse representation of the given feature descriptor. In our case, recognition rate of

91.6% was obtained for dictionary size of 80. The confusion matrices for SVM, KNN,

Bayesian and the proposed classification method on the ICBM dataset are shown in

Figs. 5.1, 5.2, 5.3 and 5.4, respectively.

Table 5.1: Classification accuracy (%) of multi-scale dictionary learning
method using wavelet decomposition based features and different dictionary
sizes.

Wavelet Families 60 Dict 80 Dict 100 Dict

Daubechies(db4) 86.3 86.9 85.6

Daubechies(db10) 85.6 85.9 84.4

Harr(db2) 90.3 91.6 90.7

Discrete Meyer 86.7 86.2 86.6

Coiflets 87.2 87 86.8

Symlets2 90.2 89.5 87

Biorthogonal 87 87.8 87
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Fig. 5.1: Confusion matrix of medical modality image classification
using SVM with haar wavelet feature.

Fig. 5.2: Confusion matrix of medical modality image classification
using neural network method with haar wavelet feature.
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Fig. 5.3: Confusion matrix of medical modality image classification
Bayesian classification with haar wavelet feature.

Fig. 5.4: Confusion matrix of medical modality image classification
using multi-scale dictionary learning.
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The proposed method gives classification performance of 91.6% which is better

than other image classification techniques such as SVM, neural network, and Bayes

classifier. The classification performance of different classifiers are shown in Table 5.2.

Table 5.2: Classification accuracy (%) of the multi-scale dictio-
nary learning method with different classifiers on ICBM dataset.

Classifier Accuracy (%)

SVM 81.2

Neural Network(BP) 78.3

Bayesian 73.1

Proposed 91.6

Wavelet packet decomposition generates gradient vectors individually for each of

the four sub-bands. Although distinct, these gradient vectors by themselves do not

have enough discriminative capabilities. Using different combinations of the gradient

vectors may yield different discriminating characteristics [99].

Classification accuracy of different possible combinations of the gradient vectors

extracted from the four sub-bands are presented in Table 5.3. It can be observed that

LL sub band contains more information among the four sub-bands. The classification

accuracy based on the gradient vectors extracted from the LL sub-band is 84.3%. The

classification accuracy based on the gradient vectors extracted from the LH, HL, and

HH sub-bands were 73.4, 70.2, and 73.8 %, respectively. To increase the classifica-

tion accuracy, we can combine all sub-bands sparsity results. Various combination

sequences were tried and best classification accuracy of 91.6% was achieved after com-

bining the dictionaries from all the sub-bands. Testing images are classified based on

majority of the all sub-bands sparsity results.
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Table 5.3: Classification accuracy (%) of multi-scale dictionary learning
method based on individual and all combination of the sub-bands obtained
from wavelet decomposition.

Subband Accuracy (%)

LL 84.3

LH 73.4

HL 70.2

HH 73.8

LL+LH+HL+HH 91.6

5.4 SUMMARY AND CONCLUSIONS

In this chapter, we proposed a method for classification of medical images captured by

different sensors (modalities) based on multi-scale wavelet representation using dictio-

nary learning. We have exploited the ability of ODL to achieve sparse representation

of an image, to develop dictionaries for each class using wavelet features. Other classi-

fiers, namely, SVM, NN and Bayes were also examined. The medical images database

containing four different type of modality(sensors) images, namely, diffusion tensor

imaging (DTI), magnetic resonance imaging (MRI), magnetic resonance angiography

(MRA) and functional magnetic resonance imaging (FRMI) was used for training and

testing the models. Experimental results indicate that the wavelet packet decomposi-

tion based features provide useful information for discriminating the classes. Prelim-

inary computational results are promising and have the potential for practical image

classification. The proposed method has achieved best performance of 91.6%. The ex-

perimental results suggest that the proposed method performs better when compared

to other classification approaches.
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CHAPTER 6

CLASSIFICATION OF HEARTBEAT USING ADAPTIVE

LEARNING

Cardiovascular diseases (CVD) are a leading cause of unnecessary hospital admissions

as well as fatalities placing an immense burden onthe healthcare industry. A process

to provide timely intervention can reduce the morbidity rate as well as control rising

costs. Patients with cardiovascular diseases require quick intervention. Towards that

end, automated detection of abnormal heartbeats captured by electronic cardiogram

(ECG) signals is vital. While cardiologists can identify different heartbeat morpholo-

gies quite accurately among different patients, the manual evaluation is tedious and

time consuming. In this chapter, we propose new features from time and frequency do-

mains and further more, feature normalization techniques to reduce inter-patient and

intra-patient variations in heartbeat cycles. Our results using the adaptive learning

based classifier emulate those reported in existing literature and in most cases deliver

improved performance, while eliminating the need for labeling of signals by domain

experts.

Modern medical diagnostic techniques like radiology, histopathology and comput-

erized tomography generate a lot of medical images that need to be indexed, archived

and stored for future use. The medical image classification systems available today

classify medical images based on modality, body part, disease or orientation. Classifi-

cation of heartbeats is a fundamentally challenging problem. Cardiovascular diseases

(CVD) are a leading cause of fatality representing 30% of all global deaths [100]. In

2008, an estimated 17.3 million individuals died of cardiovascular diseases. Third world

countries account for 80% of CVD related deaths. In 2010, CVD related illnesses cost

73



the United States healthcare industry $316.4 billion. A large number of admissions

to hospitals are unnecessary and avoidable. Due to inadequate preventive measures,

CVD related fatalities continue to rise. It is imperative that we find a solution that

reduces these fatalities. One way is to identify high risk patients is using simple and

inexpensive tools. An automated system that can identify potential risks of patients

can aid optimizing the usage of medical resources. Such systems must be able to

identify patterns in cardiovascular activity that can pose a threat to the patients. Fur-

ther more, in rural areas, where access to healthcare facilities is poor, early detection

systems can be potentially life saving and cost effective. Electrocardiogram (ECG) is

a widely used device to monitor heart function irregularities. At present, an expert

cardiologist analyzes ECG plots to detect abnormalities. However, such an analysis is

done over short durations of an ECG signal. Since, certain kinds of heartbeat arrhyth-

mias are time consuming to detect, the patient may require long term monitoring. Hu

et al [101] and Chazal et al [102] proposed a set of time domain and ECG morphol-

ogy features and evaluated the classification performance using Linear Discriminant

Analysis. Both approaches require that in addition to the standard training set, a

specified number of heartbeats of a new test patient is labeled by a domain expert and

added to the training set, which may be difficult to obtain in practice. Wiens et al

[103] proposed an active learning technique to reduce the number of labeled heartbeats

required for a new test patient. Other approaches, Alvarado et. al. [104] focused on

data compression without compromising on classification performance.

In this work, we build on existing techniques and propose a technique to detect two

types of heartbeat arrhythmias, namely, ventricular ectopic beats (VEB) and supra

ventricular ectopic beats (SVEB). We propose new features from time and frequency

domains and further more, a data normalization technique to reduce inter-patient

and intra-patient variations. Our results are comparable to those reported in existing

literature and in most cases give improved performance. The chapter is organized as

follows. Section 6.1 describes the sources of data, data sets, and features used. In

Section 6.2, classification methodology is described. Section 6.3 describes the results
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and comparisons with existing methods.

6.1 DATA DESCRIPTION

Heartbeat patterns in an ECG signal is identified by a cardiac cycle consisting of

P-QRS-T waveforms. The P-QRS-T waveforms consist of 5 successive deflections in

amplitude, known as P, Q, R, S and T waves as shown in Fig. 6.1.

Fig. 6.1: Cardiac cycle of a typical heartbeat represented
by the P-QRS-T wave form.

These patterns tend to vary within a patient recording resulting in intra-patient

variations. In addition to intra-patient variations, these patterns exhibit inter-patient

variations. This makes heartbeat classification a challenging problem. To effectively

classify a heartbeat, a classifier must be able to take into account both inter-patient

and intra-patient variations in ECG signal. Fig. 6.2 shows the inter-patient variation

of heartbeat pattern for patient 119 and 106. We used MIT/Beth Israel Hospital (BIH)

Arrhythmia Database available in PhysioBank archives [105]. The database includes 48

Electrocardiogram (ECG) recordings obtained from 47 subjects. Each ECG recording
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is sampled at 360 Hz for a duration of half hour. ECG recording is susceptible to noise

such as power line interference and baseline wander. Before the feature extraction,

the ECG signal is preprocessed to reduce the baseline wander and 60 Hz power line

interference. To remove baseline wander, signal is passed through median filters of

window sizes 200ms and 600ms. The first median filter removes P-waves and QRS

complexes and second median filter removes the T-waves leaving behind the baseline

wander. By subtracting the baseline wander from the original signal, we obtain the

filtered signal. The power line interference is removed using a notch filter centered at

60Hz. The database has annotations for 20 different types of heartbeats, with each

heartbeat annotated by an expert cardiologist. The annotation includes the location

of the R-Peak and the corresponding heartbeat label. The R-Peak is the peak of QRS

complex as seen in Fig. 6.2. The heartbeat label indicate the type of heartbeat.

Fig. 6.2: Examples of heartbeat shapes from the MIT-BIH data set.

Each column represents a patient and each row the beats for that specific class.

Variations can be seen in the beat morphology across patients as well for a single

patient (Source Alvarado et. al. [106])

American association of medical instrumentation (AAMI) protocol define five classes

of heartbeat. In accordance with the AAMI protocol, we grouped together the 20 types

of heartbeats available in MIT-BIH arrhythmia database into five classes. They are
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normal and bundle branch block beats (N), supra-ventricular ectopic beats (SVEBs),

ventricular ectopic beats (VEBs), fusion of normal and VEBs (F), and unknown beats

(Q). Although there exist 5 classes, our problem is a binary classification problem.

For the detection of SVEB, a heartbeat is classified as either SVEB or not SVEB (N,

VEB, F and Q). Similarly, for the detection of VEB, the heartbeat is classified as either

VEB or not VEB (N, SVEB, F and Q). The data was divided into two disjoint sets

of patients DS1 and DS2, containing 22 patients each. In accordance with the AAMI

protocol [107], four patients with paced beats were not considered for the study. The

training dataset was derived from dataset DS1 and testing dataset was derived from

dataset DS2. In other words, training set DS1 is used to train the global classifier,

which is then tested on test set DS2 containing a new set of patients. Note that our

approach do not require apriori knowledge of patient specific labeled beats from the

test set, unlike certain other techniques [102], [103], [104] in existing literature. DS1

and DS2 comprise of the following recordings:

DS1 = {101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205,

207, 208, 209, 215, 220, 223, 230};

DS2 = {100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219,

221, 222, 228, 231, 232, 233, 234};

Paced beats = {102, 104, 107, 217}.

Note that paced beats are excluded from analysis.

6.1.1 Feature Extraction

The time domain features, ECG morphology features and frequency domain features

are extracted from the ECG signal. Out of the 18 features extracted, 12 features are

time domain features, 2 are ECG morphology and 3 are frequency domain features.

The 18th feature is a flag, indicating 0 or 1. Time domain features include RR Interval

features, QRS duration, QR duration, RS duration and T wave duration, energy of

QRS complex, energy of QR segment, energy of RS segment and energy of T wave.
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Energy of a signal is calculated as the sum of squares of magnitude of samples in

that segment. The RR interval features include the pre-RR interval, post-RR interval,

average RR interval and local average RR interval. Pre-RR interval is the time interval

between the current R-peak and the preceding R-peak and post-RR interval is the time

interval between the current R-peak and the next R-peak. Average RR interval is the

average of all the RR intervals in a recording. Local average RR interval is calculated

as the average of 10 RR intervals surrounding a heartbeat. QRS duration is the time

interval between the QRS onset and the QRS offset. QR duration is the time interval

between the QRS onset and the R-peak. RS duration is the time interval between the

R-peak and the QRS offset.

The ECG morphology features consist of fixed interval morphology features from

the QRS complex and the T wave of a heartbeat cycle. In order to form ECG mor-

phology features, the ECG signal was down sampled to 120 Hz. Once down sampled, 2

samples to the left of R-peak, the sample value at R-peak and 2 samples to the right of

R-peak were extracted. In order to extract the T wave features, 9 samples representing

the T wave were extracted. Linear interpolation was applied to extract the T wave

samples [108]. The frequency domain features include maximum Fourier coefficients

at QRS complex, QR segment of QRS complex and RS segment of QRS complex. In

addition to time domain features, ECG morphology features and frequency domain

features, we also extracted the P wave flag, which is a binary flag representing the

presence or absence of P wave associated with a beat. In total, we extracted 18 dif-

ferent types of features for lead A. The features were extracted for every heartbeat in

the 30 minute recording of each patient. Feature selection involves the selection of the

best subset of 18 features that maximize the classifier performance. We used three

time domain (pre-RR interval, local average RR interval and energy of T wave), five

ECG morphology (R peak, 2 samples to the left of R-peak at 120 Hz and 2 samples

to the right of R-peak at 120 Hz) and two frequency domain (Max. Fourier coefficient

of QR segment and max. Fourier coefficient of RS segment) as feature vector.
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6.2 CLASSIFICATION

In this chapter, we develop an approach for classification of normal and abnormal heart-

beat using adaptive learning. We designed the classifier for use in a clinical setting,

where physicians have little time to label beats, let alone tune classifier parameters.

Then, correctly classified results are merged with original training dataset to form a

new training dataset. The updated training data and the original test data sets are

again given as input to classifier to classify medical database. This process is repeated

until results are converged. Adaptive learning based classification approach improves

the classification accuracy when compared with single time classification approach.

The proposed method is different from adaboosting method. Adaboosting method

uses the weighted voting technique and a weight assigned to a classifier depends on its

error on the training set.

6.3 EXPERIMENTAL RESULTS

A variety of metrics are used in the realm of classification. Adhering to common

practice in heartbeat classification, we used the metrics listed below. The classification

results are reported in terms of accuracy (Acc) and calculated from true positive (TP),

false negative (FN), false positive (FP), and true negative (TN). Accuracy is defined

as follows:

Accuracy =
(TP + TN)

(TP + TN + FN + FP )
, (6.1)

In our experiments, training data consists of 45833 normal heart beat samples, 942

SVEB samples, and 3785 VEB samples, and test data consists of 44228 normal heart

beat samples, 1836 SVEB samples and 3219 VEB samples. Two different ways of

experiments are conducted on this training and testing datasets. First one is to clas-

sify the normal, SVB, and VEB heart beats using various classifiers with and with

out adaptive learning mechanism. Table 6.1 reports the classification results using
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single time classification approach. Classification performance is measured in terms

of its accuracy. The results of single classification techniques such as linear discrimi-

nant analysis (LDA), QDA, dictionary learning (DL), neural network (NN), K-Nearest

neighbor (KNN) and Bayes classifier (BC) are shown in Table 6.1. Columns in Table

6.1 represents the classifiers accuracy results.

Table 6.1: Comparison of classification performance (%) using indi-
vidual classifiers without adaptive learning.

Classes

Classifiers
QDA LDA KNN NN DL

Normal 95.6 99.1 91.9 99.4 84.3

SVEB 91.6 77.8 48.2 87 56.4

VEB 92.8 85.8 69 91.9 78.2

Table 6.2 reports the classification performance using adaptive learning based clas-

sification approach. Proposed approach gives improved performance compared with

the individual classifiers.

Table 6.2: Comparison of classification performance (%) using indi-
vidual classifiers with adaptive learning.

Classes

Classifiers
QDA LDA KNN NN DL

Normal 97.3 99.2 99.6 99.6 86.4

SVEB 93.6 94.2 68.8 89.5 68.2

VEB 96.4 97.8 83.6 92.6 84.8
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Second approach is to classify only SVEB and VEB heart beats using various

classifiers with and without adaptive learning mechanism. Table 6.3 reports the clas-

sification results using single time classification approach. Table 6.4 reports the clas-

sification performance using adaptive learning based classification approach. Among

these, proposed approach produces improved performance relative to sensitivity and

positive predictive value.

Table 6.3: Comparison of classification performance (%) using indi-
vidual classifiers without adaptive learning.

Classes

Classifiers
QDA LDA KNN NN DL

SVEB 93.2 84.5 78.1 94.7 78.4

VEB 94.6 98.3 95.2 97.4 88.2

Table 6.4: Comparison of classification performance (%) using indi-
vidual classifiers with adaptive learning.

Classes

Classifiers
QDA LDA KNN NN DL

SVEB 95.5 93.6 96 97.4 89.2

VEB 97.6 97.3 97.1 98.6 91.3

6.4 SUMMARY AND CONCLUSIONS

In this chapter, we have shown that by distinguishing between inter-patient and intra-

patient variations, classification performance can be improved significantly. We pro-
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posed a new set of features in the time domain and frequency domain, and demon-

strated the significance of using pre-RR interval information for classification. Fur-

thermore, the proposed method is fully automated and it eliminates the requirement

for patient specific labeled data.
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CHAPTER 7

CONTENT BASED MEDICAL IMAGE RETRIEVAL

USING DICTIONARY LEARNING

In this chapter, a clustering method using dictionary learning is proposed to group

X-ray medical images based on sparse representation for efficient search and retrieval

from large database. An approach to group similar images into clusters that are

sparsely represented by the dictionaries and simultaneously learn dictionaries from

the clusters using K -SVD method is proposed. A query image is matched with the

existing dictionaries to identify the dictionary with the sparest representation using

orthogonal matching pursuit (OMP) algorithm. Then, images in the cluster associated

with this dictionary are compared using a similarity measure to retrieve images similar

to the query image. The performance of the proposed method is examined for IRMA

test image database. The experimental results demonstrate the efficacy of the proposed

method in retrieval of medical images.

There are billions of images available on the internet. Nevertheless, one cannot

utilize the information in these image collections unless they are organized for efficient

search and retrieval of data. The problem of searching for similar images in a large

image repository based on the content is called content based image retrieval (CBIR)

[53]. The traditional text based image classification and retrieval (TBIR) approach

has many practical limitations like the images in the collection have to be annotated

manually which becomes very difficult as the size of the image collection increases and

time consuming [51]. Another important limitation of text based image classification

(TBIC) and TBIR is inadequacy in representing the image content [54]. Content based

image retrieval (CBIR) approaches are proposed to overcome the limitations of text
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based image retrieval. Digital image retrieval techniques are crucial in the emerging

field of medical image databases for clinical decision making process. Digital image

retrieval can be used to retrieve images of a similar nature (like same modality and

disease) and characteristics. The increasing dependence on modern medical diagnostic

techniques like radiology, histopathology and computerized tomography has led to an

explosion in the number of medical images stored in hospitals. The images of various

modalities are becoming an important source of anatomical and functional information

for the diagnosis of diseases, medical research and education [52]. Existing medical

CBIR systems also suffer from some serious limitations which are as follows: 1) In

most cases, physicians have to browse through a large number of images for identifying

similar images which is time consuming. 2) Most of the existing tools for searching

medical images use text based image retrieval techniques. So, the existing medical

image search and retrieval techniques are not very efficient in terms of search time and

accuracy of results. Another important issue in medical CBIR is to find images with

similar anatomical regions and diseases. For example, in case of brain tumor images,

the tumor can be at any of the different stages and an image of the tumor in a state

could be in any orientation. So, there is a need for rotation invariant medical image

retrieval technique to find images (of different orientation) of a similar (same stage)

tumor.

In this chapter, we address the issues mentioned above in the proposed method

for content based medical image retrieval (CBMIR). The use of clustering enables

retrieval of relevant images from the large database. We use a dictionary learning based

clustering algorithm, namely K -SVD algorithm [59], to group the images in medical

databases. This clustering technique improves the retrieval speed and search results.

The selection of features for adequately representing the class specific information is

an important process in CBIR. For facilitating this, an image is divided into four sub-

images of equal size. In addition, we consider another sub-image which is centered

on the image of interest and is of the same size as the other four sub-images because

in most of the medical images the subject is in the center. Then each sub-image is
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partitioned into concentric circular regions around the center. The mean and variance

of pixel intensities in each concentric circular region are considered as component of

the feature vector.

Sparse representation received a lot of attention from the signal and image pro-

cessing communities. Sparse coding involves the representation of an image as a linear

combination of some atoms in a dictionary [57]. It is a powerful tool for efficiently

processing data in nontraditional ways. This is mainly due to the fact that signals and

images of interest is sparsest in some dictionary, which may be identified based on the

properties of signals at hand. Of late, the dictionaries learnt from the data were found

to be useful for several applications. Several interesting dictionary learning methods

like K -SVD and method of optimal directions (MOD) [60] were developed to provide

each member of database with sparse representation. The dictionary based methods

rely on the premise that two signals belonging to the same cluster have decomposition

in terms of similar atoms (columns) of a dictionary. Making use of this property, an

input query is matched with the appropriate cluster.

In this chapter, we propose a content based medical image retrieval (CBMIR)

algorithm using dictionary learning approach. We demonstrate the usefulness of our

approach on image retrieval in medical applications (IRMA) database [63]. For a

given M , the number of clusters, M dictionaries are designed to represent the clusters.

Every image in the database is associated with a dictionary based on the sparsity

criterion. Given a query image, we once again invoke the concept of sparsity to identify

appropriate cluster, wherein we search for relevant images.

The rest of the chapter is organized as follows. Section 7.1 gives brief account of

dictionary learning and the survey of related work. Section 7.2 presents the proposed

content based medical image retrieval using dictionary learning method. Experiments

of CBMIR application are discussed in detail in section 7.3. Finally, section 7.4 con-

cludes this chapter.
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7.1 DICTIONARY LEARNING

Given a set of vectors {vi}
n
i=1 , the K-SVD based dictionary learning method finds the

dictionary D by solving the following optimization problem:

(D̂ , Φ̂) = argmin
D ,Φ
‖V − DΦ‖2F subject to ‖γi‖0 ≤ T0∀i , (7.1)

where γi represents i
th column of Φ , V is the matrix whose columns are vi , and T0 is

the sparsity parameter. Φ represents sparse representation vector. Here, ‖A‖F denotes

the Frobenius norm which is defined as ‖A‖F =
√

∑

ij A
2
ij . The K -SVD algorithm

alternates between sparse coding and dictionary update steps. Various efficient pursuit

algorithms were proposed in the literature for sparse coding [60], [65]. The simplest

one among all is the orthogonal matching pursuit (OMP) algorithm [65]. In sparse

coding step, dictionary D is fixed and representation vectors γi are identified for each

example yi . Then, the dictionary is updated atom by atom in an efficient way.

7.2 CBMIR USING DICTIONARY LEARNING

In this section, we propose a method for clustering data using dictionary learning. The

present work is inspired by the ideas embedded in [24] and differs from it as follows :

• The sparsity seeking dictionary learning approaches typically exploit the frame-

work of under-determined setting and hence, work on some implicit assumptions

on the database. In applications, nevertheless, one often encounters databases

which are not so big that the sparsity-promoting under-determined framework

could not efficiently be deployed. We come to this point in our simulation work.

• When not using labelled data (as is the case with present work), one may not

have enough members in a cluster, which prevents the applicability of K-SVD.

• As Radon transform is O(N2logN) procedure, the present approach avoids using

it. This, of course, results in some computational savings.
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The problems stated above could be addressed by down sampling the images or by

projecting them to lower dimensional spaces. Instead, the present work extracts a

small set of features that describe the images well for CBMIR.

7.2.1 Feature extraction

Two types of feature extraction methods are considered to represent the content of

medical images. In the first feature extraction method, an image is partitioned into

concentric circular regions of equal area for rotation invariant representation which is

shown in Fig. 7.1.

Fig. 7.1: Feature extraction.(a) Image is partitioned into concentric
circular regions of equal area. (b) Image is divided into sub-images and
partitioned into concentric circular regions of equal area.

The mean and variance of pixel intensity in a circular region become components
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of the feature vector which are defined as follows :

m =
1

P

P
∑

k=1

(yk), (7.2)

S =
P
∑

k=1

(yk −m)(yk −m)t, (7.3)

where P is the number of pixels in each region, m is the mean of intensity of pixel

values and S is the variance of intensity of pixel values in each region. This approach

accomplishes the rotation invariant representation of the contents of an image.

In the second feature extraction method, an image is divided into four blocks

resulting in four sub-images shown in Fig. 7.1(b). Also, another sub-image which is

of same block size as other four sub-images is considered in order to capture the rich

information available at the center of medical images. Each sub-image is partitioned

into concentric circular regions of equal area from which the mean and variance of

pixel intensity values are computed. This feature extraction method is more suitable

for medical image databases because of the rich information of medical images available

at the center of images.

7.2.2 Proposed Method

In this section, an approach to content based medical image retrieval technique using

dictionary learning is proposed. The feature vector consisting of mean and variance of

pixel intensity values are extracted from the images in the database. Initial clusters are

formed by applying K -means clustering algorithm on the extracted features. Then,

a dictionary is generated for each cluster using K-SVD method. A new cluster is

created for each dictionary, by assigning the images that are sparsely represented by

the dictionary using orthogonal matching pursuit (OMP) algorithm. The K-SVD

algorithm is again used to generate the dictionaries for new clusters. The updated

dictionaries are then used to generate the clusters using OMP algorithm and generated

clusters are then used to update the dictionaries using K-SVD iteratively, until clusters

converge. Given query image is matched with the existing dictionaries to identify the
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dictionary with the sparest representation using OMP algorithm. The images in the

cluster associated with this dictionary are compared using a similarity measure to

retrieve images similar to the query image. The entire process of proposed content

based medical image retrieval is summarized in algorithm 3.

Let {yj}
M
j=1 be the database of images represented as vectors. Suppose N is the

number of clusters. Define D = [D1, . . . ,DN ], as the concatenation of dictionaries

corresponding to N clusters. Let Ci be the matrix containing images as columns

corresponding to the ith cluster. Then, the proposed method may be summarized as

follows:

• Cluster assignment : The cluster assignment begins with arbitrary dictionaries

D = [D1, . . . ,DN ], where N is the number of clusters. Our proposed method

considers obtaining the sparsest representation of yj in an appropriate dictionary

Dî from:

αj = argminω ‖yj − Dω‖22 subject to ‖ω‖0 ≤ T0,

î = argmini ‖yj − Dδi(α
j )‖22 j = 1, · · · ,M ,

(7.4)

where δi is a characteristic function that selects the coefficients and ω is a

sparsity matrix. Then, yj is assigned to Cî associated with the ith dictionary.

• Dictionary update: From the initial clusters C1,C2, . . . ,CN , the dictionaries Di

are updated by using the K -SVD approach described in Eq. (1). Then, the new

dictionaries are computed as:

(D̂i, Φ̂i) = arg min
Di ,Φi

‖Ci − DiΦi‖
2
F subject to ‖γi‖0 ≤ T0 ∀i ,

satisfying Ci = D̂i Φ̂i , i = 1,2, . . . ,N .

The cluster assignment and dictionary update steps are repeated till there is no

significant change in the clusters Ci . The above mentioned clustering procedure can

be summarized as the optimization problem :

min
{Di},{Ci}

M
∑

j=1

∑

x∈Ci

min
j
‖yj − Dδi(α)‖

2
2 + γ‖α‖1, (7.5)
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where γ > 0. The above two step process of clustering and dictionary update is

repeated till the convergence of clusters. Given a query image xq , we find the cluster

that is closest to the query image by identifying the corresponding dictionary admitting

representation to xq . After identifying the most relevant cluster, we find the relevant

images with in the cluster using a similarity metric. The related images (search results)

within the cluster are identified based on the distance criterion. To evaluate similarity

between images based on the selected features, an appropriate similarity/dissimilarity

metric needs to be chosen. A large class of similarity measures are used in the literature

[109]. In this chapter, we use three type of similarity metrics, namely, Euclidean

distance (ED), Mahalanobis distance (MD) and cross correlation (CC). The proposed

algorithm is summarized as follows:

Algorithm 3 : Summary of the proposed CBMIR procedure

1. Extract features from the medical image database.

2. Apply K -means clustering algorithm on the extracted features to generate initial

clusters.

3. Generate the dictionary for each cluster using K -SVD method.

4. Create new cluster for each dictionary, by assigning the images that are sparsely

represented by it.

5. Repeat steps 3 and 4 till the clusters are converged.

6. For the query image q , search for relevant images in Cî , where Dî provides

sparsest representation to q .

7.3 EXPERIMENTAL RESULTS

The performance of the content based medical image retrieval task is measured in

terms of recall R = Nc/Nm and precision P = Nc / (Nc + Nf ) where Nm is the total

number of actual (or similar) images, Nc is the number of images detected correctly,
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and Nf is the number of false alarms. A good performance requires both recall and

precision to be high, that is, close to unity. Recall is the portion of total relevant

images retrieved where as precision indicates the capability to retrieve relevant images.

A compromise between recall and precision is obtained by using a measure combining

both as, F1 = 2×(R×P)
R+P

. Ideally, F1 should be close to unity.

Given some of retrieved images, the average retrieval performance is defined as the

average number of relevant images retrieved over all query images of a particular class.

We compare the performance of proposed method with that of CBMIR obtained by

K -means and fuzzy C -means clustering algorithms on the same image database. Ex-

perimental results are evaluated on proposed, K -means and fuzzy C -means clustering

procedures using two different types of feature extraction methods on the same image

database. The performance is measured on IRMA database and the results are shown

in Tables 7.1 - 7.6.

7.3.1 Database Description and Results

Majority of medical images are generally gray scale images such as X-ray, CT etc.

The ImageCLEF medical image database is made available by IRMA group from the

University Hospital of Aachen Germany. The main goal of ImageCLEF is to create a

standard environment for the evaluation and improvement of medical image retrieval

from heterogeneous collections containing images as well as text. For the details on

the database and the ImageCLEF benchmark evaluation for the medical annotation

task one may refer to IRMA website [63].

In the IRMA database considered for CBMIR application, where each image is of

size 120×120 pixels. For evaluating rotation invariant based CBIR, 2600 sample images

of skull, breast, chest, hand etc. are selected. The database members when considered

in matrix form as columns results in a matrix of size (120)2× 2600. This matrix being

tall and slim may not in general provide sparse representation to q . Consequently, to

bring CBMIR problem into the rich theory of compressed sensing, which is based on the
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undetermined setting, one needs to generate feature vectors of database members. In

the first feature extraction method (FE-I), each image is partitioned into 17 concentric

circular regions, such that each circular region has the same number of pixels as the

other region. The mean and variance of these circular regions are used to design the

feature vector. So, the size of each feature vector is 34 × 1 (due to 17 means and 17

variances) for one image. In the second feature extraction method (FE-II), image is

partitioned into five sub-images and each sub-image is partitioned into 4 concentric

circular regions, such that each circular region has the same number of pixels as the

other regions. The mean and variance of pixel intensity in a circular region become

components of the feature vector and size of each feature vector is 40 × 1 (due to 4

means and 4 variances from each of 5 sub images). This procedure is applied to all the

database members and 14 more images are used for testing. The performance of the

proposed method is evaluated with three different cluster sizes of 3, 4 and 5 (N=3,

N=4 and N=5) with dictionary size of 65 are shown in Tables 7.1, 7.2, 7.3, 7.4, 7.5,

and 7.6. This size of dictionary was chosen to show the retrieval results because it

can be seen from Table 7.9 that the precision and recall obtained for dictionary size of

65 is better than all the other dictionary sizes which were considered for evaluation.

Experiments were also carried out with various values of the residual ǫ and it was

found that ǫ = 0.005 gave the best retrieval performance. In all the tables presented

in this section, the value of ǫ has been considered as 0.005.

Table 7.1, 7.3 and 7.5 represent the average precision and recall for N being 3, 4

and 5 using the proposed method, fuzzy C -means and K -means clustering methods

and using first feature extraction method. Table 7.2, 7.4 and 7.6 represent the average

precision and recall for N being 3, 4 and 5 using the proposed method, fuzzy C -means

and K -means clustering methods and using second feature extraction method. The

performance in Table 7.1 was computed against the top 10 most accurately retrieved

images for each test image using first feature extraction method and Euclidean distance

as similarity measure. Through proposed method, for 3 clusters, the best performance

of 92.1% precision and 79.6% recall was obtained. Similarly, the results for 4 clusters
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gave the best performance of 90.7% precision and 78.8% recall, and for 5 clusters

the best performance of 87.8% precision and 74.7% recall was obtained. The best

performance obtained using the fuzzy C-means clustering is 67.8% precision and 68.2%

recall. In other cases, the performance of fuzzy C-means clustering algorithm was less

accurate. The K-means clustering algorithm resulted in the performance of 62.1%

precision and 32.6% recall. In other cases, the performance of K-means clustering

algorithm was further less.

Table 7.1: Performance measure (%) of the proposed, fuzzy C -means and K -means
clustering methods obtained with the first feature extraction method and the Euclidean
distance as similarity measure.

Query Proposed Method-I Fuzzy C-Means-I K-Means Clustering-I

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 100 90 100 0 0 50 50 0 45

2.png 80 90 100 10 0 40 70 25 10

3.png 70 70 100 100 40 60 60 20 30

4.png 100 100 100 100 50 60 80 100 55

5.png 100 100 80 90 50 50 60 85 45

6.png 100 100 100 80 60 40 80 100 100

7.png 90 100 80 50 100 20 50 0 10

8.png 100 80 100 100 50 0 50 0 60

9.png 70 80 80 80 40 60 70 20 30

10.png 100 100 80 90 50 50 70 80 50

11.png 100 90 100 20 10 50 50 0 50

12.png 90 100 60 90 50 40 70 90 80

13.png 100 80 80 90 40 0 50 0 10

14.png 90 90 90 50 60 20 60 10 50

precision (%) 92.1 90.7 87.8 67.8 42.8 38.5 62.1 37.8 41.4

recall(%) 79.6 78.8 74.7 68.2 62 60.7 32.6 35.5 60.2
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Table 7.2 shows the performance of evaluation obtained with the second feature

extraction method and Euclidean distance as similarity measure. Through the second

method of feature extraction, the best performance of 97.14% precision and 80.1%

recall were obtained. The best performance using the fuzzy C-means clustering is

74.8% precision and 60% recall and K-means clustering is 62.6% precision and 48%

recall. From our simulation results, it can be concluded that the 2nd feature extraction

method gives better performance than the 1st method.

Table 7.3 and 7.4 represent the average precision and recall of proposed, fuzzy

C-means and K-means clustering methods using first and second feature extraction

methods, respectively, using cross correlation as similarity measure. It can be inferred

from Table 7.3 and 7.4 that the proposed method using second feature extraction

method ( 93.7% precision and 83.2% recall ) gives better performance than the fuzzy

C-means and K-means clustering algorithms.

Table 7.5 and 7.6 represent the average precision and recall of proposed, fuzzy

C-means and K-means clustering methods using first and second feature extraction

methods, respectively, by using Mahalanobis distance as similarity measure. From the

results in Table 7.5 and 7.6, it can be concluded that the proposed method performs

better (62.8% precision and 47.2% recall) than fuzzy C-means and K-means clustering

methods.

Table 7.7 and 7.8 represent the average precision and recall of proposed methods

with increasing and decreasing number of concentric circular regions for the first feature

extraction method and Euclidean distance as similarity measure. The results obtained

in the table 7.7 portray that decreasing the number of concentric regions (<17) for

feature extraction yields less performance. This is because of the reduction in feature

vector size and the creation of non-optimal dictionaries for clustering. Moreover, in

table 7.8, it can be seen that increasing the number of concentric regions (>17) allows

artifacts from X-ray images near the boundaries of the images to contribute to the

feature vector, thereby reducing performance.

Table 7.9 depicts the results of the proposed method with various dictionary and
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Table 7.2: Performance measure (%) of the proposed, fuzzy C -means and K -means
clustering methods using second feature extraction method and Euclidean distance
as similarity measure.

Query Proposed Method-II Fuzzy C-Means-II K-Means Clustering-II

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 100 100 100 70 60 60 30 30 0

2.png 100 100 90 80 70 60 40 10 20

3.png 90 70 100 80 70 50 57.1 50 50

4.png 100 80 100 90 50 40 50 40 50

5.png 100 100 90 90 70 20 70 40 100

6.png 90 90 80 60 40 80 80 20 70

7.png 100 100 100 50 70 70 100 100 50

8.png 100 100 80 25 0 0 80 40 0

9.png 90 88.8 90 85.7 83.3 87.5 100 90 43

10.png 100 90 90 90 90 80 90 60 32

11.png 100 77.7 60 83.3 50 16.6 100 60 0

12.png 100 100 90 77.7 80 80 80 40 50

13.png 90 90 40 83.3 60 100 0 40 30

14.png 100 100 100 83.3 20 0 0 40 20

precision(%) 97.14 91.8 86.4 74.8 54 48 62.6 45 43

recall(%) 80.1 83.2 76.9 60 58.2 68 48 38 32

cluster sizes. It can be noted that the dictionary size of 65 yields the best performance.

This can be attributed to the fact that redundancy of information increases with

increasing dictionary sizes due to fewer number of training images. Higher dictionary

sizes can be accommodated by increasing the number of training images.

In Fig. 7.4, on every row, the first element represents the query image while the

other represent those retrieved by the proposed method with Euclidean distance as
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Table 7.3: Performance measure (%) of the proposed, fuzzy C -means and K -means
clustering methods using first feature extraction method and cross correlation as simi-
larity measure.

Query Proposed Method-I Fuzzy C-Means-I K-Means Clustering-I

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 90 60 50 20 30 60 68.4 0 60

2.png 70 70 50 20 30 50 47.3 0 44.4

3.png 100 90 80 100 80 80 65 35 0

4.png 90 60 80 100 50 90 33.3 55 50

5.png 70 80 90 100 50 50 33.3 50 50

6.png 100 100 100 80 60 60 91.6 25 55

7.png 90 100 100 100 100 30 100 25 0

8.png 40 30 20 50 30 0 37.5 0 0

9.png 90 80 80 90 70 70 60 30 0

10.png 80 90 80 100 50 50 40 50 50

11.png 80 60 50 20 30 50 63.2 0 70

12.png 100 80 60 70 50 50 80 30 50

13.png 60 40 20 40 30 10 32.4 10 0

14.png 50 50 25 50 20 0 30 0 20

precision(%) 79.2 70.7 68.5 67.1 48.5 46.4 55.8 22.1 32.1

recall(%) 65.7 65 68 69.8 75 71.4 57.4 47.4 47

similarity metric.

Fig. 7.3 shows the average precision and recall of the proposed, fuzzy C-means and

K-means clustering methods using first and second feature extraction methods with

three different similarity measures. Among these, the proposed method has better

performance (97.1% precision and 80.1% recall) with the Euclidean distance based

similarity measure as shown in Fig. 7.3.
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Table 7.4: Performance measure (%) of the proposed, fuzzy C -means and K -means
clustering methods using second feature extraction method and cross correlation as
similarity measure.

Query Proposed Method-II Fuzzy C-Means-II K-Means Clustering-II

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 90 100 90 70 90 70 70 70 40

2.png 100 100 90 80 90 80 80 60 70

3.png 97 90 94.1 60 40 50 57.1 50 67

4.png 90 90 100 50 50 30 90 67 63

5.png 100 100 50 50 90 30 90 0 70

6.png 90 90 100 90 50 100 90 78 90

7.png 100 80 80 100 50 50 0 50 0

8.png 95 80 100 100 0 20 83.3 50 0

9.png 100 80 100 87.5 40 50 50 10 90

10.png 100 80 100 90 50 40 70 90 80

11.png 90 60 80 83.3 90 70 70 70 70

12.png 90 100 100 88.9 50 90 100 70 50

13.png 80 70 20 83.3 10 30 50 40 50

14.png 90 100 100 83.3 20 20 60 40 50

precision(%) 93.7 87.1 86 79.6 51.4 52.1 68.6 53.2 56.4

recall(%) 83.2 80.1 76.8 69.6 50.1 64.8 71.9 50.4 49.8

Fig. 7.4 shows comparison between retrieval time and feature vector size for differ-

ent cluster sizes. This plot indicates that increasing the feature vector size contributes

to an increase in retrieval time as expected.
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Table 7.5: Performance measures (%) of the proposed, fuzzy C-means and K-Means
clustering methods using first feature extraction method and Mahalanobis distance as
similarity measure.

Query Proposed Method-I Fuzzy C-Means-I K-Means Clustering -I

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 60 70 100 0 0 50 31.5 0 35

2.png 40 30 60 0 0 33.3 26.5 0 05

3.png 40 50 50 60 20 28.5 30 10 05

4.png 30 40 60 70 50 50 18 50 45

5.png 30 70 30 70 50 50 18 55 45

6.png 50 70 50 20 20 0 16.6 05 30

7.png 90 70 50 50 80 0 52.6 03 0

8.png 100 90 90 70 30 0 75 0 30

9.png 50 50 50 60 20 30 30 10 0

10.png 30 40 50 70 60 50 20 50 30

11.png 60 60 90 0 10 60 30 0 30

12.png 50 70 40 40 30 0 20 30 40

13.png 90 80 80 30 20 10 70 20 40

14.png 80 90 70 40 30 10 40 0 45

precision(%) 57.1 60.7 62.1 41.4 30 26.5 34.1 19.2 27

recall(%) 56.4 54.6 60 42.9 49.3 32 41.5 30.7 39.5

7.4 SUMMARY

In this chapter, a novel dictionary learning based clustering method for content based

medical image retrieval is proposed. Mean and variance of pixel intensity values are

used as feature vector and K -SVD method is used to generate dictionaries for each

cluster. The performance of the proposed method is evaluated using IRMA database.

The first feature extraction (FE1) method aims at providing rotation invariant CBIR,
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Table 7.6: Performance measure (%) of the proposed, fuzzy C-means and K-Means
clustering method using second feature extraction method and Mahalanobis distance as
similarity measure.

Query Proposed Method-II Fuzzy C-Means-II K-Means Clustering-II

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 40 70 70 0 30 30 30 30 0

2.png 30 60 60 50 20 20 20 10 30

3.png 100 40 80 29 43 38 20 19 35.2

4.png 40 30 50 38 20 33.3 33.3 17 62.2

5.png 40 60 30 50 20 0 33.3 20 62.2

6.png 50 60 70 50 40 40 60 20 59

7.png 80 83.3 70 71.4 40 75 100 0 0

8.png 90 90 50 88 20 0 67 0 0

9.png 10 20 80 14.2 16.6 50 10 20 0

10.png 30 20 50 10 10 0 30 20 50

11.png 60 30 30 50 30 30 30 30 30

12.png 30 30 60 33.3 20 40 70 20 20

13.png 50 50 90 66.6 0 0 30 10 20

14.png 50 80 90 66.6 16.6 0 30 10 60

precision(%) 50 53.8 62.8 44 23.3 25.4 40.2 16.1 30.6

recall(%) 49.3 49.4 47.2 38.7 29.1 27 55.6 24.7 31.6

while the second (FE2) method aims at taking into consideration the rich informa-

tion available at the center. The experimental results show that FE2 method gives

superior performance compared to FE1. The extensive experimental work is carried

out with different cluster sizes, with different number of concentric circular regions,

different column sizes for dictionaries, different similarity metrics and with different

initial clustering algorithms. It is observed that when N is 3, number of concentric

99



Table 7.7: Performance measure (%) of the proposed method with decreasing feature
vector size (No.of concentric circles is 7) using Euclidean distance, cross correlation and
Mahalanobis distance as similarity measure.

Query Euclidean distance Cross correlation Mahalanobis distance

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 80 80 30 50 30 30 30 60 10

2.png 100 90 30 90 40 30 30 30 20

3.png 90 90 90 100 90 90 70 50 50

4.png 100 100 70 90 90 80 30 30 50

5.png 100 90 90 100 100 80 50 50 20

6.png 40 90 70 70 100 90 20 70 30

7.png 100 80 80 100 90 60 40 20 20

8.png 90 100 70 40 20 10 70 90 70

9.png 100 100 100 100 100 90 10 30 30

10.png 60 100 80 80 90 100 10 70 60

11.png 90 90 90 70 40 80 10 60 40

12.png 30 50 60 40 50 70 30 30 20

13.png 60 100 80 20 70 40 30 50 50

14.png 90 100 70 60 60 10 90 90 80

precision(%) 80.7 90 72.1 72.1 69.2 61.4 37.1 52.1 39.2

recall(%) 67.9 80.4 54.9 66.3 61.8 50.2 35 53.4 36.2

circles is 17, one achieves better F1 performance of 87.5% with Euclidean distance as

similarity metric. As medical images come with different scaling factors, our future

work aims at addressing scale invariance as well in CBMIR.
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Table 7.8: Performance measure (%) of the proposed method with increasing feature
vector size (No.of concentric circles=23) using Euclidean distance, cross correlation and
Mahalanobis distance as similarity measure.

Query Euclidean distance Cross correlation Mahalanobis distance

Images/Clusters N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

1.png 100 90 80 90 70 60 50 40 20

2.png 70 80 90 80 100 80 40 20 30

3.png 90 90 70 100 100 100 60 40 50

4.png 80 100 100 90 100 90 40 30 20

5.png 100 100 90 100 100 100 30 30 40

6.png 90 90 70 100 90 90 20 50 30

7.png 100 90 90 100 100 100 60 50 40

8.png 100 90 100 20 20 10 60 70 80

9.png 100 100 90 100 100 100 40 20 50

10.png 70 70 70 80 70 100 50 40 30

11.png 80 90 80 80 100 80 20 20 40

12.png 90 90 80 90 90 80 40 70 60

13.png 100 80 100 80 70 90 60 60 80

14.png 100 90 90 60 40 30 90 80 90

precision(%) 91.4 89.2 85.7 83.5 82 79.2 47.8 44.2 47.1

recall(%) 71.6 76.3 73.8 68.9 71.9 68.7 47.4 45.5 43.3
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Table 7.9: Performance measure (%) of the proposed method with different
dictionary sizes.

Proposed method-I Proposed method-II

Column size of Di/Clusters N=3 N=4 N=5 N=3 N=4 N=5

60 89 82.3 82 93 91 86.4

65 92.1 90 87.8 97.1 91.8 93

70 86.2 90.7 82 91.2 89.3 89

75 88.1 82 80.2 92.3 90 90

80 86.4 80.4 86 93.2 88.6 91.3

85 88.3 78.4 84 95 89.1 88.6

Fig. 7.2: Some of the retrieved images, first column contains the query
images and remaining columns correspond to the retrieved images.

102



Fig. 7.3: Comparision of average precision and recall of proposed, fuzzy C-means and
K-means clustering methods using first (I) and second (II) feature extraction methods with
three different distance similarity measures. (a) Highest precision recorded (%) using Euclidean
distance as similarity measure. (b) Highest precision recorded (%) using cross correlation as
similarity measure. (c) Highest precision recorded (%) using Mahalanobis distance as the sim-
ilarity measure.(d) Highest recall recorded(%) using Euclidean distance as similarity measure.
(e) Highest recall recorded (%) using cross-correlation as the similarity measure. (f) Highest
recall recorded (%) using Mahalanobis distance as similarity measure. Here, x-axis refers to
different query images and the y-axis refers to F1 performance.
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Fig. 7.4: Comparison between retrieval time and feature vector size for
different cluster sizes.
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CHAPTER 8

CONCLUSIONS

8.1 SUMMARY AND CONCLUSIONS

In this thesis, new approaches were proposed to address some issues in classification

and retrieval of medical data. Image classification and retrieval which is concerned

with effectively and efficiently accessing similar type of images from large image col-

lections, has become more interesting and more challenging as the medical datasets

have grown over the years. The medical data classification is an important task in the

context of content based medical image retrieval and present some challenging prob-

lems. The key issues in medical data classification are representation of class specific

information using suitable features, and developing methods to capture information

present in the features. In this thesis, new methods for grouping of medical images

into different classes based on sparsest representation and dictionary learning were

proposed. The sparsity seeking dictionary learning approaches typically exploit the

framework of under-determined setting and hence work on some implicit assumptions

on the database. The methods proposed here vastly improve the speed and accuracy

of retrieved images.

The existing medical image search and retrieval techniques are not very efficient

in terms of time and accuracy of search results because most of the existing tools for

searching medical images use text based image retrieval techniques. Text based image

classification suffers from some serious limitations, namely, when the size of image

collection gets increasingly large, manually annotating each image is very difficult.

Also, different people may give different annotations to images with similar visual

content. Improving the classification accuracy and reducing the retrieval time are
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important issues in medical image classification and retreival. Content based image

classification and retrieval approaches were proposed to overcome the limitations of

text based image classification and retrieval. Digital image retrieval techniques are

crucial in the emerging field of medical image databases for clinical decision making

process.

An algorithm for classification of medical images based on edge features extracted

from various body parts using ℓ1 -lasso sparse representation and on-line dictionary

learning (ODL) was proposed. Edge information was extracted from an image by

dividing the image into patches and each patch into concentric circular regions to

provide discriminative information useful for classification of medical images. The

ability of on-line dictionary learning to achieve sparse representation of an image was

exploited to develop dictionaries for each class using edge-based features.

In most medical imaging systems, the same body part was captured from different

orientations and magnification by the same sensor. Coming up with a rotation and

invariant classification and retrieval system was a real challenge. The mean and vari-

ance over concentric circular regions in an image were calculated and used as features

for providing a rotation invariant image retrieval scheme.

Medical images are captured by different sensors (modalities). Capturing images

of various modalities suffers from significant contrast variation between the images of

the same organ or body part. Due to this large variation, existing image classifica-

tion and retrieval algorithms do not perform well for different modality images. Our

proposal to address this issue was based on multi-scale wavelet representation using

dictionary learning. Wavelet features extracted from an image provide discriminative

information useful for classification of medical images. Multi-scale wavelets were em-

ployed to compensate for the varying scale of intensity in the images captured by the

aforementioned sources.

In addition, most of the medical datasets pose the problem of data imbalance

i.e. unequally distributed training samples among all the classes, which gives rise to

poor classification performance results with standard single classifiers. The proposed
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method uses a multi-level classifier to combine correctly classified examples in the first

level with the training data and supply them as input to the next level classifier. So,

if there is any data imbalance i.e. less number of training samples, it can be alleviated

by this method.

Adaptive dictionary learning based classification is used to classify normal and

abnormal heartbeat patterns from an ECG database. A relevant application is auto-

mated detection of heart diseases based on abnormal heartbeat patterns.

The problem of the search for relevant information in large medical image databases

in content based medical image retrieval was addressed. This problem deals with the

retrieval of rotation invariant based similar images and improves the accuracy of similar

retrieval images with the help of clustering technique. We also proposed a method for

clustering of medical data based on sparse representation using dictionary learning.

The basic idea is to group similar images into clusters that are sparsely represented by

the dictionaries and simultaneously learn dictionaries from the clusters using K -SVD.

8.2 CONTRIBUTIONS OF THE WORK

The main contributions of this thesis are summarized as follows:

• Classification of X-ray images using on-line dictionary learning based on the

sparse representation of edge-based features was proposed. This method was

used to classify various body parts present in medical images. Edge-based fea-

tures are used to classify the medical images since different body parts are

distinctly characterized by edge information.

• Multi-level classification framework involving on-line dictionary learning and

support vector machine for medical data classification has been proposed. A

multi- level classifier that combines correctly classified examples in the first level

with the training data and supplies them as input to the next level classifier has

been devised. The ability of multi-level classification approach is more suitable

for imbalanced medical datasets.
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• Classification of medical images based on acquisition source (modality) repre-

sented by multi-scale wavelets using on-line dictionary learning has been pro-

posed. Wavelet features extracted from an image provide discriminative in-

formation useful for classification of medical images. Multi-scale wavelets are

employed to compensate for the varying scale of intensity in the images captured

by the aforementioned sources.

• Adaptive dictionary learning based classification approach for detection of ab-

normality in ECG signals has been proposed.

• A new clustering method was proposed for content based medical image retrieval

based on sparse representation and dictionary learning. The mean and variance

over concentric circular regions in an image are calculated and used as features

for providing a rotation invariant image retrieval scheme. The methods proposed

here vastly improve accuracy of retrieved images and reduce the search time.

8.3 DIRECTIONS FOR FUTURE RESEARCH

• The proposed method for clustering of medical images for content based medical

image retrieval assumes an under-determined setting i.e. the number of instances

are much less than the number of attributes. So, improvements have to be made

to make it work in an over-determined system as well.

• In the case of clustering, there is no guarantee that a cluster will have enough

members and consequently, dictionary learning cannot be effectively applied.

The main problem would be to reform the classification problem in under-

determined setting.

• Medical images come with different transformations (such as scaling), future

work aims at addressing the invariant CBMIR with respective to other trans-

formations.
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APPENDIX A

SPARSE REPRESENTATIONS

Suppose that there are K medical image classes, and each class has a set of N

medical images. Let a d-dimensional feature vector be extracted from each medical

image. Let Ak be a d×N matrix of feature vectors of the kth class, where the column

akn = [akn1akn2...aknd]
T denotes the d-dimensional feature vector of the nth medical

image belonging to the kth class.

Ak = [ak1ak2...akn...akN ] ∈ Rd×N (A.1)

An medical image dictionary A can be defined as follows:

A = [A1A2...Ak...AK ] ∈ Rd×KN (A.2)

where K represents some of the feature vectors from K different medical image

classes. Let y ∈ Rd be an observed feature vector extracted from a test medical image.

The y can be be expressed as a linear weighted sum of columns of medical image

dictionary A as

y =
K
∑

k=1

N
∑

n=1

xknakn (A.3)

where the scalar xkn is the weight associated with the column akn. The above

equation can also be written in the matrix form as

y = Ax (A.4)

and the residual can be written as



r(y) = y − Ax (A.5)

The observation vector y belongs to a particular class meaning that it is approxi-

mately comes in the linear span of the training vectors of that medical class. In other

words, the coefficients of the weight vector x that does not belong to that particular

medical image class are very close to zero and also x gives more sparsity with very few

nonzero coefficients. The given system of linear equations in (A.4) is under-determined,

since the size of the feature vector (d) is much greater than the number of feature vec-

tors concatenated in the medical image dictionary. So it does not give unique solution,

the sparsest solution can be obtained from the infinitely many solutions by solving the

following optimization problem

minx||x||0 subject to y = Ax (A.6)

where ||x||0 is zero norm of weight vector x which mean the number of nonzero coef-

ficients in weight vector x. There were many iterative algorithms proposed like match-

ing pursuit (MP), and orthogonal matching pursuit (OMP) to address the above opti-

mization problem. In the proposed medical image classification and retrieval method-

ology, OMP algorithm is chosen to calculate the approximate sparse weight vector x

[65]. The main goal of the algorithm is to identify sparse weight vector x which gives

a few nonzero coefficients. These coefficients will determine the few columns of A that

participate in the representation of observation vector y. The algorithm chooses those

columns in a greedy fashion. The following are the steps involved in OMP algorithm

[65].

1. The sparse weight vector x is initialized with zero, (x0 = 0). The initial resid-

ual is, r0(y) = yAx0 = y. The solution support is initialized with S0 =

Support{x0} = φ

2. Since the residual error depends on ||y||2, a fraction of ||y||2 can be used as error

threshold, i.e., θ0 = λ||y||2 where 0 < λ < 1. The value should not be very high
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or very low. If the value is very high, it may not capture the iris class-specific

characteristics. On the other hand, a low value of λ may spoil the sparsity of

the weight vector x while minimizing the residual error.

3. The first iteration of the algorithm starts with k = 1.

4. The errors are computed for all columns of A using θ(c) = minzc ||aczc− rk−1||22.

Where c represents the column index and zc = aTc r
k−1/||ac||

2
2.

5. Among all the column errors, find a minimizer c0 from θ(c) in such a way that the

column should not be an element in previous solution support and θ(c0) ≤ (c).

Update the solution support Sk by adding the minimizer c0 to previous solution

support Sk−1.

6. Based on the updated solution support Sk, compute the sparse weight vector

xk by solving the min||y − Ax||22.

7. The residual is again computed for the current iteration using rk = bAxk.

8. If the l2 norm for the updated residual is below the predefined error threshold

θ0. Then xk becomes the solution. Otherwise, repeat the steps from 4, by

incrementing k by 1.

A.1 LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR

(LASSO) ALGORITHM

Another commonly used sparse representation of an algorithm called Least Absolute

Shrinkage and Selection Operator (LASSO) and another termed Least Angle Regres-

sion (LARS). The LASSO is an L1 regression technique introduced by Tibshirani

(1996) and it is shrinkage and selection method for linear regression It minimizes the

usual sum of squared errors, with a bound on the sum of the absolute values of the

coefficients. It has connections to soft-thresholding of wavelet coefficients, forward

stagewise regression, and boosting methods.

111



Given a matrix of signals A = [a1, ..., an] ∈ Rm×n and a dictionary D in Rm×p

, depending on the input parameters, the algorithm returns a matrix of coefficients

X = [α1, ..., αn] ∈ Rp×n such that for every column a of A, the corresponding column

α of A is the solution of

min
α∈Rm×n

‖x‖1 s.t. ‖a − Dα‖22 ≤ λ, (A.7)

A.2 ODL ALGORITHM

Assuming the training set composed of i.i.d. samples of a distribution p(x), its inner

loop draws one element Xt at a time, as in stochastic gradient descent, and alternates

classical sparse coding steps fr computing the decomposition αt of Xt over the dictio-

nary Dt−1 obtained at the previous iteration, with dictionary update steps where the

new dictionary Dt is computed by minimizing over C the function

f̂t(D)
.
=

1

t

t
∑

i=1

1

2
‖Xi − Dαi‖

2
2 + λ‖αi‖1, (A.8)

where the vectors αi are computed. Algorithm is summarized in Algorithm 4.

112



Algorithm 4 : Online dictionary learning.

Input : X ∈ Rm ∼ p(X) (random variable and an algorithm to draw i.i.d samples of

p), λ ∈ R (regularization parameter), D0 ∈ Rm×k (initial dictionary), T (number of

iterations).

1. A0 ← 0, B0 ← 0 (rest the past information).

2. for t = 1 to T do

3. Draw Xt from p(X).

4. Sparse coding: compute using LARS

αt
.
= arg min

α∈Ri

1

2
‖Xt − Dt−1α‖

2
2 + λ‖αi‖1. (A.9)

5. At ← At−1 + αtα
T
t .

6. Bt ← Bt−1 +Xtα
T
t .

7. Compute Dt using Algorithm 5, with Dt−t as warm restart, so that

(Dt)
.
= arg min

D∈C

1

t

t
∑

i=1

1

2
‖Xi − Dαi‖

2
2 + λ‖αi‖1.

= arg min
D∈C

1

t
(
1

2
Tr(DTDAt)− Tr(DTBt)). (A.10)

8. end for

9. Return DT (learned dictionary).
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Algorithm 5 : Dictionary Update.

Input : D = [d1, ..., dk] ∈ Rm×k (input dictionary),

A = [a1, ..., ak] ∈ Rk×k =
∑t

i=1 αiα
T
i ,

B = [b1, ..., bk] ∈ Rm×k =
∑t

i=1 Xiα
T
i ,

1. repeat

2. for j = 1 to k do

3. Update the j-th column to optimize for (A.10):

(uj ←
1

Ajj

(bj −Daj) + dj).

dj ←
1

max(‖uj‖2, 1)
uj. (A.11)

4. end for

5. until convergence

6. Return D (updated dictionary).
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APPENDIX B

SUPPORT VECTOR MACHINES

The support vector machine (SVM) is a linear machine pioneered by Vapnik [72].

The main idea of an SVM is to construct a hyperplane as the decision surface in

such a way that the margin of separation between positive and negative examples

is maximized. The notion that is central to the construction of the support vector

learning algorithm is the innerproduct kernel between a support vector xi and a vector

x drawn from the input space. The support vectors constitute a small subset of the

training data extracted by the support vector learning algorithm. The separation

between the hyperplane and the closest data point is called the margin of separation,

denoted by ρ. The goal of a support vector machine is to find a particular hyperplane

for which the margin of separation ρ is maximized. Under this condition, the decision

surface is referred to as the optimal hyperplane. Fig. B.1 illustrates the geometric

construction of a hyperplane for two dimensional input space. The support vectors

play a prominent role in the operation of this class of learning machines. In conceptual

terms, the support vectors are those data points that lie closest to the decision surface,

and therefore the most difficult to classify. They have a direct bearing on the optimum

location of the decision surface.

The idea of an SVM is based on the following two mathematical operations [72]:

1. Nonlinear mapping of an input pattern vector onto a higher dimensional feature

space that is hidden from both the input and output.

2. Construction of an optimal hyperplane for separating the patterns in the higher

dimensional space obtained from operation 1.

Operation 1 is performed in accordance with Cover’s theorem on the separability

of patterns [72]. Consider an input space made up of nonlinearly separable patterns.



Fig. B.1: Illustration of the idea of support vectors and an optimal hyper-
plane for linearly separable patterns.

Cover’s theorem states that such a multidimensional space may be transformed into

a new feature space where the patterns are linearly separable with a high probabil-

ity, provided the transformation is nonlinear, and the dimension of the feature space

is high enough. These two conditions are embedded in operation 1. The separating

hyperplane is defined as a linear function of the vectors drawn from the feature space.

Construction of this hyperplane is performed in accordance with the principle of struc-

tural risk minimization that is rooted in Vapnik-Chervonenkis (VC) dimension theory

[110]. By using an optimal separating hyperplane the VC dimension is minimized and

generalization is achieved. The number of examples needed to learn a class of interest

reliably is proportional to the VC dimension of that class. Thus, in order to have a

less complex classification system, it is preferable to have those features which lead to

lesser number of support vectors.

The optimal hyperplane is defined by:

NL
∑

i=1

αidiK (x,xi) = 0 (B.12)
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where {αi}
NL

i=1 is the set of Lagrange multipliers, {di}
NL

i=1 is the set of desired classes

and K (x,xi) is the innerproduct kernel, and is defined by:

K (x,xi) = ϕT (x)ϕ(xi)

=

m1
∑

j=0

ϕj(x)ϕj(xi), i = 1, 2, . . . , NL (B.13)

where x is a vector of dimensionm drawn from the input space, and {ϕj(x)}
m1

j=1 denotes

a set of nonlinear transformations from the input space to the feature space. ϕ0(x) = 1,

for all x. m1 is the dimension of the feature space. From (B.12) it is seen that the

construction of the optimal hyperplane is based on the evaluation of an innerproduct

kernel. The innerproduct kernel K (x,xi) is used to construct the optimal hyperplane

in the feature space without having to consider the feature space itself in explicit form.

The design of a support vector machine involves finding an optimal hyperplane.

In order to find an optimal hyperplane, it is necessary to find the optimal Lagrange

multipliers which are obtained from the given training samples {(xi, di)}
NL

i=1. Dimension

of the feature space is determined by the number of support vectors extracted from

the training data by the solution to the optimization problem (B.12).
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APPENDIX C

LINEAR DISCRIMINANT ANALYSIS

Discriminant analysis method developed in 1936 by R.A. Fisher. And it is a multivari-

ate classification method. In discriminant analysis, the mian objective is to predict

class labels of individual observations based on a set of predictor variables.

The purpose of linear discriminant analysis (LDA) is to find the linear combinations

of the predictor variables that gives the best possible separation between the groups

of observations. Linear discriminant analysis is also known as ”canonical discriminant

analysis”.

Given dataset there are N different groups, each assumed to have a multivariate

normal distribution with mean vector(n = 1, ..., K) and common covariance matrix .

The actual mean vectors and covariance matrices are almost always unknown. With

the help of maximum likelihood methods are used to estimate these parameters.

The basic method of LDA isto classify observations yi to the group n, which

minimize the within group variance i.e.,

n = argminn(yi − µn)
TΣ−1(yi − µk) (C.14)

Under multivariate normal assumptions, this is equivalent to finding the group

that maximizes the likelihood of the observation. Generally, we can estimate prior

probability using the proportion of the number of observations in each group to the

total. For example, let πn = mn

m
be the proportion of group n such that π1 + ... +

πn=1. Then, contrary to maximizing the likelihood value, the posterior probability is

maximized. The observation relates to a particular group,



n = argmaxn[−
1

2
(yi − µn)

TΣ−1(yi − µk) + logπk] (C.15)

Simplifying (C.15), the n LDA functions are

dn(y) = yTΣ−1µn −
1

2
µT
nΣ

−1µk + logπk (C.16)

When the assumption of common covariance matrix is not satisfied, an individual

covariance matrix for each group is used.

In the binary case, two linear discriminantfunctions are built asfollows:

d1(y) = yTΣ−1µ1 −
1

2
µT
1Σ

−1µ1 + logπ1 (C.17)

d2(y) = yTΣ−1µ2 −
1

2
µT
2Σ

−1µ2 + logπ2 (C.18)

If d1(y) > d2(y) the observation y will be assigned to first group, otherwise to

second group. The two discriminantfunctions can also be combined i.e.,

d(y) = d1(y)− d2(y)

= yTΣ−1(µ1 − µ2)−
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) + log
π1

π2

(C.19)

If d(y) > 0, the observation y will be assigned to group one, otherwise to group

two. The last two parts in the equation (C.19) are constant given a data set. The

discriminant function coefficients are D = Σ−1(µ1 − µ2). The coefficients reflect the

joint contribution of the variablesto the function, thereby showing the influence of each

variable in the presence of the others. The standardized coefficients D∗ = diag(Σ)D

are computed by multiplying each coefficient by the standard deviation of the cor-

responding variables. When the variable scales differ substantially, the standardized

coefficient vector provides better information about the relative contribution of each

variable to the canonical discriminantfunction.
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Suppose there are two groups of p predictor variables, which allow for construc-

tion of LDA functions using all predictors. A practical process is to choose significant

variables using stepwise procedure, which usesthe Wilks Lambda statisticsto identify

significant independent variables of the discriminant functions (Siotani et al. 1985,

Rencher 1993). The Wilks Lambda criterion maximally discriminates between groups

by maximizing the multivariate F ratio in the tests of differences between the group-

means.
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APPENDIX D

DATABASES

• Information Retrieval in Medical Applications (IRMA) database

• MIT/Beth Israel Hospital (BIH) database

• International Consortium for Brain Mapping (ICBM) database

• UCI repository
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