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Popular Catalana





Acknowledgments

A PhD is, with no doubt, a unique experience. Not just because one does it, at most, once in a

live (normally...), but because it is an extremely enriching experience. Through this PhD, I have

had the exceptional opportunity to grow in all aspects. I have acquired knowledge, experience and

know-how in research. Also, and may be even the most important, I have acquired a price-less live

experience, I have widened my personal horizons and I have had the opportunity to meet wonderful

people and make friends.

Non of this would have been possible without the worthful contribution of a myriad of persons

and friends who deserve, at least (but never enough), to be acknowledged in this text. However, I

hope that those that I may forget by mistake will forgive me for that.

First of all, I would like to thank Prof. Kunt for having welcomed me at the ITS, and for giving

me the opportunity of doing a PhD at EPFL.

All my thanks go to Pierre (Prof. Vandergheynst): for having selected me as one of his PhD stu-

dents, for the great opportunity he has given me to carry research in freedom, for all the discussions,

for his support, for his trust, for all what I have learned (as a researcher and as a person) and for

all the fun we shared.

An extremely important aspect of research is collaboration. Sharing knowledge and efforts

with other fellows is of extreme synergy as well as it can be of uttermost fun. During these

years I have had the chance to have very fruitful discussions with many people. I want to thank

specially for this Prof. Macq, Dr. De Vleeschouwer, Prof. Frossard, Prof. Bierlaire, Dr. Flierl and

Prof. Vandergheynst. I want to thank also Dr. Davies for his very valuable comments as a jury

member of my PhD thesis. Moreover, the best and price-less experience has been the opportunity

to discuss with many people at ITS and LTS2 (former F-Group) and to join efforts specially with

Dr. Figueras, Lorenzo G., Ana, Lorenzo P., Gianluca, Philipe, Patricia. Thanks to you all!

Thanks also to the students that worked with me, I have learnt a lot with them: Florent, Gerard,

Alvaro i Javier.

Fundamental research is, with no doubt, uncertain; things are not always as one expects or one

would like. I want to thank Francesco and Julien for their great patience and friendliness.

This thesis has been source of experiences and trips. One of the best ones has been the time

I spent in Belgium at TELE in UCL. I want to thank all the people from TELE for their nice

welcome and company and specially the friends that shared with me some moments in there (as

well as later!): Christophe, Stephanie, Laurent, Laurence and Marc.

I want to thank my office mate Ana, for all the discussions we have had as well as to my old

office mates: Raphael and Meritxell, for their great company.

I want to thank Prof. Marqués for having suggested me to come to ITS, and to Dr. Clawin for

having been the first to introduce me to the taste of research.

ix



x Acknowledgments

Apart from the academic experiences, this years in Lausanne would have not been the same

without all the great time and fun I have spent with the past and present people at ITS, the catalan

community of friends and all the people from here and there I have met.

I have had much joy hiking and skying in the mountains and doing many other things in this

beautiful country. Thanks for all that to all those having shared their good humor and joy with

me: Rosa, Patricia, Xavier, Raphael, Olivier, Andrea, Nicolas, Torsten, Elena, Elisa, Pierre, Stefan,

Francesco, Vlad, Matheo...

These years would have not been the same without the presence of this huge community of

estrange people that one may find everywhere: Catalans! Thanks to you all for having exported
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Abstract

Video signals are sequences of natural images, where images are often modeled as piecewise-smooth

signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions

that move through time. Based on the piecewise-smooth model and on related theoretical work on

rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the

appropriate coding strategies that adaptive video codecs need to implement in order to be efficient.

Efficient video representations for coding purposes require the use of adaptive signal decompositions

able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity

needs to be such that it allows for proper modeling of signals in order to represent these with

the lowest possible coding cost. Video is a very structured signal with high geometric content.

This includes temporal geometry (normally represented by motion information) as well as spatial

geometry. Clearly, most of past and present strategies used to represent video signals do not exploit

properly its spatial geometry. Similarly to the case of images, a very interesting approach seems to

be the decomposition of video using large over-complete libraries of basis functions able to represent

salient geometric features of the signal. In the framework of video, these features should model

2D geometric video components as well as their temporal evolution, forming spatio-temporal 3D

geometric primitives.

Through this PhD dissertation, different aspects on the use of adaptivity in video representation

are studied looking toward exploiting both aspects of video: its piecewise nature and the geometry.

The first part of this work studies the use of localized temporal adaptivity in subband video

coding. This is done considering two transformation schemes used for video coding: 3D wavelet

representations and motion compensated temporal filtering. A theoretical R-D analysis as well

as empirical results demonstrate how temporal adaptivity improves coding performance of moving

edges in 3D transform (without motion compensation) based video coding. Adaptivity allows, at

the same time, to equally exploit redundancy in non-moving video areas. The analogy between

motion compensated video and 1D piecewise-smooth signals is studied as well. This motivates the

introduction of local length adaptivity within frame-adaptive motion compensated lifted wavelet

decompositions. This allows an optimal rate-distortion performance when video motion trajectories

are shorter than the transformation “Group Of Pictures”, or when efficient motion compensation

can not be ensured.

After studying temporal adaptivity, the second part of this thesis is dedicated to understand

the fundamentals of how can temporal and spatial geometry be jointly exploited. This work builds

on some previous results that considered the representation of spatial geometry in video (but not

temporal, i.e, without motion).

In order to obtain flexible and efficient (sparse) signal representations, using redundant dictio-

naries, the use of highly non-linear decomposition algorithms, like Matching Pursuit, is required.

General signal representation using these techniques is still quite unexplored. For this reason, pre-
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xii Abstract

vious to the study of video representation, some aspects of non-linear decomposition algorithms

and the efficient decomposition of images using Matching Pursuits and a geometric dictionary are

investigated.

A part of this investigation concerns the study on the influence of using a priori models within

approximation non-linear algorithms. Dictionaries with a high internal coherence have some prob-

lems to obtain optimally sparse signal representations when used with Matching Pursuits. It is

proved, theoretically and empirically, that inserting in this algorithm a priori models allows to im-

prove the capacity to obtain sparse signal approximations, mainly when coherent dictionaries are

used.

Another point discussed in this preliminary study, on the use of Matching Pursuits, concerns the

approach used in this work for the decompositions of video frames and images. The technique pro-

posed in this thesis improves a previous work, where authors had to recur to sub-optimal Matching

Pursuit strategies (using Genetic Algorithms), given the size of the functions library. In this work

the use of full search strategies is made possible, at the same time that approximation efficiency is

significantly improved and computational complexity is reduced.

Finally, a priori based Matching Pursuit geometric decompositions are investigated for geomet-

ric video representations. Regularity constraints are taken into account to recover the temporal

evolution of spatial geometric signal components. The results obtained for coding and multi-modal

(audio-visual) signal analysis, clarify many unknowns and show to be promising, encouraging to

prosecute research on the subject.



Version Abrégée

Le signal vidéo est une séquence d’images en mouvement, dont les images sont souvent modelées

comme des signaux réguliers par morceaux. Ainsi, le signal vidéo peut être considéré comme un sig-

nal 3D régulier par morceaux, et composé de régions qui suivent un certain mouvement a travers le

temps. La modélisation du signal vidéo par morceaux permet d’analyser en détail le comportement

de différentes stratégies de codage, et ainsi de déterminer quelles sont les approches les plus appro-

priées pour maximiser le taux de compression. Afin de permettre un codage efficace de la vidéo, il

est nécessaire d’utiliser des méthodes adaptatives de décomposition du signal. Cette adaptabilité

doit être optimisée pour garantir une modélisation du signal avec un coût de codage minimum. La

nature du signal vidéo est fortement liée à sa structure, avec une forte composante géométrique.

Celle-ci inclut tant la géométrie temporelle (normalement représentée par l’information du mouve-

ment) que la géométrie spatiale. La plupart des méthodes utilisées pour la représentation du signal

vidéo ne tient pas compte de sa géométrie spatiale. De même que dans le cas des images, une

stratégie prometteuse pour exploiter conjointement la structure géométrique spatio-temporelle est

celle qui utilise des dictionnaires redondants avec une forte composante géométrique. Dans le con-

texte de la vidéo, les primitives géométriques 2D doivent suivre une évolution temporelle en formant

des complexes primitives 3D qui ont la fonction de représenter, en même temps, les composantes

géométriques spatiales et temporelles du signal.

Dans cette thèse de doctorat, plusieurs aspects concernant l’utilisation de méthodes adaptatives

pour la modélisation du signal vidéo sont traités. Cette thèse traite particulièrement des aspects

structurels de la vidéo ainsi que de sa nature géométrique.

La première partie du présent travail porte sur l’étude de l’utilisation de décompositions tem-

porelles adaptatives dans des approches basées sur la décomposition de la vidéo en sous-bandes.

L’influence de l’adaptabilité est notamment discutée pour deux stratégies de codage: les transfor-

mées en ondelettes 3D et le filtrage temporel avec compensation de mouvement. Les avantages de

l’utilisation d’adaptabilité dans des représentations basées sur la transformée en ondelettes 3D sont

démontrés à l’aide d’une étude théorique R-D ainsi que par des résultats expérimentaux. L’utilisation

de l’adaptabilité dans le cadre du filtrage temporel avec compensation du mouvement est aussi

étudiée en faisant une analogie entre le signal vidéo, avec le mouvement compensé, et les signaux

réguliers par morceaux 1D. Cette analogie suggère l’introduction des transformées de longitude lo-

calement variable dans des schémas de décomposition par ondelettes bases sur des lifting steps.

Cette modification permet une plus forte compression du signal grâce à une meilleure adaptation

de la représentation des trajectoires de mouvement avec une longueur inférieure à celle du Groupe

d’Images (GOP - en anglais -) ou quand l’erreur due à la compensation de mouvement est trop

élevé.

Après l’étude d’adaptabilité temporelle, une deuxième partie de cette thèse se concentre égale-

ment sur l’étude et la compréhension des concepts de base pour exploiter, conjointement, la struc-
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ture géométrique spatio-temporelle du signal. Cette recherche se base sur des études précédentes

qui tenaient compte de la géométrie spatiale de la vidéo, sans considérer son évolution temporelle

(mouvement).

Afin d’obtenir des représentations flexibles et efficaces (parcimonieuses), avec des dictionnaires

redondants, il faut utiliser des algorithmes de décomposition hautement non linéaires, tels que les

algorithmes gloutons (Greedy algorithms et Matching Pursuits en anglais). L’utilisation de ces

techniques est encore peu explorée. Pour cette raison, avant d’étudier de telles représentations,

certains aspects liés à l’utilisation de ces algorithmes conjointement avec des dictionnaires cohérents

pour l’approximation des images et de la vidéo sont étudiés.

Une partie de cette étude présente l’utilisation des modèles à priori dans des algorithmes non-

linéaires comme les Matching Pursuits. En fonction du dictionnaire utilisé, et du signal, les Matching

Pursuits peuvent avoir des grandes difficultés pour arriver à obtenir des expansions parcimonieuses

optimales. Basé sur ce résultat, il peut être démontré, de manière théorique et expérimentale, que

l’utilisation des modèles à priori (comme par exemple des modèles probabilistes) peut contribuer

très significativement à l’amélioration des performances de ces algorithmes.

Une autre partie de l’étude préliminaire, pour l’utilisation des Matching Pursuits, concerne

l’approche utilisée dans cette thèse pour la décomposition du signal vidéo et des images. L’approche

proposé dans cette thèse améliore une méthode existante de Matching Pursuits utilisée dans le passé

dans un but similaire. Cette méthode était basée, pour des raisons de complexité calculatoire, sur

l’utilisation d’algorithmes génétiques. La méthode proposée dans cette thèse rend possible, d’une

manière plus rapide et efficace, la substitution de l’algorithme génétique par une recherche exhaus-

tive.

Finalement, l’utilisation des Matching Pursuits avec des modèles à priori pour la décomposition

du signal vidéo est étudiée. Des critères de régularité ont étés imposés afin de capturer l’évolution

temporelle des composantes géométriques 2D. Les résultats obtenus pour le codage de ces représen-

tations, ainsi que les résultats issus des analyses multimodales (audio/vidéo) d’une séquence, perme-

ttent d’éclaircir une grand partie des points incompris jusqu’alors sur l’utilisation des dictionnaires

redondants avec des Matching Pursuits pour les représentations géométriques adaptatives en espace

et en temps du signal vidéo.



Resum

El senyal de v́ıdeo és una seqüència d’imatges en moviment, les quals són sovint modelades com

senyals regulars per parts. Tenint en compte això, el senyal v́ıdeo pot esser considerat com un senyal

3D regular per parts, fet de regions que segueixen un moviment a través del temps. Gràcies a la

modelització del senyal de v́ıdeo com un senyal per parts, es pot analitzar amb detall el comportanent

de certes estratègies de codificació, per tal de determinar quines són les més apropiades per a

maximitzar la taxa de compressió. Per a una codificació eficient del v́ıdeo, cal utilitzar mètodes

adaptatius de descomposició del senyal. Aquesta adaptivitat cal que sigui optimitzada de manera

que la modelització del senyal s’efectüı amb el mı́nim cost de codificació possible. La natura del

senyal de v́ıdeo, fortament lligada a la seva particular estructura, té un alt contingut geomètric.

Aquest contingut geomètric contempla tant la geometria temporal (normalment representada per

l’informació de moviment) com la geometria espacial. En tot cas, la majoria dels mètodes utilitzats

per la representació del senyal de v́ıdeo no tenen en compte la seva geometria espacial. De manera

similar al cas de les imatges, una estratègia força prometedora per tenir en compte la geometria

del senyal és mitjançant l’utilització de diccionaris de funcions redundants amb un alt contingut

geomètric. Dins del contexte del v́ıdeo, aquestes serien complexes funcions base en 3D capaces de

modelar components locals del senyal amb contingut geometric espacial i temporal. O sigui, dit

d’una altra manera, aquestes funcions descriurien elements de geometria espacial del senyal de video

aix́ı com la seva evolució temporal.

Al llarg d’aquesta dissertació de doctorat es discuteixen diversos aspectes de l’utilització de

mètodes adaptatius per la modelització del senyal de v́ıdeo, donant una èmfasi especial a l’estructura

per parts del v́ıdeo i la seva natura geomètrica.

La primera part d’aquest treball estudia l’utilització de descomposicions adaptatives en temps

dins dels mètodes de codificació de v́ıdeo per subbandes. L’ús d’adaptabilitat és discutit principal-

ment per a dues estratègies de codificació per subbandes: Representations wavelet 3D i filtratge

temporal amb compensació del moviment. Els avantatges que aporta l’ús d’adaptabilitat en les

representacions wavelet 3D son demostrats mitjançant un estudi teòric R-D aix́ı com un seguit

de resultats experimentals. En aquest apartat, hom estudia també l’analogia entre el senyal de

v́ıdeo amb el moviment compensat, i els senyals 1D regulars per parts. Aquesta analogia motiva el

fet d’introduir transformades de longitud localment variable dins dels esquemes de descomposició

wavelet utilitzant lifting steps amb adaptació multi-hipotesi al moviment. Aquesta millora permet

una major compressió del senyal. Això és gràcies a una millor adaptació de la representació en aque-

lles trajectòries de moviment que tenen llargada inferior a la de la unitat mı́nima de processament

(Grup d’Imatges -Group of Pictures en anglès-), aix́ı com quan l’error degut a la compensació del

moviment és massa elevat.

Després de l’estudi d’adaptabilitat temporal, la resta de la tesi està especialment dedicada a

l’estudi i la comprensió de les bases necessàries per treure profit de l’estructura geométrica espacial i
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xvi Resum

temporal del v́ıdeo. Aquesta investigació es fa sobre la base d’un estudi anterior que tenia en compte

aquesta geometria espacial, però sense tenir en compte la seva evolució temporal (moviment).

Per tal d’obtenir representacions flexibles i eficients (esparses), amb diccionaris de funcions re-

dundants, cal utilitzar algorismes de descomposició altament no linials, com ara són els algorismes

golafres (Greedy algorithms i Matching Pursuits en anglès). L’utilització d’aquestes tècniques es-

tà encara força inexplorada. Per aquesta raó, i de manera prèvia a l’estudi de les representacions

de v́ıdeo, s’exploren certs aspectes de l’utilització d’aquests algorismes juntament amb diccionaris

coherents per l’aproximació geomètrica d’imatges.

Una part d’aquest estudi presenta una investigació sobre l’utilització de models a priori en

algorismes no linials com els Matching Pursuits. Depenent del diccionari utilitzat i del senyal a

aproximar, els Matching Pursuits poden arribar a tenir seriosos problemes per obtenir expansions

esparses del senyal. Tenint en compte això, es pot provar teòricament i experimentalment, que

l’utilització de models a priori (per exemple, amb una formulació probabiĺıstica) poden conduir a

una significativa millora del funcionament d’aquests algorismes.

Una altra part d’aquest estudi preliminar per l’utilització de Matching Pursuits tracta la tècnica

utilitzada en aquesta tesi per la representació del senyal de v́ıdeo i de les imatges. L’estratègia

proposada en aquesta tesi millora un mètode Matching Pursuit sub-òptim utilitzat previament per

d’altres investigadors. Aquest mètode es basava, per raons de complexitat de càlcul, en l’utilització

d’algorismes genètics. El present algorisme ha estat estudiat i millorat per tal de fer possible, de

manera ràpida i menys complexa computacionalment, la substitució de l’algorisme genètic per una

recerca exhaustiva.

Finalment, s’ha investigat l’utilització de Matching Pursuits combinats amb models a priori

en la descomposició del senyal de v́ıdeo. S’han imposat condicions de regularitat en l’evolució

temporal de components geomètriques 2D. Els resultats obtinguts en la codificació del senyal, aix́ı

com en l’análisis multi-modal (àudio/v́ıdeo) d’una seqüència, aclareixen moltes incògnites al respecte

d’aquestes metodologies. A més a més, els resultats es mostren prometedors i encoratgen a proseguir

la recerca en aquesta direcció.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 All is about Modeling

Freshly acquired digital signals are nothing but a bunch of samples that, depending on the nature

of the recorded data, are structured (among other) in 1D sample vectors (e.g, sound), 2D Cartesian

matrices (e.g, images) or 3D Cartesian matrices (e.g, video). These regular sets of samples are a

sketch of the real world: they are the result of an uncountable number of physical events interacting

among them. One looks toward processing the data measured from these events in order to extract

the information it contains. However, digital raw data, as it is recorded, needs further processing.

Luckily for us, physicists have left us the evidence that physical events follow certain rules

and can be, up to some degree, quite accurately modeled. Emulating our human senses, digital

signal processing applications look into real world data searching for particular signal structures and

particular events. Hence, basically, in order to efficiently process digital signals and to exploit their

particular structures, appropriate signal models, adapted to applications and the underlying physics

of the recorded events, have to be established. As depicted in Fig. 1.1 for a video processing system,

a classic scheme applicable to many applications involves first a representation or approximation

of the input signal by means of a model. This signal modeling stage has the purpose of reducing

as much as possible the dimensionality of the signal and to help for efficient representation. The

resulting simplified representation is then used as source of information by the application (e.g.

segmentation, tracking, compression, indexing, etc...).

Representation/
Approximation

Application
Dependent
ProcessingVideo Sequence

Video Expansion

Figure 1.1: Building blocks of a generic video processing scheme.

A classic approach used to model signals is the construction of models based on a superposition

1
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of basic waveforms. Formally this can be written as

f̂ =
∑

γ∈Γ

cγ · gγ , (1.1)

where f̂ is the model of the original signal f , each gγ is one of the basic waveforms, cγ are non-zero

scalars that determine how relevant is waveform gγ within the model and finally, Γ indicates which

are the basic waveforms involved in the model (i.e, normally one has a pool of waveforms, sometimes

called a basis, and one selects only a few of the available waveforms to construct the model).

This thesis considers, in first instance, signal modeling for the purpose of video compression.

Thinking about compression, one can have the reflex of establishing a relation between compression

capabilities and the use of low redundancy basis (or, in the limit, orthonormal ones) in order to

construct the pool of available waveforms for Eq. (1.1). This has been typically done in order to

limit the maximum number of coefficients to code when linear transforms are used (e.g, critically

sampled wavelet transforms). However, this is far from being accurate. In a coding application,

what counts is the number of bits required to code the signal model. This involves coding the

set of used functions Im and their corresponding coefficients. In fact, even if the pool of possible

waveforms to use for signal modeling has an enormous size (with a number of functions much higher

than the original number of signal samples) very efficient signal models, capable to well balance

between approximation accuracy and coding cost, can be achieved.

1.1.2 Modeling Video and Signal Structure

Good video modeling requires, with no doubt, the use of building functions well adapted to video

nature. Scientist realized very early that non-linear models were required for efficient video approx-

imation. Consequently, they introduced the estimation of motion within their coding strategies. In-

deed, since video signals are sequences of moving images, very particular phenomena and structures

appear in the signal (see Fig. 1.2). In video temporal dimension, long anisotropies and elongated

structures appear as the result of moving image regions. A classical model used to predictively ex-

Figure 1.2: Video motion is the temporal geometric transformations of 2D images, i.e, from a 3D

point of view, motion is the temporal geometric component of video signals like edge orientation is

for 2D images.

tract motion information from video signals (i.e, in order to tune the shape of the basic waveforms

in Eq. (1.1)) is block based motion compensation (see next chapter for further detail).

However, this video modeling approach often lacks of accuracy. Indeed, motion is not necessarily
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uniform on square patches. Moreover, the arbitrary division of video frames in blocks of a determined

size rarely respects the 2D structure of the signal.

Another approach is the one based on the use of temporal wavelet transforms. Temporal func-

tions are oriented along motion trajectories (see Chapter 2). Indeed, video signals are modeled as a

summation of multi-scale wavelet basis functions that capture smooth oriented features along motion

trajectories. Accurate modeling requires motion adapted temporal wavelet functions to accurately

follow motion and to handle appropriately the arbitrary length of object trajectories. However, this

is not yet enough to model video signals appropriately.

Video modeling for coding purposes does not reduce to retrieve the best model to achieve com-

pression. Indeed, modern video coding applications require to implement supplementary flexibility

features in addition to compression efficiency. Present transmission requirements for network com-

munications and the diversity of receivers having many different processing capabilities, impose to

video coding schemes the need for features like:

• Progressive efficient transmission of the information, also known by scalability, permitting a

receiver to decode partially video bit-streams such that, depending on the requirements, a

downscaled version of the signal (in time or space) or a lower quality version of this may be

decoded (see [135]),

• robust video streams allowing to privilege protection of critical data of the video model such

that, when sent over a lossy network, the quality loss at reception due to stream corruption is

minimized (see [111]),

• efficient representation for data mining such that, in addition to compression, one can also

index data in a smart way, etc...

These additional characteristics, necessary for modern video coding schemes, require a well defined

structuring of video data. For this purpose, models used for signal modeling must implement such

a structure. Hence, going back to Eq. (1.1), the selection of basic waveforms as well as the pool of

waveforms must be designed such that the signal structure is taken into account.

A clear example of this is the bad behavior of predictive video coding strategies in order to

achieve efficient scalable video representations. For this purpose, structured multi-scale video repre-

sentations have had to be adopted such as spatio-temporal wavelet decompositions (see Chapter 2),

or approaches based in spatial Laplacian Pyramid decompositions [74].

Good spatio-temporal video modeling is also of key importance for general purpose video anal-

ysis. Accurate modeling of video structures is of great relevance to extract good video features that

carry information about the visual scene. Apart from coding, computer vision applications may

profit from this accurate modeling. These are, for example, spatio-temporal video segmentation,

region retrieval, audio-visual multi-modal analysis, object extraction, etc...

Exploiting the temporal and spatial structure in video signals is very important. Most of present

techniques exploit accurately the temporal geometry by using models capable to represent motion.

Multi-scale spatial structure can be also exploited by means of wavelet like representations. However,

what about spatial geometry? Apart from the multi-scale structure of images, and video frames,

edges surrounding regions have a high geometric content, which is normally not exploited by models.

Spatial geometry in images and video requires a special attention. Most of spatial information can

be found under the form of geometry. Hence, signal modeling strategies capable to exploit this need

to be studied.
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1.1.3 Spatial Geometry in Images and Video

During the last years, a great effort has been devoted by the scientific community to understand

how 2D geometric data contained in images may be efficiently modeled. Indeed, even though dyadic

discrete wavelet basis have very nice properties to represent piecewise-smooth signals [121] (like

images), they lack of the capacity to represent efficiently singularities of one or higher dimensions

(e.g, edges).

Classic dyadic separable wavelets, widely used in image and video compression, are unable to see

the regularity along edges in 2D (and higher dimensions) signals. As described by many authors,

wavelets are only able to see 1D singularities, i.e. delta singularities. Hence, to describe an edge,

a high number of 2D wavelet basis is required. Fig. 1.3 illustrates very clearly this effect. In the

left side of the figure, an edge is approximated using a set of separable wavelet basis functions. The

spatial support of each one of the functions activated by the edge are represented, in the figure, by

the different squares. One can see that the required number of wavelets increases very rapidly with

the approximation refinement. In the contrary, the edge is much more efficiently modeled by a set

of elongated basis functions where geometry is taken into account (see again Fig. 1.3, right).

Wavelet X-let

Figure 1.3: Non-geometric vs. geometric representation of a 2D edge: a clear difference of behavior

can be appreciated between classic isotropic dyadic wavelets and a geometry oriented dictionary (x-

let) [52].

Many approaches have been proposed in order to supply the necessary flexibility for geometry

based signal models. During the last years, an uncountable number of bases (or frames [121]) and

other non-linear approaches have been proposed to supply such adapted representations. These are

well known and can be easily recognized by their “lets” ended name: curvelets [27], contourlets [52],

ridgelets [26], wedgelets [53], bandelets [118], etc... Apart from these strategies, some investigations

have been carried on the use of redundant, highly dense, geometric dictionaries together with highly

non-linear decomposition algorithms like Matching Pursuits [50, 61, 66, 78, 141, 178]. Highly non-

linear decomposition algorithms may achieve much sparser signal representations over redundant

dictionaries than those achieved by frame based strategies. Indeed, frame based signal decomposition

strategies are not sparsity preserving [28].

Finally, just to notice that apart from the mathematical proofs that justify the use of geometry

based approaches to represent images and video signals, it seems that the human visual system

would use similar analysis strategies. Investigations carried by neuroscientists seem to indicate that

the brain cortex incorporates geometric based visual information modeling strategies. Physiological

studies have shown that the receptive fields in the visual cortex have a localized, oriented and band-

pass response. Moreover, research carried to identify sparse components in images [136] and video

signals [137] has demonstrated the astonishing resemblance between the retrieved sparse components
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and the response of the cortex receptive fields. These studies also suggest that brain analyzes im-

ages and video signals based on approaches that resemble more to highly non-linear decomposition

algorithms than to frame based ones [137].

1.2 Contribution of the Thesis

This thesis mainly targets the study of adaptive video approximations for efficient video modeling

with application to compression and other applications.

We first tackle the problematic, from a theoretical and practical point of view, of optimal tem-

poral decompositions of video in the framework of subband video coding. The MCTF extension of

H.263++ [75] is taken as basic platform to test the approach suggested by theoretical investigations.

Results and conclusions are general and mainly reflect properties of wavelet approximations theory.

Hence, they are valid to be ported into other video standards and wavelet based coding strategies.

Second, sparse fully geometry adapted video approximations, for coding purposes and other ap-

plications, are investigated in detail. For this purpose, apart from a practical study on an particular

video decomposition scheme, the theoretical basics concerning the signal decomposition algorithms

and strategies, for any signal decomposition using redundant dictionaries, are analyzed as well. To

this aim, this work proposes:

• a model based Rate-Distortion (R-D) theoretical analysis of different wavelet decomposition

strategies for motion compensation free subband video coding. This analysis gives a better

understanding of coding performances of non-linear video approximations with 3D separable

wavelet bases. A locally adaptive temporal decomposition strategy is suggested in order to

improve the R-D performance of coding applications,

• a piecewise-smooth model concerning the temporal behavior of motion compensated video

data. According to this, and the theoretical background on R-D performance of wavelet based

and oracle based coding schemes, an intra-adaptive scheme of the MCTF extension of H.263++

is proposed. This allows for a more flexible modeling of video signals such that a better R-D

performance is achieved.

• a detailed theoretical analysis on the influence of using accessory a priori models in highly

non-linear signal expansion algorithms together with coherent dictionaries. Practical examples

validate the findings and show the relation between sparse solutions, signal structures and the

role of the dictionary in the representation of signal features,

• a feasible efficient full search matching pursuit strategy for image decompositions using 2D

geometric dictionaries. The proposed algorithm, substitutes previous sub-optimal strategies

based on genetic algorithms, improving approximation results and reducing computational

complexity,

• an a priori based predictive greedy strategy to extract 3D primitives from video signals,

• a spatio-temporal geometric video representation scheme based on the aforementioned 3D

primitives. The obtained representation, when used for signal scalable compression, shows to

be, in average, more efficient than some state of the art techniques. The same representation

approach shows to be interesting, as well, as a source of video features for multi-modal data

fusion [68],

• a global analysis on the algorithmic requirements for sparse video approximations on using

geometric redundant dictionaries.
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Valuable aspects on the use of highly non-linear algorithms like, for example, Matching Pursuits,

are underlined in this thesis. On one hand, efficient sparse approximations of natural signals require

highly coherent dictionaries. On the other hand, Matching Pursuits do not behave properly with such

coherent dictionaries. The proposed Bayesian paradigm, for highly non-linear signal approximation

algorithms, tries to fill this gap by making decomposition algorithms to be signal adaptive. These

results are then applied to extract 3D geometric structures from video signals. The results obtained

with the investigated geometric video representation strategy clarify many unknowns and show to

be promising, encouraging to prosecute research on the subject.

1.3 Outline of the Thesis

The thesis is organized as follows. In the next two chapters, we focus on the usage of adaptive

representations on present state of the art video coding techniques.

Chapter 2 situates the problematic of video approximation by presenting an overview of most

common strategies used for video coding. In this chapter, video approximations for video coding are

presented as a modeling problem. We review modeling approaches from linear transform techniques

up to the most sophisticated non-linear, motion based, video representation strategies. This is

performed by describing, at the same time, the video compression paradigms appeared during the

last years as well as their features and purposes.

Chapter 3 studies the use of locally adaptive temporal transforms within the framework of

subband video coding. Two main wavelet decomposition schemes video representations are consid-

ered in this investigation. We take into account the cases of motion compensated free 3D wavelet

decompositions as well as Motion Compensated Temporal Filtering (MCTF). Considering video as a

piecewise-smooth video signal, a R-D study is presented to justify the necessity to include adaptive

temporal transforms in both approaches. Assumptions and the theoretical modeling of the problem

are, then, validated by a detailed experimental study based on the MCTF scheme proposed by

Flierl [75]. For this purpose, we further develop this scheme in order to include the needed temporal

transform flexibility.

As most video modeling techniques do not take into account an essential particularity of video

signal structure, i.e., video signal has a high spatial geometric content. For this reason, efficient

models for video signal approximation should use basic building pieces capable of exploiting such a

characteristic. The remaining of this thesis presents a series of studies that expose, little by little,

necessary tools for video approximations using redundant geometric dictionaries. After these studies,

a particular approach toward sparse and geometry adapted video approximations is presented and

investigated.

In Chapter 4, a general overview of common concepts in sparse signal representations and

approximations is presented. This exposes the general background to understand the problematic of

sparse approximations when redundant libraries of functions are used. We examine, as well, some of

the most relevant non-linear algorithms used to supply feasible solutions to sparse problems. Some

hints are given about the capacity of some of such algorithms to supply optimal solutions to the

sparse problem.

Matching Pursuit (MP) appears as one of the few non-linear algorithms for sparse approximations

able to handle very big dictionaries of functions. However, very coherent dictionaries pose problems

to MP algorithms (as well as other approaches) to find efficient sparse representations of signals. We

propose in Chapter 5 a Bayesian variation of Matching Pursuits as well as Basis Pursuits. From

this point of view, this chapter shows theoretically and empirically that a priori based adaptive non-

linear decomposition algorithms can do significantly better than classic ones. Indeed, signal adaptive
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non-linear algorithms show to be a key element in sparse signal representations and approximations

with highly redundant dictionaries.

Chapter 6 studies a particular case of geometric image approximations using a redundant

dictionary and Matching Pursuits. Given the size of the dictionary, previous attempts [65, 78]

of using this approach were obliged to use a suboptimal formulation of the MP algorithm. In

this chapter, a feasible optimal MP solution is proposed. The proposed approach is analyzed and

evaluated with regard to achieved improvements and complexity costs.

Based on the background of the three previous chapters, Chapter 7 studies the approximation

of video signals by the superposition of 3D spatio-temporal geometric features. These 3D spatio-

temporal functions are intended to capture, at the same time, spatial geometry as well as temporal

motion. In order to extract the temporal evolution of 2D geometry components (i.e. 2D geometry

components obtained with the approach proposed in chapter 6), an a priori model is used to help

MP in this task. Results are evaluated in a coding framework as well as by using the investigated

video representation as a source of video features for multi-modal audio-visual analysis of sequences.

The results obtained clarify many unknowns and show to be promising, encouraging to prosecute

research on the subject.

Finally, Chapter 8 concludes with a summary and an outlook of future research.



8 Chapter 1. Introduction



Chapter 2

Video Representations: A Coding

Perspective

2.1 Introduction

There is no doubt that video is a very complex and particular kind of multi-dimensional signal.

Through the years, research has put into evidence the strong need of fine analysis of video signals

for efficient coding and compression. Video is composed of components with a extremely relevant

structure. Indeed, the physical nature of video signal implies that most of its features and char-

acteristics may be modeled as following a given set of laws and behaviors. Efficient compression

requires to exploit the redundancy underlaying all that can be specified in terms of a model. One

looks for the appropriate modeling of video signals, such that the number of degrees of freedom

in the selected representation is significantly reduced with respect to raw video data. Usually, the

fewer the parameters needed to model a video approximation, the lesser the information required

to code the retrieved parameters.

Fig. 2.1 depicts the main building blocks in a typical coding scheme (applicable, actually, to any

kind of signal). A first stage performs the signal modeling such that dimensionality can be reduced,

i.e. at this stage structural signal redundancy is exploited. Many modeling strategies may be used,

these can be classified as linear or non-linear:

• Linear approaches have usually low complexity computational requirements. However, their

modeling capacity is very limited.

• Non-linear approaches are often much more powerful for efficient signal modeling but with

significantly higher computational cost. These are able to mix different signal description

modalities and combine low and high level features description.

For coding purposes, parameters configuring a certain signal model (e.g. coefficients of a linear

transform, motion vectors, etc...) can not take any value. That is, their precision must be limited. To

achieve that, parameters must be quantized by some means; using the so called scalar quantization or

the more sophisticated vector quantization [92, 93]. Finally, entropic coding of quantized parameters

takes care of the remaining statistical redundancy contained in the quantized signal representation.

9
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Representation/
Approximation

Entropy
CodingVideo Sequence

Video Expansion
Quantization

Video bit stream

Figure 2.1: Building blocks of a generic compression scheme.

The reader may observe, in Fig. 2.1, some feed-back arrows from the final coding stage toward

the quantization and transformation stages. This implies that, mainly for non-linear approaches,

signal representations and quantization may be adapted to achieve an optimal rate vs. distortion

performance.

Pure signal compression is not the only required feature in modern video coding systems. Indeed,

new transmission requirements of the widely used Internet, additional reliability constraints of access

networks with packet losses (e.g. Wireless Networks) and the tendency to use, the more and more,

networks of sensors to make distributed acquisition of data (sound, video, environmental data, etc...),

arise new flexibility and functional necessities to be included in new coding strategies.

With regard to video coding, these can be classified mainly as:

• Video Scalability [135];

• Distributed Video Coding [86];

• Multiple Description Coding [184];

• Robust Video Delivery [111].

Each one of these very emerging research topics is a vast field in itself. Since scalability is the feature

that has motivated the main transformation of present coding strategies, this is shortly described in

the following. For further details, and for a description of the remaining itemized coding paradigms,

the reader is referred to check the suggested references.

Video coding scalability involves the capacity to provide interoperability between different ser-

vices and to flexibly support receivers with different display, computation and/or reception band-

width capabilities. Receivers either not capable or not willing to reconstruct the full resolution of a

coded signal, can receive and decode subsets of the layered bit stream to display video at a different

spatial or temporal resolution from the original or at a lower quality. Hence, main kinds of scalability

are:

• PSNR scalability: Signal reconstruction from a truncated version of the bit-stream such that

a lower quality in the reconstructed signal is achieved with respect to the original.

• Temporal scalability: Signal reconstruction from a truncated version of the bit-stream such

that the displayed frame rate is reduced.

• Spatial scalability: Signal reconstruction from a truncated version of the bit-stream such that

the displayed spatial resolution is reduced.

To efficiently achieve such coding properties together with compression efficiency, video signal struc-

ture requires to be exploited for a maximum flexibility.

This chapter is structured as follows: First, in Sec. 2.2, common strategies of video representa-

tion for video coding are reviewed. The strategies described are: predictive video representations,
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transform based representations and video expansions on redundant dictionaries. Sec. 2.3 discusses

different strategies to exploit temporal geometry (i.e. motion) in video signals. Next, integration

of motion description in predictive video coding schemes and transform-based coding schemes is

described in Sections 2.4 and 2.5. Finally, conclusions are drawn in Sec. 2.6.

2.2 Video Representations

2.2.1 Predictive Video Representations

Predictive video representation is the first strategy ever used to exploit the temporal redundancy and

structure of video signals. It is as early as 1929 that one may find intellectual property documents

that describe methods to transmit only changing regions in video coding applications [112].

Predictive video representations intend to exploit temporal video structure by modeling future

frames in terms of previous temporal frames. Often, 2D video redundancy is also exploited by means

of the addition of a 2D signal transformation within the loop of the predictive signal representation.

Fig. 2.2 shows the structure of a closed-loop prediction scheme. Assuming an initial zero state at

time 0, all frames following the first one can be put in terms of the previous ones. This is performed

by the predictor, which is in charge of modeling, using a limited set of parameters, the future frame of

the sequence. Predictor parameters may be tuned in order to reduce the prediction error variance,

i.e. the mean square error of the predictor. The video representation is, thus, composed by the

prediction parameters and the residual error. For coding purposes, quantization and dequantization

are inserted after the 2D transformation and before the inverse 2D transformation respectively (see

Sec. 2.4).

2D Transform

2D Transform

memoryPredictor

Parameters

Residual

Video RepresentationVideo Sequence

−1

Figure 2.2: Block Diagram of a Predictive Video Representation Scheme.

Given the closed-loop structure, and the consequent infinite feed-back of the residual error,

an N -th order linear predictor is considered to perform better than a length N Karhunen-Loeve

Transform [108] if the predicted signal is a stationarity stochastic process. However, the widely used

assumption of stationary, for images and video, is not accurate and is far from being able to exploit

the real piecewise structure of signals. This is the reason why highly non-linear predictors have been

introduced for video coding (see Sec. 2.4). In ulterior chapters, non-stationarity in video signals

is addressed in more detail in the context of motion compensated temporal filtering (MCTF) and

geometric video representations.
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2.2.2 Transform Based Representations

Like for any other signal, a strategy for video modeling is transform based representations. In

the video milieu, transform representations have often been associated, in the past, to 2D or 3D

versions of the DCT block transform [162]. These methods assume the signal to be stationary into

each partition block. They do not exploit the structure of the signal unless an adaptive tree-based

partition of the signal is used.

Transform based representations concern any modeling of the kind:

f = Ab, (2.1)

where, without loss of generality, f is a 1D signal, A is a matrix where each column is a basis vector

and b is a coefficients vector. Even if, in here, f is a 1D vector, this can be associated to a raster

scanned array of samples from a video Group of Pictures (GOP).

Typically, A is a m×m matrix with all columns linearly independent. This defines a determined

system with equal number of equations and variables. Hence,

b = A−1f,

which for orthonormal bases is such that A−1 = AT .

A part from DCT, the linear transform formulation of Eq. (2.1) is also the case of 3D wavelet

based video representations [37, 110, 113, 146]. Discrete wavelet transform (DWT) has appeared to

be a valuable tool for efficient representation of non-stationary signals. Moreover, the multi-scale

structure of common dyadic wavelet representations has shown some ability in adapting to human

visual characteristics [121]. The local character of wavelet basis functions is of key importance

for efficient representation of sudden signal discontinuities like edges. Locality together with the

tree-based parent-child structuring of wavelet basis is what allows, in non-linear approximations, a

better representation of non-stationary signals compared to block DCT or KLT [60, 121]. Another

of the wavelet virtues is their capacity to approximate well polynomial signals, depending on the

number of vanishing moments of the wavelet basis in use. From a filter point of view, the number of

vanishing moments of a wavelet basis is equal to the number of zeros at frequency π of the filter used

to generate the wavelet coefficients in an iterative, two channel, filter bank [121, 181]. As seen later

in Chapter 3, images and videos are well approximated by piecewise-polynomial models. Hence, 3D

wavelets representations may be used to exploit that (with limitations).

Fig. 2.3 depicts the generation of a typical 3D wavelet transform for video representations. A

Haar wavelet transform is used to decompose the temporal dimension of a GOP of 8 frames. At each

temporal decomposition level, high frequency temporal bands (H, LH, LLH) and the lowest temporal

band (LLL) are further decomposed with a 2D wavelet spatial decomposition. The separable 3D

wavelet decomposition applied to the video GOP ends up with the well known subband scheme of

Fig. 2.4.

The schematic description of a 3D wavelet decomposition depicted above clearly states the easi-

ness of extending 2D wavelet decompositions to 3D domain. This is achieved thanks to the possibility

to generate 3D wavelet kernels by the tensorial product of 1D kernels. From a computational point

of view, this is a great advantage.

Video is composed by smooth regions that move smoothly trough time and that are surrounded by

local singularities like edges. Hence, 3D wavelets can obtain a good representations with additional

interesting properties like their multi-scale structure. Wavelet representations have, however, their

limitations. Besides their advantages, they present a set of drawbacks that limit the performance of

applications where they are used. This can be enumerated as follows:
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Figure 2.3: 3D Wavelet Video decomposition. In the scheme, the 2D isotropic spacial DWT follows

a temporal Haar based decomposition. Due to the linearity of the operations their order can be

instinctively swapped [135].

• Independently of the dimensionality, wavelet decompositions do not exploit the correlation

among coefficients of different scale subbands issued from the same signal singularity (e.g. and

edge).

• In 2D and above, separable wavelets are not capable to exploit smooth structures like image

edges and motion trajectories in video sequences. Indeed, separable wavelet based representa-

tions are unable to capture signals geometry. During the last years, however, intensive works

have been carried out in order to include motion information in 3D wavelet video representa-

tions, as exposed later in this chapter.

3D Wavelet Subband Video coding

Popular examples of 3D wavelet coding schemes are 3D-SPIHT [29], ESCOT [189] (which is the 3D

version of EBCOT, used to compress images with the JPEG2000 standard [8]) or the 3D extension

of GTW [103] which intents to be a generalization of EBCOT. This schemes exploit the 2D+t

wavelet representation (the reader may see the subband decomposition scheme in Fig. 2.4) to exploit

temporal redundancy of static areas in a video sequence.

Most popular schemes are 3D-SPIHT and ESCOT. These are based on the efficient coding

of positions and amplitude of wavelet quantized coefficients. Both supply embedded, bit-plane

coding based, bit-streams capable to supply spatial and SNR scalabilities. However, their working

principle is significantly different. SPIHT exploits the parent-child relationship among coefficients

of different subbands with the same spatial location. This scheme supplies an efficient way of coding

significant coefficients position, as well as trees of zero coefficients. The ESCOT approach supplies

a quite different coding strategy. It does not exploit multi-scale parent-child relationships. To the

contrary, ESCOT supplies a powerful context adaptive arithmetic coding that exploits a large range

of coefficients neighborhood models.

Although such approaches do not exhibit very high performances in video coding due to the lack

of motion compensation, they are attractive for some applications due to their scalability capabilities,

and their low computational complexity needs.
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Spatial Subbands

Temporal Subbands

Figure 2.4: Subband scheme of the 3D Wavelet (2D+1D) transform often used in wavelet video

coding.

2.2.3 Use of Redundant Dictionaries

The need to exploit geometry in image and video signals has encouraged the exploration of alternative

transform schemes. One can establish a similar formulation to Eq. (2.1) but with A not being, this

time, a square matrix anymore. In order to introduce enough basis functions capable to model

the large variety of geometric characteristics of image and video features, redundant basis need to

be considered. A turns out to be an m × n matrix such that m < n, and where each column

corresponds to a basis function of the overcomplete dictionary in use. This formulation establishes

an under-determined equations system with more than one possible solution. Good solutions are

those considered to minimize the number of non-zero coefficients. Hence, a sparsity criteria is often

used to retrieve an appropriate signal representation. Exact signal representations (i.e. Eq. (2.1)) do

not always satisfy the requirements of certain applications based on natural signals modeling (e.g.

denoising or compression). To the contrary, signals approximation is more appropriate for denoising

or compression applications.

In this scope, the scientific community has been investigating the use of very overcomplete

dictionaries of basis functions with high geometric meaning. While in the image field, numerous

research studies have been carried out to exploit spatial geometry (the reader may find a small

sample of these in [27, 51, 66, 118, 141, 182]), in the video field this remains quite unexplored.

An approach to video geometric representations is the one proposed by Frossard in [78]. In his

work, video GOPs are approximated by the superposition of a small set of 3D functions belonging to

a vast overcomplete dictionary. In that case, dictionary basis functions were able to model efficiently

signal components with edge-like characteristics. Indeed, dictionary functions had an elongated form

in the spatial domain, able to adapt to edge lengths and angular orientations. However, temporal

geometry (i.e. motion) was not exploited in his approach. The temporal dimension of 3D functions

was formed of a length adaptive Gaussian shape. This was intended to exploit temporal redundancy

of static, non-moving regions.

Fig. 2.5 depicts the scheme proposed for video signal decomposition. Each GOP is decomposed

as the summation of a set of 3D dictionary functions. This decomposition is carried out iteratively by

a Matching Pursuit (MP) algorithm [122] (see Chapter 4 for some details on this algorithm). Video

representations are composed by the index parameters that determine the 3D selected functions by

MP and the respective projection coefficients.
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Figure 2.5: 3D Matching Pursuit video Representation [78].

3D Matching Pursuit Video Coding

Matching pursuit decompositions translate video signals into a set of parameters and coefficients,

which are in charge to represent in a more or less accurate way each one of the GOPs of a sequence.

3D Matching Pursuit video coding relays on coding the description supplied by parameters (which

in [78] determine positions, scaling and rotation of basis functions) and coefficients. For this pur-

pose, efficient quantization of parameters and coefficients is required. Basis functions parameters

quantization is, normally, already performed during the definition of the over-complete dictionary.

A posteriori quantization of parameters, once selected by MP, tends to introduce very important

and undesired geometric distortions (see [78]). Coefficients quantization may be performed in the

MP decomposition loop (i.e. re-injecting the quantization error to the residual signal under approxi-

mation) or a posteriori. Studies have demonstrated that in-loop quantization reduces the distortion

introduced in the final compressed representation [44]. However, efficient out-of-loop (or a posteri-

ori) quantizations may be of help for flexible and progressive, fine grain, scalable coding [66, 80].

3D Patterns Library

Pattern Matcher

Genetic Algorithm
Frame Buffer -

Video Signal

GOP

Pattern Parameters 

x

Coefficients

Pattern Coder

Pattern Decoder

Transmission      Channel

x

Pattern Parameters 

Coded Signal

Coefficients

Pattern ConstructorGOP Constructor +Frame  Buffer

Reconstructed
Video Signal

Figure 2.6: Building blocks of a Matching Pursuit video compression scheme [78].

Fig. 2.6 depicts a complete coding/decoding system based on 3D MP video decompositions. The

used dictionary is available at coding and decoding sides. The parametric description, jointly with

the quantized coefficients, of every GOP is entropy coded and send progressively (according to the

MP decomposition order) to the receiver. At the receiver, the compressed bit-stream is progressively
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decoded and the GOP is progressively reconstructed using the primitives selected by MP at the coder

side. The reader will notice that coding complexity is much higher than decoding complexity. This

is a clear example of an asymmetric coding/decoding scheme. Very simple terminals may be able

to decode with no effort the coded video stream [78].

2.3 Exploiting Video Temporal Geometry: Modeling Motion

The temporal dimension of video signals is subject, excluding occlusions or appearing effects, to the

relative motion of scene objects with respect to the camera. This motion can normally be repre-

sented using models with a limited number of parameters, leading in this way to exploit temporal

redundancy.

Scene objects have in the real world three dimensions. Video cameras just capture the 2D

projection of objects. This projection affects in the same way the 3D motion suffered by objects.

See, for example, the well known rigid 3D rotation model [183]:
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where (X,Y, Z) are the initial coordinates of the object, (X ′, Y ′, Z ′) are the newly mapped positions,

(Dx, Dy, Dz) are the 3D translation and

R =







cos θy cos θz sin θx sin θy cos θz − cosθx sin θz cos θx sin θy cos θz + sin θx sin θz

cos θy sin θz sin θx sin θy sin θz + cos θx cos θz cos θx sin θy sin θz − sin θx cos θz

− sin θy sin θx cos θy cos θx cos θy






,

where (θx, θy, θz) represent the rotation angles with respect to the 3D axes. The motion produced

by this 3D model projected on a camera can be fully represented by the 8-parameter projective

mapping [124] if one of the following two conditions is satisfied: i) there is no translational motion

in the camera-object axis ii) the imaged object has a planar surface (aX + bY + cZ = 1, a, b, c

constants). The 2D projective mapping motion is fully described by :

x′ =
a0 + a1x + a2y

1 + c1x + c2y
, y′ =

b0 + b1x + b2y

1 + c1x + c2y
, (2.3)

with motion field
[

dx

dy

]

=

[

x′

y′

]

−
[

x

y

]

, (2.4)

which dependents on the 5 3D motion parameters and the three plane parameters of the object

surface.

Normally, objects are not planar surfaces, but may be approximated locally by planar surfaces.

Hence independent projective mapping models (which are mappings between two arbitrary quadri-

laterals) may accurately represent, with constant parameter values, sufficiently small parts of the

2D projected motion.

Sufficiently small areas of 2D projected motion can also be represented by simpler motion models

than projective mapping. The interest of using simpler models lays on the purpose of using fewer

parameters and/or to use models that have not a fractional form (unlike in Eq. (2.3)). Let us review

rapidly some of these models in the following point.
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2.3.1 Motion Models

Affine Motion

Orthographic projection of motion of a planar surface gives the so called affine motion model. This

is a simpler model than projective mapping discussed previously in this section. The affine model

is build up from a set of simpler transformations. These are, translation (2 parameters), rotation

(1 parameter), shearing (1 parameter) and anisotropic scaling (2 parameters) [109]. Combinations

of subsets of these can be considered also to build simpler motion models which are nothing but

particular cases of the affine one. The affine model can be described by the following mapping

equation:
[

dx

dy

]

=

[

a0 + a1x + a2y

b0 + b1x + b2y

]

=

[

a1 a2

b1 b2

][

x

y

]

+

[

a0

b0

]

, (2.5)

where (a0, b0) represent translation and the remaining of the parameters take care, in a joint way,

to describe the rest of transformations. The affine motion can be visualized, in practice as the

deformation of a triangle into another, by moving the corners of the triangle [183]. Therefore, an

affine motion can also be parametrized by the MVs of the three corners of a triangle.

Bilinear and Polynomial Motion

More accurate approximations of projective mapping exist based on polynomial mapping formula-

tions. An example of this is the Bilinear motion model. This can be visualized as the warping of a

quadrilateral into a curvilinear quadrilateral [98, 183].

[

dx

dy

]

=

[

a0 + a1x + a2y + a3xy

b0 + b1x + b2y + b3xy

]

. (2.6)

To achieve better approximations of motion mapping between two arbitrary quadrangles (i.e.

projective mapping), higher order polynomials are needed:

[

dx

dy

]

=
∑

0 ≤ i, j ≤ N

i + j ≤ M

[

ai,j

bi,j

]

xiyi, (2.7)

where N and M are arbitrary natural numbers that determine the degree of the used polynomial.

However, if too many parameters are required to tune a polynomial model, even if projective mapping

has a fractional form, it may be worth using directly the latter.

2.3.2 Motion Estimation Techniques

In order to determine motion mappings between two arbitrary frames, a large range of motion

estimation techniques exists. All these techniques try to relate regions with similar characteristics

between video frames. Ideally, one looks forward to finding the correspondences among moving

regions between two frames.

This problem can be addressed in several ways. Depending on the application, one will be more

appropriate than others. The different flavors of motion estimation techniques can be classified

depending on the paradigm they use to model and obtain motion information. Two main approaches

can be found in motion estimation.
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• Global Motion Estimation: One may assume that the set of motions between two frames from

a sequence can be characterized by a single parametric model like those reviewed in Sec. 2.3.1.

In the real world, this is typically suitable when scene motion is basically due to camera

movements.

• Local Motion estimation: When the underlying motion cannot be characterized by a simple

model, then local motion estimation is required in order to identify the motion model that

applies to each image location.

In real world scenes, local motion estimation is of key importance in order to well capture temporal

video geometry.

Optical Flow

A large family of intensity-based approaches is the one relaying on the so-called Optical Flow

paradigm. In this techniques, intensity changes in time are assumed to be associated to motion.

Hence, temporal variations of spatial image gradients are used to compute local velocity. Optical

flow techniques can supply pixel-wise motion estimations which are not subject to any limiting mo-

tion model. However, their measurement is often biased and subject to ambiguities caused by the

well known aperture problem [183]. In [15], one can find a large review of most common optical flow

techniques, together with a comparative evaluation of their reliability and performance.

Region Based Techniques

Most used techniques, mainly within the framework of video coding, are those intensity-based ap-

proaches that assign to selected spatial areas one of the 2D motion models discussed above. Often,

this is done by dividing a frame in a regular set of partitions (e.g. in small image blocks) and by

assigning to each partition a motion model and a set of parameters that determine to which region,

of a reference frame, the current frame partition corresponds.

The simplest example of such an approach is the well known Block Matching (BM) algorithm.

As depicted in Fig. 2.7, the so-called Anchor Frame is divided in blocks and a translational motion

model is assumed. Then, for each one of the blocks, a motion vector is assigned by searching in

a selected Reference Frame the block that best matches with each one of the frame partitions.

Depending whether the reference frame for a particular block is in the past or in the future with

respect to the anchor frame, motion estimation will be referred respectively as backward motion

estimation or forward motion estimation.

Apart from the purely translational motion based BM algorithm, a whole family of Block-based

algorithms can be derived by using more complex motion models. Indeed, in addition to translations,

all sorts of deformations may be considered leading to a generalized block matching algorithm [161].

Depending on the application, independent optimization of each one of the partitions may be

not suitable. This is because continuity in the motion mapping between anchor and reference frame

is not guaranteed. Indeed, with no additional constraint, a best match strategy can confer very

different motions to two neighboring blocks. Depending on the scene, this may be according to

physical reality or, to the contrary, far from this. For some applications, the mismatch with physical

reality may be a problem. In order to solve this, some regularity between neighboring frame regions

needs to be imposed. For this purpose, two main approaches can be observed:

• A first approach is to constraint the commonly used least squares matching criteria to some

regularity measure between motion parameters of neighboring blocks. This can be done, for
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Figure 2.7: Frame at time t + 1 is predicted by means of translated frame t pieces.

example, by means of a Bayesian formulation of the problem. One may model motion param-

eters as vectors of variables belonging to a Markov Random Field (MRF). Such formulation

often appears when solving joint motion estimation and segmentation problems [81, 149]. Reg-

ularization constraints are also often used in optical flow estimations to solve, among others,

the aperture problem [104].

• A second approach is the one known as mesh-based motion estimation. This imposes that

partition boundaries shared between neighboring regions (or blocks), in an anchor frame,

must remain to be shared boundaries in the reference frame as well. This may be seen from

a node point of view: motion, in mesh based approaches, is represented by tracking the

position of mesh nodes from the anchor frame to the reference one, keeping, at the same time,

all nodes connectivity and taking care that no link between nodes crosses over another link.

Typical frame partitions are based on triangular or squared elements (depending on the desired

motion model: affine or bilinear). The imposed regularity poses problems in handling motion

discontinuities in natural video sequences although it solves the problem of blocking effects of

simple BM approaches [10, 125].

A part from intensity-based matching criteria, other measures may be considered in order to be

independent of the luminance changes of the scene. These are, for example, covariance minimization

or phase correlation techniques [69, 117].

A major concern of the techniques presented in here is that they are used to determine motion

on discrete data. This implies that a limitation in spatial resolution exists. Matching methods have,

by nature, a maximum accuracy of ±1 pixel. To solve that, Fractional-sample-accurate motion

compensation was introduced [21, 84, 85] by means of interpolation methods. Typically, bilinear

filters are used to interpolate in order to achieve higher precisions of up to the 8th of a sample [186].

Another classic enhancement of nowadays motion estimation techniques is the local subdivision

of regions or blocks into smaller ones in order to allow higher precision in the representation of local

motion. When the motion model in use is too simple (e.g. translational motion), lower estimation

errors can be achieved if motion models are assigned depending on a variable block size criteria.

Hierarchical divisions of blocks in BM or triangles in meshes is a technique that is used quite often

[83, 169].

Many aspects can be refined and, indeed, as can be found in literature, have been refined in order

to achieve efficient motion representation in order to maximize performance in applications [170].
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However, the reader may notice that most current motion estimation techniques are mainly focused

on the recovery of motion fields in a pixel based representation of video signals. Indeed, motion

based video representations rarely profit or take into account the spatial or spatio-temporal structure

of video signals. Motion representation approaches decompose video frames in arbitrary partitions

that do not respect signal structure. Efficient video representations should not uncouple spatial

decompositions from motion estimation. Both aspects are linked within the video structure. Robust

and flexible video signal representations require the understanding of efficient joint representation

of both: spatial and temporal video features.

2.4 Motion Compensated Predictive Video Representations

and Related Coding Schemes

Highly non-linear predictors are used in order to adapt the representations as much as possible

to the structure of video signals. As a major tool, motion compensation is used to capture and

represent efficiently temporal video geometric changes. The need for exploiting temporal geometry

for efficient video representations was discovered as early as 1970s [172], but it was not until almost

ten years later that was introduced the way it is used in nowadays video codecs [107]. Often in video

signals, few motion parameters are able to model frame to frame changes (up to some accuracy)

and, thus, supply good frame approximations that generate small residual error when used within

hybrid predictive video representations.

Commonly, simple translational models together with block matching are used in predictive

video coding (nevertheless, a lot of research has also been done using other kinds of representations

like mesh-based representations, e.g. [125]). For each block, a non-linear R-D optimization criteria

is used to determine the most appropriate model to predict the signal. Subtle modeling strategies

have been introduced in predictive video coding to model accurately the signal. In addition to the

MC refinements exposed in the precedent section, relevant enhancements are:

• Appropriate handling of boundaries in video frames [168].

• Multi-reference motion compensation [187], where any past frame from the GOP may be used

as reference frame for video prediction.

• Multi-hypothesis weighted motion compensation [76]. Several blocks from different reference

frames may be used to jointly represent as a linear combination of this a given anchor frame

block [71] (This is in some way an example of the well known bi-directional prediction, which as

can be seen in the next section is very related with Motion Compensated Wavelet Transforms

and the use of lifting schemes).

In addition to rate constrained motion representation techniques, rate-distortion performance of

modern video compression schemes is the result, also, of using:

• Intra-picture prediction techniques: which are able to somehow capture some of the 2D geo-

metric structure in intra-frames;

• Waveform coding differences: which is in charge of the transformed representation of the

residual error. This is typically done using DCT, separable wavelets or in order to exploit some

geometric structure in error signals, by using redundant dictionaries together with matching

pursuits [5, 132];

• Waveform coding of various refreshed regions (or transform coding of intra data).



2.5. Motion Compensated Wavelet Transforms and Related Video Coding Schemes21

Transform

Transform−1

Motion
Compensation

Entropy
CodingVideo Sequence

Quantization

Quantization−1

Video Approximation
Memory

Video bit stream

Motion Data

Figure 2.8: Basic block diagram of a simple predictive video coding scheme.

The need for a common framework in industry to develop video transmission and storage appli-

cations have lead the video community to create a large number of video coding standards. These

have evolved through several decades thanks to technology advances, although constraint to the

unavoidable economical interests of the moment. The modern basic structure for predictive video

coding was first standardized in ITU-T Recommendation H.261 [1] (see Fig. 2.8) and has absolutely

conditioned the structure of its successors MPEG-1 [2], H.262|MPEG-2 [3], H.263 [4], MPEG-4 Part

2 [5], and H.264/AVC [6].

One can see, here again, that common predictive techniques operate video signal in a pixel based

fashion, without considering its spatio-temporal structure and partitioning it with no respect of

its multi-scale structure. In the following section, spatio-temporal decompositions of video signals,

based on motion compensated wavelet representations, are reviewed. Although these do not exploit

spatial geometry yet, multi-scale signal structure is taken into account. This allows to combine

efficient video coding with properties like scalability for progressive video streaming (see Sec. 2.1).

2.5 Motion Compensated Wavelet Transforms and Related

Video Coding Schemes

Most efforts of present video coding research for efficient compression are being done toward the

promising combination of linear transforms and motion compensation for non-linear video approxi-

mations. The use of motion compensation within the wavelet temporal representation, based on the

lifting scheme [39, 171], has the purpose of performing the lifting filtering in the direction of motion.

This motion oriented filtering drastically reduces the number of significant wavelet coefficients gen-

erated in the transform. Indeed, in this way, multi-scale redundancy can be exploited not only from

those regions that remain unchanged in a period of time, but also those objects subject to motion.

In the following we briefly review the well known lifting schemes used to generate one decomposition

level of the motion compensated Haar and 5/3-wavelet transforms. Then, most popular video coding

schemes based on motion-compensated temporal wavelets are shortly described.
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2.5.1 Motion Compensated Lifted Wavelets For Video Coding

Motion-Compensated Lifted Haar Wavelet

MC lifted Haar step is widely used for video coding (e.g. [144, 158]). Fig. 2.9 depicts the ladder

scheme that carries out the Haar transform in the video signal along motion trajectories. As can

be seen, the prediction/update steps of this structure are performed using the samples that motion

vectors connect. In the figure, s2κ and s2κ+1 represent respectively, the even and odd input samples

to the lifting scheme (in video these correspond to even and odd video frames). lκ and hκ represent

the low pass and high pass samples at the output of the lifting scheme. The factors appearing

next to the lines are normalizing factors applied once operations of prediction and update steps are

performed. In [70, 75], the authors use, for the update step, the negative version of the motion

vector retrieved in the prediction step.
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Figure 2.9: Haar transform with motion-compensated lifting steps. Both steps, prediction (with

motion vector -MV- d̂2κ,2κ+1) and update (with MV −d̂2κ,2κ+1), utilize block-based motion com-

pensation. The update steps use the negative motion vectors of the corresponding prediction steps.

Motion-Compensated Lifted 5/3 Wavelet

At this point, the MC 5/3 wavelet lifting scheme is reviewed [158]. Akin to the Haar scheme, motion

vectors are decided during the prediction stage and reused in its negative form for the update step.

This scheme uses a multi-hypothesis MC prediction step that looks for the two most optimal vectors

that achieve the most suitable linear combination for the prediction step. This scheme performs

better than the Haar one, i.e. the associated wavelet has one additional vanishing moment. See

Fig. 2.10 for a schematic description.
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Figure 2.10: Lifted 5/3 wavelet with motion compensation. Both steps, prediction (with MVs d̂01

and d̂21) and update (with MVs −d̂01 and −d̂21), utilize block-based motion compensation. The

update steps use the negative motion vectors of the corresponding prediction steps.
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As one can see, the better performance Bi-directional MC and its generalization in multi-

hypothesis MC, can be explained from a wavelet signals approximations point of view. Kernels

build from a higher number of hypothesis are more efficient representing higher order polynomial

variations in signal, and higher order polynomials approximate smooth signals better (see Chapter 3

for an analogy among MC video signals an piecewise-smooth signals).

Beyond Classic Motion Compensated Lifting Steps

Multi-hypothesis MC, used in the generation of the different MC wavelet kernels based on the lifting

scheme, can be naturally extended, as in the case of classical predictive video coding, to use any even

frame as reference frame in a multi-reference MC way. This was introduced by Flierl in [70, 75]. A

short review on the subject may be found in Sec. 3.8.1.

2.5.2 Motion Compensated Temporal Filtering (MCTF)

A coding scheme, which has appeared to be successful in exploiting temporal redundancy, is based

on motion compensated temporal wavelets [30, 134]. This has been possible thanks to the use of

the flexible lifting scheme, that allows the inclusion of non-linear, non-invertible, operations into its

ladder structure such as quantization (e.g. integer to integer transforms) or motion compensation,

being still the whole scheme invertible.

Figure 2.11: Basic motion compensated temporal wavelet transform schemes. a) Depicts the MC

Haar Transform. b) Depicts the MC Daubechies 5/3 Wavelet Transform [135].

Fig. 2.11 depicts schematically the construction of two well known MC wavelet decompositions.

One can see how MC is inserted in the operators that generate low and high frequency subbands

in a level by level fashion. To generate high frequency bands, odd frame components are predicted

with a linear combination of even frame components. In the other way round, low frequency bands

are generated, as established by the lifting scheme, updating even frames with a linear combination
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of the generated high frequency bands. Prediction and update steps, may benefit from most of the

non-linear optimization techniques developed for efficient motion representation in predictive MC

video approaches.

MCTF (t+2D): The Coding Scheme

Many works have studied the use of MCTF representations in the framework of video coding.

MCTF temporal transform together with a posterior 2D wavelet transform (see Fig. 2.12) form

a 3D (t+2D) representation of video signals able to capture, up to some degree, temporal video

geometry and multiscale structure jointly with the multi-scale structure of temporal subbands.

Video representations are composed by an hybrid mix of data, formed by motion vectors (issued

from any motion estimation technique: BM, mesh-based...) that represent temporal signal geometry,

and transformed coefficients that take care of capturing all the remaining components of the signal.

An important detail in here is that quantization, as observed in Fig. 2.12, is performed, unlike in

the predictive case, after the whole spatio-temporal video representation. The direct consequence

is that progressive scalable, fine grain, coding is possible without drift problems. The interested

reader may find a wide review of the approach in [73, 140, 159].

Motion
Estimation

Temporal Transform
Motion Compensated Temporal Subbands

Video MC

Transform Quantization

Entropy
Coding

MCTF

Video Sequence

Motion Data Video bit stream

Figure 2.12: MCTF video encoder building blocks.

The MCTF coding scheme is quite flexible to allow PSNR scalability, temporal scalability and

some spatial scalability. PSNR scalability is achieved thanks to a progressive transmission of video

signal; depending on the transmitted amount of information, a higher or lower video quality will

be displayed at the receiver. This is commonly achieved by progressive transmission of coefficients

amplitude using bit-plane coding approaches. t+2D video representations require the transmission

of motion vectors with full accuracy independently of the desired reception quality. This poses a

problem in terms of scalability at very low bit rates. Indeed, the fixed amount of motion information

overhead imposes a lower limit in the possible transmission bit-rates. The main limitation of the

t+2D MCTF scheme is its lack of spatial scalability in terms of motion vector coding. Indeed,

motion compensation and temporal representation is done in the space domain. Reconstruction of

different resolutions at the decoder do not profit from lower requirements in motion representation

accuracy.

In-band Motion Compensated Temporal Filtering (2D+t)

Another approach concerning MCTF wavelets is the one that performs, in the first place, the

2D wavelet transformation and, later, the motion compensated temporal wavelet. This approach,

studied recently by several authors (see for example [12, 160]), supplies a novel framework to solve

some of the limitations of the (t+2D) scheme. Indeed, it reorders the decomposition scheme such

that a spatial multi-scale representation of frames is performed, with no direct influence of blocky
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effects or distortions induced by MC (although this effects do not affect spatial decomposition, they

may appear in the final signal reconstruction). Then, multi-scale structured 2D data is transformed

in order to capture motion and temporal multi-scale structure. However, motion is not that simple

to capture this time. In order to integrate spatial resolution requirements and progressive motion

accuracy transmission, motion estimation is performed in the transformed wavelet domain (see

Fig. 2.13).

Motion
Estimation

Temporal Transform
Motion Compensated Quantization

Entropy
Coding

Video bit stream

CODWT

Video MC
3D Wavelet
Subbands

Video Sequence
DWT

IBMCTF

Motion Data

Figure 2.13: IBMCTF video encoder building blocks.

As one may expect, the use of critically sampled discrete wavelet transforms in space imposes

a problem of representation variance with signal translation (i.e. the same signal slightly trans-

lated generates a whole collection of different coefficients [121]). In order to solve that, motion

compensation is performed considering this variance. Over-complete, non-decimated wavelet frame

representations are used to retrieve the appropriate reference coefficients for temporal lifting steps

updates and predictions.

Data structuring allows, in this case, the embedded transmission of motion and spatio-temporal

signal components, leading to a fully embedded stream of information that allows lower bit-rates

than in the t+2D MCTF case.

2.6 Conclusions

In this chapter a brief introduction to present strategies for video representations and video coding

is given. The fact that signal adapted representations are cruzial for flexible coding with efficient

R-D performance is underlined. In order to exploit as much as possible signal structure, video

signal decompositions have evolved up to 3D decomposition approaches where video is represented

by the superposition of 3D primitives which are able to jointly model information about motion

and spatio-temporal scale signal components (i.e. spatio-temporal motion oriented components).

However, most of the reviewed approaches ignore a very relevant aspect in structural redundancy.

Spatial geometry, one of the most relevant structural components in images and video, is not taken

into account. Only one of the reviewed approaches takes spatial geometry into account. This is the

approach based on Matching Pursuits. Although it does not exploit temporal geometry, it is capable

to supply fine grain PSNR scalability as well as spatio-temporal scalability with better performances

than non-motion compensated 3D wavelets and some predictive scalable approaches.
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Chapter 3

Introducing Adaptivity in Wavelet

Video Codecs

3.1 Motivation

Interest in sub-band video coding has been motivated during the last years due to its suitability

for certain video streaming applications. Scalability, low computational cost with a reasonable R-D

performance and the possibility to set robust delivery on lossy channels are among its features.

Popular examples of 3D wavelet based coding schemes are 3D-SPIHT [29], ESCOT [189] (which is

the 3D version of EBCOT, used in the 2D case to compress images with the JPEG2000 standard

[8]) or the 3D extension of GTW [103] which intents to be a generalization of EBCOT.

Progressively, motion-compensation has also been included in wavelet based approaches as they

combine excellent compression efficiency with embedded representation capabilities. A relevant con-

tribution to the field has been motion-compensated lifted wavelet transforms [134, 144]. To improve

compression efficiency, adaptive lifting schemes have been investigated for motion-compensated tem-

poral filtering (MCTF). In particular, frame-adaptive motion-compensated lifted wavelets [70] and

multi-hypothesis motion-compensated lifted wavelets [75] have been proposed in the framework of a

MCTF extension of H.263++ [72]. Further improvements have been accomplished with the MCTF

extension of H.264/AVC [157].

In the case of a simple separable wavelet transform scheme, some R-D performance enhancement

is possible if a non-linear decomposition scheme is used. In this chapter, a locally adapted temporal

transform is theoretically and empirically analyzed based on a piecewise-smooth model of video

signals. A locally adapted temporal approach may reduce, up to some degree, the number of

wavelet coefficients needed to represent a singularity. Although it will not dramatically change the

decay of distortion with rate, this solution gives some additional degrees of freedom to displace the

D-R curve and obtain better performances than with standard dyadic wavelets. Unlike fixed length

wavelet transforms, best basis like transforms are able to adaptively set the analysis scale (or window

length) that better suits the signal to be represented. Long smooth pieces are grouped into long

transformed segments while fast signal variations tend to be localized. Temporal adaptivity is also

useful in the case of Motion Compensated wavelet representations. In this chapter, an analogy is

also presented between MC video sequences and piecewise-smooth 1D signals. Theoretic R-D results

of oracle based methods, to code piecewise-smooth 1D signals [148, 180], justify our proposed Intra-

27
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adaptive approach for MC lifted wavelets for video coding. A large number of results validate this

analogy and demonstrate, in practice, the benefits of using temporal adaptivity in MCTF.

This chapter is structured as follows: First, a set of simple examples are presented in Section 3.2

to illustrate the temporal adaptivity problem. After, we review in Section 3.3 the theoretical back-

ground of non-linear approximations of 1D piecewise-smooth signals based on wavelet transforms.

Based on this and using a synthetic deterministic model of a moving edge, R-D bounds are derived

for different 3D wavelet transform schemes in Section 3.4. These theoretical results together with

several practical experiments presented in Section 3.6 illustrate the influence of temporal adaptiv-

ity within simple 3D wavelet video coding. After this first analysis, intra-adaptive wavelets are

investigated within the MCTF framework. In Section 3.7, an analogy between motion compen-

sated coding of video signals and coding of piecewise-smooth 1D signals is established. Adaptive

motion-compensated lifting schemes can be extended by the use of intra macroblocks, as proposed

in Section 3.8. They allow separate encoding of intervals with smooth motion trajectories. Frame-

adaptive motion-compensated lifted wavelets [70] permit a flexible encoding of motion trajectories as

long as sufficient candidate reference frames are available. The number of efficient reference frames

decreases not only due to encoding constraints but also due to scene changes and frequent object

occlusions. If frame-adaptive motion-compensated wavelets are not able to provide the desired flex-

ibility, intra macroblocks are used to permit separate encoding of intervals with smooth motion

trajectories. A detailed analysis of the effect on R-D performance of intra-adaptivity is presented

in Section 3.9. Finally, conclusions are drawn in Section 3.10.

3.2 Coding: To Join or not to Join?

Wavelet decompositions present an optimal R-D behavior when applied to approximate polynomial

signals if wavelets with enough vanishing moments are used [121]. However, singularities between

polynomial pieces generate many wavelet coefficients that are costly in terms of coding rate.

Coding improvements are introduced, here, for some simple examples when the number of decom-

position levels is adapted. In the following examples, sequences of two consecutive images are coded.

Hence, only one level of temporal dyadic wavelet decomposition can be considered at most. In all

cases, a 5 level dyadic wavelet spatial decomposition is performed by means of the Daubechies-9/7

filters [14]. We compare between a Haar transform in the temporal dimension (i.e. a one level Haar

transform) and no temporal transformation. Uniform dead-zone quantization is applied to wavelet

coefficients. Coding cost is measured by means of their Shannon entropy.

Temporally aligned video pixels that, due to the effect of some motion, belong to different

objects, have often no relation among them. If these are modeled as being a set of IID Gaussian

random variables, then there would be no change in the coding efficiency with or without applying

an orthonormal transform. However, this is not the case for the image sequences presented in here.

They have a spatio-temporal structure and temporal changes (e.g. produced by motion) follow a

model that does not correspond to a set of IID Gaussian random variables. Although signals are

often modeled by jointly Gaussian stochastic models, real images and video have a quite different

behavior. In fact, deterministic piecewise-constant models [148] suit better our purposes.

As theoretically proved, from a 1D point of view (see Sec. 3.3.2), if a temporal pixel has an

edge (important gray level change in the temporal dimension), wavelet transform coefficients will

be spread throughout all subbands. Hence, coding will be inefficient in terms of R-D. On the other

hand, if a temporal pixel stays more or less unchanged, energy will be compacted and the pixel will

be efficiently coded.
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3.2.1 Coding Very Different Pictures

Consider the two images of Fig. 3.1 as if they were a sequence. This situation can be seen as an

extreme case of a scene cut. We see that there is apparently no significant redundancy to exploit

between them. In Fig. 3.2, one can appreciate that coding without orthonormal Haar transform

Figure 3.1: Lenna (left) and Barbara (right) 256x256 pictures.

is more efficient in terms of R-D. It can be easily seen that, having such different images, joined

temporal coding implies a significant loss in efficiency. This behavior is observed in a large range

of coding bit-rates. Nevertheless, at very low bit-rates (very high distortion) the difference becomes

negligible due to the very high quantization noise.
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Figure 3.2: Demonstration of an artificial scene cut: Coding the images Barbara and Lenna jointly

with a Haar transform or independently.
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3.2.2 Coding a Scene Cut

Let us consider, now, a more common video sequence: the table tennis sequence (Fig. 3.3). Two

very similar frames can be efficiently decorrelated by a wavelet transform (let us forget, for the

moment, about the benefits of using in addition motion information). This is underlined by the left

Figure 3.3: Table tennis sequence frames 129, 130 and 131.

graphic in Fig. 3.4, where results of jointly coding frames 129 and 130, using a Haar transform are

shown. This is more R-D efficient when compared to the case where no temporal transformation

is performed. In the right plot of Fig. 3.4, another particular example is analyzed. This time a

change of scene is taking place (frames 130 to 131) and this gives rise to a situation similar to

the Lenna/Barbara sequence (Sec. 3.2.1). Again, as the reader can from the curves, joint coding

of both pictures is not R-D efficient. In order to be optimally adaptive in the temporal wavelet
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Figure 3.4: R-D efficiency of one level of temporal wavelet decomposition for two different scene

events from the sequence table tennis. Left: No change of scene (frames 129 and 130). Right:

Change of scene (frames 130 and 131).

decomposition depth, the number of wavelet subbands should locally adapt in space. In this way,

only when local unpredictable changes appear in a sequence of images, the wavelet decomposition

used to jointly code them can be optimally adapted for that particular scene and still profit from a

high number of wavelet decomposition levels in the remaining spatial locations.

3.3 Deterministic Signal Models for R-D Analysis

This section recalls the use of deterministic models for R-D performance analysis of non-linear

approximation algorithms. An emphasis is put on edge modeling and their influence on wavelet
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based coding. A piecewise-constant simple model for images is reviewed and an extension for moving

edges in natural video sequences is proposed.

3.3.1 Use of Deterministic Models for R-D Analysis

Signals are often associated to stationary jointly Gaussian stochastic models independently of their

nature. However, in many cases, these models do not match the real nature of signals and prevent

from properly exploiting their characteristics. In this direction, a lot of works have been done in the

field of non-linear signal approximations and their relation to signal compression. A performance

analysis of non-linear approximations needs to be performed on the particular class of signals to be

compressed. For this purpose, deterministic models representing the kind of signal events to study

are considered. This approach was taken in [32, 148, 180] for piecewise-smooth signals, non-linear

approximation on wavelet bases and other oracle based approaches. A detailed rate distortion study

about the appropriate way of coding edges is described in [148] for the 1D case.

3.3.2 Edge Modeling in 1D Signals: Piecewise-x Models and Wavelet

Coding

There are many examples [31, 51, 148] where signals can be associated to deterministic signal models

allowing a better analysis of the properties of their representations within the framework of a given

application, e.g. for coding purposes. The deterministic model that better fits the behavior of signals

with discontinuities is the so called piecewise-smooth signal model [31] (see Fig. 3.5).

Piecewise−smooth Piecewise−polynomial Piecewise−constant

Figure 3.5: Example of 1D piecewise-smooth, piecewise-polynomial, piecewise-constant signals.

Fig. 3.5 depicts an example of a piecewise-smooth 1D signal, as well as two more examples that

represent two particular cases of the piecewise-smooth class of signals. These particular cases are

the piecewise-polynomial and the piecewise-constant ones. As depicted, these signals are composed,

respectively, by polynomial and constant signal intervals separated by singularities. This class of sig-

nals has been sown to be efficiently represented by wavelets, due to their locality which capture well

abrupt signal changes. Moreover, smooth or polynomial parts are efficiently represented by coarse

approximations obtained from the wavelet basis scaling functions. Nevertheless, wavelet transforms

do not exploit the correlation among wavelet coefficients from different subbands generated by an

edge (see Fig. 3.6). Thus, even though the wavelet transform is well suited for representing discon-

tinuities, as discussed in the remaining of this section, it reveals to be suboptimal in terms of R-D.

Fig. 3.6 illustrates the response of a wavelet transform to a step function. If a wavelet with

sufficient vanishing moments [121] is used, each polynomial area can be represented with coefficients

belonging to the low frequency band (the scaling functions). In such a case, the only part of the signal

that generates non-zero wavelet coefficients are discontinuities. To accurately code the step using a
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W
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Figure 3.6: Spreading of coefficients through the wavelet subbands of a 1D piecewise-constant

signal representation.

wavelet transform, non-zero coefficients amplitudes and positions need to be coded. On the other

hand, Fig. 3.7 shows a non-linear approach widely discussed in approximation theory [32, 148, 180].

This intends to find out a more efficient representation of piecewise signals in general, assuming the

existence of an oracle that tells where switching points among smooth pieces are located. If this is

the case, since very efficient approximations of smooth intervals and efficient coding of discontinuity

locations can be achieved, it is possible to obtain a better R-D behavior than in the case where only

wavelets are used. It is, indeed, more efficient to separately code discontinuity locations and smooth

parts. For instance in Fig. 3.7, in order to locate the edge and to set its size, it is just necessary

to supply one position plus one amplitude. Moreover, the use of an independent representation in

each constant interval will not generate additional information to code, i.e., consider a Haar wavelet

that is used in each one of these (with an appropriate handling of boundaries and scaling functions

coefficients, see Sec. 3.8.3 for an example). Then, no non-zero coefficients will be generated. To

the contrary, in the simple 1D wavelet case, the number of locations and amplitudes to code is

proportional to the number of decomposition subbands.

In oracle based coding of piecewise-polynomial signals, the asymptotic behavior of distortion (D)

at high rates is described as a function of rate (R) [148]. This can reach the bound:

DO (R) ∼ 2−B·R, (3.1)

where B is a positive constant. In the case of wavelet coding, the asymptotic behavior at high rates

is worse:

DW (R) ∼
√

R · 2−A
√

R, (3.2)

where A is a positive constant. Unlike in (3.1), distortion decreases with exponent
√

R, which

corresponds to a slower decay with the rate.

Notice that even if the asymptotic R-D behavior is analyzed at high rate, it is sufficient to

motivate the use of adaptive coding [148, 180], and to understand the coding efficiency of different

approximation approaches (e.g. [51, 148]).

3.3.3 A Model for R-D Analysis of Edge Compression in Natural Images

Images are typically modeled as the composition of a piecewise-smooth component plus a texture

component. Most of the image information is carried in edges within the piecewise-smooth part
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W
avelet subbands

Piecewise−constant Function

Discontinuity Position

Discontinuity Amplitude

Figure 3.7: There are no wavelet coefficients to code from a 1D piecewise-constant signal repre-

sentation when using an oracle to code the discontinuities, i.e. position and amplitude.

[129, 179]. As in the 1D case, toy models are proposed to analyze different coding strategies based on

non-linear approximations. In the case of images with edges, these are piecewise-constant synthetic

images with smooth C p edges or piecewise-polynomial edges [51, 164]. A well known example is

the Horizon model. This was used in [53] and [51] to justify the need for exploiting geometry in

natural images. Although geometrical representation of video signals is not addressed until ulterior

chapters, we use the Horizon model in the R-D analysis presented here.

The Horizon model is an image f(x, y) defined on the unit square [0, 1] × [0, 1], i.e. x, y ∈ [0, 1],

such that

f(x, y) =

{

1 y ≥ b(x)

0 otherwise
, (3.3)

where b(x) has finite length inside the unit square and belongs to the class of functions that are

p-times continuously differentiable (i.e., b(x) ∈ C p). See Fig. 3.8 for a graphical example.

3.3.4 A Moving Edge Model for Video Sequences

In this section a piecewise-constant deterministic model of a video sequence is introduced. In some

essence, video objects are smooth regions surrounded by edges. To represent moving edges with a

simple model, we use the Moving Horizon. That is, a 3D signal composed of a sequence of Horizon

images where the edge moves from frame to frame at a given speed. Fig. 3.9 depicts six sample

frames of the whole Moving Horizon sequence.

3.4 3D vs 2D+1D Temporal Adaptive Wavelet Transforms

for Video Coding

In this section, a theoretical evaluation of the influence of temporal adaptation on moving edges is

presented. For this purpose, the deterministic piecewise-smooth model for natural video signals is

used to measure the R-D performance of different 3D wavelet decomposition schemes.
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Figure 3.8: Example of Horizon toy model image [51].
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Figure 3.9: Sample of the moving horizon sequence. A smooth curve is moving through time with

a given motion vector. The temporal sequence goes from left to right and from top to bottom.
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3.4.1 Adaptivity and Time-Frequency Tiling for Video Decompositions

The classical 3D wavelet decomposition scheme used for subband video coding (see the left graphic

in Fig. 3.10) is mainly conceived for exploiting the temporal redundancy of static areas. This scheme

is inefficient to represent moving edges since temporal discontinuities generate many coefficients over

all temporal subbands. Temporal discontinuities get little coding profit from being decomposed on

a wavelet basis. Hence, they should be decomposed as little as possible while non-moving areas

are projected on a wavelet basis with as many subbands as possible. These opposed requirements

impose the use of an adaptive scheme in order to globally optimize the R-D performance of the coding

scheme. Temporal discontinuities need to be represented by means of high level signaling (oracle

based method), more appropriate to indicate which are their locations. This adaptive temporal

representation may be seen as a kind of Best Basis decomposition where the R-D performance is

optimized [153, 154].

Spatial Subbands

Temporal Subbands

(a) Classic

Spatial Subbands

Temporal Subbands

(b) Isotropic

Spatial Subbands

Temporal Subbands

(c) Unequal

Figure 3.10: Three possible different subband schemes for video representation. (a) Classical

scheme where the video signal is assumed to remain mostly static. (b) The 3D isotropic, tree

structured subband scheme (extension of the common 2D one used for image compression [8]).

This scheme is adapted for general 3D volume figures. (c) 3D subband scheme adapted for the

representation of the moving horizon toy model of Fig. 3.9.

In order to evaluate how well (in terms of R-D performance) a moving edge can be represented,

we analyze the performance of different decomposition schemes (see Fig. 3.10). These fixed schemes

exploit the structure of particular 3D signals. Hence, they do not behave in the same way with the

Moving Horizon model. To guarantee a precise comparison, in the following, upper bounds have

been computed for schemes that are better for coding moving edges while a lower bound on the R-D

is derived for the classic separable wavelet scheme for video coding.

3.4.2 Isotropic 3D Wavelet Coding of the Moving Horizon Model

The isotropic 3D Wavelet decomposition scheme (see middle of Fig. 3.10) is typically used to decom-

pose 3D volumes when no particular direction predominates in the signal. This particular choice,

as seen in the following, is due to the better R-D behavior of isotropic separable wavelet transforms

compared to other linear wavelet decomposition schemes when applied to this kind of signals.

The isotropic 3D wavelet scheme is characterized by having a fixed number of subbands per 3D

isotropic decomposition level: 23 − 1. Thus, the total number of subbands (including the lowest

frequency band) for J decomposition levels is

Nsb = 1 +

J
∑

j=0

(23 − 1) = 7J + 8.
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For example, 5 wavelet spatio-temporal decomposition levels generate a total of 36 spatio-temporal

subbands.

Considering this decomposition scheme and the Moving Horizon model, the following can be

stated:

Theorem 3.1 Assume the use of a coding scheme based on a 3D isotropic wavelet decomposition,

scalar quantization and efficient coefficients position coding. Then, its R-D performance (D(R))

achieved when coding the Moving Horizon model can be upper bounded as:

D(R) .
1568 · 21/3

3

√

W (E(R))

E (R)
− 262144

3

√

W (E(R))
3

E (R)
3 , (3.4)

(where E(R) = 1024/21 log(2)22/3(56 + 3R) and W (x) is the principal branch of the Lambert W -

function [35, 185]) whose asymptotic behavior at high rates is:

D(R) ∼
√

log(R)

R
. (3.5)

The reader will notice that Eq. (3.5) clearly reflects the lack of efficiency of separable wavelets to

represent singularities along edges (see [51] for a comparison in the case of 2D signals). This must

be addressed by some approach that takes into account geometric information. An example is the

use of motion compensation to better exploit geometry in the temporal dimension (see Sec. 3.8).

Proof: To prove Theorem 3.1, let us consider the use of non-overlapping Haar wavelets. At

each decomposition level j, the number (nj) of non-zero wavelet coefficients, generated by the 3D

transform, corresponds to the number of basis functions that intersect with the moving edge. As

the Moving Horizon model is a finite length signal, the number of non-zero coefficients is a function

of the size of the support of the wavelet basis functions (2−j). Since the signal to represent is a 2D

manifold, a total of 22j wavelet basis functions per subband is required to cover the surface drawn

by the moving edge. Hence, given that each decomposition level is composed of seven subbands,

nj ∼ 7 · 22j (3.6)

wavelet basis functions are needed at the jth decomposition level. Consider the whole 3D separable

transform (including the coarse scale approximation), the total number of non-zero coefficients may

be estimated as:

NJ ∼
J
∑

j=0

nj + 1 =

J
∑

j=0

7 · 22j + 1 =
28

3
· 4J − 4

3
, (3.7)

where J is the finest scale used to approximate the Moving Horizon model (linear approximation).

Since both, Distortion (D) and Rate (R), depend on NJ , an estimate of each one may be easily

derived.

Non-zero wavelet coefficients, generated by a 3D separable, dyadic and normalized basis, have

an amplitude decay at the jth level behaving like

|cj,k| ∼ 2−
3j
2 , (3.8)

where k indexes coefficients within each subband [51, 121]. Indeed, the finer the scale of analysis

is, the smaller the amplitude of coefficients becomes. For a R-D scalar optimized quantization of

normalized wavelet transform coefficients, all subbands are quantized with the same quantization

step size ∆j = ∆ ∀j ∈ [0, J ]. If one intends to code all coefficients up to level J , the quantization

step size has to be small enough, i.e. ∆ ∼ 2−
3J
2 . That is,

Rcj,k
∼ log2

(

1

∆

)

=
3J

2
(3.9)
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bits are necessary to independently code each wavelet coefficient with a distortion of

Dcj,k
∼ ∆2 ∼ 2−3J . (3.10)

Now, total R and D may be estimated in terms of the finest detail decomposition level J .

The total rate is composed by the cost of coding the whole set of non-zero coefficients NJ plus the

total number of bits required to specify the location of non-zero coefficients in the subbands issued

from the 3D transform. For example, considering a classical oct-tree organization of coefficients,

where they are associated in a parent-children manner [31, 113], a total of eight additional bits per

coefficient needs to be considered (in the case of the low frequency band, these bits are not required).

The use of an oct-tree allows an efficient description of children sub-trees significance. Thus,

R ∼ NJ · Rcj,k
+ (NJ − 1) · 8

=

(

28

3
· 4J − 4

3

)

3J

2
+

(

28

3
· 4J − 7

3

)

· 8

=

(

14J +
224

3

)

4J − 2J − 56

3
. (3.11)

The total distortion results from the non-linear approximation introduced by coefficients quan-

tization plus the truncation of the wavelet expansion at the Jth level. According to this, two main

terms appear in the distortion expression:

D ∼ NJ · Dcj,k
+

∞
∑

j=J+1

nj · |cj,k|2

=

(

28

3
· 4J − 4

3

)

2−3J +

∞
∑

j=J+1

7 · 22j · 2−3j

=
49

3
2−J − 4

3
8−J . (3.12)

Finally, an estimate of the asymptotic D (R) behavior is obtained by combining (3.11) and (3.12).

First, solving J from (3.11) implies a transcendental equation. Thus, we upper bound the rate,

which for large values of J and given the exponential nature of the expression, turns to be an

accurate approximation:

R ∼
(

14J +
224

3

)

4J − 2J − 56

3

.

(

14J +
224

3

)

4J − 56

3
. (3.13)

This can be turned into:

J &
1

6 log(2)

(

3 W

(

1024

21
log(2)22/3 (56 + 3R)

)

− 32 log(2)

)

, (3.14)

where x = W(y) is the principal branch of the Lambert W -function [35, 185], i.e. the solution to

the inverse function of y = xex that is analytic at 0 [35, 185]. A lower bound on the rate-distortion

behavior of the isotropic 3D wavelet coding scheme is derived by replacing (3.14) in (3.12):

D(R) .
1568 · 21/3

3

√

W(E(R))

E (R)
− 262144

3

√

W(E(R))
3

E (R)
3 , (3.15)

where E(R) = 1024/21 log(2)22/3(56 + 3R).
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Under the high rate assumption, Eq. (3.15) may be characterized by a simpler expression. This

will help us to understand the general R-D behavior of the present coding scheme and to compare

with the rest of 3D decomposition approaches in the following. W(E(R)) can be accurately approxi-

mated by log(E(R)) for big R. Moreover, at such high rates, the approximation performed in (3.13)

becomes negligible, as well as the influence of the second term in Eq. (3.15) with respect to the first

one. Hence, together with the linearity of E(R) with respect to R, the D(R) high rate asymptotic

behavior of the isotropic 3D wavelet decomposition scheme to code the Moving Horizon model is:

D(R) ∼
√

log(R)

R
, (3.16)

which proves Theorem 3.1.

3.4.3 Classic 3D Wavelet for Video Coding of the Moving Horizon Model

In this subsection the Classic 3D Wavelet packet used in video coding (see left of Fig. 3.10) is

analyzed in the particular case of the Moving Horizon Model. It is well known that this scheme is

optimized to profit from static signal regions. Hence, being more efficient to code static areas, a

poorer R-D behavior is, thus, expected for those signal parts made of moving edges.

This 3D transform may be seen as a 2D+1D wavelet decomposition scheme. First, a 2D isotropic

dyadic decomposition is applied on each video frame. Then, these are further transformed in the

time direction by means of a 1D dyadic wavelet transform.

Compared to the isotropic 3D wavelet decomposition, there is an increase in the number of

decomposition subbands. Indeed, there are 3 · (J + 2) spatio-temporal subbands at every spatial

decomposition level and J + 2 temporal subbands at the spatial scaling function level. This makes

a total of

Nsb = (J + 2) +

J
∑

j=0

3 · (J + 2) = 3J2 + 10J + 8.

In the case of 5 temporal subbands are performed, and up to 5 spatial wavelet decomposition levels,

a total number of 96 subbands are generated.

Considering all that, the following can be stated:

Theorem 3.2 Assume the use of a coding scheme based on a Classic Packet 3D Wavelet used in

video coding, scalar quantization and efficient coefficients position coding. Then, its R-D perfor-

mance (D(R)) on the coding of the Moving Horizon model can be lower bounded as:

D(R) &
32

3 log(2)

(

3W (E(R)) − 11

log(2)

)

22/3W (E(R))

E(R)

+
424 · 22/3

3

W (E(R))

E(R)
+

8192

3

(

W (E(R))

E(R)

)3

−512 · 21/3

(

W (E(R))

E(R)

)2

, (3.17)

(where E(R) = 4
3 log(2)

(

3 · 22/3 +
√

2
√

21/3 (−7 + 6R)
)

) whose asymptotic behavior at high rates

is:

D(R) ∼ log2 (R)√
R

. (3.18)
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A proof may be found in Appendix A.1.

Compared to the bounds and asymptotic behavior derived for the 3D isotropic case, we can see

that the present scheme behaves worse for coding moving edges. A more graphical evidence of this

is presented in Fig. 3.11.

3.4.4 Unequal Temporal Partition 3D Wavelet Coding of the Moving

Horizon Model

Keeping the 2D+1D structure of the classic packet wavelet, another decomposition scheme may

be explored in order to get closer in performance to the 3D isotropic one. We name the present

3D transform scheme, the Spatially Unequal Temporal Partition 3D Wavelet Scheme (see right of

Fig. 3.10). It is characterized by the adaptation of the number of temporal subbands depending on

the spatial wavelet subband.

In effect, for each spatial decomposition level j, there are 3 (J + 2 − j) spatio-temporal subbands.

Furthermore, J + 2 temporal subbands appear at the lowest spatial scaling function level. Hence,

the total number of subbands for J decomposition levels is

Nsb = J + 2 +

J
∑

j=0

3 (J + 2 − j) =
3

2
J2 +

17

2
J + 8. (3.19)

In the case where a scheme of 5 temporal subbands is used, and up to 5 temporal wavelet decom-

position levels are allowed, a total of 66 subbands is generated.

Considering all that, the following can be stated:

Theorem 3.3 Assume the use of a coding scheme based on a Spatially Unequal Temporal Partition

3D Wavelet decomposition, scalar quantization and efficient coefficients position coding. Then, its

R-D performance (D(R)) coding the Moving Horizon model can be upper bounded as:

D(R) . 304 · 25/6

√

W
(

2 log(2)E(R)
2
)

√

log(2)E(R)
− 2048 · 22/3

W
(

2 log(2)E(R)
2
)

log(2)E(R)
2 (3.20)

(where E(R) = 16/3(21/3 +
√

17 · 22/3 + 2 · 22/3R)), whose asymptotic behavior at high rates is:

D(R) ∼
√

log(R)

R
. (3.21)

See Appendix A.2 for a proof.

Although the bound, in this case, is slightly worse than in the isotropic decomposition case (see

Fig. 3.11), the asymptotic behavior turns out to be the same. This scheme exhibits much better

performances, when coding the Moving Horizon model, than classic wavelet for video.

3.4.5 2D+1D Temporally Adaptive Subband Coding

Fig. 3.11 depicts the coding performance of each one of the wavelet decomposition schemes analyzed

in the previous subsections. Curves correspond to the D(R) lower bound for the classic scheme and

the upper bounds of the alternative decompositions. Their respective D(R) expressions are those

exposed in Theorems 3.1, 3.2 and 3.3. It is clear how the coding performance of the isotropic and

the unequal based decompositions outperforms the classic one. This difference becomes even bigger

at high rates. In effect, the usual classic decomposition, which presents the typical temporal ringing

effects, is not at all appropriate to code moving edges.
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Figure 3.11: Theoretical R-D Performance of different 3D Wavelet decomposition schemes applied

on the Moving Horizon model. The classic 3D Wavelet curve represents a lower bound on the R-D,

whereas the other two are upper bounds on the R-D performances of the isotropic and the unequal

decompositions, respectively.
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However, video is not only composed of moving edges; static regions are common and are fancily

mixed with edges in the same scene. This heterogeneous nature, as one may expect, requires the

use of adaptation in the representation. In the framework of 3D wavelet video coding, temporal

transforms need, thus, to be adapted depending on the spatial location. In this way, classic wavelet

schemes may be exploited for static scene regions while wavelet decomposition depth may be adapted

within moving areas.

If we have a closer look at the best decomposition schemes of the previously analyzed, one

can see that, when coding moving edges, there is still some counterproductive temporal filtering.

Some side signaling should describe the temporal filtering adaptation such that a large variety of

decompositions are enabled: from no temporal transformation at all up to full Group of Pictures

(GOP) length.

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Temporal
Transform

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Motion Direction

t

Spatial Transform

Figure 3.12: Model taken for the theoretical performance estimation.

Fig. 3.12, depicts the fact that, after a first spatial transformation of each frame, an adaptive

temporal transformation is applied instead of the fixed length one. The reader will notice that using

spatially local adaptivity in the temporal transform involves a non-linear decomposition scheme.

This implies that, unlike in the separable linear case, the order between spatial and temporal trans-

formations shall not be exchanged.

A way of spatially adapting the different temporal decompositions is to divide spatial subbands

into subband dependent macroblocks. Each spatial macroblock forms together with the temporal

dimension a spatio-temporal tube. In each of these temporal tubes, a different temporal transform

may be applied (see Fig. 3.13).

Temporal partitions can be set by means of a combinatorial approach (as in [148]) or, more

computationally efficiently, by using a prune-join∗ binary tree approach [164]. To efficiently represent

the data contained in each partition (whose size may differ from that of a dyadic partition) one can

use frame adapted lifting steps [70] (see also the example of Sec. 3.8.3).

The R-D bound:

Let us now derive an upper bound on the R-D behavior of an adaptive transform based coding

scheme applied on our toy video signal. For this particular example, rate coding costs of a prune

(and not a prune-join) binary tree are considered. This is done for two main reasons:

• The coding efficiency, at high rates, of a simple prune binary tree approach is lower than that

of a prune-join binary tree. Hence the R-D bound computed with the cost of a full depth

prune binary tree can be considered as an upper bound on the distortion for a given rate.

∗The need of a prune-join approach instead of a simple prune binary tree is due to the need to optimally handling

1D piecewise-smooth discontinuity events. This can be for example: sudden motion of a region that was static, or

sudden stop of a moving edge. Simple moving edges are more like delta singularities once the 2D transform has been

applied. For these simple prune binary trees are enough to describe them.
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Figure 3.13: A possible spatially local implementation of temporal adaptivity.

• The resulting partitioning coding tree of one of the temporal macroblocks intersecting the

Moving Horizon edge, would correspond, locally, to a full depth tree partition (see the left

figure in Fig. 3.14). This means that, for each frame where the edge is crossing a given

macroblock, there will be a leaf of the partitioning tree of that macroblock. Hence, locally,

the resulting tree structures from both schemes are equivalent.

1

1

1111

1

1

0

1 0

1

Full depth tree splitting Single branch full depth splitting

Figure 3.14: Binary tree used in the temporal partition.

In the present analysis, we assume for simplicity purposes, that only a single tree is used per

spatial macroblock. This means that all macroblocks at the same spatial location are partitioned

using the same tree. Without loss of generality, this is done to simplify the calculation of the side

information cost to derive a D(R) bound for the temporally adaptive coding scheme. Indeed, even if

the scale of analysis is different depending on the spatial wavelet subband, the optimal partitioning

trees for several parent-child related areas are expected to be quite similar in practice.

Considering all that, we can state the following:
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Theorem 3.4 Assume the use of a coding scheme based on a 3D macroblock adaptive wavelet

decomposition, scalar quantization, efficient coefficients position coding and efficient partition coding.

Then, its R-D performance (D(R)) coding the Moving Horizon model can be upper bounded as:

D(R) .
25/6208

√

W (2 log(2)E(R)2)
√

log(2)E(R)
−

22/31024 W
(

2 log(2)E(R)2
)

log(2)E(R)2
,

(3.22)

(where E(R) = 16/3 · 21/3 + 16/3 · 21/3
√

37 + 4R) which has an asymptotic behavior at high rates

such that:

D(R) ∼
√

log(R)

R
. (3.23)

We observe that, in the adaptive case, the asymptotic R-D behavior is the same than that of the

3D isotropic wavelet and that of the unequal partition case. However, given the full adaptation of

the approach, one can see in Fig. 3.11 how the R-D upper bound is even lower than the rest.

Proof: The proof follows the same schema than the previous ones. Modeling of the different

involved elements is described shortly in the following.

The number of coefficients per spatial decomposition level given the full depth partition tree is:

nj ∼ 3 · 2j2J .

For each 2D subband, the number of non-zero coefficients is proportional to 2j (where j indicates

the scale level), for the 2J involved temporal samples.

The total number of coefficients is, thus,

NJ ∼
J
∑

j=0

nj +
n0

3
∼ 6 · 4J − 2J2.

Distortion is the addition of the error introduced by quantization and scale truncation. Quanti-

zation and spatio-temporal truncation remains the same as in previous schemes. Hence, distortion

can be computed as:

D ∼ 2−J13 − 4−J2. (3.24)

The main change appears in the rate where the additional factor containing the cost of coding

the partition tree appears. The coding cost is proportional to the number of nodes. That is, for the

case of a full depth tree, Rtree ∼ 2J − 1. Thus,

R ∼ NJ · Rcj,k
+ Rtree + (NJ − 1) · 8 = 4J (9J + 48) − (3J + 15) 2J − 9.

The reader will notice that the partition tree information, some extra bits in efficient coding of the

coefficients oct-tree could be also saved. Nevertheless, computations are done as if a total of eight

bits per coefficient were needed as well.

R may be upper bounded as

R . 4J9

(

J +
48

9

)

− 2J3

√

J +
48

9
− 9.

Following the method of previous sections, J is easily derived as:

J &
3W

(

2 log(2)E(R)2
)

− 32 log(2)

6 log(2)
,
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where E(R) = 16/3 · 21/3 + 16/3 · 21/3
√

37 + 4R. This, combined with (3.24), yields the final result

of Theorem 3.4.

3.5 2D+1D Temporally Adaptive Decomposition and Cod-

ing Scheme

In this section, a short review of the implementation realized to check the hypothesis and conclusions

of sections 3.3 and 3.4 is given. As previously seen, better performances are achieved by approaches

based on setting an adaptive temporal transformation instead of the classic fixed one typically used

in 3D wavelet video coding. Previous to the temporal expansion, the spatial transform is obtained

by means of the classic 2D isotropic dyadic wavelet used for image coding [8]. In our case, the usual

Daubechies-9/7 biorthogonal filters [121], known to perform very well, have been selected.

3.5.1 R-D Adaptive Temporal Subband Decomposition Using the Lifting

Scheme

The lifting scheme (see Chap. 2 for an introduction) has introduced into wavelet transforms a wide

range of possibilities thanks to its flexibility. It allows non-linear operations in the prediction and

update steps while allowing a perfect reconstruction of the original data. In motion compensated

subband video coding (e.g. MCTF video coding), the use of the lifting scheme has allowed to intro-

duce motion information into the prediction/update steps. Moreover, very flexible implementations

permit to adaptively change the kind of wavelet in use [70, 73] as well as to introduce breakpoints

in the wavelet decomposition to locally adapt the number of wavelet subbands [46].

For the sake of simplicity, the implementation of our experiment is based on the Haar transform

(in what concerns the temporal dimension). The transform is based on a rate-distortion optimization,

in which the Haar lifting step or a void step (see sec. 3.5.1) are selected.

1D Haar Wavelet Transform Using the Lifting Scheme
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√
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1√
2

Figure 3.15: Haar transform lifting steps.

Let us briefly recall the basic structure of a lifted Haar step, which is one of the most used ladder

structures to illustrate lifting schemes [39, 171]. Fig. 3.15 depicts the ladder scheme that carries out

the Haar transform applied to the signal along time. Even samples are used to predict odd ones

thanks to a first order predictor. Then residual error is re-injected to the original even sample in

order to orthogonalize both outputs (hi-band (hk) and low-band (lk) ). Output scaling factors take

care of the energy normalization of coefficients.
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Adapting Wavelet Decomposition Depth within the Lifting Scheme

In order to tackle the problem of temporal adaptivity, the so-called intra refresh may be introduced

into the lifted wavelet scheme.
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Figure 3.16: Broken lifting step, neither prediction nor update is performed. The use of the ladder

scheme would reduce R-D performance when applied to a piecewise-smooth signal. Both, prediction

and update, may be inhibited on a picture macroblock level. Notice the change on the scaling factors

to control the noise at the quantization stage.

Intra refresh corresponds to the adaptive insertion of void lifting steps. These do not perform

further temporal filtering on the signal. They implement the necessary breakpoints in the wavelet

decomposition for an efficient R-D signal approximation. This special “lifting” mode is depicted in

Fig. 3.16. With proper selection of this lifting mode, an approximation to the desired temporal

wavelet decomposition with a local adaptation of the number of subbands is obtained.

The reader will notice that in the absence of prediction and update steps, scaling factors of the

output signals have been modified. This is in order to adapt the hk output signal to the fixed step

size quantizer used for all subbands. Regarding the low band lk, the
√

2 scaling adapts the dynamic

range of the signal to fit that of the next scale level for further decomposition.

3.5.2 The Coding Scheme

The coding scheme used in our experiments is based on an intra-adaptive approach, similar to the

one used in the MCTF extension of H.263++ [46], but applied to the 2D wavelet transformed frames.

This works on a 16x16 macroblock (MB) basis and motion compensation is switch off. To get the

best coding performances, macroblock sizes should be adapted according to the 2D spatial subband

scale (as discussed in Sec. 3.4.5). For simplicity, however, a fixed macroblock size implementation

has been selected, which is largely enough for the proof of concept. The encoder chooses for each

macroblock the best type of step in a rate-distortion sense, i.e. minimizing the R-D Lagrangian

cost of the high band that issues from the ladder scheme. Haar-type and void-type are the two

candidates to encode each macroblock. For simplicity, there are no further MBs subdivisions for

a finer edge adaptation, hence non-linear adaptive partitions are associated to MBs of size 16x16.

Temporal transform breakpoints are estimated at each decomposition level depending on the “low”

frequency subband obtained at the lower level. All subband macroblocks generated by the temporal

wavelet transform are encoded in a wavelet intra-frame fashion. For this purpose, a block by block

raster scanning is used. All coded subbands are quantized using a dead-zone uniform quantizer. The

same quantization step-size is used for all them. Finally, the whole generated information is encoded

with Huffman codes. GOPs of size 32 are used in our experiments (up to five wavelet decomposition

levels), shorter length wavelet transforms are provided by the temporal adaptation introduced by

Intra MBs (void-type lifting steps).
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3.6 Results: Performance of Local Adaptation of Temporal

Transform’s Length

The same sequence model used to derive our theoretical results is used to generate our validating

results. A natural video sequence with similar motion characteristics as the ones theoretically

studied is also taken into account. This corresponds to the first GOP of table tennis, where some

piecewise-smooth objects are moving on a static scene.

3.6.1 A Synthetic Scene: The Moving Horizon Model.

The Moving Horizon sequence has been generated using the function of Fig. 3.8. Two versions of

the sequence described in Fig. 3.9 have been obtained. One intends to test which is the smallest

gain one may obtain using temporal adaptivity to code a translational edge. In effect, for a static

scene, classic video decompositions and temporally adaptive decompositions should behave almost

the same (a slight difference could be found due to side information of the adaptive case). Hence, a

very small motion is tested: the horizon model moves with a (1, 1) displacement vector.

In order to underline the influence of motion speed into R-D performance of temporal adaptivity,

a faster moving version of the horizon is also used. In effect, a (5, 5) displacement vector is considered

too. Fig. 3.17 depicts the overall R-D performance gain introduced by temporal adaptivity. The left
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Figure 3.17: R-D performance comparison between the fixed subband decomposition scheme and

the temporally adaptive. Left: (1,1) displacement vector speed. Right: (5,5) displacement vector

speed.

graphic of Fig. 3.17 compares the different R-D performance in the slow motion case, whereas the

right graphic illustrates the fast motion case. Both graphs evidence what was already expected: the

higher the motion is, the more beneficial locally temporal adaptive wavelet decompositions become.

To have a better idea of adaptivity contribution frame by frame, a comparison of the temporal

distortion evolution for a determined coding rate is shown in Fig. 3.18. This shows that the im-

provement of performance due to adaptivity is constant in average and affects the whole sequence.

The overall gain associated to the use of adaptive transforms can also be evidenced if one visu-

ally examines the obtained residual error after signal compression (see Fig. 3.19). In fact, fixed

dyadic temporal wavelet decomposition generates a much higher number of coefficients. In classic

3D wavelet decomposition, more coefficients are used to describe each of the salient moving signal

structures (edges). A higher amount of quantization noise is, thus, introduced during the non-linear



3.6. Results: Performance of Local Adaptation of Temporal Transform’s Length47

10 20 30 40 50 60 70 80 90
40

45

50

55

P
S

N
R

 (d
B

s)

frame #

Temporal comparison of performance using adaptivity and without.
Synthetic sequence with (1,1) speed.

Adaptive (with Intra) @ 349.72 kbps
without adaptivity @ 356.5 kbps

10 20 30 40 50 60 70 80 90

34

36

38

40

42

44

46

48

50

52

54

P
S

N
R

 (d
B

s)
frame #

Temporal comparison of performance using adaptivity and without.
Synthetic sequence with (5,5) speed.

Adaptive (with Intra) @ 412 kbps
without adaptivity @ 435.33 kbps

Figure 3.18: Temporal performance comparison between the fixed subband decomposition scheme

and the temporally adaptive. Left: (1,1) displacement vector speed. Right: (5,5) displacement

vector speed.
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Figure 3.19: Visual comparison between the residual error after compression of the 30th frame

of the synthetic sequence Horizon (see left picture for the original frame) with speed vector of

(5,5) pixels. In the middle, we see the residual signal that corresponds to the fixed decomposition

structure and compression rate of 435.3 kbps. At the right, the residual generated by the adaptive

scheme at 412 kbps can be seen.
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approximation stage of compression. In non-linear wavelet approximations of piecewise-smooth sig-

nals, quantization noise produces the well known ringing effect. The reader will easily see in Fig. 3.19

that the amount of residual signal in the temporally adaptive decomposition is significantly lowered.

3.6.2 A Natural Scene: Table Tennis

Let us now check the behavior of the temporally adaptive approach with a scene having the ingre-

dients of the synthetic videos analyzed above (moving edges) but with a natural origin. Fig. 3.20

illustrates a fraction of the natural sequence used for the tests. The selected frames correspond to

an equally spaced sample of the first 32 frames GOP of table tennis. The example is composed of a

fixed background where smooth objects move at different speeds. The ball moves fast while the arm

has a moderate speed. Akin to the synthetic example, the use of temporal adaptivity introduces an
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Figure 3.20: Sample of the table tennis sequence. Objects are delimited by smooth curves moving

through time. The temporal sequence is from left to right and from up down.

overall R-D performance gain. However, the higher complexity of the signal (i.e. motion and edge

geometry are much more diverse) and the lower contrast between regions make the gains, in this

case, less significant (see Fig. 3.21). In the frame by frame evolution of PSNR (Fig. 3.21), we see a

significant distortion reductions for certain frames. Notice also that, even if many frames exhibit a

very similar distortion, the compression rate is 23 kbps smaller in the adaptive case.

Distortion decrease has an impact in the reduction of spatio-temporal ringing as depicted by

Fig. 3.22. In it, both approaches (fixed dyadic and adaptive) are compared for the 25th frame. For

a clearer visual analysis, the reader may see in Fig. 3.23 the error introduced by both approaches

during compression. The ringing effect and the lack of edges preservation are much more evident

when the fixed length dyadic wavelet decomposition has been used. Spatio-temporal ringing is re-

duced in the adaptive case.

The simulations and the generation of results for this section, have show that the average signal

complexity of natural scenes makes somehow more difficult to achieve improvements in the R-D

performance by means of using our particular adaptive transform implementation. In fact, there
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Figure 3.21: left: R-D performance comparison between the fixed subband decomposition scheme

and the temporally adaptive for the first 32 frames GOP of the sequence Table tennis (CIF format).

right: Temporal performance comparison between the fixed subband decomposition scheme and the

temporally adaptive.

Figure 3.22: Visual comparison between both versions of the 25th frame of the first GOP of the

table tennis sequence (left: original frame, middle: non-adaptive, right: adaptive). This example

illustrates how in the most evident cases, the contours of moving objects are better preserved when

adaptivity is in use. Ringing is lighter around areas nearby contours.

Figure 3.23: Visual comparison between the absolut value of the residual error after compression of

the 25th frame of the Table tennis sequence. On the left, we see the residual signal that corresponds

to the fixed decomposition structure and compression rate of 804.2 kbps. On the right, the residual

generated by the adaptive scheme at 781.98 kbps can be seen.
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is an additional factor that may help understanding this behavior and how to avoid it. The al-

gorithm used to implement the temporal adaptive transform is based on an adaptive version of

the lifting scheme. As discussed previously, this selects, based on a R-D criteria, the best of the

steps of Sec. 3.5 for every spatial location (each macroblock in our basic implementation). The

generation of the lifted wavelets and the emplacement of lifting splitting steps are done in a level

by level fashion. Like in the classic lifting scheme, once an adaptive lifted wavelet level has been

generated, the next wavelet decomposition level is obtained by applying again the lifting procedure

to the result issued from the previous level. In our case, however, the preliminary splittings from a

previous level may pose some problem to the subsequent decomposition levels. The fact that each

lifting decomposition level is optimized in a greedy fashion without taking into account the rest

of levels implies that the final solution, in most of the cases, is suboptimal. An additional point

to consider, regarding sub-optimality, is that R-D optimization is based on the heuristic that only

R-D performance of the high bands is taken into account. As seen with the practical examples,

improvements due to adaptivity may be sufficiently good enough such that, despite the suboptimal

algorithm, a global increase of performance is registered. However, in the case of many natural

scenes, we have found this sub-optimality to be an important handicap. As suggested in Sec. 3.4.5,

a solution to the suboptimal implementation issue is to formulate the problem using a more com-

plex and computationally expensive dynamic programing approach [148]. To find the best solution,

a combinatorial problem that takes into account all possibilities and all subband levels should be

formulated. Otherwise, a prune-join binary tree based algorithm may find a good solution with a

reasonable computational cost [163]. Arbitrary length transforms may be obtained by introducing

frame-adaptive lifting schemes [70].

3.7 Adapting Wavelet Expansions in MCTF Video Coding

3.7.1 Is MC the Solution for Video Representations?

The use of temporal adaptivity in 3D wavelet video coding has been discussed until here. We have

underlined the importance of exploiting geometry in the representation of signal manifolds like those

generated by moving edges in a video sequence. In this sense, motion compensation based techniques

have proved to be successful for video representation. As discussed in Chap. 2, MC is intended to

capture video geometric changes through time. Current researches aim to combine the advantages

of linear temporal transforms and efficient motion compensation. A promising scheme for exploiting

successfully temporal redundancy is based on motion-compensated temporal wavelets implemented

in the lifting scheme.

If we assume that, as far as there is motion to track, the temporal motion-compensated wavelet

transform is perfectly aligned with this (even if this may be seen as an ideal situation), then fixed

length temporal subband representations (as used for video coding in [73]) are suboptimal. This is

due to the fact that abrupt transitions in the signal (e.g. sharp termination of a motion trajectory)

may generate many non-zero wavelet coefficients. Hence, here arises again the need for temporally

adaptive partitions for the wavelet based representation. The remaining of this chapter discusses

the use of adaptive temporal representations within the well known MCTF framework.

3.7.2 Motion Compensated Video and Piecewise-x Signals

Sec. 2.5.2 discusses how motion oriented filtering can drastically reduce the number of significant

wavelet coefficients generated in the transform. The effect of including motion compensation, from

the transformation point of view, is to smooth out the signal that is going to be transformed with
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the temporal wavelet. As long as the motion of the scene can be accurately estimated, the temporal

signal processed by the wavelet transform will be smooth or even constant if no local temporal

illumination changes occur in the scene. When motion cannot be correctly estimated, or simply

when there is an occlusion or an appearing object, the signal seen by the wavelet transform presents

a step in amplitude. This step issues from the mismatch between the best signal sample candidate for

prediction found by MC and the signal sample being predicted. Again, we can associate the temporal

behavior of each of the trajectories in MC video with the piecewise-smooth model. In Sec. 3.3.2 we

reviewed the rate distortion consequences of that with regard to wavelet representations as well as

the benefits of oracle based representation methods.

To address the needed adaptivity, we consider, as in Sec. 3.5 the use of a lifting wavelet based

approach. More particularly, the frame-adaptive lifting scheme proposed in [70] (see Sec. 3.8) is

modified by introducing an additional lifting mode (Intra mode) in order to allow a more adaptive,

oracle like, method. The length of wavelet transforms (i.e. the number of decomposition subbands)

is adapted to cover smooth areas while avoiding wavelet kernels to cross edges. As in the previous

case where MC was not used, this transform adaptivity is, in some sense, a Best Basis (see for

example the works by Ramchandran [153, 154]). However, unlike in the work by Ramchandran,

we are luckily not constrained here by the rigid structure of simply pruned binary trees. This

non-dyadic flexibility is what allows to obtain significantly better results than simple wavelet based

representations.

3.8 Intra-Adaptive Motion-Compensated Lifted Wavelet Trans-

forms

Our analysis and results of Sec. 3.9 are based on the multi-hypothesis, frame-adaptive motion com-

pensated lifting scheme proposed in [70, 75] enhanced with Intra-adaptive steps [47]. The Multi-

hypothesis frame-adaptive scheme already introduces some temporal adaptivity allowing a free se-

lection of reference frames for MC within a GOP. Moreover, it allows an adaptive selection of the

most suitable lifting step (Haar or 5/3) for a minimum distortion at a given rate. Nevertheless, it

still forces a fixed number of multi-scale subbands in the MC temporal wavelet decomposition of the

signal and limits temporal adaptation dealing with temporal discontinuities and motion misalign-

ments as discussed in Sec. 3.7. In the following we review the scheme presented in [70] and [75], we

discuss its implicit temporally adaptive properties and propose the inclusion of Intra macroblocks

as an additional mode within the lifting scheme in order to allow further flexibility.

3.8.1 Frame-adaptive Motion-Compensated Lifting Scheme

Frame-adaptive MC Lifting schemes are a very flexible approach that allows a representation to be

adapted (up to a certain degree) to the signal. It helps to overcome occlusion effects, changes of

scene or to palliate the effects of deficient motion compensation at fine scales. Figs. 3.24 and 3.25

show the way frame adaptivity is implemented in the lifting scheme for the Haar and 5/3 wavelet

cases. As it can be seen, in this two particular examples, the fixed and classical structure of the

lifting scheme is broken such that for every instance of this, every even frame in the GOP can be

used to select the best prediction signals. The update step is performed accordingly and following

the complementary scheme to the one determined in the prediction step.
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Figure 3.24: Example of the first decomposition level of the Haar transform with frame-adaptive

motion-compensated lifting steps. The frame s2k+2 is used to predict frame s2k+1
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Figure 3.25: Example of the first decomposition level of the 5/3 transform with frame-adaptive

motion-compensated lifting steps. The frames s2k and s2k+4 are used to predict frame s2k+1
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3.8.2 Intra-Adaptive Scheme

The frame-adaptive scheme does not change the default number of wavelet decomposition subbands

nor considers alternative methods for MC at a particular location. Several works have introduced

in MC wavelet based video coding ([128, 177]) the so called intra refresh (widely used in classic

predictive video coding approaches [7]). See also a recent work published as a proposal for the new

scalable video coding standard [157].

In the framework of MC lifted wavelets, intra refresh corresponds to the adaptive insertion of

void lifting steps. These do not perform further temporal filtering on the signal. They implement

the necessary breakpoints in the wavelet decomposition for an efficient R-D signal approximation

(as discussed in Sec. 3.7 and Sec. 3.3.2). This special “lifting” mode is depicted in Fig. 3.16. With a

proper selection of this lifting mode, an approximation to the desired temporal wavelet decomposition

with a local adaptation of the number of subbands is obtained.

Due to the absence of prediction and update steps, the scaling factors of the output signals have

been modified. We adapt the output signals hk to the fixed quantizer step size used for all subbands.

Regarding the low band lk, the scaling by
√

2 adapts the dynamic range of the signal to fit that of

the next scale level to be further decomposed.

Both frame- and intra-adaptivity are suitable to handle discontinuities of motion-trajectories in

order to achieve an optimal R-D behavior (see Sec. 3.3.2). If suitable reference frames are available,

frame-adaptivity will be the best choice in order to reduce the energy in the detail subbands. But if

suitable reference pictures are out of reach, the intra mode is required. Moreover, the final level of

the dyadic decomposition offers only one reference picture. In that case, the intra mode is the sole

alternative.

3.8.3 Toy Example of an Intra-Adaptive Decomposition

Let us consider a simple example in here. Fig. 3.26 depicts the adapted transform that would

better suit a piecewise-constant signal for an optimal R-D at middle and high rates. The adapted

configuration of the ladder steps depends on the R-D trade-off, where coefficients coding and side

information are taken into account. If the required rate is sufficiently low, the best configuration

may simply turn out to be a simple linear wavelet transform. In effect, for very low bit-rates, the

average approximation of the whole signal becomes more efficient in terms of R-D than using oracle

information.

3.9 Results of Intra-Adaptivity in MCTF

In this section, we analyse the effect of introducing local spatio-temporal adaptivity into the lifting

scheme used for motion compensated temporal filtering. This adaptivity is introduced in practice by

inserting Intra macroblocks in the lifting scheme (as described in Sec. 3.8). We evaluate the benefits

of using this temporal adaptivity and compare improvements in terms of R-D supplied by the use of

Intra MBs in the lifting scheme. Tests are performed using four different test sequences in order to

supply different signal characteristics to the coder. These sequences are in QCIF format (176x144

at 30 Hz) and are identified as cnn, football, foreman and table tennis. Furthermore, results are

presented as well to illustrate the statistics on the usage and selection of Intra Macro-Blocks by the

coding algorithm.
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Figure 3.26: Decomposition example for a piecewise-constant function.
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3.9.1 The Coding Scheme

The coding scheme used to test the intra-adaptive approach is, again, a MCTF extension of H.263++

[70, 72, 75]. Unlike in Sec. 3.5.1, no previous wavelet transform has been applied on frames, mo-

tion is taken into account and frame-adaptive lifting steps are used. The encoder chooses for each

macroblock the best type of lifting scheme in a rate-distortion sense. This selection is carried out

macroblock by macroblock minimizing the Lagrangian costs of the high band of the lifting scheme.

Haar-, 5/3-, and void-type structures are used as candidates to encode each macroblock. Due to

the flexibility of the frame adaptive scheme, M = 1 or M = 2 reference frames may be used by the

algorithm to code each macroblock. Since the goal here is the experimental verification of the refer-

enced theoretical concept, there is no further subdivision of macroblocks for motion compensation

purposes. Motion vectors are obtained by block-based rate-constrained motion estimation jointly

optimized with the lifting mode selection. The motion information is estimated at each decomposi-

tion level depending on the results of the lower level by using half-pel accurate motion compensation.

All subband macroblocks generated by the temporal wavelet transform are encoded with the H.263

8x8 DCT codec. All intra-frame coded subbands are quantized using a uniform dead-zone quantizer

with the same quantization step size. Huffman codes are used for entropy coding and motion vec-

tors are predicted from spatial neighbors. GOPs of size 32 are used in our experiments (up to five

decomposition levels). Shorter wavelet transforms are provided by the intra macroblocks.

The reader must notice that in the present MC lifting approach, lifting modes are decided level

by level without taking into account the interaction among them. Akin to the previously studied

case of adaptive 3D Wavelet video representations, this greedy aspect of the algorithm induces sub-

optimality in the result. As suggested in Sec. 3.4.5, a solution to the suboptimal implementation

issue is to formulate the problem using a more complex and computationally expensive dynamic

programing approach [148]. To find the best solution, a combinatorial problem that takes into

account all possibilities and all subband levels should be formulated.

3.9.2 Global R-D Performance of Local Temporal Transform Length Adap-

tation

The usage of shorter instances of the lifted wavelet scheme than the maximum allowed GOP length of

32 commonly contributes locally to areas where object trajectories are shorter than 32 frames. Hence,

the benefit is going to be of local nature when the particular characteristics of the sequence require

it. Fig. 3.27 shows how using this additional coding mode in the MC lifting scheme, introduces a

moderate overall gain to the whole R-D performance of a coded sequence. Average improvements

range from 0.2 to 0.5 dBs in middle and low motion sequences with some change of scenes and local

fast motion. However, in highly moving sequences, like football, the improvement of introducing the

Intra adaptation through the use of Intra MBs is of higher relevance as new information is efficiently

coded.

3.9.3 R-D Performance of Local Temporal Transform Length Adaptation

In Fig. 3.28, the PSNR of the adaptive wavelet decomposition length is depicted over time. For cnn,

table tennis or even foreman, a very strong panning occurs at a particular moment of the sequence.

Due to the strong motion appearing in the sequence football a significant overall improvement can

be observed for each frame in the upper right chart of Fig. 3.28.

When using exclusively one reference frame for the prediction/update steps, the use of the Intra-

adaptive scheme contributes the achieve a slightly better global R-D improvement with respect to



56 Chapter 3. Introducing Adaptivity in Wavelet Video Codecs

0 100 200 300 400 500 600 700 800
33

34

35

36

37

38

39

40

41

42

kbps

P
S

N
R

 (d
B

s)

Compare Intra MB Performance in cnn QCIF (448 frames).

GOP Adaptive (with Intra)
without Intra

200 400 600 800 1000 1200 1400
26

28

30

32

34

36

38

kbps

P
S

N
R

 (d
B

s)

Compare Intra MB Performance in football QCIF (128 frames).

GOP Adaptive (with Intra)

without Intra

100 200 300 400 500 600 700 800 900
31

33

35

37

39

41

43

kbps

P
S

N
R

 (d
B

s)

Compare Intra MB Performance in foreman QCIF (288 frames).

GOP Adaptive (with Intra)
without Intra

100 200 300 400 500 600 700 800
32

34

36

38

40

42

44

kbps

Y
P

S
N

R
 (d

B
s)

Compare Intra MB Performance in table tennis QCIF (288 frames).

GOP Adaptive (with Intra)
without Intra

Figure 3.27: Global sequence R-D comparison of the improvement due to GOP Adaptivity.
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Figure 3.28: Temporal evolution of the PSNR and comparison of the improvement due to GOP

Adaptivity.
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Figure 3.29: Overall sequence R-D comparison of the improvement due to GOP Adaptivity using

just one reference frame.

the non Intra-adaptive

In the case where only one reference frame is used for the prediction/update steps, Intra-adaptive

R-D improvement is slightly more significant than when two reference frames are allowed. This is

illustrated in Fig. 3.29 by the coding R-D performance of the sequence cnn.

3.9.4 R-D Performance and Length Adaptation on a Particular GOP

Let us take a GOP where relevant changes appear in the sequence signal and the MC lifting scheme

can not efficiently represent them. R-D gain can be as high as 1.0 dB: see the upper left chart in

Fig. 3.30 for sequence cnn, the upper right chart for football and the lower right for table tennis.

When only one reference frame is used, Intra-adaptive R-D improvement is slightly more signif-

icant, as depicted by Fig. 3.31.

3.9.5 Intra Macro-Blocks and Length Adaptation

Figs. 3.32 and 3.33 show the quantitative usage of Intra Macroblocks to split lifting steps within

different contexts. Fig. 3.32 illustrates the proportions of different kinds of prediction modes in the

lifting steps. Each bar represents the total of Macroblocks used in each GOP of 32 frames (the

fixed number of Intra coded MBs always present in a GOP and commonly used to code the lowest

frequency band is not taken into account). In red we observe the percentage of 5/3 wavelet multi-

reference prediction modes. In blue appear the usage of Haar wavelet single reference prediction

mode. Finally in light green appear the proportion of Intra coded MBs used to locally break

particular lifting steps that are not interesting from a R-D point of view. As expected, the use of

Intra MBs appears coherent with the temporal scene changes or very fast moving sequence periods.

Fig. 3.33 shows the average frequency of intra MBs at each decomposition level. The index below

the column indicates the decomposition level in concordance to the scale of its associated wavelet

in the case where non-adaptive lifting steps are used. For dyadic wavelets, the basis function scale

evolves according to the level j as 2−j for j ∈ {1, 2, 3, 4, 5}. Lifting steps are split when middle

or short length wavelet transforms are efficient. Intra MBs are more frequently allocated at low

decomposition levels (1, 2 or 3). At high decomposition levels, there is a higher probability that the

frame-adaptive scheme finds good reference frames.
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Figure 3.30: Particular GOP R-D comparison of the improvement due to GOP Adaptivity.
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Figure 3.31: 4th GOP R-D comparison of the improvement due to GOP Adaptivity using only

one reference frame.
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Figure 3.32: Usage of Intra MBs through the different GOPs, GOP length Adaptivity is mainly

present in highly moving scenes where MC performs bad and in scene shots.
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scale of details that it represents. The graphic shows the descending trend in the splitting frequency

of the temporal lifting scheme. (Left) All four test sequences are considered to generate the statistic.

(Right) This statistic does not contain the sequence football
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However, since football is a highly moving sequence, that requires a higher re-injection of the

information than other sequences and, thus, it presents a very different kind of motion with respect

to other test sequences, we show in Fig. 3.33 the same statistic presented in Fig. 3.33 but without

taking into account football. This shows that for slower sequences, Intra MBs are concentrated in

lower subbands. Hence, longer wavelet transforms are used.

3.9.6 Visual Comparison and Length Adaptation

Finally, a visual comparison between the normally coded sequences with the scheme proposed in

[70, 75] and the wavelet decomposition depth adaptive is presented in Fig. 3.34. The most relevant,

in addition to the numerical improvements in the previous R-D results, is the visual noise reduction

evidenced in the pictures. Noise reduction is present in all four sequences. This noise reduction is due

to the fact that the quantization error introduced at big scale wavelet subbands is not spread over

all the GOP when the wavelet decomposition is allowed to be split in less deeper decompositions.

Indeed, Intra-adaptivity allows for a higher energy compaction in the signal approximation. Hence,

signal structures are represented by fewer wavelet coefficients which reduces the introduction of

quantization noise in relevant signal components. Moreover, the amount of rate spared thanks

to the new lifting mode can be invested in other critical macroblocks. In some cases the noise

reduction appears as a relevant increase of the reconstruction detail of objects appearing in the

sequence. Notice, for instance, the sharper and clearer appearance of Yeltsin in the cnn sequence,

and the lower blocking effect in the player t-shirt of football sequence.

3.10 Conclusions

The use of temporal adaptivity in subband video coding decompositions and motion-compensated

temporal transform coding of video signals has been discussed in this chapter.

Although the main major signal division for its processing is the GOP of K pictures, we do not

impose a fixed number of temporal decomposition subbands. Our approach is such that GOPs of

K pictures are adaptively broken in smaller ones in a spatially local fashion. Like this, the number

of wavelet decomposition subbands in the temporal transform is adapted in space and time. Local

signal breakpoints are coded independently while wavelet kernels are reserved for those areas of the

signal where prediction can be efficiently made using the classic lifting and the MC lifting schemes.

In this chapter, video has been modeled as a 3D signal with several particular characteristics.

Based on the fact that natural video signals are sequences of natural images, video can be seen as

a 3D piecewise-smooth signal made of piecewise-smooth regions that have certain motions through

time. Based on this model, we refer to related theoretical work and discuss local spatio-temporal

adaptations of MCTF schemes for video coding. A theoretical R-D analysis has also been done for

the 3D transform based video coding case. These have evidenced the need to introduce adaptivity

in the signal transform by means of non-linear signal decompositions. Experimental results have

validated the formulated assumptions and our theoretical analysis.

Finally, we would like to underline the following remark: Experimental results have also empir-

ically revealed that present implementations of the adaptive wavelet representations based on the

lifting scheme present a serious suboptimality due to their level by level (and even MB by MB)

optimization strategy. Given the high non-linearity , the optimization problem should be posed

from a global combinatorial point of view (mainly for the case of adaptive MCTF, in adaptive 3D

Wavelet video coding tree based techniques are possible) in order to obtain optimal results in signal

representation and compression. However, the practical feasibility of this is not clear due to the
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Figure 3.34: Visual quality improvement of selected frames in the test sequences. Left: no GOP

Adaptivity. Right: With GOP Adaptivity. Rows from top to bottom: cnn, football, foreman,

table tennis. The respective bit rates are the following (for each sequence, the first indicated rate

corresponds to the non Intra-adaptive case): cnn 126.21 kbps and 124.637 kbps, football: 1093 kbps

and 1007 kbps, foreman: both at 246 kbps, table: 151.38 kbps and 150.92 kbps
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large number of dimensions involved in the combinatorial optimization.

In this chapter, we have observed the importance of accurate temporal geometry modeling for

efficient video coding. In video signals, spatial geometry is very relevant as well. However, few video

representation approaches exploit this fact. Accurate video models should take this into account,

such that spatial geometry and its associated temporal motion are jointly represented. This is

not an easy task, moreover new unexplored techniques relaying on the use of over-complete bases

are probably required. In the next chapters, we pave the way toward sparse and geometry adapted

video representations through the study of highly non-linear algorithms with redundant dictionaries,

image decompositions on over-complete dictionaries and their application to video representations.
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Chapter 4

Sparse Representations and

Approximations on Redundant

Dictionaries

4.1 Introduction

In many applications, such as compression, denoising or source separation, one often seeks an effi-

cient representation or approximation of a signal f by means of a linear expansion into a possibly

overcomplete family of functions:

f̂ =
∑

γ∈Γ

bγgγ , (4.1)

where Γ is a set of functions with cardinality m and Γ ⊂ Ω, where Ω is the set of all basic functions

composing the dictionary∗ D = {gγ : γ ∈ Ω}, bγ 6= 0 ∀γ ∈ Γ, and where f̂ = f for the case of exact

representations. Therefore, f̂ ∈ span (gγ , γ ∈ Γ). In this chapter, f is assumed to be such that

f ∈ H, where H is a Hilbert Space (in this work, H is assumed such that H ≡ R
N ).

In this setting, efficiency is often characterized by sparseness of the associated series of coefficients

(i.e. the cardinality of Γ). The criterion of sparseness has been studied for a long time and in

the last few years has become popular in the signal processing community (see [54, 55, 175, 176],

among other). This is because sparseness, concerning the representation or approximation of a given

signal, reflects the capacity of efficiently modeling and extracting the main structural components

of a given signal f . Efficient signals modeling, which is certainly synonymous of energy compaction

in the representation, supplies to many different applications the basics for their working principles.

Let us, here, shortly discuss the importance of sparse representations and approximations for some

applications:

• Compression: Although not exclusively, efficient representation of signals by sparse approxi-

mations contributes to achieve good compression performances (see for example [8, 66, 141]).

Using few terms in signal approximation is, up to some degree, related with efficient signal

modeling and dimensionality reduction. In signal compression, one searches for good signal

∗In this thesis a dictionary is understood as a generic pool of functions (or atoms), containing all available waveforms

for representing signals based on the model described in Eq. (4.1).
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models which are cheap to represent in terms of bits. Typical models based on the superposi-

tion of waveforms (i.e. Eq. (4.1)), require the encoding of the set of coefficients bγ , γ ∈ Γ and

the set of basis function indexes Γ. Intuitively there is no doubt that the fewer the coefficients,

the cheaper to code them. However, a very critical point in signal compression is the coding

cost of Γ. This may limit, up to some degree, the possible benefits of sparse signal approxi-

mations in compression. The cost of coding Γ, apart from its size, is extremely dependent on

the nature and structure of the dictionary in use. Indeed, a very sparse signal model, where

the appropriate set of functions Γ is very expensive to code, may be, simply, less efficient in

compression than other less sparse approximations, where a simpler dictionary is used. For a

given dictionary D, one will be normally interested in having the sparsest representation pos-

sible for compression purposes. However, to ensure coding efficiency, special attention must

be taken when selecting the dictionary. Such selection must be done in order to maximize

sparsity, while keeping a good compromise with the coding cost of Γ.

• Denoising and Restoration: Sparse approximations using appropriate dictionaries are a pow-

erful tool to identify the primitives necessary to represent the main structures underlaying

a noisy signal. Efficient energy compaction enables to separate most of the noise from the

restored signal (e.g. [96, 97]).

• Source Separation: A challenging problem is the one intending to separate two or more sources

from one or several mixtures. Assuming the absence of noise, the use of sparse representations

may help finding a representation of the mixtures where sources can be easily identified and

separated. If noise is considered, then the problem turns into that of sparse approximations

(e.g. see [167, 190]), combining at the same time, source separation and signal restoration.

The reader may have noticed that an explicit difference is made between representations and

approximations. This is because they imply different problems and consequently a particular for-

mulation is required for each one of these. In this Chapter different aspects on the use of redundant

dictionaries for sparse representations and approximations are reviewed. First, in Sec. 4.2 the def-

inition of sparse approximations and representations is reviewed. Next, the implications of using

redundant or non-redundant dictionaries are over-viewed in Sec. 4.3. Since dealing with redundant

dictionaries is a difficult task, Sec. 4.4 describes a set of sub-optimal (but necessary) tools and

algorithms to deal with those. However, for certain cases, these tools are able to supply optimal

solutions. Sections 4.5 and 4.6 describe the situations when optimal solutions can be ensured for a

subset of the algorithms described in Sec. 4.4. Finally conclusions are drawn in Sec. 4.7.

4.2 Sparse Representations & Sparse Approximations

The exact representation of a signal f on a dictionary of basis functions D corresponds to the

retrieval of the coefficients vector b ∈ R
Ω such that:

f = Db, (4.2)

where D is the synthesis matrix associated to the dictionary D, i.e. every column of D corresponds

to an atom in the dictionary. Hence, the sparsest representation of f on D corresponds to that

concerning the vector b with the smallest support:

arg min
b

‖b‖0 s.t. f = Db. (4.3)
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Signal approximations are those where a certain error is allowed between the represented signal

f̂ = Db and the original signal (f). Hence, the problem of finding the sparsest approximation of f

with a maximum of m terms, such that the error norm is minimized, can be stated as:

arg min
b

‖f − Db‖2
2 s.t. ‖b‖0 ≤ m. (4.4)

Despite Eq. (4.4), in some applications, one may prefer a slightly different formulation of the

approximation problem. Nevertheless the problem remains equivalent and subject to the same

limitations. Indeed, one may which to minimize the number of used coefficients given a maximum

distortion requirement:

arg min
b

‖b‖0 s.t. ‖f − Db‖2
2 ≤ η,

where η defines a positive real scalar value.

4.3 Non-Redundant vs Redundant Dictionaries

4.3.1 Non-Redundant Dictionaries

Representations based on non-redundant dictionaries are a particular case of Eq. (4.2). Indeed,

non-redundant means that the dictionary is composed by n functions if the space it spans has n

dimensions. Let us assume that a non-redundant dictionary, with synthesis matrix A (i.e. D = A

in Eq. (4.2)), is in use to represent f . Then,

f = Ab,

where A is a n× n matrix with all columns linearly independent. This defines a determined system

with equal number of equations and variables. Hence,

b = A−1f, (4.5)

where for orthonormal bases is such that A−1 = AT .

The fact of using a non-redundant dictionary simplifies extremely problems (4.3) and (4.4).

Concerning exact sparse representations, the only possible solution is given by Eq. (4.5). If f has

a sparse representation on the selected dictionary, then this will be found by the inverse of the

dictionary matrix. Another advantage of using non-redundant dictionaries, in particular for the

case of orthonormal basis, is the one that concerns the solution of (4.4). Even though it is a non-

linearly constraint problem, and even if (4.4) normally requires to solve a combinatorial problem,

there exists a closed form to solve it. This converts the combinatorial problem into a set of operations

with very few complexity. Indeed, Donoho and Johnstone showed in [56, 57] that Shrinkage (i.e.

coefficients hard thresholding) solves, for the case of orthonormal bases, the problem of Eq. (4.4).

4.3.2 Redundant Dictionaries

When redundant dictionaries are used, the synthesis matrix is no longer a square matrix. The

number of basis functions contained in the dictionary outnumbers the dimension of the Hilbert

space where f lives. Hence, for a given synthesis matrix B (i.e. D = B in Eq. (4.2)),

f = Bb (4.6)

where B is a n × d matrix where n < d.
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In such a case, b has no unique solution. Indeed, (4.6) forms an under-determined system of

equations with an infinite number of possible solutions. Hence, the problems stated in (4.3) and

(4.4) turn, forcedly, into combinatorial problems, which are NP-Hard.

The reason why it is worth considering redundant dictionaries, even if they give rise to very

complex problems to solve, is due to their capacity to supply sparse representations and approxi-

mations. Given a certain class of signals, one may define a dictionary of functions such that they

have a rich collection of shapes in order to adapt better to the characteristics of the signals to rep-

resent/approximate. Such kind of dictionaries are, often, redundant sets of functions able to supply

sparser solutions to Eq. (4.3) and (4.4).

Orthogonal Base Redundant Base

Vector to approximate

Vector to approximate

v2

v1

v2

v1

v3

Figure 4.1: Consider the approximation of a vector (in red) by a single vector of a base. In

the left example, the closest basis vector is v1. In the right example, the closest vector is v3. In

the overcomplete case, the approximation error for any vector is always equal or lower than in the

orthogonal case.

Fig. 4.1 depicts a graphical example where one searches to approximate the red vector by means

of a single vector from the basis. In the orthogonal case, the best approximation is achieved by

projecting the vector onto v1. In the redundant case, a much better approximation is achieved

by projecting the red vector onto v3. In a more general scope, one can prove that for any vector

belonging to R
2, the approximation error achieved by a one term approximation is always equal or

lower on the redundant base than in the orthogonal base.

4.4 Algorithmic Approaches for Sparse Representations and

Approximations on Redundant Dictionaries

Solving problem (4.3) and (4.4) for any signal and any redundant D has non-polynomial complexity

due to the non convexity of the `0 quasi-norm. Hence, different alternative approaches have been

proposed in order to make computationally solvable the retrieval of a solution for b. This solution,

however, in many cases may not be the sparsest one.

4.4.1 Method of Frames

An approach widely used to pick out a solution, among all those from an under-determined system,

is to constrain this to be the one with minimum `2-norm. This approach is known under the name of

Method of Frames (MOF) [38]. Geometrically speaking, MOF selects the solution that is closest to
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the origin. It solves exact representations of signals by means of a modified formulation of Eq. (4.3).

In this, the non convex `0 quasi-norm is substituted by a `2. Hence, the problem to solve is:

arg min
b

‖b‖2 s.t. f = Db. (4.7)

The great advantage of such a formulation is that it possesses a closed form solution. Indeed, there

is a matrix that linearly calculates the minimum-length solution to a system of linear equations.

This is the generalized inverse matrix or Moore-Penrose Pseudoinverse [25]:

b+ = D+f, (4.8)

where b+ denotes the minimum norm vector of coefficient needed to synthesize f using the synthesis

dictionary D and D+ = DT
(

DDT
)−1

.

However, MOF presents some problems in what concerns performance. As described in [28],

MOF is not sparsity preserving, which means that even if there exist a sparse representation of f ,

the MOF will, very likely, not recover it. Moreover, MOF is resolution limited due to the operator

DDT . Indeed, this operator determines the size of the sharper features that MOF is able to detect

in order to reconstruct signals [28].

4.4.2 Greedy algorithms

Matching Pursuits

Another way of retrieving a signal approximation or representation based on the model of Eq. (4.1)

is using the so called Matching Pursuit algorithm. Matching Pursuit (MP) was first introduced by

Mallat and Zhang [121, 122] as a greedy algorithm that decomposes any signal into a linear expansion

of waveforms taken from a redundant dictionary. These waveforms are iteratively chosen to best

match signal structures, producing typically a sub-optimal expansion. Vectors are selected one by

one from the dictionary, by means of optimizing the signal approximation (in terms of energy) at each

step. Even though the expansion is linear (see Eq. (4.1)), MP is a highly non-linear decomposition

algorithm.

Let us considering the previous definition of dictionary D. Consider a redundant dictionary D
where atoms belong to R

N , and with N linearly independent vectors. Let rkf be the residual of an

k term approximation of a given signal f ∈ R
N . A Matching Pursuit is an iterative algorithm that

sub-decomposes the residue rkf by projecting it on a vector of D that matches rkf at best.

If we consider r0f = f , at the first iteration MP will represent the signal as:

f = r0f = 〈f, gγ0
〉gγ0

+ r1f , (4.9)

where r1f is the residual vector after approximating r0f in the direction of gγ0
. Since r1f is

orthogonal to gγ0
, the module of f will be:

‖r0f‖2
2 = |〈r0f, gγ0

〉|22 + ‖r1f‖2
2 . (4.10)

As the term that must be minimized is the error ‖r1f‖,

‖r1f‖2
2 = ‖r0f‖2 − |〈r0f, gγ0

〉|2 , (4.11)

the gγ ∈ D to be chosen is the one that maximizes |〈r0f, gγ0
〉|, or, generalizing, |〈rkf, gγk

〉|. This

is,

|〈rkf, gγk
〉| = sup

γ∈Ω
|〈rkf, gγ〉| . (4.12)
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From (4.9), one easily sees by induction that the N term decomposition of f is given by:

f =
K−1
∑

k=0

〈rkf, gγk
〉gγk

+ rKf (4.13)

and with the same principle we can also deduce from (4.10) that the L2 norm of the signal f is:

‖f‖2
=

K−1
∑

k=0

|〈rkf, gγk
〉|2 + ‖rKf‖2

, (4.14)

where ‖rKf‖, when dealing with finite dimension signals, converges exponentially to 0 when K tends

to infinity and the number of signal dimensions is finite (see [42] for a proof).

Orthogonal Matching Pursuits

Pure Matching Pursuits, with redundant dictionaries, normally needs an infinite number of iterations

to capture the whole energy of a signal. However, for any signal belonging to R
N a set of N linearly

independent atoms should be enough to represent it. This motivated a refinement of MP called

Orthogonal Matching Pursuit (OMP) [139]. In this, for every newly selected atom by the MP rule,

all expansion coefficients are recomputed such that the approximation error becomes orthogonal to

all the selected atoms (unlike MP, where only the last selected atom is orthogonal to the residual).

Weak General Matching Pursuits

In some cases it is not computationally possible to find the optimal solution for the atom search of

Eq. (4.12), and a suboptimal solution may be computed instead:

|〈rkf, gγk
〉| > α sup

γ∈Ω
|〈rkf, gγ〉| , (4.15)

where α∈(0, 1] is a sub-optimality factor that depends on the search method. This factor is α = 1

when a full search method is used. Sub-optimal search based MP approaches are known under the

name of Weak Matching Pursuit (Weak-MP). The reader is referred to [173] for a detailed study.

In [64, 65], a weak form of MP based on Genetic Algorithms [102] is used to handle the extremely

big size of the dictionary and the impossibility to fully browse it at every iteration.

4.4.3 Linear Programing: Basis Pursuit

Chen, Donoho and Saunders [28] proposed a new paradigm in an attempt to solve sparse exact

representations. In order to avoid the non-convexity of Eq. (4.3) and the excessive energy spreading

of Eq. (4.7), they proposed to minimize the `1 norm of the coefficients:

arg min
b

‖b‖1 s.t. f = Db. (4.16)

This paradigm shows to offer, in many occasions, a much better behavior than Eq. (4.7) for the

retrieval of sparse representations. It is even able to find, in some cases, the same solution as

Eq. (4.3). The problem stated in Eq. (4.16) can be solved using polynomial-time linear programming

approaches.
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4.4.4 Basis Pursuit Denoising: Quadratic Programing

Another instance of problem (4.4) is given by

(P0) arg min
b

‖f − Db‖2
2 + τ2 ‖b‖0 , (4.17)

where τ is a positive real value which acts as a threshold parameter to limit the number of non-zero

coefficients in b. This problem is sometimes called Subset Selection in statistics. One searches for

a sparse approximation of the signal f considering a trade-off between the error and the number of

elements that participate to the expansion.

A possible way of overcoming the NP complexity of P0 is to substitute the `0 quasi-norm with

the convex `1 norm. This relaxation leads to problem P1:

(P1) arg min
b

1

2
‖f − Db‖2

2 + γ ‖b‖1 , (4.18)

where γ is a positive real value used as a threshold to limit the maximum `1 norm of b. P1 is

the minimization of a convex functional that can be solved by classical Quadratic Programming

methods. This relaxation is similar to that leading to the definition of the Basis Pursuit principle

for the case of exact signal representation. The fact that this paradigm is called Basis Pursuit

Denoising can be explained because it was introduced to adapt BP to the case of noisy data (i.e. to

the approximation case) [28]. Note that if D is orthonormal the solution of P1 can be found by a

soft shrinkage of the coefficients [28, 57], while, if D is a union of orthonormal subdictionaries, the

problem can be solved recurring to the Block Coordinate Relaxation method [155], combined with

soft shrinkage faster than Quadratic Programming.

4.4.5 FOCUSS: A Re-Weighted Minimum Norm Algorithm

Another very interesting approach for solving exact representations is a variation of the MOF ap-

proach called FOCal Underdetermined System Solver (FOCUSS) [89]. This is a nonparametric,

iterative algorithm for finding localized solutions to undetermined problems with limited data. The

algorithm is iterative, and is composed of two main parts:

1. Retrieval of a low resolution estimate of the sparse signal by means of a simple MOF approach.

2. Pruning process of the first estimation using a generalized Affine Scaling Transformation

(AST). That is, an iterated solution is found by scaling the entries with the solution of previous

iterations.

A more formal description of the problem solved at every iteration k is the following:

arg min
b

∥

∥

∥
(Wak

Wpk
)
+

b
∥

∥

∥

2

2
s.t. f = Db,

where Wak
is a diagonal matrix which may contain some a priori, Wpk

is a diagonal matrix composed

by the weights obtained from the solution retrieved in the precedent algorithm iteration and (·)+

denotes the pseudo-inverse.

To solve one iteration of the problem, the procedure may be split in three steps:

Step 1: Wpk
= diag(bl

k−1)

Step 2: qk = (D Wak
Wpk

)
+

f

Step 3: bk = Wak
Wpk

qk,

(4.19)
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where l is an user defined parameter to modify the strength of the re-weighting feed-back. For the

particular choice of l = 1
2 , FOCUSS provides the solution to the Eq. (4.16), i.e. the same as Basis

Pursuit [40, 41].

For the first iteration, Wp0
is assumed to be the identity matrix.

If one interprets the weights Wpk
like some kind of a priori knowledge about the solution, then

an interpretation can be: the algorithm computes its own a priori information from iteration to

iteration.

4.4.6 FOCUSS “Denoising”

Like most of the other algorithms presented in here to solve under-determined systems, FOCUSS

has also an extension that tackles the situation of signals approximation. There are two main

approaches:

• One is based on the “denoising” version of the MOF approach, i.e. it is based on a Tikhonov

Regularization approach [89]:

arg min
b

1

2
‖f − Db‖2

2 + λ2
∥

∥

∥(Wak
Wpk

)
+

b
∥

∥

∥

2

2
.

• The other FOCUSS regularized approach is based on a simple truncation of the singular

value decomposition of the re-weighted dictionary (see Step 2 in the algorithm of Sec. 4.4.5)

[88, 89]. However this last approach performs the regularization assuming the signal under

approximation to be stationary.

As for the exact representation case, FOCUSS “denoising” supplies the solution to the Basis

Pursuit Denoising problem (Eq. (4.18)) when l = 1
2 in the computation of Wpk

[40, 41].

4.4.7 Use of Structured Dictionaries: Retrieval of a Best Orthogonal

Basis

For certain structured dictionaries, it is possible to develop specific decomposition schemes adapted

to the dictionary. Wavelet Packet and Local Cosine packets are well known examples of this kind

of dictionaries. Such dictionaries supply a long range of different orthogonal bases which may be

adaptively selected depending on some criteria. In [33] is proposed an algorithm to select the Best

Orthogonal Basis (BOB) within the collection of different bases. The performance of the algorithm

will depend on the signal to approximate. Indeed if the signal has a sparse orthogonal representation

BOB may work well. However, if this is not the case, then BOB will completely fail to find an efficient

representation.

4.5 Recovery of Exact Sparse Representations Using Redun-

dant Dictionaries

In this section, one finds a summary of recent theoretical results concerning the possibility for

Weak(α)-MP/OMP and BP [95, 175] to exactly recover a given linear combination of m linearly

independent atoms from a redundant dictionary D = {gj}j∈Ω. That is, if certain conditions on the

dictionary are satisfied, then the solutions found by Weak(α)-MP/OMP and BP will be also the

solutions to the problem of retrieving the sparsest exact representation (Eq. (4.3)).
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Γ is defined, here, as the optimal subset of Ω that indexes the m atoms of the sparse representation

(4.1) and Γ as the complement of Γ in Ω. Hence, DΓ contains only the linearly independent atoms

providing the exact sparsest signal representation of f and D = DΓ ∪DΓ. The dictionary matrix D

has size n × d, with d ≥ n, where n is the size of the input signal f and d = |Ω|.
Optimal atoms are not usually known in advance. Therefore, sufficient conditions for exact

recovery are based on the internal coherence of the dictionary. A measure of this coherence is given

by the cumulative coherence function [175], defined as follows:

µ1(m,D) , max
|Λ|=m

max
i∈Ω\Λ

∑

λ∈Λ

|〈gi, gλ〉| , (4.20)

where Λ ⊂ Ω has cardinality m. Notice that the measure known as coherence of a dictionary (µ) and

often used to characterize redundant dictionaries corresponds to the particular case of µ = µ1(1,D).

Furthermore µ1(m,D) ≤ mµ.

Given a signal f =
∑

γ∈Γ bγgγ , MP/OMP and BP will not necessarily recover the optimal set Γ.

The exact recovery of correct atoms will be only ensured if the following Exact Recovery Condition

[175] (also called Stability Condition (SC) [95] for MP) is satisfied:

sup
i/∈Γ

∥

∥D+
Γ gi

∥

∥

1
< 1, (4.21)

where (·)+ denotes the Moore-Penrose Pseudoinverse. In the case of Weak -MP [173], the right

hand side of (4.21) is simply replaced by α (see [95, 175]). This bound is indicative of the behavior

of general weak greedy algorithms and BP with an overcomplete dictionary and a sparse signal.

Eq. (4.21) implies that, in order to recover the optimal functions that expand the signal f , these

must be different enough from any other function of the dictionary not included in DΓ. As proved

in [95, 175, 176], an estimate based, exclusively, on the cumulative coherence holds:

Theorem 4.1 (Tropp [175],Gribonval and Vandergheynst [95]) Let µ1 be the cumulative coherence

function of D and m is a positive integer such that

µ1(m) + µ1(m − 1) < 1. (4.22)

Then, for any index set Γ of size at most m and any f ∈ span (gγ , γ ∈ Γ), Eq. (4.21) holds. This

is a sufficient condition for Basis Pursuit to recover the optimal representation of a (D,m)-sparse

signal f . Moreover, if α > µ1(m)/(1 − µ1(m − 1)), then Weak-MP picks up a correct atom g ∈ Γ

at each step.

It is important to stress that Theorem 4.1 provides a pessimistic bound. There are many cases

in which (4.22) is not respected but indeed MP or BP would find the sparsest solution.

4.6 Recovery of General Signals Using Redundant Dictio-

naries: Sparse Approximations

Akin to the exact representation case, finding a solution to (4.4), when overcomplete dictionaries are

used, may be rather difficult or even practically infeasible. Typically used sub-optimal algorithms,

like Matching Pursuit algorithms (Weak -MP [95]) or `1-norm Relaxation Algorithms (BPDN [28]),

do not necessarily compute the solution of problem (4.4). However, there exist particular situations

in which they succeed in recovering the “correct” solution, i.e. the set of atoms giving the sparsest

m-term approximation. Very important results have been found for the case where incoherent

dictionaries are used.
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Prior to reviewing the results introduced above, let us define a series of elements that will be

used in the remaining of the section:

• fopt
m is the best m-term approximant of f such that f opt

m = Dcopt where the support of copt is

smaller than or equal to a positive integer m.

• Given k ≥ 0, rk and fk are the residual and approximant generated by a greedy algorithm at

its nth iteration.

• Γm is the optimal set of m atoms that generate f opt
m . Often, for the sake of simplicity, this

will be referred as Γ.

• The projection of f over the atoms in a set Λ is called aΛ = DD+
Λf .

4.6.1 Greedy Algorithms: Weak-MP

Gribonval and Vandergheynst [95] extended the results of Tropp [175] for the particular case of

Orthogonal Matching Pursuit (OMP) to the general Weak -MP. Akin to the case of signal repre-

sentations, the main results consist in the sufficient conditions that guarantee that Weak -MP will

recover the optimal set of atoms that generate the best m-term approximant f opt
m . A result estab-

lishes also an upper bound on the decay of the residual energy in the approximation of a signal

that depends on the internal coherence of D. Moreover, a bound is found on how many “correct”

iterations can be performed by the greedy algorithm depending on the dictionary and the energy of

fopt
m .

Robustness

The sufficient conditions found in [95] that ensure that Weak -MP will recover the set of atoms that

compose the best m-term approximant are enounced in Theorem 4.2. First of all, it is necessary

that the optimal set Γm satisfies the Stability Condition [95]. If, in addition, some conditions are

satisfied concerning the remaining residual energy at the kth iteration (‖rk‖2
2) and the optimal

residual energy ‖ropt
m ‖2

2, then an additional atom belonging to Γm will be recovered. This condition,

called originally the General Recovery Condition in [175], was named, for the case of general Weak -

MP, the Robustness Condition in [95].

Theorem 4.2 (Gribonval & Vandergheynst [95]) Let {rk}k≥0 be a sequence of residuals computed

by General MP to approximate some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) ≤ 1,

let fopt
m =

∑

γ∈Γm
cγgγ be a best m-term approximation to f , and let Nm = Nm(f) be the smallest

integer such that

‖rNm
‖2
2 ≤

∥

∥ropt
m

∥

∥

2

2
·
(

1 +
m · (1 − µ1(m − 1))

(1 − µ1(m − 1) − µ1(m))
2

)

. (4.23)

Then, for 1 ≤ k < Nm, General MP picks up a “correct” atom. If no best m-term approximant

exists, the same results are valid provided that ‖ropt
m ‖2 = ‖f − fopt

m ‖2 is replaced with ‖f − fopt
m ‖2 =

(1 + η) ‖ropt
m ‖2 in (4.23), where η ≥ 0 is a sub-optimality factor.

Rate of Convergence

In the following the main result concerning the exponential decay of the error energy bound, as

well as the bound on how many “correct” iterations can be performed by the greedy algorithm, is

reviewed.
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Theorem 4.3 (Gribonval & Vandergheynst [95]) Let {rk}k≥0 be a sequence of residuals computed

by General MP to approximate some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) ≤ 1,

we have that

‖rk‖2
2 −

∥

∥ropt
m

∥

∥

2

2
≤
(

1 − 1 − µ1(m − 1)

m

)n−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2

)

. (4.24)

Moreover, N1 ≤ 1, and for m ≥ 2:

• if ‖ropt
m ‖2

2 ≤ 3 ‖r1‖2
2 /m , then

2 ≤ Nm < 2 +
m

1 − µ1(m − 1)
· ln 3 · ‖r1‖2

2

m · ‖rm‖2
2

(4.25)

• else Nm ≤ 1.

4.6.2 Convex Relaxation of the Subset Selection Problem

In [176], the author studies the relation between the subset selection problem (4.17) and its convex

relaxation (4.18), and shows that any coefficient vector which minimizes Eq. (4.18) is supported

inside the optimal set of indexes if the following condition is satisfied:

Theorem 4.4 (Correlation Condition, Tropp [176]) Suppose that the maximum inner product be-

tween the residual signal and any atom satisfies the condition

‖D∗(f − aΛ)‖∞ < γ(1 − sup
i/∈Λ

‖D+
Λ gi‖1).

Then any coefficient vector b∗ minimizing the function (4.18) must satisfy support(b∗) ⊂ Λ .

In particular, the relationship between the trade-off parameters τ and γ is studied, proving that

if the coefficient vector b∗ minimizes the function (4.18) with threshold γ = τ/(1−supi/∈Γ

∥

∥D+
Γ gi

∥

∥

1
),

then the relaxation never selects a non optimal atom and the solution of the convex relaxation is

unique.

Theorem 4.5 (Tropp [176]) Suppose that the coefficient vector b∗ minimizes the function (4.18)

with threshold γ = τ/(1 − supi/∈Γ

∥

∥D+
Γ gi

∥

∥

1
). Then we have that:

1. the relaxation never selects a non optimal atom since support(b∗) ⊂ support(copt).

2. The solution of the convex relaxation is unique.

3. The following upper bound is valid:

‖copt − b∗‖∞ ≤
τ ·
∥

∥

∥(D∗
ΓDΓ)

−1
∥

∥

∥

∞,∞
1 − sup

i/∈Γ

‖D+
Γ gi‖1

. (4.26)

4. The support of b∗ contains every index j for which

|copt(j)| >
τ ·
∥

∥

∥(D∗
ΓDΓ)

−1
∥

∥

∥

∞,∞
1 − sup

i/∈Γ

‖D+
Γ gi‖1

. (4.27)

If the dictionary we are working with is orthonormal it follows that

sup
i/∈Γ

‖D+
Γ gi‖1 = 0 and

∥

∥

∥
(D∗

ΓDΓ)
−1
∥

∥

∥

∞,∞
= 1,

making the previous theorem to become much stronger. In particular we obtain that ‖copt−b∗‖∞ ≤
τ and |copt(j)| > τ [57, 176].
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4.7 Conclusions

In this chapter, an introduction to the general framework of signals representations and approxima-

tions through the use of redundant dictionaries is presented. The problematic of retrieving sparse

solutions to under-determined problems is discussed. The main tools used for this purpose have

been described. These tools are just relaxations of the initial sparse problems. Hence, they are not

guaranteed to find the optimal solution to sparse representations and approximations. Nevertheless

some recent results claim that if incoherent enough dictionaries are used, then the recovery of some

sparse solutions can be guaranteed.

In fact, from all these results, one infers that the use of incoherent dictionaries is very important

for the good behavior of greedy and `1-norm relaxation algorithms. However, experience seems to

teach us that highly redundant and often coherent dictionaries are more powerful for natural signals

approximation. In the next chapter, this problem is solved by carefully studying the relationship

between the signal and the dictionary, through the introduction of a priori information in the

decomposition process.



Chapter 5

Using a Priori Models in Sparse

Representations and

Approximations

5.1 Motivation

In general, the problem of recovering the sparsest signal approximation (or representation) over a

redundant dictionary is a NP-hard problem. However, this does not impair the possibility of solving

this problem when particular classes of dictionaries are used.

As demonstrated in [54, 95, 175, 176], and reviewed in Chapter 4, in order to ensure the good

behavior of algorithms like General Weak(α) Matching Pursuit (Weak -MP), BP and Basis Pursuit

Denoising (BPDN), dictionaries need to be incoherent enough. Under this main hypothesis, sufficient

conditions have been stated so that these methods are able to recover the atoms from the sparsest

m-term expansion of a signal.

However, experience and intuition dictate that good dictionaries for sparse approximations of

natural signals can be very redundant and, depending on the kind of signal structures to describe,

they may be highly coherent. This is a strong discrepancy between theory and practice.

In this chapter we explore a way of using more coherent dictionaries with Weak -MP and Basis

Pursuit (BP), while keeping the possibility of recovering the optimal solution. This is done by the

use of a priori information about the signal to decompose. Examples of this are the Weighted-

MP, Weighted-BP and Weighted-BPDN algorithms [48, 49]. We discuss the potentiality of using a

priori knowledge in the atom selection procedure for sparse representations and approximations in

a similar way as also suggested previously in [89]. We do not treat here the issue of how to find a

reliable and useful a priori knowledge about a signal. This problem strongly depends on the nature

of the signal and on the kind of dictionary used. We, nevertheless, give an insight through a realistic

example in Section 5.8. The aim of this chapter is the theoretical study of the weighted algorithms

in the prospective of achieving sparseness and to compare this with the state of the art. Existing

results in literature have been obtained for the non-model based case.

This chapter is structured as follows. First, a review of the influence of a priori information

in sparse representations using MP and BP is discussed in Sections 5.2, 5.3, 5.4, 5.5. Later, the

remaining of the Sections are consecrated to the study of the influence of a priori models for sparse

77
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approximations. Finally, conclusions are drawn in Sec. 5.9.

5.2 Including A Priori Information: Influence on Exact Sparse

Representations

In chapter 4 we saw that when using redundant dictionaries there is not a unique signal decom-

position. This makes the recovery of the sparsest representation difficult for an algorithm such as

Weak -MP or BP. However, this can be theoretically ensured when sufficiently incoherent dictionar-

ies are in use. In this section we prove that, if some valuable a priori information about the signal

to expand is available, the class of dictionaries where BP and Weak -MP are ensured to recover the

exact optimal solution can be enlarged. The a priori knowledge establishes in advance a likelihood

for any atom in the dictionary to appear into the representation of a given signal f . This is achieved

by suitably weighting the atoms in the dictionary in order to reflect their relevance for the signal f .

Definition 5.1 A weighting matrix W = W (f,D) is a square diagonal matrix of size d × d. Each

of the entries wi ∈ (0, 1] from the diagonal corresponds to some measure of the a priori likelihood of

a particular atom gi ∈ D to be part of the sparsest decomposition of f .

Weights in matrix W are not arbitrary and are not supposed to be independently and blindly

optimized by the algorithm during the subset selection procedure. These values alone are not

meant to determine whether an atom shall be included in the selection or not. Weights introduce

a fuzzy likelihood according to some auxiliary measure issued from a model that establishes a

relationship between data and dictionary (these can even establish some inter-dependence among

different subdictionaries). Matrix W values can be obtained by optimization within the subset

selection algorithm according to, for example, some parametric signal-dictionary model.

The way W (f,D) should be obtained is particular for each kind of problem and dictionary.

Hence, this is not treated in here. Nevertheless, we supply several illustrative examples that will be

progressively introduced along this chapter. In the following we will use WΓ and WΓ to indicate the

diagonal weighting matrices corresponding to DΓ and DΓ respectively. It is now possible to define a

coherence measure that generalizes Eq. (4.20), where a priori information is also taken into account:

the Weighted Cumulative Coherence function.

Definition 5.2 The weighted cumulative coherence function of D is defined as the following data

dependent coherence measure:

µw
1 (m,D, f) , max

|Λ|=m
max

i∈Ω\Λ

∑

λ∈Λ

|〈gλ, gi〉| · wλ · wi. (5.1)

The weighted cumulative coherence introduces the idea of weighting the correlations among

atoms with respect to the a priori information we have on f . This new coherence measure considers

the fact that all functions from the dictionary do not have the same probability to appear in the

signal expansion. Indeed, it is of no use to consider atoms that are not likely to appear in the

representation of a given signal, as they would artificially increase the value of µ1.

5.2.1 Influence of a Priori Information on Weak-MP: Using Weighted-

MP

As seen in chapter 4, General Matching Pursuits [95, 122, 173] iteratively build m-term approximants

by selecting at each step the most appropriate term from D according to a certain rule. Each one

of these iterations can be seen as a two step procedure:
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1. A selection step where an atom gik
∈ D is chosen (where k ≥ 0 indicates the iteration number).

2. A projection step where an approximant fm ∈ span(gik
: k ∈ {0, ...,m − 1}) and a residual

rm = f − fm are generated.

The selection step, at iteration k, can be generally formulated as the maximization of a similarity

measure C(rk, gi) between the signal to approximate (the residual at the kth iteration: rk = f −fk)

and the dictionary atoms:

gik
= arg max

gi∈D
C(rk, gi). (5.2)

Pure Matching Pursuit uses the modulus of the scalar product as similarity measure, i.e. C(rk, gi) =

|〈rk, gi〉|. More generally, Weak-MP allows an additional flexibility factor α ∈ (0, 1] allowing the

selected atom gik
to be such that |〈rk, gik

〉| ≥ α supi∈D |〈rk, gi〉|. The sub-optimality factor α,

as demonstrated in [173], does not necessarily prevent the greedy algorithm from converging to a

solution (i.e. limk→∞ ‖rk‖2
2 = 0). However, α < 1 often affects negatively the speed of convergence

of ‖rk‖2
2.

The projection step determines whether Matching Pursuit (MP) or Orthogonal Matching Pursuit

(OMP) is in use. The former just guarantees that the atom selected at iteration k is orthogonal to

the residual rk [122]. The latter, constructs the approximant fk by finding an orthogonal projection

of f over the space spanned by all selected atoms until iteration k [139].

The use of the scalar product as similarity measure in Weak -MP bears some similarity with

searching for the atom gik
with “Maximum Likelihood” given the residual rk: the atom gik

that

maximizes the probability p (gi|rk) is selected. Thus, |〈rk, gi〉| may be intuitively seen as a measure

of the conditional probability p (rk|gi), and when all gi are equally probable, maximizing |〈rk, gi〉|
is equivalent to maximizing p (gi|rk). Let us now consider the case where atoms do not have the

same a priori probability to appear in the optimal set of m atoms (Γm). Indeed, we assume that

we have at our disposal a prior knowledge about the likelihood of each gi. By means of the Bayes’

Rule, when some a priori p (gi) is available, the probability to maximize becomes

p (gi|rk) =
p (rk|gi) p (gi)

p (rk)
, (5.3)

where the denominator is normally assumed to be constant for any signal rk. Emulating this, the

selection rule of MP can, thus, be modified multiplying the modulus of the scalar product by a

weighting factor wi ∈ (0, 1], which depends on the atom index i. This is done in order to represent

the insertion in the MP selection criteria of some heuristic measure of prior information. Hence,

now C(rk, gi) in Eq. (5.2) can be considered such that:

C (rk, gi) = |〈rk, gi〉| · wi. (5.4)

We call this family of weighted greedy algorithms Weighted-MP. The Weighted-MP approach

does not modify the projection step of the algorithm, allowing to freely select the MP or OMP pro-

jection strategy. For the sake of simplicity, Weighted-MP will be used in the remaining of the paper

as a general term to refer to both projection approaches. The kind of projection will not be specified

unless judged to be relevant. In this work, we assume for simplicity that the a priori knowledge

(wi ∀i ∈ Ω) is independent of the iteration of the greedy algorithm∗ (hence, ∀k p (rk) = constant).

The reader may have noticed that the relation between Eq. (5.3) and Eq. (5.4) is not straight-

forward, and mainly based on intuition. This does not introduce any loss of generality, nor affects

∗However, one could decide to update the atom weights at every iteration, leading to take also into account, in

some way, p (rk). This would introduce more flexibility in the formulation of Weighted-MP
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the theoretical and practical analysis performed in the following of the chapter. Nevertheless, let

us briefly state in here the formal relation between both, (5.3) and (5.4), equations based on some

probabilistic assumptions.

Let us model the residue obtained at iteration k if rk−1 is approximated with gi ∀i ∈ Ω (i.e.

rk = rk−1 − gi〈rk−1, gi〉) as an iid Gaussian set of random variables. Even if this is not the best

model for the residual data, it will allow us to derive some formal formulation relating (5.3) and

(5.4). If we assume the Gaussian model for rk, then

p(rk|gi) =
1

√

2πσ2
r

· exp

(

−‖rk−1 − gi〈rk−1, gi〉‖2
2

2σ2
r

)

.

Considering this, and that ∀k p (rk) = constant, we thus formulate the selection step of our proba-

bilistic greedy algorithm as:

gik
= arg max

gi∈D
(p(rk|gi)p(gi))

= arg max
gi∈D

(

1
√

2πσ2
r

· exp

(

−‖rk−1 − gi〈rk−1, gi〉‖2
2

2σ2
r

)

p(gi)

)

= arg max
gi∈D

(

1
√

2πσ2
r

· exp

(

−‖rk−1‖2
2 − |〈rk−1, gi〉|2

2σ2
r

)

p(gi)

)

= arg max
gi∈D

(

1
√

2πσ2
r

· exp

(

|〈rk−1, gi〉|2
2σ2

r

)

p(gi)

)

= arg max
gi∈D

(

|〈rk−1, gi〉|2 + λ log (p(gi))
)

, (5.5)

where λ is a constant that depends on σ2
r .

In order to get closer to (5.4) formulation, Eq. (5.5) can be operated such that:

gik
= arg max

gi∈D

(

|〈rk−1, gi〉|
√

1 + λ
log (p(gi))

|〈rk−1, gi〉|2

)

. (5.6)

Notice that (5.6) requires that λ
log (p(gi))

|〈rk−1, gi〉|2
≥ −1. Comparing (5.2), (5.4) and (5.6), one finds that

wi is related to

√

1 + λ
log (p(gi))

|〈rk−1, gi〉|2
.

With no doubt, as seen later in this chapter, the challenging point of using Weighted-MP, is the

retrieval of practical wi ∀i (or p (gi) ∀i), which are adapted for a particular application.

Other interpretations of Weighted-MP are also possible without changing its analysis and behav-

ior. For example, one may interpret Weighted-MP as a greedy algorithm where the use of non-unit

norm atoms within the dictionary is allowed. Unit norm atoms are re-weighted according to some

heuristic measure of prior information, which gives some hint about their likelihood to belong to the

optimal set Γ. Also, another possible interpretation is the one that assumes the measure C (rk, gi)

to be based on an anisotropic norm. This norm has a scaling parameter (wi) that depends on the

measured direction of the signal space (i.e. each gi ∈ R
N determines a line in R

N ).

The following theorem establishes the Exact Recovery Condition for Weighted-MP/OMP. We

can see in it, as well as through all the chapter, how Weighted-MP is able to perform better than

Pure MP even if our weighted algorithm is a sort of Weak Greedy Algorithm.
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Theorem 5.1 Given an a priori matrix W (f,D) and a sub-optimality search factor α ∈ (0, 1], then,

for any index set Γ such that f ∈ span(gγ , γ ∈ Γ), Weighted-MP/OMP will recover a “correct” atom

at each iteration if

sup
gi∈D

Γ

∥

∥

∥
(DΓWΓ)

+
gi · wi

∥

∥

∥

1
< α. (5.7)

The proof issues from introducing the usage of a priori knowledge in the method developed in [175].

This may be found in Appendix B.1.

Theorem 5.1 states, as depicted by (5.7), that the use of a priori weights will help meeting the

sufficient condition that guarantees that a greedy algorithm will recover the elements of the sparsest

representation of f . Indeed, as can be observed in (5.7), given a dictionary and an appropriate WΓ

associated to f , the weights that multiply each gi ∈ DΓ may help reducing the supremum in (5.7)

compared to Eq. (4.21).

5.2.2 Influence of a Priori Information on BP

The BP principle, as shown in [49], can also exploit the usage of a priori information by means of a

weighting matrix. This can be done using a formulation closely related to that proposed to introduce

a priori knowledge in re-weighted minimum norm algorithms (FOCUSS [89], see Sec. 4.4.5). A

variation of BP taking into account the likelihood matrix W (f,D) is given by the Weighted Basis

Pursuit principle, introduced by Granai in [91]. This method, previously also suggested in [89],

minimizes the `1 norm of a weighted vector, leaving the constraints unchanged:

arg min
b

‖W−1b‖1 s.t. Db = f. (5.8)

We recall that the entries of W (f,D) are in (0, 1]. In this way the atoms with low probability to be

selected are penalized by inducing a small weighting factor in W . WBP, just like BP, is nothing but

a Linear Programming problem [28, 91].

In the same way as for the case of greedy algorithms, a theorem was derived in [49] following

the steps first appeared in [175], that establishes a sufficient condition for WBP to recover an exact

sparse superposition of m atoms from D given W (f,D). This states the following:

Theorem 5.2 Given a dictionary D and an a priori matrix W (f,D), Weighted Basis Pursuit re-

covers the optimal representation of a sparse signal f = DΓbopt if:

sup
gi∈D

Γ

∥

∥

∥
(DΓWΓ)

+
gi · wi

∥

∥

∥

1
< 1. (5.9)

The reader may find the proof in [49].

A single sufficient condition is, thus, available for both WBP and Weighted-MP/OMP, for re-

covering the “correct” set of atoms involved in the optimal representation of a signal. One can

see this condition as a mere proof that results [175] also extend for dictionaries where atoms may

have a norm smaller than one (i.e. assuming matrix DΓWΓ to be the dictionary instead of just

DΓ). However, the value of the present result goes beyond such consideration. This comes from

the fact that WΓ is not a meaningless diagonal matrix with the values smaller or equal than one.

It is formally demonstrated that even if such a matrix is introduced, Tropp bounds continue to be

valid. Being able to embed in WΓ additional modeling criteria for the expansion procedure, one may

obtain a better signal representation being at the same time, as will be discussed in the following,

less constraint by the coherence of the dictionary.
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5.3 Exact Recovery Bounds for Weighted Greedy and BP

Algorithms

In the case where no weights are used, usually, the optimal atoms are not known in advance and

so the Exact Recovery Condition, Eq. (4.21), can only be verified a posteriori, i.e. once the optimal

set of atoms has already been found. Because of that, sufficient recovery conditions based on the

internal coherence (µ1) of the dictionary were proved (see Theorem 4.1 and [95, 174]). In the

following, we provide a result that takes into account the fact of using a priori information. This

result can be compared to that of Theorem 4.1 and underlines the behavior of a greedy and BP

algorithm when using an a priori model. This shows how, depending on the suitability of the a

priori knowledge about the signal, a weighted algorithm will outperform the classical non-weighted

approach or, to the contrary, in which cases this will be worse. In our case, the exact quantitative

information concerning the “reliability” of the a priori (this is, as defined later in this section, εmax)

will, usually, not be available. However, the following results theoretically justify the use of signal

adapted algorithms by means of an a priori to obtain sparser representations.

5.3.1 Sufficient Condition for Exact Expansions Recovery

Theorem 5.3 Let W (f,D) be the data dependent weighting matrix and let εmax , sup
γ∈Γ

∣

∣1 − w2
γ

∣

∣.

If, for any index set Γ of size at most m, such that f =
∑

γ∈Γ

bγgγ , we have

µw
1 (m) + µw

1 (m − 1) < 1 − εmax, (5.10)

then (5.9) holds and WBP recovers the optimal representation of the sparse signal f . Furthermore,

if
µw

1 (m)

1 − (µw
1 (m − 1) + εmax)

< α (5.11)

is also enforced, then (5.7) holds and Weighted-Weak(α) MP will pick up an atom belonging to the

optimal set Γ at each step. Moreover, Weighted-Weak(α) OMP will exactly recover the sparsest

representation of f .

See Appendix B.2 for a proof.

We will say that the a priori is “reliable” when εmax is small enough. Hence the following can

be stated:

Definition 5.3 εmax is close to zero if “good” atoms (the ones belonging to Γ) are not penalized by

the a priori. In such a case we state that the a priori knowledge is “reliable”.

Since µw
1 (m) ≤ µ1(m), one can intuitively see that a reliable a priori knowledge can help a

greedy algorithm or BP when the dictionary does not satisfy the hypothesis of Theorem 4.1. This

will be possible when the weights corresponding to the atoms in DΓ are sufficiently small.

Since µw
1 (m) ≤ µ1(m), we claim that considering reliable a priori information can help a dictio-

nary unable to satisfy Theorem 4.1 recover the right set of functions. In other words, the use of an

a priori model within the expansion algorithm allow for using less incoherent dictionaries.

Corollary 5.1 Given a dictionary D and the data dependent diagonal matrix W (f,D), where wi ∈
(0, 1], we can state the following:
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• For a Weighted MP/OMP with weakness α = 1 and WBP a better behavior in the recovery of

exact sparse representations is expected with respect to the classical algorithms if:

µw
1 (m) + µw

1 (m − 1) < 1 − εmax

and

µ1(m) + µ1(m − 1) ≥ 1.

• For a Weighted Weak-MP a better behavior in the recovery of exact sparse representations is

expected with respect to the classical algorithms if:

µw
1 (m)

1 − (µw
1 (m − 1) + εmax)

< α

and
µ1(m)

1 − µ1(m − 1)
≥ α.

Corollary 5.2 When no a priori information is available (i.e. W (f,D) = I), and consequently

εmax = 0 Theorem 5.3 simplifies to the results found in [95, 174] stated in Theorem 4.1.

5.3.2 A Toy Example for MP in R
3

Let us consider the following overcomplete dictionary in R
3:

D =







0 −0.9806 0.4472 −0.5774

1 −0.1961 0 0.5774

0 0 0.8944 −0.5774






.

A simple m-sparse signal f is considered with m = 2 and defined as:

f = 3 · D0 + 3.059412 · D1, (5.12)

i.e. the optimal set is Γ = {D0, D1}. A general graphical representation of D and f in R
3 can be

observed in Fig. 5.1 where the non-orthogonality among vectors can be clearly appreciated.
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Figure 5.1: Left: 3D representation of the overcomplete dictionary (4 components) and the sparse

signal f in R
3. Right: Temporal representation of the signal and dictionary atoms.

According to the coherence measure µ1, this dictionary has a high coherence, i.e. µ1(1) = 0.7746.

This turns into a complete failure of the sufficient condition (4.22). Indeed, µ1(2) + µ1(1) = 2.1265
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which is far above the bound with α = 1 required to guarantee the recovery of the optimal set of

atoms for any f . As a consequence, MP “derails”.

The sequence of atoms selected from the dictionary for pure MP is:

MP:

Step 1: select = 3 | Step 6: select = 1

Step 2: select = 2 | Step 7: select = 2

Step 3: select = 1 | Step 8: select = 0

Step 4: select = 0 | Step 9: select = 1

Step 5: select = 2 | Step 10: select = 2

where the selected 0, 1, 2, 3 are the indexes of Di.

Let us now consider the possibility that, by some means, it is feasible∗ to estimate that signal f

has around 60% of chances to be embedded in the xy plane. This implies that the scalar products

by the vectors D2 and D3 can be penalized. Thus, the following weighting matrix can be generated:

W (f,D) =











1 0 0 0

0 1 0 0

0 0 0.6 0

0 0 0 0.6











.

Notice the assumption that our oracle† does not penalize the two vectors implied in the sparsest

representation of f (wi = 1 : i = 0, 1).

Shifting now to the framework of Weighted-MP, the weighted cumulative coherence measure

indicates that the effective internal coherence of the dictionary is reduced up to µw
1 (2) = 0.3464.

Moreover the new bound, considering the a priori, reads µw
1 (2) + µw

1 (1) = 0.9717, meeting the

sufficient requirement to ensure the recovery of the optimal set of vectors Γ. This time, the sequence

of atoms selected is quite different and the Weighted-MP algorithm selects only the atoms belonging

to the optimal set:

Weight-MP:

Step 1: select = 1 | Step 6: select = 0

Step 2: select = 0 | Step 7: select = 1

Step 3: select = 1 | Step 8: select = 0

Step 4: select = 0 | Step 9: select = 1

Step 5: select = 1 | Step 10: select = 0

Tests on these examples have been performed with the BP and WBP [49] paradigm as well. For

this particular case, however, both are able to recover the optimal set of atoms independently of the

fact that for BP the sufficient condition of Theorem 4.1 was not fulfilled.

∗The present example must be understood as a toy example which only purpose is that of illustrating some of

the concepts here explained. Hence, the reader should not worry at this point about how can, in this example, the

a priori be obtained in practice. More realistic examples are described later in this chapter, where one can really

establish usable and practical models to extract the a priori information.
†The reader may notice that, actually, a simple threshold on the a priori W (f,D) would already give the solution

to the subset selection problem for a sparse representation. We are obliged to allow this in this particular example

due to the extremely low number of dimensions here involved (i.e. the example is in R
3). The example must be

considered in a didactic sense. Later in this chapter one can see examples on natural signals where feasible and

realistic a priories are used, and where simple thresholding of the a priori matrix does not give the solution to the

subset selection problem.
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5.4 Rate of Convergence of Weighted-MP/OMP

5.4.1 Theoretical Rate of Convergence

To find a bound on the rate of convergence of Weighted-MP/OMP we follow the path of [95] and

[142] where the respective authors look for an equivalent result for the case of Weak -MP in the

former, and for the particular case of a block based dictionary in the latter. Simply looking at the

results found in [95] it is intuitively clear that the knowledge of some a priori information should

allow for a better bound on the rate of convergence of the representation. Indeed, in the convergence

of the Weak -MP, the cumulative coherence function appears as a determining factor that drives the

speed of exponential decay. Given the fact that µw
1 (m) ≤ µ1(m), we consider that having some

a priori knowledge contributes to determine a lower bound on the exponentially decaying rate of

convergence associated to Weighted-MP/OMP.

Theorem 5.4 Let W (f,D) be the data dependent weighting matrix that introduces a priori knowl-

edge in µw
1 (m). Let m be an integer such that:

µw
1 (m)

1 − (µw
1 (m − 1) + εmax)

< α. (5.13)

Then for any subset DΓ ⊂ D with |DΓ| ≤ m, and any f ∈ span(DΓ), Weighted-MP/OMP picks up

only correct atoms at each step and

‖rk+1‖2 ≤ ‖f‖2

(

1 − α2 (1 − µw
1 (m − 1) − εmax)

m

)n+1

. (5.14)

The reader is referred to Appendix B.3 for the proof.

Thus, since µw
1 (m − 1) ≤ µ1(m − 1) and assuming εmax to be small enough, a faster rate of

convergence is reached.

5.4.2 A Toy Example for Weighted-MP and MP
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Figure 5.2: Convergence of the approximation error of the example of Fig. 5.1. The respective

rates with and without using weights are compared. The use of weights enhances the asymptotic

rate of convergence.
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To illustrate the theoretical result found in this section, we go back to the toy example presented

in sec. 5.3.2 where an overcomplete coherent Dictionary in R
3 is used. As can be expected from

Theorem 5.3 and Theorem 5.4 and observed in Fig. 5.2, the rate of convergence of Weighted-MP

shows a much faster decay of the error energy than classical MP. Indeed, as guaranteed by the

sufficient condition (5.10) and as illustrated in Sec. 5.3.2, the Weighted-MP algorithm gets trapped

selecting over and over only vectors from the optimal set Γ. This avoids introducing spurious terms

in the signal expansion and allows a faster exponential convergence than in the pure greedy case.

5.5 Examples: Heuristics in a Coherent Dictionary Based on

Wavelet Footprints

In this section we provide more realistic examples than those appearing in previous sections. Some

experiments on retrieving the sparsest signal representation using a redundant dictionary are shortly

presented. Both weighted and classical approaches are used.

Let us explore the representation of piecewise-smooth signals and the use of dictionaries composed

by the mixture of an orthonormal wavelet basis and a family of wavelet footprints (see [58]). Wavelet

footprints are the functions composed by all wavelet coefficients that a given singularity generates

on a orthonormal basis or frame as illustrated in Fig. 5.3.

W
avelet subbands

Piecewise−constant Function

Footprint

Figure 5.3: Wavelet Footprints description scheme for a piecewise-constant signal [58].

In this example, f is a 1-D signal with 128 samples, which can be sparsely represented by

describing the singularities with footprints. We assume that the family of wavelets in use has a

sufficiently high number of vanishing moments such that polynomial parts of the signal are efficiently

represented by the coefficients of the scaling functions. Moreover the set of discontinuities appearing

in the signal are also contained in the dictionary in the form of footprints. For the sake of simplicity,

we consider a piecewise constant signal f (see Fig. 5.7). The dictionary is defined by the union of

an orthonormal basis defined by the Symmlet-4 family of wavelets [121] and the respective family

of footprints for all possible translations of the Heaviside function. The later is used to model the

piecewise constant discontinuities. The graphical representation of the dictionary matrix can be

seen in Fig. 5.4 where the columns are the waveforms that compose the dictionary.

The overcompleteness of the dictionary is evident: the number of atoms is twice the dimension

of the signal. In spite of its simplicity, the dictionary presents a very high coherence factor µ1(1) =

0.9606. It is indeed very difficult for such a dense dictionary to fulfill the bounds of Theorem 4.1.

For example, for m=3, µ1(3) + µ1(2) = 4.7664, which is already quite far from the required upper

bound. In this example the optimal subset that represents the signal f has size m = 9.
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Figure 5.4: Dictionary formed by the Symmlet-4 [121] (left half) and its respective footprints for

piecewise constant singularities (right half).

The signal f has been selected such that footprint components are close enough to strongly

interact. If they were not overlapping, then any pure greedy algorithm would be able to recover the

good representation without problems, given their orthogonality.

The weights of W (f,D) are estimated from the data. This is done following a simple proce-

dure inspired from [58]. This somehow tries to estimate the location of footprints and to penalize

those wavelets that overlap with the footprints location. The detailed procedure is depicted in

Algorithm 5.1.

Algorithm 5.1: W (f,D) estimation

Require: D = DSymmlet ∪ DFootprints, define a threshold λ , define a penalty factor β

1: fdiff = D+
Footprints · f {Footprints location estimation (edge detection)}

2: Threshold fdiff by λ putting greater values to 1 or β otherwise.

3: W diag
footprints = fdiff {Diagonal of the sub-matrix of W (f,D) corresponding to footprints.}

4: Create W diag
wave s.t. all wavelets intersecting the found footprints locations equal β, set to 1

otherwise.

5: W (f,D) = diag
([

W diag
wave W diag

footprints

])

;

Algorithm 5.1 is a parametric model that establishes a dependence among signal features, dic-

tionary structure and the interaction between functions from the same dictionary. This conform a

simple configurable model that can be tuned by means of parameters λ and β.

In the results presented here, parameters λ and β are set to 0.7 and 0.6 respectively. The resulting

vector of weights from the diagonal of W (f,D) is shown in Fig. 5.5. Notice the four spikes in the

right part of Fig. 5.5. These point out the index of the footprint functions that are more likely

to be components of f . All the spikes in the left part correspond to the wavelet function indexes

that interact with the location of the most probable footprints. The choice of parameters may

seem a little bit Ad-hoc for this example; in a more general case (as shown later in this chapter),

parameters choice should be included in the optimization of the signal decomposition algorithm,

using, for example, an Expectation Maximization strategy.

The effect of applying the weights is reflected in the Gram matrix of D and D · W in Fig. 5.6.

A reduction on the strength of interference between the dictionary atoms can be observed in the
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Figure 5.5: Weights involved on introducing the a priori information to drive OMP.

Gram matrix of the weighted dictionary.

Gramm Matrix including the weights effect (DW)’*DW

Figure 5.6: Left: Representation of the Gram matrix (i.e. DT · D) of the combined wavelet-

footprints dictionary of Fig. 5.4. It clearly depicts the cross products between the different atoms.

The upper left side perfectly describes the orthogonality of the Symmlet basis. At the bottom right

a sketch of the high coherence among the footprints. Right: Representation of the Gram matrix

after applying weights. Notice the reduction of cross-interferences.

Contrary to what the reader could expect now, we are not able to say that given an a priori

information the sufficient conditions defined previously in this paper are satisfied. Indeed, the signal

singularities are so close that their optimal atoms are not incoherent enough to allow the summation

µw
1 (m) + µw

1 (m − 1) to be smaller than one. Despite that, we are be able to say that the use of

Weighted-OMP (MP and Weighted-MP fail in any case) and Weighted Basis Pursuit helps recovering

the optimal representation. This illustrates the intuitive idea that a priori information may help

the signal representation even if the sufficient conditions of Theorem 5.3 are not satisfied.

The comparative results of representation by means of OMP and Weighted-OMP can be seen in

Fig. 5.7. The effect of the a priori knowledge to recover the optimal representation is obvious (first

picture on the left). The high coherence of the dictionary makes the non-weighted algorithm select
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wavelet bases when it should not.
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Figure 5.7: Comparison of OMP based approximation with 10 terms using the footprints dictionary

(Fig. 5.4). Left: Original signal. Middle: blind OMP approximation. Exact representation is not

achieved. Right: (only 9 terms are different from 0) OMP with prior knowledge of the footprints

location, in this case exact representation is achieved.

A global view of the impact of using the a priori information is presented in Fig. 5.8. Weighting

is able to keep OMP on the track for the recovery of the exact-sparse representation unlike classical

OMP.
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Figure 5.8: Rate of convergence of the error with respect to the iteration number in the experiment

of fig. 5.7

5.6 Including A Priori Models in Greedy Algorithms for

Sparse Approximations

Until here, only exact sparse representations have been considered. However, sparse approximations

often may suggest a more relevant interest given their large range of applications: denoising, signal

compression, sources separation, etc. Hence, for the rest of the chapter we will explore the effect of

using a priori knowledge in algorithms for the recovery of the best m-term approximant (f opt
m ) of a

signal f .
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We continue to use the previous Bayesian formulation for greedy algorithms. This allows to

formally introduce and analyze the usage of accessory estimators, capable to model some relation

between data and dictionary, in the subset selection problem for signal approximations. In this

section, sufficient conditions for the recovery of a “correct” atom from the sparsest m-term approxi-

mant are established first. After, we study how a priori knowledge affects the rate of convergence

of greedy algorithms. Finally, an example is presented.

5.6.1 Influence on Sparse Approximations

Theorem 5.5 Let {rk} : k ≥ 0, be the set of residuals generated by Weighted-MP/OMP in the

approximation of a signal f , and let f opt
m be the best m-term approximant of f over Γm ⊂ D. Then,

for any positive integer m such that µw
1 (m − 1) + µw

1 (m) < 1 − εmax, a suboptimality factor η ≥ 0

associated to the case where the algorithm can not reach the best m-term approximation and

‖rk‖2
2 >

∥

∥f − fopt
m

∥

∥

2

2
(1 + η)

2

(

1 +
m (1 − (µw

1 (m − 1) + εmax))
(

wmax
Γ

)2

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

, (5.15)

, where wmax
Γ

, supγ∈Γ |wγ | and εmax , supγ∈Γ

∣

∣1 − w2
γ

∣

∣ for Γ = Ω \ Γ, Weighted-MP/OMP will

recover an atom that belongs to the optimal set Γm. Moreover, if fopt
m exist and can be reached, then

η = 0.

See Appendix B.4 for a proof.

This means that, if the approximation error at the nth iteration is still bigger than a certain

quantity which depends on the optimal error ‖f − f opt
m ‖2

2, the weighted cumulative coherence and

the reliability of the a priori information, then another term of the best m-term approximant can

be recovered. This is similar to the result of [95], but here the use of a priori information results

in a smaller bound. A higher number of terms from the best m-term approximant may thus be

recovered.

wmax
Γ

and εmax concern the goodness and reliability of the a priori information. The reader will

notice that these quantities depend on the optimal set of atoms Γ, preventing from establishing a

rule to compute them in advance. The role of these magnitudes is to represent the influence of the

a priori in the results obtained below. Notice that 0 ≤ εmax < 1 and 0 < wmax
Γ

≤ 1. εmax is close

to zero if “good” atoms (the ones belonging to Γ) are not penalized by the a priori.

wmax
Γ

becomes small if all “bad” atoms are strongly penalized by the a priori knowledge. If

the a priori is reliable and wmax
Γ

is small, then the a priori knowledge would be able to directly

give the exact solution to the retrieval of the best Γ set. In practice, a priori models about the

relation between dictionaries and data will be such that wmax
Γ

= 1. The important influence of prior

knowledge within Weighted-MP is represented by µw
1 (m). Indeed, what matters is that prior models

help handling punctual ambiguities or undesired atom interactions within coherent dictionaries. No

need thus that the prior model gives any accurate description of Γ.

The general effect of using a priori knowledge can be summarized by the following Corollary.

Corollary 5.3 Let W (f,D) be a reliable a priori knowledge obtained from a signal-dictionary mod-

el and assume α = 1, then for any positive integer m such that µ1(m − 1) + µ1(m) ≥ 1 but

µw
1 (m − 1) + µw

1 (m) < 1 − εmax, Weighted-MP/OMP (unlike Weak(α)-MP/OMP) will recover the

atoms belonging to the best m-term approximant f opt
m . Moreover, for any positive integer m such

that µw
1 (m− 1) + µw

1 (m) + εmax < µ1(m− 1) + µ1(m) < 1, Weighted-MP/OMP has a weaker suffi-

cient condition than MP/OMP for the recovery of correct atoms from the best m-term approximant.
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Hence, the correction factor of the right hand side of expression (5.15) is smaller in the weighted

case:



1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ≤
(

1 +
m (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2

)

. (5.16)

See Appendix B.5 for the proof.

Therefore, Weighted-MP is guaranteed to recover equally good or better approximants than

classic MP when reliable a priori information is used.

5.6.2 Rate of Convergence of Weighted-MP/OMP

The energy of the series of residuals rk (n ≥ 0) generated by the greedy algorithm progressively

converges toward zero as n increases. In the same way, Weighted-MP/OMP with reliable a priori

information is expected to have a better behavior and a faster convergence rate than the Weak -MP

for the approximation case. A more accurate measure of the dictionary coherence conditioned to

the signal to be analyzed is available: µw
1 (m) (where µw

1 (m) ≤ µ1(m)). Then a better bound for

the rate of convergence can be found for the case of Weighted-MP/OMP. To prove this, we follow

the path suggested in [175] for OMP and in [95] for general Weak -MP, introducing as before the

consideration of the a priori information in the formulation. The results formally show how much

Weighted-MP/OMP can outperform Weak -MP when the a priori knowledge is reliable.

Theorem 5.6 Let W (f,D) be a reliable a priori information matrix and {rk} : k ≥ 0 a sequence

of residuals produced by Weighted-MP/OMP, then as long as ‖rk‖2
2 satisfies Eq. (5.15), Weighted-

MP/OMP picks up a correct atom and

(

‖rk‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)

2
)

≤
(

1 − α2 (1 − µw
1 (m − 1) − εmax)

m

)k−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

,

where k ≥ l.

See Appendex B.6 for a detailed description of the proof.

Theorem 5.6 implies that the rate of convergence of Weighted-MP, in the same way as Weak-MP,

has an upper bound with exponential decay. Moreover, in the case where reliable a priori informa-

tion is used, the bound appears to be lower than in the case where a priories are not used. This

result suggests that the convergence of suitably weighted greedy algorithms is faster than for the

case of pure greedy algorithms. Of course, this is subject to the use of a model that puts in relation

both the signal and dictionary. Some fuzzy (i.e. wmax
Γ

= 1) and non-penalizing indication about

the appropriate atoms may be of great help for the convergence of the algorithm.

Depending on the sufficient conditions specified in Sec. 5.6.1, the recovery of the optimal set

Γ will be possible. However, it is not yet clear how long a non-orthogonalized greedy algorithm

(Weighted-MP in our case) will last iterating over the optimal set of atoms in the approximation

case. For this, in [95] the authors derive a set of bounds intended to give some clue about that for

Weak -MP. Like the rest of bounds here analyzed, as one may guess, the use of a priori models has

a positive influence on these. Here, we analyze how a priories come to affect the results appeared

in [95]. Let us define the number of correct iterations as follows:
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Definition 5.4 Consider a Weighted-MP/OMP algorithm used for the approximation of signals.

We define the number of provably correct steps Nm as the smallest positive integer such that

‖rNm
‖2
2 ≤

∥

∥f − fopt
m

∥

∥

2

2
(1 + η)

2



1 +
m
(

1 − (µw
1 (m − 1) + εmax)

(

wmax
Γ

)2
)

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2



 ,

which corresponds to the number of atoms belonging to the optimal set that can be recovered given a

signal f , a dictionary D and an a priori information matrix W (f,D).

In the case of OMP and Weighted-OMP, Nm will be always smaller or equal to the cardinality

of Γ. For Weak -MP and Weighted-MP, provided that µw
1 (m− 1) + µw

1 (m) + εmax < 1, the provable

number of correct iterations will depend on the final error of the best m-term approximation. In

the following theorem, bounds on the quantity Nm are given for Weighted-MP/OMP. To obtain the

results we follow [95].

Before stating the theorem, the reader should note that from now on, wmax
Γl

defines the same

concept as wmax
Γ

for an optimal set of atoms Γ of size l, i.e. for Γl.

Theorem 5.7 Let W (f,D) be a reliable a priori information and {rk} : k ≥ 0 a sequence of

residuals produced by Weighted-MP/OMP when approximating f . Then, for any integer m such

that µw
1 (m − 1) + µw

1 (m) + εmax < 1, we have N1 ≤ 1 and for m ≥ 2:

• if 3
∥

∥ropt
1

∥

∥

2

2
≥ m ·

∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2

, then

2 ≤ Nm < 2 +
2 · m

1 − εmax
log







3
∥

∥ropt
1

∥

∥

2

2

m ·
∥

∥ropt
m

∥

∥

2

2
(1 − εmaxm

) ·
(

wmax
Γm

)2






. (5.17)

• else Nm ≤ 1.

We refer the reader to Appendix B.7 for a detailed description of the proof.

From (5.17) we can draw that the upper bound on the provably correct number of steps Nm

is tighter for Weighted-MP if a reliable a priori knowledge is used. Indeed, in accordance with

Theorem 5.6, which states a tighter residual error convergence bound for Weighted-MP, one can also

have a tighter estimate for Weighted-MP about which is the maximum number of good iterations

the algorithm might do. If some a priori is available, some atom interactions will not influence

µw
1 (m − 1) in Eq. (5.17), unlike in the case of Theorem 7 in [95] where µ1(m − 1) was used.

Moreover, in a situation where the reliable model used to establish the a priori information was

discriminative enough, we are sure that there would be additional room for an improvement on

the number of correct iterations recovered by the greedy algorithm with respect to [95]. The term

wmax
Γm

helps to increase the value of the bound, describing the fact that Weighted-MP can recover

a higher number of correct iterations than MP. In addition, compared to the case when no a priori

information is available [95], the condition for the validity of bound (5.17) is softened in our case.

Even though the assumption of good discrimination capabilities of the a priori model is somehow

unrealistic in practice (i.e. a small value for wmax
Γm

indicates that the model can already discriminate

between Γ and Γ), the result of Theorem 5.7, apart of giving a better estimate on the upper bound

of Nm (thanks to the use of µw
1 (m− 1) instead of µ1(m− 1)), it suggests also that using an a priori

model should have a positive effect on the stability of Weighted-MP. In practice, if the a priori is

capable to handle some punctual ambiguity that may affect the choice of the appropriate function at
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a given MP step, then the benefits for the convergence of the algorithm can be of extreme relevance.

This can be the case even if the a priori model does not supply a good discrimination between Γ

and Γ. We find very interesting practical examples of this fact in Sec. 5.6.3 and Sec. 5.8.

5.6.3 Example: Use of Footprints and Weighted-OMP for Sparse Ap-

proximations.

To give an example of approximation using a priori information, we consider the case where a

piecewise-smooth signal is represented by means of an overcomplete dictionary.

The dictionary is the one used in Sec. 5.5. Such a dictionary does not satisfy at all the sufficient

condition required to ensure the recovery of an optimal approximant with more than one term.

Moreover, even if the best a priori was available, it is also far from satisfying the sufficient condition

based on the weighted cumulative coherence. Nevertheless, we consider this example because of

two main reasons. The first concerns the fact that sufficient theoretical conditions exposed in the

literature are very pessimistic and reflect the worst possible case. The second reason is that, as

previously discussed, experience seems to teach us that good dictionaries for efficient approximation

of some classes of signals, are likely to be highly coherent. This fact conflicts with the requirement

of incoherence for the good behavior of greedy algorithms. Hence, we find this example of special

interest to underline the benefits of using a priori information and additional signal modeling for

non-linear expansions.
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Figure 5.9: Comparison of OMP based approximation with 10 terms using the footprints dictionary

(Fig. 5.4). Left: Original signal. Middle: “blind” OMP approximation. Right: OMP with prior

knowledge of the footprints location.

We repeat the procedure used in Sec. 5.5 to estimate the a priori information based on the

dictionary and the input data. We also refer the reader to Sec. 5.8 for a more detailed explanation

on the model configuration for the parameter optimization. Fig. 5.9 presents the original signal (left)

together with the two approximations obtained in this example: without a priori in the middle and

with a priori on the right. The input signal has a number of polynomial degrees higher than the

number of vanishing moments of the Symmlet-4. The figures depict clearly the positive effect of

the reliable a priori information inserted in the Weighted-OMP algorithm. Indeed, with very few

components, the algorithm benefits from the a priori information estimated from the signal, and

gives a much better approximation. A more global view of this behavioral enhancement can be

seen in Fig. 5.10 where the rate of convergence of the approximation error is presented. The use of

weights is definitively helpful and a considerable reduction of the approximation error is achieved

for a small number of terms.
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Figure 5.10: Rate of convergence of the error with respect to the iteration number in the experiment

of Fig. 5.9

5.7 Approximations with Weighted Basis Pursuit Denoising

Another sub-optimal method to solve the problem in Eq. (4.4) is given by relaxation algorithms,

whose recovery capabilities in presence of a priori knowledge are shortly reviewed in this section.

A study in [48] investigates the effects of inserting a priori knowledge in the convex relaxation

of the subset selection problem (see Sec. 4.6), i.e. in the approximation case.

5.7.1 A Bayesian Approach to Weighted Basis Pursuit Denoising

In this subsection the problem of signal approximation is studied from a Bayesian point of view.

This leads us to generalize the BPDN principle through the definition of Weighted Basis Pursuit

Denoising (WBPDN). First, let us write the model of our data approximation, where f̂ is the

approximant and r is the residual:

f = f̂ + r = Db + r. (5.18)

Assuming r to be an iid Gaussian set of variables, the probability that f corresponds to f̂ , given D

and b is:

p(f |D,b) =
1

√

2πσ2
r

· exp

(

−‖f − Db‖2
2

2σ2
r

)

,

where σ2
r is the variance of the residual. In the approximation problem, one aims at maximizing the

likelihood p(b|f,D). Formally, by the Bayes rule, we have

p(b|f,D) =
p(f |D,b) · p(b)

p(f,D)
,

and thus, assuming p(f,D) uniform, it follows that the most probable signal representation is:

bP = arg max
b

p(f |D,b) · p(b). (5.19)

Let us now assume that the coefficients bi are independent and have a Laplacian distribution with

standard deviation σi:

p(bi) =
1√
2σi

· exp

(

−
√

2|bi|
σi

)

.
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From (5.19), by computing the logarithm, it follows that

bP = arg max
b

(

ln(p(f |D,b)) +
∑

i

ln p(bi)

)

= arg min
b

(

‖f − Db‖2
2

2σ2
r

+
∑

i

√
2|bi|
σi

)

.

Making the hypothesis that σi is constant for every index i, the previous equation means that the

most probable b is the one found by the BPDN algorithm [119]. In fact, this hypothesis does not

often correspond to reality. On the contrary, if the variances of the coefficients are not forced to be

all the same, it turns out that the most probable signal representation can be found by solving the

following problem:

(Pw
1 ) min

b

1

2
‖f − Db‖2

2 + γ‖W−1b‖1, (5.20)

where the diagonal matrix with entries in (0, 1] is defined in Section 5.6. One can notice that in

Eq. (5.20), the introduction of weights allows to individually model the components of b. This

approach is analogous to the one introduced in [49, 91] as well as to the use of a priories into

Tikhonov regularization based methods [89]. From now on, we will refer to P w
1 as Weighted Basis

Pursuit Denoising or WBPDN.

The assumption often made about the Gaussianity of the residual is quite restrictive. However,

for another particular problem, one could make the hypothesis that this residual has a Laplacian

distribution. It is then possible to prove that the most probable signal representation can be found

substituting the L2 measure of the error with the L1. This leads to the following minimization

problem:

min
b

1

2
‖f − Db‖1 + γ‖W−1b‖1,

where W = I if the variances of the probability density functions of bi are the same for each i. This

problem is faced, for example, in [91], where it is solved by Linear Programming techniques.

5.7.2 Relation with the Weighted Cumulative Coherence

As in the case of greedy algorithms, the behavioral bounds obtained by Tropp in [176] for BPDN,

may be extended when additional a priori models are plugged into the optimization P w
1 problem.

This analysis is performed in [48]. Here, the main results are summarized.

Lemma 5.1 ([48]) Given an index subset Λ ⊂ Ω, suppose that the following condition is satisfied:

‖DT (f − aΛ)‖∞ <
γ

wmax
Γ

· (1 − sup
i/∈Λ

∥

∥

∥(DΛWΛ)
+

gi · wi

∥

∥

∥

1
), (5.21)

where aΛ is the optimal approximation of f on Λ. Then, any coefficient vector b∗ that minimizes

the cost function of problem P w
1 must have a support contained in Λ.

This proposition, akin to the Correlation Condition Lemma in [176], basically states that, if the

atoms of Λ have a small weighted coherence, expressed by the Weighted Recovery Factor, then the

support of any vector that solves P w
1 is a subset of Λ. The factors derived from the use of a priori

information, can rise the value of the right term of (5.21), if they are “reliable” enough, reducing

the tightness of the condition. For a given γ, a model that relates signal and dictionary D will make

more robust and performant WBPDN in front of BPDN.

The result of Lemma 5.1 can be further extended in order to establish relations among the

algorithmic thresholds γ and τ (see Sec. 4.4.4 to see its meaning), the maximum error that the

relaxation algorithm will introduce in the retrieved coefficients and the internal coherence of the
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dictionary. In [176], this is performed for the generic case where no a priori is used. The result

determined that the algorithm required incoherent dictionaries to well operate. The influence of the

inclusion of additional models to the optimization process are analyzed in [48] and can be seen in

the following Theorem. Two main effects are perceived: First, the requirement of incoherence is

softened. Second, the maximal possible error in the retrieved coefficients is reduced.

Theorem 5.8 ([48]) Assume that the real vector b∗ solves P w
1 with

γ =
wmax

Γ
· τ(1 − εmax − µw

1 (m − 1))

1 − εmax − µw
1 (m) − µw

1 (m − 1)
.

Then support(b∗) ⊂ Γ and

‖b∗ − cΓ‖∞ ≤
τ · wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
. (5.22)

This result is valid in general and illustrates how the distance between the optimal coefficients

and the solution found by solving P w
1 can be bounded. In case no a priori is given, the bound on

the coefficient error is obtained from Eq. (5.22) setting W = I. Consequently, wmin
Γ = 1, εmax = 0

and wmax
Γ

= 1 (see also [176]):

‖b∗ − cΓ‖∞ ≤ τ

1 − µ1(m) − µ1(m − 1)
, (5.23)

where cΓ is the optimal set of coefficients with support in Γ. Comparing the two bounds, one can

observe how the availability of a reliable a priori on the signal can help in finding a sparser signal

approximation. Let W (f,D) be a reliable a priori knowledge, with wmax
Γ

/wmin
Γ ≤ 1 . Then for

any positive integer m such that µw
1 (m − 1) + µw

1 (m) + εmax < µ1(m − 1) + µ1(m) < 1, the error

‖b∗ − cΓ‖∞ given by the coefficients found by WBPDN is smaller than the one obtained by BPDN.

Hence, the bound stated by Eq. (5.22) is lower than the one in Eq. (5.23), i.e.

τ · wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m − 1))

(1 − εmax − µw
1 (m) − µw

1 (m − 1))(1 − µ1(m − 1))
≤ τ

1 − µ1(m) − µ1(m − 1)
. (5.24)

One can prove this result following the procedure of the proof of Corollary 5.3 reported in the

Appendix. See [48] for more details.

The reader may notice that if
wmax

Γ

wmin
Γ

< 1 the a priori information already tells which is the

right support of the solution. Indeed, a simple threshold on the weights would find the appropriate

set of atoms. This is an unrealistic situation in practice. However, provided that the a priori

information is reliable, we do not need
wmax

Γ

wmin
Γ

< 1 to justify an improvement on the behavior of the

algorithm. Suppose that the weights do not penalize the optimal atoms, but only some (not all) of

the“wrong”ones: in this case
wmax

Γ

wmin
Γ

= 1. In such a situation, given that µw
1 (m−1)+µw

1 (m)+εmax <

µ1(m − 1) + µ1(m) < 1, Eq. (5.24) is still valid. This means that, even if the a priori knowledge is

imprecise (but reliable), WBPDN can behave significantly better than BPDN.

Note that, once the algorithm has recovered the atom subset, the appropriate amplitudes of the

coefficients can be computed by the orthogonal projection of the signal onto the space generated by

the selected atoms. Hence, the error introduced by the relaxation algorithm into the coefficients is

irrelevant in practice if the good set of atoms is retrieved. This re-projection step is illustrated in

Section 5.8.2.
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5.8 Examples: Natural Signal Approximation with an A Pri-

ori Model

In this section we apply the methodology introduced in Sec. 5.6 and Sec. 5.7 to natural signals.

We also discuss the problem of extracting reliable a priori information on a concrete example.

Moreover, we will show how the a priori weights can be automatically extracted from the data and

optimized in order to maximize the performance of weighted algorithms. We approximate several

1D signals extracted from a variety of columns from “Cameraman” and “Lenna” images, and that

can be considered as piecewise-smooth, by using an overcomplete coherent dictionary.

5.8.1 Modeling the Relation Signal-Dictionary

The dictionary, composed by the union of the Symmlet-4 orthonormal basis is used to model smooth

parts of the signal, and the set of piecewise-constant footprints meant to model discontinuities (see

Sec. 5.5 and Fig. 5.4). Since the input signal has 256 samples, D is a matrix of size 256× 512. The

modeling of the interaction between the signal and the dictionary is performed using the simple

approach described in Sec. 5.5. The weighting matrix W (f,D) is generated by means of a pre-

estimation of the locations where footprints are likely to be used, assuming that in such locations

wavelets have less probability to appear. This discrimination does not penalize locations where a

footprint is likely to be placed (thus the weighting factor remains 1). On the contrary, wavelets that

overlap the footprint, as well as footprints considered unlikely to be used, get a penalizing factor

β ∈ (0, 1]. Hence, extracting relevant footprints and wavelets by selecting these corresponding to

strong weights would not necessarily yield a good sparse approximation

As one can observe, two parameters configure the model that generates W (f,D): a threshold λ

and a penalty weight β. We will shown later that these can be automatically selected by an iterative

optimization procedure that minimizes the energy of the approximation error.

5.8.2 Signal Approximation

We resume the general procedure for the signal approximation by these two steps:

1. Estimation of the a priori information from the “real world” signal using an a priori model.

2. Use of a weighted algorithm (greedy or relaxed) based on the estimated a priori knowledge to

find the appropriate atoms subset

Optionally, once these have been selected, their optimal coefficients can be computed again,

by means of a simple projection. This is, for the case of BPDN and WBPDN: Let us call

b∗ the approximation found by BPDN and bw
∗ the one found by WBPDN. These vectors are

thresholded removing the numerically negligible components, and in this way we are able to

individuate a sparse support and thus a subset of the dictionary. Let us label the subdictionary

found by WBPDN with Dw
∗ (composed by the atoms corresponding to the non-zero elements

of bw
∗ ). Once this is given, there are no guarantees that the coefficients that represent f are

optimal (see [176] and [48]). These are, thus, recomputed projecting the signal onto Dw
∗ and a

new approximation of f named bw
∗∗ is found. Exactly the same is done for BPDN, ending up

with a subdictionary D∗ and a new approximation b∗∗. Of course, support(b∗) = support(b∗∗)

and support(bw
∗ ) = support(bw

∗∗). Formally the approximants found by BPDN and WBPDN

after the projection step are respectively:

f∗∗ = D∗D+
∗ f = Db∗∗ and

fw
∗∗ = Dw

∗ (Dw
∗ )+f = Dbw

∗∗.
(5.25)
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Furthermore, an iterative version of this two phase algorithm can be considered in order to

optimize the parameters that configure the a priori model used in the first step: the Expectation

Maximization (EM) algorithm. A first approach for the parameters tuning can be a grid search, or

a multi-scale grid search. More sophisticated search techniques could also be used. An overview

these can be found in [18, 145].

5.8.3 Results

The results obtained from the framework introduced above are illustrated in the following. First,

we show the quantitative impact of using Weighted-MP/OMP and WBPDN in terms of the residual

error energy. Right after, the use of atoms of the dictionary to represent the main features of the

signal is analyzed. Finally, we explore the influence of tuning the two parameters that configure our

penalty model.

Approximation Results with OMP

The improvement of Weighted-OMP in the case of sparse approximations is assessed by the rate

of convergence of the residual energy, on the right-hand side of Fig. 5.11 and Fig 5.12: the graphs

show that after a certain number of iterations, Weighted-OMP selects better atoms than classic

Weak -OMP. Hence the convergence of the error improves and this yields a gain of up to 2 dBs and

2.5 dBs respectively.
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Figure 5.11: Experiment of approximating the 1D signal extracted from the 140th column of

“cameraman”. Left, 1D signal used in the experience can be seen. Right, the rate of convergence of

the residual error. In red can be observed the OMP result. In blue the Weighted-OMP result.

Approximation Results with BPDN

The same signal can be approximated by BPDN and WBPDN. As explained previously, the pursuit

algorithm is used only to select a dictionary subset and then the coefficients of the approximation

are computed again, by means of a simple projection. Fig. 5.13 shows the decay of the error versus

the number of atoms. It is clear how the use of the a priori helps the algorithm in finding a better

approximation of the signal. The results concerning WBPDN are obtained by adopting a weighting

matrix that corresponds to λ = 90 and β = 0.2. Notice that these values are not optimal for all the

numbers of non-zero coefficients, as can be seen in the area between 34 and 43 selected coefficients
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Figure 5.12: Experiment of approximating the 1D signal extracted from the 80th row of the

256x256 “cameraman”. Left, 1D signal used in the experience can be seen. Right, the rate of

convergence of the residual error. In red can be observed the OMP result. In blue the Weighted-

OMP result.

in the graph of Fig. 5.13. Better results can be achieved by tuning appropriately β and λ for any

desired m.
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Figure 5.13: Error (in dB) obtained by BPDN and WBPDN [48]. Both results are obtained by

using quadratic programming for selecting a dictionary subset and then recomputing the coefficients

by re-projecting the signal onto the span of the subdictionary.

Capturing the Piecewise-smooth Component with Footprints Basis

Here, the results intend to underline the importance of selecting the appropriate atom to represent a

particular signal feature. In the top row of Fig. 5.14 we can see the resulting approximants after 50

iterations of OMP (left) and Weighted-OMP (right) for the signal corresponding to the 140th column

of cameraman. The result obtained by including the a priori is 1.51 dBs better than the one obtained

by OMP. At this point, it is important to observe the bottom row of Fig. 5.14. These waveforms

represent the signal components that are captured exclusively by the footprints atoms and Symmlet-

4 scaling functions. These signal components should correspond to the piecewise-smooth parts of

the signal. However, in the case of OMP (bottom left) the piecewise-smooth component captured by

footprints and low-pass functions is far from what one could expect. Intuitively one can understand



100Chapter 5. Using a Priori Models in Sparse Representations and Approximations

that the OMP algorithm is failing in the selection of atoms. On the other hand, the result obtained

by Weighted-OMP (bottom right) clearly shows that footprints and Symmlet-4 scaling functions are

capturing a much more accurate approximant of the piecewise-smooth component of the signal. We

can thus argue that a better approximation is achieved by using the a priori information, and this

leads to a sparser approximation too.
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Figure 5.14: Top: Approximation after 50 iterations of OMP with (right) and without (left) a

priori information. Bottom left: Signal components captured by Symmlet scaling functions and

Footprints using OMP. Bottom right: Signal components captured by Symmlet scaling functions

and Footprints using Weighted-OMP.

Parameter Search

Finally, we show the influence of the parameters λ and β in the average quadratic error of the

residues obtained by Weighted-OMP, i.e.

E {rk|λ′, β′} =

K−1
∑

k=0

‖rk‖2

K
(5.26)

such that rk has been obtained fixing λ = λ′ and β = β′.

In Fig. 5.15 and Fig. 5.16, the magnitude of Eq. (5.26) is shown as a function of λ (model

threshold) and β (penalty weight). The lower the value of E {rk|λ′, β′}, the higher the probability

of the associated model parameters to be the good ones. Hence, it can be easily observed that the
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Figure 5.15: Representation of the expectation map depending on the parameters that configure

the a priori model in the experiment set up in Fig. 5.11. The expectation corresponds to the energy

of the residual error.
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Figure 5.16: Representation of the expectation map depending on the parameters that configure

the a priori model in the experiment set up in Fig. 5.12. The expectation corresponds tot the energy

of the residual error.
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optimal configuration of parameters concentrates for each of the figures in a unique global optimum.

In this case, the set of optimal parameters that fit the data model can be easily found by some

iterative procedure.

Behavior of Weighted-OMP on a Large Set of Piecewise-Smooth Signals

Finally, a larger subset of columns of Cameraman has been selected in order to give a better overview

on how our algorithm behaves in average. For this particular experiment, a column out of three

has been taken from the picture. Then, the average residual error of all signals, as a function of

the greedy iteration is compared for Weighted-OMP and OMP in the left graph of Fig. 5.17. For

a fair comparison, an identical analysis is performed on a set of columns from image Lenna. For

this particular case, a column out of six has been considered. We give also, in the right graph

of Fig. 5.17, a representation of the approximation gains supplied by the weighted algorithm for

each of the selected cameraman columns. This shows that depending on the particular structure

of the signal, Weighted-MP may supply very significant improvements (up to 4.5 dB better in

approximation error). It also reflects the fact that, if the prior model is properly defined, one can

not get worse results than those of the pure greedy approach, to the contrary results use to be

significantly better. Fig. 5.18 depicts the approximation gains of Weighted-MP for each one of the
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Figure 5.17: left: Average residual error convergence for Weighted-OMP and OMP for 86 columns

sampled from image Cameraman and 46 columns sampled from image Lenna. Right: Approximation

gain when using Weighted-OMP depending on the column sampled from image Cameraman.

approximated image columns.

As seen in this section, the use of models based on edge estimators can be of great help for

good piecewise-smooth signal approximations, using coherent dictionaries and highly non-linear

algorithms. One can consider this principle to approximate other signals than those presented in

here. For example, in the case of images, the use of edginess measurements may help to better place

edge-adapted basis functions and smooth-adapted basis functions, reducing the inconveniences of

highly coherent dictionaries. A brief study based on the use of an edginess measure for images and

a linear programing decomposition algorithm may be found in [91].

5.9 Conclusions

Sparse representation and approximation require the use of dictionaries capable to catch efficiently

the main features and salient structures of signals. Particular applications often focus on a certain
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Figure 5.18: Approximation gain when using Weighted-OMP depending on the column sampled

from image Cameraman.

class of signals. A wise strategy is, thus, to use dictionaries adapted to this class. Such dictionaries

often have high internal coherence, while practical algorithms for the retrieval of sparse approxima-

tions, like Weak-MP, BP or BPDN have been proved to work well with incoherent dictionaries. In

order to overcome this contradiction, adaptive subset selection algorithms are of key importance to

obtain optimal m-term signal approximations.

Weighted variants of Weak-MP, BP and BPDN algorithms, called Weighted-MP/OMP WBP

and WBPDN, are introduced. Theoretical results show that these algorithms may supply much

better results than classic approaches for highly non-linear signal approximations with coherent

dictionaries. In order to guarantee this, sufficiently reliable a priori models must be used. Our

practical examples show how appropriate a priories may be able to characterize the interaction

between signal and dictionaries.

A possible direction to explore is to determine some bound on the quantity εmax (i.e. the

reliability factor) depending on the class of signals to approximate, the selected dictionary and

the practical estimators in use (those that generate the a priori weights). The knowledge of some

bound on εmax for certain model, given a class of signals, and a dictionary may be of great help in

determining in advance whether a model can be suitable for a particular application. In general,

very good feature estimators exist and a lot of experience about them is available in literature. For

every particular application, models exploiting particular signal features may be found in order to

marry them with most common algorithms used for sparse approximations/representations. In fact,

the examples presented in this work may be subject to improvement if more robust estimators were

used.

As seen in this chapter, the convergence of highly non-linear algorithms can be modified by

the introduction of a priori models. This approach will be used in Chapter 7 to help the greedy

algorithm in use to extract meaningful 3D spatio-temporal geometric video components.
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Chapter 6

Matching Pursuit Geometric

Image Approximations

6.1 Motivation

This chapter is the first step toward the study of a practical geometric video representation based

on Matching Pursuit expansions. First of all, the problem of representing 2D data has to be tack-

led. Hence, the present chapter will be fully devoted to this. The work here presented builds upon

the seminal study by Vandergheynst and Frossard [178], and subsequent works [64, 65, 78], on the

approximation of images using a geometric overcomplete dictionary. In these, an over-complete

dictionary of anisotropically refined atoms is used in order to exploit geometry in image representa-

tions. Matching pursuits are used to generate signal expansions in a feasible way. However, given

the extremely large size of the used dictionary, authors used a suboptimal weak version of MP

(see Chapter 4) based on genetic algorithms [43]. As seen later in this chapter, the use of such a

suboptimal algorithm significantly reduces approximations efficiency.

Here, a feasible approach for Full Search Matching Pursuit (FSMP) is proposed in the particular

case of natural image approximations with anisotropically refined oriented atoms. Thanks to the

structure of the dictionary and its spatio-temporal localization, several enhancements allow to speed-

up the calculation of the most critical step: the scalar product of the signal with all the functions

of the dictionary.

This chapter is structured in the following way: First, the anisotropic refinement dictionary and

the methodology used for its construction is revised in Sec. 6.2. Next, we recall in Sec. 6.3 the

sub-optimal MP approach based on the genetic algorithm. Once the exposed problem, the proposed

feasible Full Search MP approach is described in Sec. 6.4. In this, we expose the benefits of using

the FFT to accelerate the scalar products computation and present comparative results with genetic

algorithm based MP. In Sec. 6.5, further ways of exploiting the characteristics and structure of the

dictionary to reduce computational complexity are presented and discussed. Finally, conclusions are

drawn in Sec. 6.6.

105
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6.2 Finding Image Components: Dictionary Design

6.2.1 Image Decomposition

In order to efficiently represent a signal, one needs to know its features and to has make some

assumptions. The main assumption often made on images is that they can be represented (or at

least approximated) as a finite sum of basis functions:

f̂ =

K−1
∑

k=0

ckgγk
, (6.1)

where f̂ is the image approximation, cn are the coefficients and gγn
the selected basis functions.

Clearly, when the number of non-zero terms is much smaller than the discrete signal dimen-

sionality, we are in the case of sparse representations and approximations. Chapter 4 shows that

this kind of decompositions are straightforward to obtain when dealing with orthonormal basis or

when using a frame method [121]. However, frame methods (see Sec. 4.4.1) do not provide sparse

enough signal approximations. In addition, computing the dual basis is not always straightforward.

Thus redundant dictionaries require an algorithm that gives a sparse decomposition: an interesting

solution may be brought by greedy algorithms.

The sparse image model only implies that the image can be represented or approximated by

a finite sum of basis functions. It makes no assumption on the nature of the basis functions. In

order to have efficient representations, as discussed in the introductory Chapter, basis functions

have to be adapted to the specific features of signals. In the case of images, this corresponds to

adapt to contours, smooth regions and textures. Smooth areas are often better represented with

non-zero mean functions. These functions have a very important low frequency component. If

polynomial approximations are desired, scaling functions of wavelet basis can be envisaged [180].

The definition of texture is somehow trickier. Several authors have worked on the subject, defining

texture in several ways, going from just considering it as dense bundles of edgy features to seeing

it as conglomerates of multi-scale oscillating patterns [129, 147, 179]. Following the discussion of

the introductory chapter, contours are often the most relevant and meaningful feature in natural

images. Hence, they merit the use of appropriate and adapted functions to efficiently describe them.

Contours are assumed to be 1D continuous smooth functions [51, 53, 62, 63, 115]. Taking this

model and trying to approximate edges with the smallest number of piecewise linear segments, one

understands the need of a dictionary of functions with high geometric meaning.

Some geometric, edge adapted dictionaries, may also handle with some success texture. Edge

dictionaries present, in some cases, an oscillatory component. However, the same can not be said

for smooth regions and low frequency components. Hence, before expanding the signal onto the

geometric dictionary, the low-pass frequency part is subtracted from the signal and represented by

a downscaled version (see Fig. 6.1). Low-pass representations are intended to capture the main

components of smooth parts. As depicted in Fig. 6.1, local average in images is represented in our

case by a limited number of coefficients that depend on the downsampling rate (this is given by the

number of dyadic downsampling stages in the diagram). For simplicity, a cubic spline low pas filter

has been taken here to generate the multi-scale pyramid of low-pass image versions.

6.2.2 Geometric Dictionary Generation

Images modeled by (6.1) are puzzles with cngγn
terms as pieces. As we are interested in an efficient

representation of edges, we need signal pieces cngγn
with an elongated form. These pieces need,
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Figure 6.1: Decomposition diagram to obtain Eq. (6.1) representation. The summation terms are

divided in two main kinds: low frequency components (some few coefficients, the number depends

on the downsampling rate), and the remaining signal components represented by means of the

geometric dictionary.

moreover, to be adapted to the great variety of geometric properties that elongated structures may

have in an image.

In this section, we first review the generic formalism for the group based design of dictionaries.

Then, the geometric dictionary used in the remaining of this work is described.

Group Theoretical Design of Dictionaries

The main goal of group based design of dictionaries is to create complete dictionaries by applying

basic operations on a simple signal template g. The interest arises from the set of advantages that

such a formulation provides. The more relevant are the following:

• It is a systematic way to generate a large family of functions with an extensive variety of

geometric properties,

• if g is a continuous analytic function, then (6.1) implicitly generates a continuous model of f

(we assume that f is discrete) which may of use for applications where one desires to perform

interpolating operations,

• group operations used to generate the dictionary can, then, be used to easily apply group

transformations to the data,

• as shown in [66, 78], several of these properties can be exploited for scalability and transcoding

operations in image and video coding applications.

In the following, the unitary operator of a group is defined. This is then used in the result that

states the completeness of a group designed dictionary.
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Definition 6.1 ([16, 78]) Let G be a group and H be a Hilbert space. A unitary representation U
of G in H is a homorphism between G and the set of unitary operators on H with composition as

the group law:

U : G 7→ U (H)

γ 7→ U (γ) ,

The reader is referred to [16] for details and properties of groups and group laws.

Based on that, the following result states the necessary property for a dictionary D, generated

by the group based method, to expand any signal f ∈ H.

Lemma 6.1 ([16, 78]) Let G be a locally compact group and U a unitary representation of G in

a Hilbert space H. Let U(γ)g denote the action of the unitary operator U(γ) on the function g.

The unitary representation is said to be irreducible if it does not admit any non trivial invariant

subspaces. That is if S ⊂ H is such that

U(γ)g ∈ S, ∀g ∈ S and ∀γ ∈ G,

then either we have S = H or S = {0}.

This can also be stated such that, for any g ∈ H, all transformations of g under G build a set of

functions which is generator of H:

D = {U(γ)g|∀γ ∈ G} , span (D) = H.

As stated in [78], this kind of construction, induces to covariance of the dictionary with respect to

group action. This is, indeed, defining gγ = U(γ)g:

U(γ0)gγ = U(γ0 ◦ γ)g,

where ◦ indicates the group law.

Anisotropic Refined Dictionary: A Semi-Structured Dictionary

The geometric dictionary that concerns this work is generated by applying a set of diverse trans-

formations to a mother function g. Our dictionary is spanned by a family of unitary operators Uα:

D = {U(γ)g, γ ∈ A} , (6.2)

for a given set of geometry transformations A. g defines the structural and morphological properties

of the dictionary functions, while A captures most of its geometrical properties. In the following,

we detail the generation of A in the particular case of [178] to design an Anisotropic defined (AR)

dictionary for image approximations.

Definition 6.2 ([78, 178]) Let the index set A contain translations, rotations and two dilations,

one for each principal direction:

A =
{

b ∈ R
2, θ ∈ SO(2), (a1, a2) ∈ R

+
∗ × R

+
∗
}

, (6.3)

where SO(2) the notes the group composed of dilations and rotations. The action of A on an atom

g is defined by:

Uαg = U (b, θ) D (a1, a2) g, (6.4)
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where U is a representation of the Euclidean group:

U (b, θ) g (x) = g (r−θ (x − b)) , (6.5)

and D acts as a dilation operator:

D (a1, a2) g (x) =
1√
a1a2

g

(

x

a1
,

y

a2

)

, (6.6)

where x = (x, y) is the vector of plane coordinates.

When a1 = a2 = a then D(a, a) is nothing but the similitude group of the plane. Avoiding rota-

tions, then it corresponds to a group studied in [17]. Clearly, A has not group structure in here. It

presents, however, covariance with respect to the Euclidean group. The dictionary of Definition 6.2

is linked to Eq. 6.2 in the following way: each γ in Eq. 6.2 corresponds to a particular setting of

{b, a1, a2, θ}.

The dictionary used in the scope of this chapter is generated from the following mother function:

gAR(u, v) = C(4u2 − 2) exp
(

−(u2 + v2)
)

, (6.7)

where C is a normalizing constant and (u, v) are, in this case, the plane coordinates. Eq. (6.7) is

a 2D separable kernel made of the tensorial product of two main structures. One (the y axis) is

formed by a Gaussian function that confers to it the capacity to represent smooth structures in this

direction. The perpendicular direction, is formed by a Mexican Hat (or Marr) wavelet [121, 126].

This intends to represent big variations within the signal. The wavelet direction of (6.7) will respond

to features with properties similar to lines and edges. A 3D visualization of an AR atom can be

seen in Fig. 6.2.

Mexican Hat wavelets have just two vanishing moments [13] (thus, a limited capacity to ignore

polynomial surfaces), and a very localized spatial and Fourier extension (see Fig. 6.3). In effect,

Eq. (6.7) has an optimal spatio-temporal energy localization. It has a low oscillatory behavior which

will translate (as it will be seen in examples) in a very low ringing effect in the approximation of

images. In addition, this kind of function is very similar to the response of V1 cells of visual cortex

[136], which makes coding artifacts smooth enough in order to be not too annoying for the Human

observer.

Eq. (6.7) atoms have also been chosen because they can be easily anisotropically scaled, rotated

and translated, in order to properly adapt to edge representation. In fact, edgy features are found in

images within a large range of lengths, orientations and scales. All these transformations, represented

in Definition 6.2 by the indexes set A, apply in the following way to gAR(u, v):

[

u

v

]

=

[

1
sx 0

0 1
sy

][

cos θ sin θ

− sin θ cos θ

][

x − bx

y − by

]

. (6.8)

In (6.8), the first matrix by the left corresponds to anisotropic scaling of the function. Next comes

the rotation matrix and finally, at the right, a translation operation can be seen. Notice that (x, y)

denotes the image coordinates. During the generation of the dictionary, only one constraint, a part

from those issuing from the image size, needs to be taken into account. In order to avoid ill-formed

functions inappropriate to edges, the following relation must always be respected: sy ≥ sx.
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Figure 6.2: 3D view of an anisotropically refined atom in the spatial domain based on Eq. 6.7.

(a) Spatial domain (b) Frequency domain

Figure 6.3: An example of one atom of the dictionary in the spatial domain and in the frequency

domain.
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Figure 6.4: Approximation of the Foreman image. left: original picture. right: set of 4 approxi-

mations, the approximations with 50, 100, 150 and 200 AR atoms are presented in raster order.

6.3 Genetic Algorithm based MP: a Weak Matching Pursuit

Implementation

The straightforward computation of all scalar products required by full search Matching Pursuit is of

very high complexity. In order to reduce the computation time, one can take a suboptimal solution.

Due to the non-linearity and non-convexity of the problem, standard minimization algorithms, such

as steepest descent, do not perform well, because of the presence of many local minimas. One way

of implementing a quicker computation of a global solution is through the use of Genetic Algorithms

[43, 64, 65]. The use of this optimization algorithm for every MP iteration leads to the so called

Weak Matching Pursuit (see Sec. 4.4.2). Indeed, instead of choosing the optimal solution at every

iteration, a sub-optimal one is selected.

Genetic Algorithms may be appropriate for MP because they can converge whatever the minima

of the problem is. The disadvantage of this kind of algorithms is that the convergence degree is

merely statistical. One can never know how close to the optimal solution we are. However, greedy

algorithms have been demonstrated to converge even though the solution chosen at every iteration

is not the optimal [173]. Hence, the use of a Genetic Algorithm will not cause the algorithm to

diverge, but it will slow down the convergence.

The use of a Genetic Algorithm (GA) in the framework of MP for image approximations was

proposed in [65, 78]. The GA takes the atom parameters (translation, scaling and rotation) as

genes. Each group of five parameters defining an atom is an individual. The group of Nind atoms

being evaluated, or the group of Nind individuals alive in a certain moment is the population. The

individuals of the population will have descendants through crossover, mutations and survival of

the fittest, which will form the new generation of the population. Normally the algorithm will go on

until a certain number of generations Ng is achieved or until the minimal error has been reached. A

diagram of how this algorithm works is depicted in Figure 6.5.

The computational complexity of the GA directly depends on the number of individuals in the

population and on the number of allowed generations. The number of scalar products to compute

in order to obtain an MP coefficient through the GA will be, at most, Nind · Ng − Ng + 1 (from
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Figure 6.5: Genetic Algorithm block diagram.

one generation to the other some individuals can be kept without change due to the randomness of

mutations and crossovers). Indeed, the computation of the winner is done only once, because then

it passes from one generation to the other. If no constraint is given on the dictionary (so, dictionary

atoms are not necessarily bounded, and its size is taken equal to the image size), performing a scalar

product will imply N = Sizex · Sizey products and sums (with Sizex, Sizey being the image size).

The final computational complexity of the GA is given by:

O (N · Nind · Ng) . (6.9)

When compared to the “Brute Force” Full Search MP implementation (see section 6.4.1), this com-

plexity is lower, but still high, specially if taken into account that the GA introduces an approxi-

mation error which is difficult to quantize due to the randomness of the method.

6.4 Full Search MP

Sub-optimal algorithms can advantageously reduce computational complexity. However, as seen in

Sec. 6.3, a price has to be paid for this. In such a case, approximation quality is degraded by a certain

factor due to the heuristic nature of the algorithm. This can negatively affect the performance of the

application that uses the generated signal expansion. In fact, errors committed during the functions

selection state will require further projections in order to be corrected. Errors turn into a decrease

of the coefficients decay and, consequently, a reduction of the approximation sparsity.

For applications where sparsity and accuracy play a critical role, there is a determinate interest

in the availability of feasible Full Search MP approaches. In this way, the best possible MP expan-
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sion may be achieved avoiding heuristic or uncontrolled imprecisions during the function selection

procedure.

6.4.1 “Brute Force” Full Search MP

According to the MP algorithm principle (see Sec. 4.4.2), at every iteration, it is necessary to browse

through all functions that form the given dictionary in order to perform all scalar products between

dictionary atoms and the signal. Hence, the complexity of a full search MP iteration directly depends

on the size of the dictionary times the complexity of a single scalar product. In general, and without

any constraint on the dictionary in use, the scalar product can be considered to involve all pixels of

the image (non-separable atoms with no compact support). Thus, considering both contributions,

O (NF · N) (6.10)

operations are needed to compute all scalar products, where N = Sizex · Sizey and NF is the

number of dictionary functions.

The choice of atoms in MP expansions aims at finding the best spatio-frequential representa-

tion at the best location within the image to be represented. Considering the fact that a precise

localization of the “spatio-frequential” feature may be of use, all possible displacements for a certain

shape of atom must be taken into account (see the group based design of dictionaries in Sec. 6.2.2).

Hence, most functions of a certain dictionary are just displaced versions of a model sharing the same

frequential properties. Thus,

NF = MF · Sizex · Sizey = MF · N, (6.11)

where MF is the number of model functions and the N the total number of allowed displacements

within an image.

It follows from Eq. (6.11) that the complexity of a full search MP with a dictionary, such as the

previously described, is given by

O
(

MF · N2
)

. (6.12)

Of course, in this complexity estimation, the cost of generating all functions of the dictionary is

not taken into account. We assume that functions are generated once and stored into memory.

Given the dictionary example of Sec. 6.2, we see that the dictionary generation is also an im-

portant point to take into account concerning the complexity of the whole expansion algorithm.

Actually, the fact of having an analytical generating expression for the dictionary functions may

lead to recompute the concerned atom at every step. This, fruit of some pragmatism from a pro-

graming point of view, may bring a very important overhead to computations. The cost of computing

a general atom is, a priori, related with the size of the image. Hence assuming that the number of

operations (∆) needed to compute a pixel is ∆ << N turns to be O (N). Anyway, this bound may

not be representative of the real complexity. Depending on the function to be computed at every

pixel (see Eq. (6.7)), it may be required to consider a cost of O (N · ∆).

In order to reduce the impact of the complexity (∆), look-up tables may be defined with a

sufficiently dense set of pre-computed values of the critical function (e.g. “exp()” in Eq. (6.7)). The

corresponding value can be then approximated by its nearest neighbor in the look-up table. This

approach can be very interesting in cases where all dictionary atoms are generated using the same

analytical expression or a similar one (e.g. group theoretical design dictionaries).

A more exhaustive solution consists to store all dictionary functions such that no extra calculation

is needed (apart from scalar products and memory transfers). This is equivalent to dispose of a

numerically defined dictionary. Here, the complexity problem of computing all atoms, becomes a
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memory problem, in terms of size and bandwidth. In a general framework with no constraints on

the dictionary, it would require O (NF · N) memory words. This can be absolutely impractical for

a very dense dictionary.

Coming back to our example dictionary (Eq. (6.12)), O(N) functions per each of the MF fre-

quency models represents a O
(

MF · N2
)

in terms of memory requirements, which is absolutely

impracticable. On the other hand, the dictionary is translation invariant and only a single numeri-

cal centered version of each of the MF models is necessary to be stored. A simple convolution would

solve all scalar products for each one of the frequency models.

6.4.2 Spatial Invariance in Scalar Product Computations and Boundary

Renormalization

Considering the operations performed in one iteration of the full search MP:

|〈rkf, gγn
〉| = sup

γ∈Γ
|〈rkf, gγ〉| , (6.13)

and the translation invariance, then

|〈rkf, gγ〉| =
∣

∣

∣
〈rkf, gγdx,dy

MF

〉
∣

∣

∣
=
∑

τ

∑

λ

rkf(τ, λ)gγMF
(τ − dx, λ − dy), (6.14)

where γMF
∈ ΓMF

and ΓMF
is the sub-set of different frequency models in Γ. This means all

different functions ΓMF
s. t. γdx,dy

MF
∀MF and dx = N

2 , dy = N
2 .

A common problem in image processing is the finite nature of signals. Images are defined over

a finite domain. If this is not taken into account, then sparsity in representations may decrease.

A typical example is given by image representations through the classical wavelet transform,

which introduces many high valued coefficients if no specific periodization, mirroring or boundary

wavelet are applied [121].

An image I(x, y) defined in a domain s.t. x, y ∈ [0, Sizex,y) can be considered as the windowed

version of a infinite 2-D signal Iinf :

I(x, y) = Π

(

x − Sizex/2

Sizex
,
y − Sizey/2

Sizey

)

Iinf (x, y) , (6.15)

where Π (x, y) is a squared 2-D window defined for x, y ∈ [0, 1).

In our case, the use of periodic extensions of the image would definitely have a negative impact

in the number of functions needed to represent the boundary, as artificial structures would be

introduced. Mirroring would be a better choice and the energy spreading on the coefficients would

be significantly lessen. Anyway, this approach introduces also artificial structures such as bending

of oriented features (e.g. edges) on the image boundary.

A possible solution is to introduce into the dictionary additional boundary adapted functions.

The proposed supplementary functions are the windowed version of the anisotropically refined func-

tions described in this chapter. They need to be reweighted with a normalization factor such that

they continue to have unitary norm. In this way, coefficient expansions continue to have the same

properties defined for MP signal decomposition on unitary dictionaries. The contribution of this

new class of elementary functions is the ability to catch regular structures of the signal that suddenly

terminate at image boundaries.
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The scalar product generation can thus be reformulated as:

|〈rkI, gγ〉| =
∣

∣

∣
〈rkI, gγdx,dy

MF

〉
∣

∣

∣
=

∑

τ

∑

λ rkI(τ, λ)
gγMF

(τ − dx, λ − dy)
∥

∥

∥

∥

gγMF
(τ − dx, λ − dy) · Π

(

τ − dx − Sizex/2

Sizex
,
λ − dy − Sizey/2

Sizey

)∥

∥

∥

∥

2

·

Π

(

τ − dx − Sizex/2

Sizex
,
λ − dy − Sizey/2

Sizey

)

=

∑

τ

∑

λ

rkI(τ, λ) · g̃γMF
(τ − dx, λ − dy),

(6.16)

where g̃γ represents the new dictionary of functions that is not space invariant due to a weighting

factor that depends only on the spatial location.

Thus, we consider to separate the calculation of the scalar product into two steeps:

• First, the common part of all functions of the same kind (same non bounded spatio-frequential

properties but not same position) are used in the convolution.

• Afterward, each obtained coefficient is weighted by the normalization factor of its projecting

function that takes into account its intersection with boundaries.

Note that the computation of normalization factors increases the complexity. In a general dictionary,

this complexity depends on the total number of functions of the dictionary and the size of the signal.

Considering the general situation where all functions of a dictionary may intersect with boundaries,

independently of its position within the image, and Eq. (6.11), it turns out that NF normalization

factors are needed and up to

O
(

MF · N2
)

(6.17)

operations can be necessary to compute them. These normalization factors are used at every iter-

ation of the MP algorithm. Furthermore, they do not depend on the signal. These features allow

computing them once at the beginning of the expansion process and storing them their posterior

use in subsequent MP iterations. Eq. (6.11) trivially implies

O (MF · N) (6.18)

memory words, which in some cases and depending on the dictionary size (and image size) is feasible.

6.4.3 FFT Based Full Search MP: From Scalar Products to Spatial Con-

volution

In Sec. 6.4.1, the computation of the whole set of scalar products was presented as a very compu-

tationally complex task. Therefore, a fast convolution algorithm must be used in order to make

possible a full search strategy with large dictionaries. This can be done thanks to the Convolu-

tion Theorem [20], which states the way of using the FFT for this purpose [22, 133]. In this way,

Eq. (6.12) becomes:

O (MF · N log (N)) . (6.19)

Furthermore, functions can be directly stored into memory in their transformed version such that

only one inverse FFT per Fourier template is needed. In the case of a dictionary of non-complex
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functions, the amount of memory needed for storing Fourier domain versions is not bigger than

those in the spatial domain. However, the spatial zero padding has to be taken into account in the

transformed version of the function. Furthermore, the normalizing mask has to be stored as well,

which increases even more the memory needs. The asymptotic memory requirements is finally of:

O (MF · N) (6.20)

memory words.
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Figure 6.6: Description of the setting up procedure generating the look up tables to be used in

Fig. 6.7.

In Fig. 6.6 appears the scheme used for the generation and storage of dictionary atoms and

weighting masks. Weighting masks are generated by convolving a centered squared atom by a image

size pulse function of unitary amplitude.

Fig. 6.7 illustrates the general procedure used to generate all scalar products from the stored

Fourier atoms and spatial weighting masks. Convolutions are performed on the Fourier domain.

Once done, it only remains the supremum search in order to find the appropriate result.

As we will show in the following sections, the Matching Pursuit approach can benefit from very

interesting improvements in terms of computational cost and memory requirements when special

care is taken on the structure of the dictionary. Before that, let us examine some results of the full

search algorithm and compare them to those obtained by the GA based approach.

6.4.4 Results: Full Search vs Genetic Algorithm Search

In this section we compare the performance of the FSMP algorithm versus the Weak MP based on

the GA. In table 6.1, we state the relation of computation times required by each algorithm and

the approximated quality achieved. Experiments have been performed on a Dual Xeon 2.2 GHz
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Figure 6.7: Schematic description of the full search algorithm for one iteration of MP. Look up

tables are used to hold the DFT of the dictionary functions and the normalizing masks.

with 2GB of RAM. We note the improvement of 3.8 dBs achieved by our FSMP in images with

an important piecewise-smooth component like Lenna and Cameraman with a significantly smaller

computational time. In the case of Baboon, the improvement is only 1.6 dB due to the higher

complexity of the signal (much more textured). In the 3 cases, approximations have been generated

by recovering the first 300 terms of their MP expansions.

Image Algorithm Computation Time PSNR

Lenna 128x128
GAMP

Full Search MP

156’ 26.909”

126’ 29.792”

26.1506 dB

29.9076 dB

Cameraman 128x128
GAMP

Full Search MP

157’3.249”

128’13.957”

25.0485 dB

28.8270 dB

Baboon 128x128
GAMP

Full Search MP

160’19.048”

128’9.170”

25.1374 dB

26.7932 dB

Table 6.1: Comparison of the computational time and the image quality obtained with the Genetic

Algorithm, using 39 individuals and 75 generations, and the Full Search algorithm.

Figures 6.8, 6.9, 6.10 show a visual comparison of both algorithms. In the FS case, the exhaustive

search at each iteration reduces the geometric noise introduced by the GA. The GA, is not able to

converge precisely at every iteration in order to select the best atom. This error appears under

the form of lines and ridges. They are very noticeable when they correspond to relevant salient

geometric structures like edges.

Finally, to give an overview of the convergence through MP iterations, Fig. 6.11 presents a

comparison of both, FS and GA based algorithms. The Lenna image has been used for experiments.

As it can be seen, the FS algorithm outperforms through all MP iterations the weak greedy algorithm

based on the GA.
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(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.8: Visual comparison of Lenna 128x128 decomposed with MP with 300 coefficients (a)

with the Genetic Algorithm and (b) with the Full Search MP.

(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.9: Visual comparison of Cameraman 128x128 decomposed with MP with 300 coefficients

(a) with the Genetic Algorithm and (b) with the Full Search MP.
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(a) Genetic Algorithm (b) Full Search Algorithm

Figure 6.10: Visual comparison of Baboon 128x128 decomposed with MP with 300 coefficients (a)

with the Genetic Algorithm and (b) with the Full Search MP.
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Figure 6.11: Evolution of the PSNR with the iteration number for the Genetic and the Full Search

Matching Pursuit algorithms. The image used in this case is the gray-scale 128x128 Lenna.
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6.5 Exploiting the Dictionary Features

In this section, we explain how computational and memory complexity can be further reduced.

Several results illustrate gains and limits of methods used to reduce the complexity.

6.5.1 Taking Profit of Spatio-Temporal Energy Localization: Compact

Support and Atoms Approximation

In terms of computational complexity, it is very interesting to deal with compact support basis

functions. We can define two types of compactness: compactness in frequency and compactness in

space. Natural image decompositions often use dictionaries where functions have localized support

in space, e.g. the basis functions used for classic dyadic wavelet decompositions [121]. Concerning

the dictionary used in this work, even if functions do not have strictly compact support, their

energy is mostly compacted in a very localized fashion. Moreover, the fact that atoms envelop is

Gaussian shaped implies that the energy is localized in space and frequency domains. As seen in

the following, this allows for some approximations of the dictionary which significantly reduce the

memory usage and decrease the number of multiplications needed at each full search MP iteration,

without introducing any distortion nor affecting the rate of convergence of the MP algorithm.

A first advantage of spatially localized dictionaries is the possibility to use the so called M-fold

MP strategy [82]. This consist in recovering M atoms at each MP iteration. Indeed, distant atoms

in space that have a localized support are often incoherent among them. Some heuristics can be

based on this and contribute to speed-up by a factor M .

Thanks to the incoherence among spatially distant atoms, further savings are possible. Indeed,

for a given MP iteration, once an atom is selected, all scalar products of atoms that are highly

incoherent with the selected one do not need to be recomputed. This allows a way of parallelizing

MP. Scalar products of different influence zones may be computed in parallel. In some cases,

this strategy, can also be coupled with the M -fold approach, leading to an even better general

performance.

Our full search solution is based on the massive use of the FFT in order to reduce the complexity

scalar products computation of all translations of a given atom. For this purpose, all centered Fourier

atom versions are stored into memory such that they need to be computed only once. The fact that

an atom and the normalizing modulus masks (as described in Sec. 6.4) may have few significant

non-zero samples in an image makes possible to optimize the storage by efficiently indicating where

they are. Moreover, the run-length description of their positions can also be used to reduce the

number of multiplications involved in the algorithm.

Memory Compression

Fig. 6.12 illustrates the kind of information contained in maps that represent the frequency domain

form of atoms (see the first row), and normalizing factor maps (see the third row). It can be seen, in

the second and fourth row of Fig. 6.12, respectively the areas of each map where relevant information

is cumulated for the Fourier domain atoms and normalization masks. Concerning the Fourier domain

version of atoms in this examples, one sees within the second column, in white, the support where

the modulus of the Fourier transform is greater than a given threshold (10−3 in this example). In

the fourth column, areas in white are the spatial locations where the renormalization factor differs

from 1 by more than a certain threshold - 10−3 in the presented example - (i.e. factors smaller than

1 are used to re-normalize scalar products of atoms that significantly cross image boundaries). In

both cases, only original values corresponding to the white footprints are required to be stored, the
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Figure 6.12: First row: frequency modulus of three selected dictionary atoms. Second row: Re-

spective support of the significant values that need to be stored in memory (values with modulus

greater than 0.001). Third row: Spatial renormalization maps that correspond to the atoms of the

first row. Fourth row: Binary mask that determines where values different from 1.0 with a significant

difference (greater than 0.001) are located.
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rest can be approximated by zero for the Fourier atoms case and by one for the re-normalizing mask

case.

What makes feasible the compression in both cases is that zeros and ones cumulate in consecutive

memory positions. Hence, nothing easier than using the basic run-length coding [156] to store into

memory more efficiently default values (zero or one) for every kind of map. Of course, better

techniques using quad-trees or prune-join trees (like in image compression techniques [163]) could

be used, however this is out of the scope of this work.

2 4 6 8 10 12 14 16
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16

Figure 6.13: Every Fourier domain atom is stored in a run-length fashion. All values considered

insignificant are set to zero. All consecutive zeros (considering a raster scanning of images) are

efficiently stored using a single integer. Significant values are stored one by one together with an

integer number that specifies how many significant values are consecutively aligned.

Fig. 6.13 depicts the raster scanning used for storing a simple example. In a top-down fashion,

the signal is scanned line by line. Two lists of values are kept: one contains the list of elements in

every run of significant pixels and the other contains the length of each run of values (significant

and insignificant).

Examples

In the following, the effect of approximating the stored Fourier domain atoms and normalizing maps

is analyzed. We compare in 6.14 and 6.15 the way memory compression affects the quality of the

approximation of Lenna (gray-scale 128x128 pixels) when using the FS algorithm. The degree of

memory compression is varied by means of changing the threshold used to decide which are the

significant values to keep an use. Experiments are done by ranging the threshold from zero up to

100.

As it can be appreciated in the figures, the dictionary can be approximated such that up to more

than 75% of memory is saved without any distortion increase. Fig. 6.15 visually shows, that a very

high threshold can be set before important distortions are perceived.
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Figure 6.14: Approximation PSNR vs memory used of the FFT based full search algorithm for

Lenna 128x128. Up to 75% in memory savings can be achieved without loss in approximation

convergence. In the left the approximation is done with 100 terms. In the right, 300 terms are used.

Figure 6.15: Visual comparison of the different approximation of Lenna 128x128 for the amounts

of memory of: (from left to right and then up/down) 377 MB (threshold 0), 122 MB (threshold

10−4), 22 MB (threshold 1) and 2.2 MB (threshold 10).
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6.5.2 Steerability of Atoms and Complexity Benefits

Steerability is an interesting tool when dealing with orientable functions. This is based on the

principle that certain classes of kernels, can be tuned according to a set of geometric parameters.

These can be decomposed in a linear combination of few functions sampled from that parameter

space. For example, for the kind of atoms used in this work, if both axes have the same scaling

factor (1/sx = 1/sx = a in Eq. (6.8)), then it is possible to generate all possible orientations of

these from just 3 basic functions with different orientations [77]. It is common to use orientations

of 0, π
3 and 2π

3 (see Fig. 6.16). However, the concept of steerability can be extended to any other

affine transformation a part from that of the rotation. In some cases, the steered functions are only

approximations of ideal ones. An extensive review of steerability can be found in [77, 99, 100, 123,

143]. In terms of computational advantages, the use of steerability would significantly contribute to

by Interpolation
Steered Functions

Original
Sub−set Basis

fx

fy

Figure 6.16: In some cases, a whole set of functions from the dictionary can be generated from

the linear combination of a subset of these. This is the case, for example, for isotropically scaled

Gaussian second derivatives [77]. Only three real filters (drawn in black) are needed to generate all

remaining orientations.

reduce the number of necessary inverse Fourier transforms. To give an example, let us take again

the isotropically scaled second derivative of a Gaussian. Consider we desire to compute the scalar

products of all translated versions of Nθ different orientations of our steerable kernel. For that

purpose, if we store into memory a Fourier domain version of the function for each one of the Nθ

orientations, as described in Sec. 6.4, a total number of:

O (N) · Nθ + O (N log N) · Nθ (6.21)

operations will be necessary (where N is the size of the data). In (6.21), the first term corresponds

to the product in the transformed domain for filtering, and the second indicates the complexity

associated to all inverse Fourier transforms. If steerability is used instead, and all needed orientations

are obtained by linear combination of a basic set composed by three functions, the number of

necessary operations turns into:

O (N) · 3 + O (N log N) · 3 + O (N) · 5 · (Nθ − 3) , (6.22)
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where the first two terms correspond to the complexity required by the Fourier domain filtering

and the last term corresponds to the steerability based computation of the remaining orientations.

The factor 5 in the last term of (6.22) is due to the three products and two additions of the linear

combination used to steer filters. Fig. 6.17 illustrates the potential savings of using steerability in

the computation of scalar products for the simple example of isotropically scaled anisotropic second

derivatives of a Gaussian. Even for small N, the use of steerability is computationally advantageous.

Moreover, the bigger the N the more resources are spared. According to the particular example

given by (6.21) and (6.22) for Nθ = 36, when N → ∞ the spare factor converges to 12. Moreover,

in terms of memory usage, the amount of needed storage falls down of a factor Nθ

3 . This not only

reduces the memory consumption but also the time required to transfer data from memory to the

processor.
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Figure 6.17: Comparison of the growth of complexity with and without using steerability as a

function of N. In this graph, we have assumed Nθ = 36.

Anisotropic scalings can be approximated by simple linear combinations of isotropically scaled

atoms that are aligned according to their longitudinal axis. In fact, linear combinations of few

scalar products obtained with the angular steerability of isotropically scaled atoms, should allow the

recovery of approximate values for scalar products corresponding to anisotropically scaled versions

of (6.7) [77, 99, 100, 123, 143].

Although advantages of introducing the steerability principle in the analysis step of each MP

iteration are stated here, its practical implementation and integration is beyond the scope of this

work and will be left for future work.

6.6 Conclusions

In this chapter, a strategy has been presented to allow the implementation of full search matching

pursuit for very dense dictionaries with spatially invariant atoms. This appears to be of capital

importance for the efficient approximation of images, if compared to suboptimal approaches like

genetic algorithm based ones. Indeed, the technique presented here has allowed the investigation

and implementation of a very interesting flexible low bit rate image coding scheme [66, 67, 79].

The use of the FFT allows to quickly calculate all scalar products of the displaced versions of

a template thanks to the Convolution Theorem. Moreover, we have seen how some dictionaries

allow to introduce relevant enhancements in order to reduce complexity and memory usage. Spatio-
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frequential energy localization of dictionary functions is of key importance for that. Furthermore, for

the particular dictionary used in this work, the use of steerability techniques seem very appropriate

to further reduce complexity.

Very fast algorithms can be developed for particular dictionaries. Structured dictionaries and

those that can profit from the steerability properties may contribute to usable, real-time, signal

decomposition techniques based on redundant dense dictionaries. More detailed research is left as

future work.



Chapter 7

A Geometric Video Representation

Using Redundant Dictionaries

7.1 Motivation: Sequence Modeling

Natural image sequences are composed of successive projected snapshots of 3D objects. Considering

these objects to be smooth and their trajectories to be smooth functions of time, one usually assumes

that image sequences are well modeled by smooth transformations of a reference frame [183]. Of

course this assumption has intrinsic limitations: natural sequences display a wide variety of transient

behaviors such as occlusions, appearance and disappearance... A schematic illustration is depicted

in Fig. 7.1.

y

x

t

Figure 7.1: Schematic smooth evolution of an object through time.

This basic smoothness assumption is also ”visually” justified in Fig. 7.2 where we display a section

(a line here) of the Foreman sequence. Time is on the horizontal axis and the whole image looks

very smooth, despite the shaky nature of the sequence.

Local geometric transformations are tightly linked with the motion model and the nature of the

real 3D scene. When the support of moving regions is sufficiently small, a simple translational model

can successfully represent motion. This is the key ingredient of most block matching techniques in

motion compensation: the anchor frame is chopped into small primitives which are assumed to just

127
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Figure 7.2: Temporal evolution of a pixels row (the 77th from QCIF version) in foreman (from

frame 0 until frame 176).

translate in time. The whole model is then represented by a translation vector field and a reference

image. Complex and more accurate models have also been considered, for example affine models [24]

(see also Chapter 2). These allow for local expansions or contractions and are usually represented by

mesh deformations [10]. More precisely the motion model is locally represented by a linear geometric

transformation:

u = A (x − d) . (7.1)

The 2 × 2 squared matrix A and vector d implement translation, rotation, shearing and scaling

operators:

A =

[

1
sx 0

0 1
sy

][

1 m

0 1

][

cos θ sin θ

− sin θ cos θ

]

,

d =

[

dx

dy

]

,

(7.2)

where sx and sy are scale parameters, m is a shearing factor to change the angle among x and y

axis (m = 0 if axis are kept perpendicular) and θ parametrizes geometric changes due to rotations.

Most video representation paradigms separate motion information from image structures. In this

chapter, we would like to jointly represent image geometrical structures and their evolution through

time.

Similarly than for the case of images, geometric structures are very relevant in video signals. In

the framework of video, 2D geometric features, in many cases, follow temporal geometric transfor-

mations. A sparse spatio-temporal representation of video would be based on the superposition of

3D primitives that capture spatial geometry and temporal evolution.

In Sec 1.1.3, several geometric image representation approaches are recalled. A very interesting

approach, due to its flexibility, seems to be the use of large over-complete libraries of basis functions,

able to represent salient 2D geometric features of the signal. Hence, a possibility is to port such an

approach to video in order to extract the 3D features that compose the signal.
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The construction of a dictionary of 3D atoms, representing spatial geometry and temporal evo-

lution, is practically unfeasible. The size of the problem and the high number of freedom degrees,

would make the search of the most appropriate atoms an intractable task. Moreover, temporal

geometric transformations are often so complex that a geometric dictionary able to represent them

would be extremely coherent. The adverse effect of such a coherent dictionary to highly non-linear

algorithms, like MP, can be expected to be even worse than for the 2D case. It is necessary to adopt

strategies that take some a priori, about the signal, into account (see Chapter 5). In the following,

basic assumptions done for the recovery of 3D spatio-temporal geometric features are exposed.

Given a set of images belonging to a sequence, the changes suffered from frame It to It+1 are

modeled as the application of an operator Ft on the image It such that

It+1 = Ft (It) ,

It+2 = Ft+1 (It+1) = Ft+1 (Ft (It)) ,

It+3 = ...

(7.3)

where the subindex t indicates time.

From the image model of Eq. (6.1) and (7.3), Ît+1 is modeled as a transformation of the geometric

representation of Ît (where Ît stands for an approximation of It):

Ît+1 = Ft





∑

γ∈Γ

ct
γ · gt

γ



 . (7.4)

A relation needs to be established between Ft and the transformation of each one of the 2D compo-

nents involved in the frame approximation. This is why we make the hypothesis that Ft is composed

by the set of F γ
t that independently transform each one of the frame expansion terms, i.e.

Ît+1 =
∑

γ∈Γ

F γ
t

(

ct
γ · gt

γ

)

. (7.5)

No global simple joint transformation model can be established for the transformation of all geo-

metrical primitives. Hence, local transformation models need to be considered to represent complex

motion transformations from frame to frame. Since the basic elements of frames approximations are

gt
γ atoms, local motion transformation models are applied to these.

In the following, Ft is sometimes referred to as a deformation. The action of each F γ
t in (7.3)

corresponds to a geometrical operation on gγ and to a change of its coefficient ct
γ . Intuitively, this

mechanism intends to implement a local change of scale, position and orientation of each primitive

(see Fig. 7.4(a) and 7.4(b)). The sequence of deformations F γ
t : t ∈ [T1, T2] and the 2D atom gt

γ

form a 3D primitive that represents how local scene geometry flows through time.

In this chapter, a representation of video sequence based on the superposition of 3D primitives,

taking into account spatial geometry and temporal motion, is presented. Given the initial MP

decomposition of a frame at time t (as can be found in Chapter 6), 3D primitives are implemented

as the series of geometrical deformations of the 2D atoms used to represent the initial frame. These

can be seen as: the evolution of each one of the 2D atoms found in the initial frame is tracked through

time. To guarantee smoothness in trajectories, Markov Random Fields are used to impose regularity.

This approach toward geometric video approximations is studied from a sparse approximations with

greedy algorithms point of view. The problem is modeled according to the theoretical aspects

discussed in Chapter 5.

The present chapter is structured as follows: Sec. 7.2 formally states the optimization problem

for the forward prediction of frames in order to extract the deformation operators. Next, the use of

greedy algorithms, to solve the previously proposed problem, is discussed in Sec. 7.3 and Sec. 7.4.
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An a priori based greedy algorithm is introduced in Sec. 7.5, Sec. 7.6 and Sec. 7.8 to reduce the

instable behavior of MP, due to the very high coherence of the dictionary used. Experimental results

are presented in Sec. 7.7.

Considering the investigated representation, a coding scheme is proposed in Sec. 7.9. This section

discusses as well the obtained coding results. Another application is considered for the investigated

video representation. 3D video primitives may be used as video features for multi-modal audio-visual

sequence analysis. A brief introduction to the framework together with some results can be found

in Sec. 7.10. Finally, conclusions are drawn in Sec. 7.11.

7.2 Video Approximation: Tracking 2D Image Features Through

Time

In this chapter we study how to approximate F γ
t operators in order to recover spatio-temporal

geometric video components. The F γ
t estimation is done such that the set of functions gt

γ and gt+1
γ ,

at time t and t + 1 respectively, belong to the dictionary D:

∀γ, ∀t gt
γ

F γ
t7−→ gt+1

γ′ s.t. gt
γ , gt+1

γ′ ∈ D. (7.6)

This is imposed for several reasons. The fact that gt
γ and gt+1

γ′ belong to the same dictionary D
allows the use of the same fast atom search used for image approximations (see Chapter 6 and [61])

to solve F γ
t . In the case where the parametric description of a sequence is coded, a quantization on

the evolution of geometric parameters γ is required. For a better approximation performance, the

quantization operation of atoms parameters has to be embedded within the decomposition loop of

the greedy algorithm [78]. Quantization is performed such that 3D features slices (i.e. the piece of

3D feature contained in a video frame), belong to the 2D dictionary in use. In effect, if one desires

to reconstruct a particular frame from the spatio-temporal geometric video representation, this may

be done using always the same dictionary D.

The set of all possible transformations F γ
t is an approximation of the affine model of local

transformations defined for sequences. This approximation intends to supply a trade off between

adaptation flexibility and dictionary complexity, i.e. it does not include the model of shearing and

is limited by the granularity of the dictionary parameters.

In order to recover a set of 3D primitives to generate sparse approximants for sequences, the

transformation of geometrical features must be estimated. According to (7.3), in this work, this is

formulated from a frame to frame point of view. Fig. 7.3 schematically describes the approximation

of operator Ft in Eq. (7.3). A more practical example can be seen in Fig. 7.4(a) where the approxi-

mation of a simple synthetic object by means of a single atom is performed. The first and third row

of pictures show the original sequence and the second and fourth rows provide the reconstruction

of the approximation. Fig. 7.4(b) shows the parametric representation of the sequence. We see the

temporal evolution of the coefficient ct
γ , and of the other parameters.

The problem that we are facing may be seen as a constrained optimization for signal approxi-

mation. The recovery of F γ
t mappings at each frame is formulated as follows:

min
Ft

∥

∥

∥

∥

∥

∥

It+1 −
∑

γ∈Γ

F γ
t

[

ct
γ · gt

γ

]

∥

∥

∥

∥

∥

∥

2

subject to Cost (Ft) ≤ ξ, (7.7)

where “Cost” is a constraint depending on the application. This optimization turns out to be very

complex and even NP-hard depending on the formulation and the Cost measure. However, and

depending on the scale of the problem, it may sometimes be possible to find a global optimum.
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Figure 7.3: Successive schematic updates of basis functions in a sequence of frames. In the second

row, ellipses represent schematically the possible positioning of some AR 2D atoms (see Chapter 6).

(a) Synthetic sequence approximated by 1 atom: First and third row show the original sequence made by a simple

moving object. Second and fourth row depict the different slices that form a 3D geometric atom.

0 2 4 6 8 10 12 14 16 18
2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

frame #

 c
oe

ffi
ci

en
t

coef. evolution atom 0

2 4 6 8 10 12 14 16
60

70

80

90

100

110

120

130

frame #

 d
x

dx evolution atom 0.

2 4 6 8 10 12 14 16
40

45

50

55

60

65

70

75

80

85

frames #

 d
y

dy evolution atom 0.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

frame #

S
ca

le
 S

X

SX evolution atom0.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

frames #

S
Y

SY evolution atom 0.

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

frame #

th
et

a 
(a

ng
le

)

Angle evolution atom 0.

(b) Parameter evolution of the approximated object; from left to right and from up down, we find:

coefficient, x position, y position, x (short axis) scale, y (long axis) scale, angle.

Figure 7.4: Approximation of a synthetic scene by means of a 3D atom.
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Example 7.1 Consider a simplified context where only the selection of functions is involved (thus,

coefficients c ⊂ {0, 1}) and where the costs for every function can be predefined in a fixed manner

in the form of a vector (w where ∀i wi ≥ 0) where each wi determines the selection cost of the ith

function and the cost constraint can be rewritten as wT c = Cost. Thus, Eq. (7.7) could be redefined

as:

min
cγ

t+1 : γ ∈ Γ

∥

∥

∥

∥

∥

∥

It+1 −
∑

γ∈Γ

Gt+1
γ cγ

t+1

∥

∥

∥

∥

∥

∥

2

subject to wT c ≤ ξ, (7.8)

where Gt+1
γ is the set of functions in which a given gt

γ may potentially transform and every selection

vector cγ
t+1 a boolean vector such that ∀γ 0 ≤ ‖cγ

t+1‖1 ≤ 1. To be clearer, c is the concatenation

of all cγ . Looking at Eq. (7.8) the problem resembles a lot to the formulations of the retrieval of

the best m-term approximation, except for the additional linear constraint on the costs (w), which

modifies slightly the constraint norm. More generally, problems of the kind of (7.8) are instances of

the Knapsack problem [127].

7.3 Tracking Frame Deformations: Using a Greedy Algo-

rithm

In order to obtain a parametric representation in terms of the evolution of geometrical components, a

greedy approach is considered for the progressive approximation of every video frame. This approach,

very close to that used to obtain sparse approximations of still images, consists on approximating

every primitive transformation F γ
t in a successive manner. However, some further considerations are

needed given the assumed motion model and the resulting extremely highly coherent dictionary of

functions. Due to dictionary coherence, and the fact that more than one atom is normally necessary

to represent signal structure, direct MP full search in a frame at t + 1 does not have any guarantee

to recover the corresponding deformed atoms from frame t. Greedy algorithms are sub-optimal and

myopic: they are limited by the resolution and coherence of the dictionary (see Chapter 4). In

the case of motion, a simple image deformation and dictionary parameters granularity may induce

MP to select the wrong primitive transformation. Moreover, this can contribute to propagate the

primitive selection error to posterior MP iterations.

The main aspects to consider when defining the greedy algorithm to retrieve the temporal di-

mension of 3D geometric video primitives are: limited computational complexity, ensure locality of

the algorithm and smoothness of motion parameters.

Imposing additional constraints to the selection rule of MP [122] can sometimes be modeled by

weakening its greedy nature. As detailed in Sec. 4.4.2, weak greedy algorithms recover, generally,

worse approximations. However, as underlined in Chapter 5, if a greedy algorithm is modified in a

proper way (e.g. by introducing reliable a priori information) their performance may be significantly

improved.

7.3.1 Greedy Local Search

The assumption of smoothness on the primitives deformation from frame to frame in our sequence

model imposes that the transformation F t
γ , of a given atom gt

γ , can not result in any function

gγ ∈ D. As in the case of Block Matching (BM) [183] some constraint on the search space can

be set. Solutions beyond the search space are considered to be very improbable. Furthermore, the

functional to be optimized is non-convex (7.7). This may yield a slightly better match away from

the appropriate place, breaking consequently the structure of the approximation. A local greedy
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heuristic is defined by means of a sub-dictionary D′ ⊂ D associated to every gt
γ . The search for the

transformation will be performed in D′ solely. We can consider a range of variations ∆γ, i.e. in

position (±∆bx, ±∆by), scale (±∆sx, ±∆sy) and angle (±∆θ):

D′
γ = {gγ′ : γ′ ∈ [γ − ∆γ, γ + ∆γ]} . (7.9)

One may consider the use of quasi-Newton methods, combined with other techniques such as line

search or trust-region globalization techniques [34], due to the availability of an analytic expression

(Eq. (6.7)) to compute gradients and the non-convex, non-linear form of the problem. However, the

complex topology of the objective function makes it likely to fall in local minima.

A local full search based on the computation of all the matching positions will avoid local

minima at a reasonable cost if properly implemented [61]. As in the case of static images, the

use of a precomputed Fourier version of the different atoms generated from Eq. (6.7), allows the

computation of the projection for all atoms translation with a single FFT (see Chapter 6).

7.3.2 Use of Motion Model Constraints: Multi-Objective Optimization

The use of a very redundant dictionary (Chap. 4 and Chap. 6) improves signal modeling but at the

expense of a weaker discrimination between atoms. In Chapter 5, we stated that some additional

information is needed in order to select a good candidate. As suggested in [120], in a similar

approach for motion estimation, the inclusion of a priori information in the selection functional may

help achieving estimates of frame to frame primitive transformations that are more respectful with

the sequence model (see Sec. 7.1). A possible approach can be to impose a regularity constraint

among neighboring primitives. Some interdependence is assumed among primitives belonging to

the same structure (Sec. 7.5). Besides that, additional motion estimates performed with classic

estimation techniques (e.g. region matching techniques) can also be considered [183]. In a coding

perspective, however, estimating regularity by means of coding rate could be more appropriate

(Sec. 7.8). Representation (and consequently 3D spatio-temporal primitives) is then conditioned by

the defined coding scheme.

7.4 Which are the Limits of Using MP?

The use of a greedy strategy implies that only one of the F γ
t is optimized at every iteration, without

taking into account the possible interdependence this might have with the other F γ′

t : γ 6= γ′

operators. If F γ
t are independent ∀γ ∈ Γ (i.e. gt+1

γ ⊥ gt+1
γ′ ∀γ 6= γ′ γ, γ′ ∈ Γ), each one of

them can be optimized independently, leading the algorithm to work perfectly. With no doubt, as

discussed previously, given the non-orthogonality of our dictionary, and the fact that those that

will be selected will probably be non-orthogonal among them, it is not clear whether an MP like

algorithm will succeed in giving a good solution to Eq. (7.7). The present problem is analogous to

the recovery of the best m-term sparse approximation problem [95, 174, 176]. A relation between

the structure of the dictionary, the signal nature and the algorithm used can be established. Good

MP behavior is constrained to the incoherence of dictionaries and enhanced a priori models [48, 49].

7.4.1 The Block Structure of the Problem and its Relation with Dictio-

nary Coherence

The dictionary used for predicting of video frames is composed by blocks of candidate functions (as

described in Sec. 7.3.1). Each block has been generated by all admissible transformations of a given
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primitive from the previous frame. In the approximation of future frames, according to the assumed

motion model, only one of these elements will be taken into account, i.e. just an atom from every

block. In this situation and in a way similar to [142], some constraints exist that can be exploited

in the definition of an upper bound for the good behavior of MP.

Theorem 7.1 Let µ1B
(m) be the inter-block coherence defined in [142] (see Appendix C.1) for a

block dictionary D =
⋃

l DBl
and let µDB

be the biggest possible inner product among two different

functions into a block. If the signal f is such that

f ∈ span
(

gγBl
: l ∈ [0,m − 1], gγBl

∈ DBl

)

, (7.10)

(i.e., f belongs to the space generated by a set of m atoms each of them belonging to a different

dictionary block) and
µDB

+ µ1B
(m − 1)

1 − µ1B
(m − 1)

< α, (7.11)

the Weak(α) algorithm will recover the set of correct atoms that compose f (see Appendix C.1 for a

proof).

Thus, for α = 1, we need µDB
+ 2µ1B

(m − 1) < 1. This result implies that in order to recover the

“correct” atoms, µDB
and µ1B

(m−1) can not be big at the same time. A very redundant dictionary

(µDB
close to 1) will need very incoherent blocks in order to ensure the right selection of functions.

In the other way round, if blocks are coherent enough, µDB
needs to be sufficiently small to ensure

the good recovery of optimal signal components.

Example 7.2 Motion estimation by means of space domain correlation like block matching methods

[116, 183] can be seen as a particular case of this problem. Consider a correlation based approach

where all matching candidates for a given image block are normalized and have zero mean. The

anchor frame is divided in non-overlapping blocks. Each of these blocks has to be approximated

by the most similar block selected from a set of blocks in the reference frame. This set of blocks

correspond to all the possible blocks that belong to a neighboring area (see Fig. 7.5). They would

correspond to one of the dictionary blocks described above. Furthermore, since anchor frame blocks do

not overlap, dictionary blocks are orthogonal. Thus, as long as there are no identical pixmap pieces

into a given dictionary block (i.e., µDB
< 1), the recovery of the optimal anchor frame expansion is

ensured by Theorem 7.1.

7.5 Using Regularity Constraints: A Bayesian Approach of

the Problem

The main factors that may have an influence in recovering“correct”F γ
t operators have been discussed

in the previous section. They directly influence the capacity of appropriately modeling the video

sequence and can be summarized as:

• Matching Pursuit does not work as one would like with coherent dictionaries.

• D is made of a finite set of atoms, which implies that only a limited set of positions, scales

and rotations are available.

• Motion is assumed to be uniform over the support of an atom.
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t

Reference Frame

t+1

Anchor Frame

Figure 7.5: BM using a fixed block size anchor frame. Each set of candidate blocks to match into

a block of the anchor frame are, according to Sec. 7.4.1, an orthogonal dictionary block.

The inclusion of an a priori model in the greedy selection criteria is thus necessary to reduce

instability on the recovery of 3D primitives. A first solution is to perform a local search on a reduced

subspace. However more complex models and a priori informations can be taken into account. In

this section we show how Bayesian modeling can be used to tackle that problem.

7.5.1 Probability Model to Optimize

We reformulate the greedy selection criteria from the probabilistic point of view presented in Chap-

ter 5. As explained there, taking the strongest scalar product consists in selecting the most probable

atom. However, much more involved models can be considered. A Bayesian modeling of the problem

can be performed if some a priori information or knowledge about the parametric sequence descrip-

tion is available. We make the assumption that neighboring 3D atoms present similar temporal

deformations. This regularity can be inserted in the optimization problem by means of the Cost

term in (Eq. (7.7)). In the greedy formulation, a Bayesian functional that maximizes the Maximum

a Posteriori (MAP) probability will integrate the regularity assumption. We consider a Markov

Random Field (MRF) framework to define probabilistic relations among atoms.

Thus, for every MP iteration we optimize:

∆γn = arg max
∆γn

{

p
(

∆γn,∆cn | Rt+1
n f, gt

γn

)}

= arg max
∆γn

{

p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

· p (∆γn,∆cn)
}

,

(7.12)

such that ∆γn represents the parameter differences between γt+1
n ∈ Γ and γt

n ∈ Γ, and Rt+1
n is the

nth iteration frame residual at time t + 1. In Eq. (7.12) the most probable transformation is taken

given a residual at t+1 and the corresponding gγ at time t for a given greedy step n. By the Bayes’

rule, this is equivalent to maximizing the probability of matching a given gt
γn

with the residual Rt+1
n

conditioned to the probability of the transformation ∆γn and the temporal change on the projection

coefficient ∆cn. The matching probability p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

can be defined as a function of

an estimated residual error energy
∥

∥

∥
R̂t+1

n+1f
∥

∥

∥

2

for the retrieval of function gγn
at iteration n. Atoms

are assumed to deform under consistent motion transformation. Thus, no change in the coefficient
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will be considered (except for scale changes) in the estimation of the most probable motion:

R̂t+1
n+1f = Rnf t+1 −

〈

Rt
nf, gt

γn

〉

gt+1
γn

, (7.13)

where
〈

Rt
nf, gt

γn

〉

is normalized according to a possible re-scaling of gt+1
γn

with respect to gt
γn

, i.e
〈

Rt
nf, gt

γn

〉

=
〈

Rt
nf, gt

γn

〉√
∆sx∆sy. At time t, Rt

n+1f ⊥ gt
γn

, in order to minimize the energy of the

projection error. In the same way, after motion transformation, gt+1
γn

should be such that
∥

∥

∥
R̂t+1

n+1

∥

∥

∥

2

is also minimized.

The probability measure assumes the Gaussianity (by the central limit theorem [138]) and inde-

pendence of error samples Rt
n+1f(x, y) (although this is not often the case for this class of signals).

Based on previous approaches of the block matching and MRF fields [9, 149], we consider:

p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

=
1

Z

∏

x,y

1√
2πσ2

exp

(

−|R̂t+1
n+1f(x, y)|2

2σ2

)

(7.14)

where Z is a normalizing constant and σ2 ≈ E

[

∣

∣

∣
R̂t+1

n+1f(x, y)
∣

∣

∣

2
]

. Note that R̂t+1
n+1f is considered

to have zero mean. In fact, prior to any operation, a low pass approximation is removed from

every frame (see Sec. 7.6). Introducing the evaluation of σ2 in Eq. (7.14) we obtain the conditioned

optimization criteria:

p
(

Rt+1
n f, gt

γn
| ∆γn,∆cn

)

≈ C1
√

∥

∥

∥
R̂t+1

n+1

∥

∥

∥

2
, (7.15)

where C1 is a constant.

The probability p (∆γn,∆cn) imposes the model that drives the transformation F γ
t of the gt

γ

and the associated coefficient. It is thus defined as the conditioned probabilities of the ∆γ and ∆cn

in the framework of MRFs. At every iteration, MP will try to select a new atom that maintains

regularity with all previously selected primitives in the neighborhood. Earlier atoms are trusted to

generate the MRF for the future appearing atoms. This unbalanced criteria derives from the fact

that first atoms of the MP decomposition capture more energy, thus they tend to represent much

more significant (i.e. reliable) features from the signal. The inheritance of atoms deformations,

through MP iterations, may rather suggest to the reader a Markov Chain (or tree) structure of the

problem (instead of a MRF structure). In any case, and without loss of generality, one can assume

that at a given stage of the algorithm a MRF is available as a product of this Markov Chain.

When no first reliable estimate of p (∆γn) is available, an initial tentative needs to be per-

formed trying to match the whole region where the atom is supported. Atoms interaction, MP

sub-optimality and simplicity of atoms waveform may reduce the reliability of the estimation pro-

vided by a single atom matching. This will be explained later in Sec. 7.6.

We can formulate p (∆γn,∆cn) as:

p (∆γn,∆cn) = p (∆cn | ∆dn,∆sn,∆θn) · p (∆dn,∆sn,∆θn) , (7.16)

where ∆cn (temporal variation of the nth atom scalar product with the residual) depends on the

choice of the new γ parameters. Considering ∆d, ∆s, ∆θ independent, Eq. (7.16) turns into:

p (∆γn,∆cn) = p (∆cn | ∆dn,∆sn,∆θn) · p (∆dn) · p (∆sn) · p (∆θn) . (7.17)

Each of the probability functions has the form of a MRF. That is, they may be modeled by a

Gibbs distribution [114]:

p(x) =
1

Zx

exp

(

−Ex (x)

Tx

)

, (7.18)
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where Ex (x) is an energy function that characterizes the MRF and how neighboring variables are

related, while Tx stands for its variance.

From Eqs. (7.12), (7.15), (7.17) and (7.18) the functional to be optimized can be expressed as:

∆γn = arg min
∆γn

{

1

2
log

(

∥

∥

∥R̂t+1
n+1

∥

∥

∥

2
)

+ λ∆cn
E∆cn

(∆cn) +

λ∆dn
E∆dn

(∆dn) + λ∆sn
E∆sn

(∆sn) + λ∆θn
E∆θn

(∆θn)}

(7.19)

where ∆γn = {∆dn,∆sn,∆θn} and each λx is a function of the statistics parameter Tx in Eq. (7.18).

7.5.2 Regularity Models

The general regularized expression to solve at every greedy iteration (7.19), requires the definition

and modeling of each regularizing term Ex. In the following, the definitions of the Gibbs distributions

arising in the MAP estimation are described together with the parametric modeling of the MRF.

Coefficient Model

Temporal variations of coefficients ∆cn should be small in ideal tracking of a primitive. In any case,

coefficients may not change sign. Changes to coefficients should be driven mainly by the change of

scale of the approximating function.

To induce its temporal regularity, a normalized quadratic distance between the coefficients at

time t and t + 1 is considered for E∆cn
(∆cn):

E∆cn
(∆cn) =

(

ct+1
n − ct

n · √∆sx∆sy

ct
n · √∆sx∆sy

)2

, (7.20)

where previous ct
n are re-normalized with respect to the scale transformation. One can observe that

Eq. (7.20) is normalized in order to be independent of n.

Geometric Models

Displacement, change of scale and rotation constraints, are measured as the euclidean distance

between the value under test and the most likely (ML) transformation estimated from previous MP

iterations at every image location. Hence they can be represented as:

E∆dn
=
(

dn
x − d̂x

n
)2

+
(

dn
y − d̂y

n
)2

E∆sn
= (sn

x − ŝx
n)

2
+
(

sn
y − ŝy

n
)2

E∆θn
=
(

θn − θ̂n
)2

,

(7.21)

where d̂, ŝ and θ̂ correspond to the ML estimates (see Sec. 7.5.4 for details about their calculation).

The use of motion information from the first appearing atoms to regularize the selection criteria of

new ones can be seen as a way to propagate the motion information from more reliable atoms to

less reliable ones.
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7.5.3 Setting the Motion Model

Eqs. (7.20) and (7.21) define the potential among variables of the functional to optimize. However

the model lays on the values assigned to the λx of Eq. (7.19). These values are unknown a priori and

depend on the data to be analyzed since they represent the statistics that characterize the random

variables ∆cn, ∆dn, ∆sn, ∆θn. In this work they have been considered to be constant for the whole

sequence. Their value, as defined by Eqs. (7.18)-(7.21) is proportional to the standard deviation of

the variables implied in the energy functionals described before. Hence, for a general sequence, their

value needs to be trained. However, λx values will just be valid in average for the real transformation

given the heterogeneous nature of motion in a general sequence. A detailed analysis of the proper

adaption of a statistical model is out of the scope of this work. We focus on the understanding of

the use of greedy approaches and parametric over-complete dictionaries for the approximation of

image sequences.

7.5.4 Motion and Probability Fields Estimation

The transformation estimates are computed from all the atoms that interact in a certain region.

In the example presented in this work (Eq. (6.7)) atoms have a localized support in space. Even

though it is not strictly finite (see Fig. 7.7), amplitude decay is fast enough such that atoms located

sufficiently far away can be considered as not interacting. Furthermore, the decay of the Gaussian

envelop of (6.7) can be considered as well as an indicator that the strength of constraints (7.20) and

(7.21) has to increase the closer an atom is from another, i.e. it is logical to consider that two such

atoms must have a more coherent motion.

λx Modeling

From Eq. (6.7), the atom envelop is a bi-variate Gaussian with the same dimensions (sx, sy) as the

atom itself:

pγ(u, v) = K exp
(

−
(

u2 + v2
))

s.t.

u =
cos θ (x − dx) + sin θ (y − dy)

sx

v =
− sin θ (x − dx) + cos θ (y − dy)

sy
,

(7.22)

where K is a constant. This model is assumed to represent the influence law of the transformation of

a given atom in a neighborhood. Thus, ∀x, λx depend on the spatial location and are proportional

to pγ(u, v). That is, the variance of the probabilities described in Sec. 7.5.1, depends on the spatial

location and decreases as a function of scale and the distance with respect to the center of an atom.

Indeed, the model defined by lambdas in Section 7.5.3 must have a local influence related to the

structure of the signal. λx values model tightness in atom interactions. The formulation of every

λx is that of a constant (tuned in order to fit the deformation model) multiplied by the bivariate

model of (7.22):

λx(x, y) = Cλx
· pγ(u, v).

As one can observe, the value of λx depends on the area of influence of each atom gγ . In an area

where more than one atom overlap, for ever particular spatial location, the value of the atom having

the highest pγ(u, v) will be considered.
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Motion Parameter Estimates

The motion parameter estimates d̂x, d̂y, ŝx, ŝy, θ̂ of Eq. (7.21) are estimated from the preceding n−1

atoms of a frame expansion. They are the maximum likelihood estimates according to the energy

probability associated to each atom.

In fact, considering that a given frame energy can be represented as the sum of the square of the

coefficients in a MP expansion:

‖It+1‖2
=

∞
∑

n=0

|cn|2 , (7.23)

we may approximate the probability associated with the nth atom as a fraction of ‖I‖2

p(γn) =
|cn|2
‖I‖2

. (7.24)

The conditioned probability that a given AR atom contributes to spatial location (x, y) can be

modeled through Eq. (7.21). Thus,

p(x, y | γn) =
K√

sx · sy exp
(

−
(

u(x, y)2 + v(x, y)2
))

. (7.25)

Hence, the motion parameters induced by atom gt
γn

at point (x, y) have probability:

p(γn | x, y) =
p(x, y | γn)p(γn)

∑

n p(x, y | γn)p(γn)
. (7.26)

For localized atoms in space, we can see that the summation in the above equation will only integrate

those atoms close to position (x, y) (i.e. due to their amplitude decay -Eq. (7.22)-). Giving as

example the case of the most likely displacement, or translational motion E {d | x, y} at a given

(x, y), we formulate it as the average of all the transformations induced by all the atoms at a given

point:

d̂ = E {d | x, y} =
∑

n

d̂(x, y)n · p(γn | x, y). (7.27)

The same applies to the remaining geometrical parameters ŝ, θ̂.

In Eqs. (7.23) - (7.26) the whole set of terms for the expansion of I are considered. However in

a practical and realistic situation, only a truncated version of the representation can be considered.

Indeed, to estimate (predict) the motion that the nth atom will follow, only the precedent (n − 1)

available atoms are considered for the statistical measurements and calculations.

7.6 Implementation Issues

7.6.1 Signal Representation

3D spatio-temporal features are extracted in a frame by frame fashion. At each particular frame, the

strategy employed in Chapter 6 to approximate images is adopted. This means that the dictionary

used to represent 2D geometry is composed by the AR set of functions of section 6.2.2 and low

frequencies are condensed by means of a Laplacian pyramid in a highly downsampled subband

(Fig. 6.1). Geometric changes from frame to frame of these 2D AR atoms form the third dimension

of spatio-temporal atoms.
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Figure 7.6: Expansion Block Scheme.

7.6.2 Atom Refresh

All the information appearing in a frame at time t can not be mapped from the previous frame and

vice-versa. Indeed, we consider a forward mapping scheme where all atoms from frame at time t− 1

try to get matched in the frame at time t. This is not always possible and sometimes the atom will

not be able to find at t the feature it was representing at time t − 1. In the present approach we

consider a measure of the reliability of the prediction of a given atom evolution. At every new frame

the normalized scalar product of the transformed atom is compared with the initial projection of

the atom within the first frame.
∣

∣

∣

∣

∣

∥

∥ct+1
n

∥

∥

2

sxt+1
n syt+1

n

∣

∣

∣

∣

∣

≥ ‖c0
n‖2

sx0
nsy0

n

· δ, δ ∈ (0, 1] (7.28)

If a significant drop in the scalar product is detected the atom is canceled (the trajectory is not

valid anymore). At the end of the projection process, those atoms that have been canceled are

reintroduced in the frame through a full MP search. In the investigation performed in this work, the

atom refresh has been set such that a very small portion of atoms can be renewed at every frame

(e.g. no more than three percent).

7.6.3 Motion Initialization

The functions in use for the generation of our dictionary have a relatively simple shape. In the

direction parallel to contour gradients, very likely represented by the smooth part (Gaussian) of

Eq. (6.7), even very relevant atoms may slide: this is similar to the well know “aperture” problem.

To avoid this, a first initialization of the expected motion maps is essential. Thus, in the case of no

a priori indicator of the motion of a primitive, the whole pixmap of the original image included in

the support of that primitive is used for a first estimate. The cross-correlation (matching) of the

zero mean and normalized versions of the patch and the frame that we want to approximate is used,
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i.e. the correlation between the normalized patch and the normalized frame is measured for every

possible geometric transformation of the atom.

7.6.4 Motion Maps Update

A set of geometrical parameter maps are kept during the iterative decomposition of a frame. These

contain the local geometrical deformations that atoms suffer in their adaption to represent a new

frame. Geometry maps are updated progressively at each iteration of the greedy algorithm. After

the retrieval of a function, its transformation parameters are introduced in the maps as described

in Sec. 7.5.4. The information of the maps is used to introduce regularity in the selection procedure

at every greedy iteration. In this way, the motion registered by the first atoms found in a certain

image area will condition the geometrical deformation of posterior atoms found in that area. In

Fig. 7.7 we show a representation of an atom transformation together with the associated motion.

We show as well the influence area where the parameter maps will be considered. At the bottom,

we show the conditioned probability (an-isotropic Gaussian) that will take part in the computation

of the most likely local motion transformation given an image location.

7.7 Experimental Results

In this section we present several results corresponding to the effect of regularization on different

sets of sequences, both synthetic and natural. The results shown as vector fields correspond not only

to the translation of atoms but also to their deformation, i.e. the interpolated motion of atoms is

represented on their whole support (see Fig. 7.7). These representations (Figs. 7.8, 7.9, 7.11, 7.12),

although they may suggest an optical flow meaning, must be interpreted more in the sense of atoms

deformation flow. Some examples of transformation are given for particular atoms (Figs. 7.9 and

7.12). The effects of regularization on coding performance are presented later in Sec. 7.9.

7.7.1 Synthetic Sequence Examples

In Fig. 7.8 we show an illustration of the proposed paradigm based on steering image primitives

through a sequence. In this test, like in all the rest, the dictionary in use is the one proposed in

Sec. 6.2.2. The flow represented in the third row shows how atoms transform to follow and match the

successive transformations of the sequence. Just above in the figure, the resulting approximations

and the residuals show that although primitives adapt better to shape and motion trajectory, they

are subject to the lack of resolution of the dictionary. The effects can be seen in the evolution of

the residual error after the approximation.

In fact, in the absence of regularity constraints, atoms try to reorganize themselves in order

to reduce this residual error. Consequently, this would force many terms of the successive frames

expansions to reorganize in position, angle and scale, leading to a irregular representation of the

motion transformation. As part of the approximation error, a progressive blurring of the rod edges

can be observed. This corresponds to the adaption of function coefficients. They try to reduce the

negative effect of slight motion parameters mismatch, together with the sub-optimality of the greedy

approach. Hence, a cumulation of prediction error appears through time.

Continuing with another synthetic sequence, we can see this time in Fig. 7.9 the example corre-

sponding to the motion associated to a particular atom. The sequence corresponds to a translating

and rotating square. We consider a certain atom, represented in the picture by a white mark that

has the shape of its support. In both columns, we see the representation of the square by means

of a 50 coefficients expansion with the footprint of the function support superimposed. In the left
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Figure 7.7: Atom transformation maps and parameters. The parameter maps (X scale, Y scale

and Angle) correspond to the areas where the geometry of a selected atom will influence future

greedy iterations.
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Figure 7.8: Affine motion of a synthetic model (line). From top to bottom: approximation of the

line, residual with respect to the original model and motion associated to the atoms. In the second

row, we clearly see the effect of parameter quantization, in this case error is induced by the limited

resolution in translations and rotations.

column we display the corresponding past and present positions of the atom for the non regularized

case, i.e. the selected atom is fully driven by the search of the highest projection coefficient absolute

value. On the right, the atom is steered considering the a priori of rigid motion. At the bottom of

Fig. 7.9 we can see the motion associated to atoms of the right upper column.

7.7.2 Natural Scene Examples

The synthetic models considered in the figures above are very simple. Fig. 7.10 shows a comparison

between a non regularized result (left), and a regularized one (right). A clear influence of the

regularization and motion initialization is reflected in the flow related to atoms motion. Figures on

the right show that a clear relation can be established between atoms that participate in the cars

approximation and their motion. In the example where the truck appears, the influence between

neighboring atoms located in the wood area in the background can not be avoided, i.e. the moving

atoms of the truck push in some measure the atoms representing the background. Interdependence

among neighboring primitives is responsible for their strong interaction.

In Fig. 7.11, a set of consecutive approximated frames appears together with the motion flow.

Notice how the regularized motion of atoms follow the object trajectories. However, interactions

among neighboring atoms are observed, uncovered and covered parts in some situations may enter

in interaction. Indeed, shrinking, dilation or slight displacement can manifest due to MP sub-

optimality, dictionary granularity and the interaction among atoms.

In order to illustrate the behavior of atoms in a natural sequence, we show in Fig. 7.12 a set of

pictures that represent from top to down: the original set of images, the approximation using 500

atoms, the flow of atoms, and the evolution of 3 different atoms through time. The atoms flow shows

the motion of image primitives, as well as their deformation. Changes suffered by those representing

the background to adapt to the motion of the head are clearly appreciated. This is because several

big atoms are used to describe the background. Certainly, the building appearing behind the head

can be represented very efficiently with long oriented atoms with a large scale in the parallel direction
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Figure 7.9: Affine motion of a synthetic model (square). The white batch corresponds to the

footprint of a selected atom in two temporal instants. Left is the non-regularized prediction. Right

is the regularized prediction. Bottom: most reliable motion of the regularized solution (atoms flow

in the area where atoms amplitude is significant). Rotation and displacement can be appreciated.
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Figure 7.10: Natural sequence motorway. Left column: non-regularized solution. Right column:

regularized tracking. First and third rows: Respective reconstructions with 500 atoms. Second and

fourth rows: Most reliable primitives motion.
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Figure 7.11: Several consecutive frames of a natural sequence showing the reconstructed signal

with 500 coefficients together with the deformation suffered by atoms. The transformation of atoms

from frame to frame was done using the criteria with a priori information.
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to the lines. These have to re-adapt their parameters to fit as well the motion of the head. The

three atom examples appearing in the last three rows are composed by the approximation pictures

plus the footprint of the represented atom. They capture the motion of the head, and translation,

rotation and scaling can be appreciated (Fig. 7.12). We must notice that atoms reintroduced by

means of a refresh are not taken into account in the flow representation.
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Figure 7.12: Several consecutive frames of a natural sequence showing the reconstructed signal

with 500 coefficients with their associated motion. First row: the original frame; Second row:

the reconstructed approximations; Third row: the deformation flow; Forth to Sixth: motion of 3

different atoms from the sequence. Their temporal evolution is indicated by the changes on the

white footprint.

Evidence of the regularization effects in the sequence foreman can be found in Fig. 7.13. Atoms

deformation becomes less instable with the regularization. Notice how important this effect is on

the region where the detail of the lines of the building are. In the absence of regularization and

motion initialization atoms motion is not accurate in their smooth direction. Furthermore, MP

facilitates the propagation of error to neighboring atoms in the area. Motion initialization by means

of matching is a key element for stability.

Weighted-MP acts as if the dictionary in use was modified depending on the spatial location

and signal structure. At every atom search, approximation fidelity is constrained by the regularity

model in use. Chapter 5 clearly states the limitations in approximation capabilities of Weighted-

MP. In the present examples, a price is paid for the regularization of atom transformations. A

cumulative loss in approximation is appreciated under the form of a progressive temporal drift in

the prediction of frames (Fig. 7.14). The present loss can be explained in terms of the theoretic

findings of Chapter 5. The convergence bound for Weighted-MP (see Theorem 5.5) appears to be
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Figure 7.13: Comparison of the computed deformations (atoms associated motion) for the 2nd

frame of the foreman sequence: left not regularized, right regularized.

better when a reliable a priori model is used, unlike in the case of pure MP. Other factors may

degrade, though, approximation performance. These are appear in Eq. (5.15) and can be easily

related to the different factors affecting the performance shown in the present examples. Factors

affecting performance are related with Eq (5.15) as follows:

• A priori suitability is represented in Eq. (5.5) by εmax and wmax
Γ

terms. One can not really

judge whether our regularization model is very reliable or not with the present visual results.

Later, we will see in the coding results section that, at least, the model adopted can not be too

bad (but not necessarily the best one). Indeed, the use of the regularity model within Matching

Pursuit succeeds in exploiting signal redundancy leading to significantly better R-D results

(Sec. 7.9). Hence, one may deduce that, at least in average, the assumed model somehow

fits with the data. Nevertheless, if only approximation error is considered as measure, the

present model may not be the most appropriate, but still is able to extract signal structure

(see Sec. 7.10 results, where video decomposition is used for multi-modal analysis).

• Term η of Eq. (5.5) has a particular relevance in here. In an optimal case, the value of η would

be zero. We remind that η is a penalizing factor in charge of mathematically indicating how

close, from the best m-term approximation, a feasible approximation can be. The relation

with the present examples comes from the parameter sampling of the dictionary. Indeed, the

previous assumed quantization for translations, rotations and scaling of atoms, imposes a huge

limitation in representing deformations. This limitation avoids recovering structures motion

with full precision. Moreover, there is a strong assumption on the constancy of the motion

field all over the spatial support of each one of the geometric atoms. The direct consequence

is that approximation sparsity is reduced and, finally, a temporal drift is introduced (i.e. 3D

video structures are estimated in a forward predictive fashion).

7.8 Rate-Distortion Formulation

A similar framework to Sec. 7.5 can be considered in terms of a rate-distortion (R-D) functional. As

in Sec. 7.5 regularity assumptions can be taken into account to exploit redundancy in geometrical

atom transformations. Regularity explain directly measured by the rate. The optimization to be

solved corresponds to jointly minimizing distortion and rate:

min
F t

N

{DN + λRN} , (7.29)
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Figure 7.14: Left: Curves representing the loss from frame to frame (corresponding to those of

Fig. 7.11) approximation accuracy due to the regularization of the function parameters. Right:

Curves representing the loss of frame (from Fig. 7.12) approximation accuracy due to the regular-

ization of the function parameters.

where N represents the number of terms in the expansion to approximate a given frame, DN is the

approximation distortion and RN the invested rate to code coefficients and parameters. From the

properties of Matching Pursuit representations (Sec. 4.4.2),

DN ≤
N−1
∑

n=0

|ξn|2 +
∥

∥RNIt+1

∥

∥

2

=

N−1
∑

n=0

|ξn|2 + ‖It+1‖2 −
N−1
∑

n=0

|cn|2

= ‖It+1‖2 −
N−1
∑

n=0

∆Dn,

(7.30)

where It+1 is the original frame to be approximated and ∆Dn corresponds to the contribution to

reduce the distortion of atom n, thus ∆Dn = Dn − Dn−1. In Eq. (7.30) ξn corresponds to the

quantization error of the coefficients cn, and can be assumed to be independent of the coefficient.

If rn is taken as the total cost needed to code the nth term of the expansion, then it follows from

Eqs. (7.29) and (7.30), that Eq. (7.29) can be upperbounded as

min
F t

N

{DN + λRN} ≤ min
F t

N

{

‖It+1‖2 −
N−1
∑

n=0

∆Dn + λ
N−1
∑

n=0

rn

}

= min
F t

N

{

D̂N + λRN

}

. (7.31)

Considering JN (λ) = D̂N + λRN then

min
F t

N

{JN−1 (λ) − ∆DN + λrn}

= min
F t

N

{JN−1 (λ) + ∆JN (λ)}

= ‖It+1‖2
+ min

F t
N

{

N−1
∑

n=0

∆Jn(λ)

}

.

(7.32)

Thus, a compact representation of the problem is:

min
F t

N

{

N−1
∑

n=0

∆Jn(λ)

}

. (7.33)
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Such a formulation implies a global optimization which, depending on the dictionary (e.g. non-

orthogonal) and optimization constraints (e.g. non-divisibility in orthogonal smaller sub-problems),

may be of overwhelming complexity (see Sec. 7.2). In the scope of MP, Eq. (7.33) turns into a

suboptimal solution where every ∆Jn is minimized at every iteration. This can be considered as the

criteria for selecting gt+1
γn

:

min
F t

N

{

N−1
∑

n=0

∆Jn(λ)

}

≤
N−1
∑

n=0

min
Fγt

n

{∆Jn(λ)} . (7.34)

Indeed, for general redundant dictionaries, ∆Jn(λ) n ∈ N are not necessarily independent among

them. Distortion reduction and Rate investment at a given state of the Weighted-MP algorithm

may depend on previous iterations. Closeness to optimality will be conditioned by the structure of

the dictionary, how this relates to the signal to approximate and the coding structure.

7.9 Coding the Video Representation

A simple coding scheme is used to code parametric sequence representations. It is based on the

predictive coding of the parameter evolution of 2D features through time. In this section, some

R-D results are presented for the foreman sequence in QCIF format. First, the scheme used to code

temporal evolution of geometric atoms is described. After that, several coding results are presented.

In first place, results obtained by using a simple set of rate based constraints are shown. Then, the

use of regularity based constraints and their effect on R-D results is discussed in more detail.

7.9.1 Predictive Scheme for 3D Structures Coding

The Coding Scheme

The coding algorithm is based on exploiting temporal redundancy of geometric video features. This

redundancy is exploited by means of coding predictively the set of parameters that represent each

spatio-temporal 3D component. The reader may have seen before in this chapter, that 3D atoms

are formed by sets of temporally consecutive 2D atoms that represent the temporal evolution of a

geometric primitive. Every atom is tracked through time. For this purpose, a constrained matching

pursuit is used, where constraints (see Sec. 7.5.1 and Sec. 7.8) at time t are computed from the 2D

expansion obtained at time t − 1. For every nth “spatio-temporal” MP iteration, the two streams

of temporal parameters and coefficients are coded based on a DPCM [156] approach (in the present

case, this is based on the simplest of the predictors, i.e. difference prediction, and a uniform dead-

zone quantizer). The output residual is then coded by an adaptive arithmetic coder [59, 106, 188].

Symbol statistics are independently estimated for each kind of parameter. A statistical context for

every kind of parameter is reserved for “intra” coding (first DPCM sample), and another one is kept

for “inter” coding (predicted samples). A module estimates whether the trajectory of an atom is at

its end. If this is the case, an additional signaling is transmitted to indicate that the atom, tracked

until that point, is not tracked anymore and new intra data (new geometric atom) is introduced for

tracking. For sure, another possibility to code temporal parameters and coefficients evolution is to

buffer a certain interval of samples and use a wavelet transform (then, efficient wavelet coding may

be used, e.g. SPIHT [113]). However, this was out of the scope of this work.

The described coding scheme can be seen in Fig. 7.15. In this figure, one can also see that the

estimation of a priori information may depend on the previous temporal states of atom trajectories,

trajectory states of neighboring atoms and external motion estimators (like block matching, mesh
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deformations, region correlation, optical flow, etc...). Predictive representation of spatio-temporal

video components is performed on a limited length GOP basis. A maximum prediction length (L)

is fixed. Every L frames, all atom trajectories are terminated and a new prediction GOP is started.

R_n f(t) DPCM

Entropy Coding

Generator
Weights

Z
−1

Z
−1

End of 3D Atom
Detector

DPCM

Weighted−MP

Atom parameters(t)

Coefficient(t)

External Motion Estimators

Other Spatial MP iterations

m

m m

m

Dictionary

Memory

Figure 7.15: Predictive coding of geometric video structures.

As described in Chapter 6, low frequency components are represented separately under the form

of a highly downsampled version of the original image. To code this information, low frequency

bands are jointly coded by applying a simple temporal wavelet transform on them (spatial wavelet

transformation is normally not possible since no further downscaling can be performed). Here, a

simple Haar temporal transform is applied to each group of low frequency bands, belonging to the

same GOP. These are quantized using a dead-zone uniform quantizer and then coded by means of

arithmetic coding, following a raster-scan ordering. Dedicated m-ary adaptive statistical context

estimation is used for Haar scaling functions subband and for Haar wavelet subbands.

To guarantee independence among GOPs, all adaptive arithmetic coding contexts are reset at

the beginning of every GOP. This may be seen as a resynchronization point of the bit-stream.

Scalability Properties

The nature of matching pursuit allows to easily setup a progressive and scalable bit-stream (as

introduced in [78]). Indeed, for every GOP, one may select at reception the reconstruction accuracy

of the coded video by simply decoding up to the spatial MP iteration n. This confers to the coding

scheme, in a simple fashion, the well appreciated SNR scalability property. Moreover, since the

dictionary of spatial geometric functions in use is made of a continuous analytic expression, signal

description is nothing but a continuous model of the video sequence: one thus gets Spatial scalability

for free ([66, 78, 79]). Low frequency bands would require classic interpolation to change their

size. Nevertheless, more complex fully MP based approaches may substitute these by additionally

introducing, in the redundant dictionary, low frequency dedicated functions (e.g. scaled Gaussians
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[66]). This kind of dictionaries are known as multi-component dictionaries. The scheme is thus

both SNR and spatial scalable. Temporal scalability is not available due to its discrete predictive

structure.

7.9.2 Results

R-D performances of the presented scheme are evaluated in this section.

Effect of the D + λR Greedy Based Algorithm from a Coding Point of View

The D + λR based Weighted-MP formulation is first evaluated here. Atom tracking is based on the

formulation discussed in Sec. 7.8. This intends to impose certain regularity in the sequence descrip-

tion by constraining the 3D atoms extraction to an estimated bit cost of the DPCM residue that

will represent the temporal variations of geometric parameters of an atom, as well as its coefficient.

Motion parameters are often assumed to be exponentially distributed random variables (of course,

this only considers the modulus of these). Optimal entropy coding involves the use of an adapted

set of codewords for each symbol. In the exponential case, Exp-Golomb codes are appropriate.

Table 7.1 shows the coding costs (codeword lengths) associated to each one of the motion symbols

Symbol to code Golomb codeword length

0 1

1 3

2 3

3 5

4 5

5 5

6 5

7 7

... ...

Table 7.1: Exp-Golomb bit codeword lengths for each symbol of a set with exponential distribution.

if Huffman coding tables were used. Even if arithmetic coding is used here, this table of costs may

be considered as a good approximation of the relative costs among different kind of symbols. Of

course, λ balances between temporal regularity and distortion at every MP search step. The higher

this is set, the lower will be the mobility allowed to atoms. Depending on λ, atoms will only move

if distortion reduction is worth enough with respect to the coding cost.

Fig. 7.16 depicts the R-D behavior of the studied coding scheme when using the R-D based

Weighted-MP. The reader may observe how the variation of λ is not able to produce significantly

enough changes in the R-D curves. The higher the λ value, the better the performance at low

bit-rates (and the worst at medium/high rates). The simple regularization law that depends on the

coding costs, according to the present coding scheme (coding of the difference from the previous

temporal state of a geometric atom), acts just as a motion penalty term. It virtually reduces the

atom search window. If λ becomes really high, then all spatio-temporal atoms present zero motion.

The conclusion is that, unlike in the Bayesian approach presented in Sec. 7.5, the R + λD based

a priori model used for Weighted-MP does not succeed at all in exploiting signal structure. In the

following section, the superior R-D performance of the Bayesian regularization approach is shown .
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Figure 7.16: Average PSNR on the first 32 frames GOP of the foreman sequence for a given rate

and several λ settings.

Effect of Regularity Constraints from a Coding Point of View

In order to have an objective measure of the regularization effects, we consider the R-D curve

obtained for the simple coding scheme described in this section. Every frame is described by a set

of atoms which are obtained sequentially by the iterative greedy algorithm. The criteria used in

the function selection rule of our algorithm is designed such that a spatial and temporal regularity

is imposed among atoms. Hence, correlation of atoms at time t with their evolved version at time

t + 1 will be exploited by only encoding the parameters and coefficients differences. When an atom

is refreshed, this is obtained by doing a full search in the whole image (as described in Sec. 7.6).

Atoms that have been refreshed will also be coded by just sending the difference with respect to

the atom they replace in the previous frame. Finally, an arithmetic coding [59, 106, 188] of the

differential data is performed.
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Figure 7.17: Comparison of the regularized and non-regularized foreman sequences (16 frames

GOP). Left: R-D, Right: Temporal comparison at two particular rates.
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Curves on Fig. 7.17 (left) show the gain obtained in terms of R-D of the regularized Bayesian

matching with respect to the non-regularized one. The use of regularization in the matching crite-

ria imposes a certain structure among the behavior of atoms in a frame. This helps reducing the

instability of image primitives. A consequence of the regularization turns to be, as expected, the

reduction of the amount of necessary bit-rate to represent frame to frame variations. The entropy of

the parametric representation gets reduced by the low-pass filtering of parameters imposed by the

MRFs criteria. Furthermore, MRFs criteria (and motion initialization when no a priori is available),

reduce the propagation of error in atoms parameters, contributing to a better R-D behavior. How-

ever, as shown in Fig. 7.14, this is in exchange of a higher drift. A 3dBs loss is cumulated through

the GOP. This is due to the limited dictionary resolution, the sub-optimality of MP and the effects

inherent to prediction. The range of rates appearing in the curves is obtained by exploiting the

natural SNR scalability that MP expansions have. For a given bit-rate, video frames are progres-

sively reconstructed by limiting the number of atoms used per frame. In this way, coding costs may

respect a pre-selected bit-rate.

Figure 7.17 (right) shows the effect of the regularization in terms of rate distortion for the

foreman sequence. Both curves show the common drift behavior appearing from the predictive

nature of the representation. Notice that the regularized version has a gain between 0.5-1.5 dBs

over the non-regularized with 20kbps less. Notice the difference between Fig. 7.14 and Fig. 7.17. The

weakened matching criteria of the greedy algorithm produces a loss in the regularized approximation

with respect to the non-regularized one when the same number of atoms per frame is used in both

cases (Fig. 7.14). In the regularized case, atoms are not able to freely move and place themselves

to compensate errors done by earlier atoms of the iterative decomposition. Indeed, parameters

quantization introduce motion mismatch in the atoms deformation. This is however the price to

pay for having some coding gains (Fig. 7.17).
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Figure 7.18: Distribution of length for the temporal atoms. The length is determined by the atom

refresh criteria of Sec. 7.6 where atoms loosing 80% of their amplitude are refreshed

3D geometric atoms do not necessarily last all along a GOP. Fig. 7.18 shows the histogram of

temporal lengths for atoms prediction that are determined by the criteria described in Sec. 7.6. In

this example the 48 first frames (3 GOPS) of the sequence foreman have been taken into account

for the generation of the statistics. The total number of spatio-temporal atoms (sets of atoms that

are predicted from frame to frame without being refreshed) within this 3 GOPs is 1876. There are



7.9. Coding the Video Representation 155

about 35 per cent of atoms that succeed in being predicted from frame to frame during all the GOP.

However, a relevant number need to be refreshed quite often, common temporal lengths are from

1 to 8 frames. Sequence changes (occlusions, uncoverings and simple interaction among atoms)

force their refresh. Atom refresh is a natural manner to introduce components to represent new

information that appeared in the signal. However, atom interaction as well as mismatch due to the

lack of resolution on the function parameters, contributes to the unnecessary rising of the refresh

rate. Hence coding efficiency is reduced.
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Figure 7.19: Number of new atoms introduced in the refresh procedure in each frame of the

sequence.

Atom refresh rate is not the same for every temporal frame, depending on the motion of the

picture and the drift propagation through MP iterations, a different number of coefficient primitives

pass the threshold fixed to determine whether an atom can still be considered worth to be kept or

not. In Fig. 7.19, we monitor the number of refresh atoms introduced at every frame. As shown,

intra frames (the first at every GOP) are not considered in this graph. In the graph a zero every

16 frames appears even if all atoms are refreshed, i.e. none of them is predicted from the previous

frame. In Fig. 7.19 several maximal pics more relevant than others can be identified. Close relations

can be found between these and sets of frames of the sequence where most relevant changes appear.

In the first GOP, the head appearing in the sequence turns from left to right. This movement

progressively occludes a part of the face. At frame 12, the face starts to turn back to its initial

position, uncovering in the procedure areas that were not visible before. This requires the insertion

of additional information to cope with the change of topology of the contours and shape in the frame

13 (Fig. 7.20)

Finally, coding results of the scheme presented in Sec. 7.9 are compared to a set of scalable

coding schemes (These are: MPEG-4 with spatial scalability, MPEG-4 FGS, SPIHT-3D and MP3D.

For a list of references, see Chapter 2). Results achieved by the algorithm presented in this chapter

appear to be comparable or better than these. The most comparable scheme in performance is that

corresponding to MP3D [152]. At very low bit-rates, average representation of structures without

taking into account temporal motion is more interesting from a R-D point of view. Indeed, at

very-low bit-rates, motion information (in full precision) becomes too expensive to code. For middle

and higher rates, the use of motion advantages the approach presented in this chapter. As one can

expect, motion adapted 3D geometric primitives can exploit spatio-temporal geometric structures
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Figure 7.20: Reconstructed frames 12,13 from the foreman sequence. In them we observe the

uncovering of the left region (right in the picture) of the man’s face.

in order to reduce signal dimensionality. The video representation achieved in this chapter supplies

a signal model which is cheaper to code. The motion information of neighboring atoms should be

jointly coded to achieve significantly better results.
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Figure 7.21: Comparison of R-D performance for the sequence Foreman of different scalable coding

schemes. R-D data, other than that obtained from the coding scheme of Sec. 7.9, has been obtained

from [152].

7.10 Multimodal Analysis Using Redundant Parametric De-

compositions

Flexible video representations may be useful for other tasks than just compression. Indeed, efficient

video modeling means also efficient video description. Even though descriptions used for a given

application are not necessarily adapted to other applications, in this section we test the presently
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proposed video representation in the framework of signal analysis. Indeed, the spatio-temporal

evolution of geometric video features are used as features in a multi-modal audio-visual analysis

experiment.

7.10.1 Motivation

Computer systems have progressed in all their aspects since they first appeared several decades ago.

Nowadays, simple personal computers have turned into very complex computation platforms able to

perform a large range of tasks. Apart from their basic computational and data ordering purposes,

computers are now sophisticated multimedia platforms used for communications, automatic surveil-

lance, efficient (and/or friendly) human-machine interaction, data analysis and many other tasks.

Audio and video processing is often the main ingredient of many of these tasks. Signal analysis has

usually the final goal of emulating cognitive human capacities. However, this is not always easy to

implement and, for the moment, there is still a long research way to go.

Concerning audio and visual data modalities, human beings have a special ability in understand-

ing and analyzing what is happening in an audio-visual scene. Like in many other kinds of signals,

interrelations appear often between audio and video. Indeed, given a particular sound event, we,

humans, have not much difficulty to locate its origin in a scene, if this has been generated by some

visible mechanical action. Humans also exploit audio and visual stimulus correlation for other pur-

poses. Once known the visual location of a sound source, its visual information may be used to

enhance sound perception as well. Indeed, multimodal correlation helps “focusing” on a particular

sound and eases source separation.

Provide computers with multimodal analysis capabilities is not an easy task. Given the already

challenging nature of “monomodal” analysis itself, it has not been until the last five or six years that

multimodal analysis has started finding a significant interest among scientists [19, 23, 68, 101, 165,

166]. Although research in this area is quite young and still at a preliminary stage, the increasing

engagement of the scientific community is a guarantee that the study of multimodal signal processing

is and will be, in the next years, a field in vogue.

In this section, we present the applicability of spatio-temporal geometric video representations

within the field of audio-visual multimodal analysis. Monaci et al. [131] have used the video repre-

sentation technique presented in this chapter to extract salient signal geometric features and their

associated regular motion in order to combine these with audio features, to retrieve in scenes the

location from where sound originates.

7.10.2 Modality Features Extraction & Fusion

The retrieval of correlations between audio and video signals is a problem with a very high dimen-

sionality. For a given distance measure, one desires to locate those spatio-temporal video regions

that are interrelated with a certain audio track. In order to make this problem feasible, audio-visual

data needs to be modeled such that dimensionality gets reduced and only relevant signal information

is used. Data modeling is, thus, supposed to capture the main characteristics of each signal modality

that may contain information about the other modality.

Most of the investigated approaches present two main ways of looking for multimodal correlations:

• The most commonly used is the approach that first extracts independently features from each

kind of data and latter fuses both modalities in order to determine where data correlation is

present.
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• Less common (but not less interesting) are those approaches that intend to find, in a jointly

manner, an optimal modeling and fusion criteria of data (e.g. [166]). This approach, clearly

much more challenging than the usual one, has many chances to supply more powerful solutions

in a near future. However, until the moment, results like those of [166] are not able to deal

with dynamic scenes yet.

The first approach, which in any case is quite unexplored yet, is considered in here. In the

following, feature extraction is described together with some comments comparing this to the state

of the art. Next to that, the use of a data fusion criteria is proposed.

Audio Feature Extraction

Audio signals have a rich variety of components that human auditive system is able to perceive

(Fig. 7.22). This is the reason why high sampling frequencies are, thus, normally required to

preserve all the useful signal frequencies. Correlations of the wide diversity of sounds with the also

large variety of geometric configurations of the visual stimulus of a mouth are possible. Indeed, this

is the main basis for lip reading. A positional model of lips may be assigned to each sound and

transitional models between sounds can be established.

Figure 7.22: Audio signal of a subject uttering the first ten digits (in Italian) [131].

In this section we consider a much simpler and generic approach. We look for the location in

video of simple vibrations that can be found at the same time in audio and visual motion. Video

temporal sampling, and consequently motion, are usually of very low rate. Hence, audio features of

interest for us are in a similar variability range. Higher dimensional audio features are unnecessary

and these may even be misleading.

In literature, one may find different kinds of audio features used. [101] use the instantaneous

energy of the audio track as feature. [165] bases its audio analysis on cepstral representations

[150]. [23] and [68] use a linear combination of spectral power coefficients through time. This

combinations are such that they maximize, respectively, feature entropy and mutual information

with video. In here, an estimate of audio energy contained per frame is taken into account (see

Fig. 7.23). A direction to investigate is the use of subsets of time-frequency sparse representations

(like signal projections on redundant Gabor dictionaries [131]) such that more efficient audio-visual

data correlations can be achieved.
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Figure 7.23: 1D Audio feature based on the normalized measure of the instantaneous audio energy

for a sampling rate equal to the video frame rate [131]. The original signal may be seen in Fig. 7.22.

Video Feature Extraction

Clearly, video features need to capture temporal variations. To date, video features used for multi-

modal audio-visual fusion are often based on pixel-wise intensity difference measures [68, 101, 165,

166] or regularized pixel intensity measures [23]. Some approaches look forward exploiting local mo-

tion information by means of optical flow measures [19]. In any case, none of the actual approaches

try to exploit the real structural nature of video signals.

All investigations carried out in this thesis have as fundamental purpose to take into account the

geometric nature of video. Efficient signal modeling and representation requires the use of methods

able to capture particular characteristics of each signal kind. A question that arises at this point

is: Why should we use a representation of video based on a basis of deltas (i.e. pixel wise features),

if video is made of moving regions surrounded by contours with high geometrical content? For

particular applications, one may consider the use of adapted template based approaches (in order

to model particular objects and their trajectories: lips, faces, etc...). However, for generic non-

application constrained approaches, the answer seems to be that we should, indeed, use a signal

modeling capable to exploit video structural properties while keeping generic and flexible enough.

In a tentative to introduce such properties into the video feature extraction process, the use of the

spatio-temporal video approximations using geometric primitives is considered. In particular, the

approach adopted is the one presented in this chapter. Video is decomposed in 3D video components

intended to capture geometric components (like oriented edges) and the temporal evolution of their

geometry.

For example, potential features to correlate with audio are: the temporal variation of position,

orientation, scaling or coefficient projection of 2D geometric primitives (i.e. each of the gt
γ and

F t
γ ∀t ∈ [0, T ].

Data Fusion

Once features are available, a measure is required to determine how much these are related among

them. In the literature, different fusion criteria may be found. These are selected depending on the

assumptions done to formulate the multimodal analysis problem.

Information theoretic formulations often use the Mutual Information measure [36]. However,
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when few data samples are available, there may be some problems concerning probability density

estimations. Other approaches consider the formulation of the problem from a projective point of

view. Assuming that all extracted features (audio and video in our case) are data vectors that

belong to a same projective space∗, a distance can be established among these. Correlation measure

determines the distance between two given feature vectors. Those vectors having a maximum cor-

relation (i.e. maximum scalar product) are those which are situated at a minimum distance. When

mean is removed systematically from each feature vector and then this are normalized, the distance

measure is known as the Pearson ρ correlation coefficient [11]:

ρ̂ =

n
∑

i=1

(xi − E {x}) (yi − E {y})
√

√

√

√

n
∑

i=1

(xi − E {x})2 ·
n
∑

i=1

(yi − E {y})2
, (7.35)

where x and y are two feature data vectors. In [131], Pearson correlation showed to be the most

appropriate criteria to fuse the audio and video features discussed in this section. Hence, this is the

measure used to generate the results presented in the next point.

As shown in [131], a significance test on the result of (7.35) needs to be performed in order to

determine which 3D video components have a correlation with audio which is relevant enough.

The following function of ρ̂:

f̂t (ρ̂) =
ρ̂
√

n − 2
√

1 − ρ̂2
,

where n is the length of feature vectors, belongs to a Student’s distribution with n − 2 degrees of

freedom if audio and visual feature correlation is zero. If the probability that the measured f̂t (ρ̂),

for a given 3D video atom, belongs to a Student’s distribution is small enough, then this atom is

considered to be correlated with sound (the reader is referred to [131] for further details).

7.10.3 Results

In here, two illustrative results are shown of the usage of geometric video representations for audio-

visual data correlation. The examples presented are based on two video sequences where in each,

two subjects pronounce a certain text one after the other. Fig. 7.24 and Fig. 7.25 clearly show

the location of geometric atoms found to have a temporal evolution correlated with sound. This

perfectly coincides with those primitives that take part in mouth, nose and chin structures. As a

relevant detail, in Fig. 7.24 the left subject continues to move the mouth while the second subject

speaks. Only the source of sound is detected. The colored location indicators are the energy envelops

of the selected atoms. Notice how these nicely adapt their orientation according to the geometric

characteristics of the structures they represent.

The presented spatio-temporal geometric video representation based on atoms deformation, has

shown to be capable to recover 3D video components that represent geometry and their motion

through time. This representation has shown to be an interesting alternative for video feature

extraction in multimodal signal analysis. Results are promising and encourage for further research.

The interested reader will find additional results and future development of this research in [130].

∗A projective space is understood here as the set of all one-dimensional subspaces spanned by each of the possible

real vectors of dimension n (i.e. n is the size of our feature vectors). Each one of the feature vectors generates one of

such one-dimensional subspaces.
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Figure 7.24: Up: Original sequence frames. Down: Spatio-temporal geometric atoms with signifi-

cant correlation with audio track [130].

Figure 7.25: Up: Original sequence frames. Down: Spatio-temporal geometric atoms with signifi-

cant correlation with audio track [130].
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In general, results show to be very positive, but far from being totally robust. In effect, the tests

put into relevance several weak points of the present implementation for 3D geometric structures

extraction:

• First of all, the heuristic solution supplied in Sec. 7.6 to handle occlusions, appearance and

disappearance effects is not the optimal one. However, there is not much choice since geometric

structure tracking is performed in a forward predictive way. This produces an undesired drift

effect that affects the robustness of the algorithm.

• Another point to underline is the simplicity of the a priori regularity model used for the

Weighted-MP. Moreover, at this research stage, this still requires parameter training (though

parameters could be self optimized by some non-linear iterative procedure).

• Finally, let us remind that temporal evolution of the estimated geometric structures is subject

to the granularity of the dictionary in use. This limits motion resolution, generating noisy

estimates of geometric features motion.

7.11 Conclusions

In this chapter, a method for the decomposition of video signal on 3D geometric structures has

been presented. The purpose of this is the recovery of sparse video approximations where atoms

jointly represent spatial geometry and temporal trajectories. The problem has been formulated

taking into account lessons learned in previous chapters for the use of redundant dictionaries and

a priori information. Indeed, the use of a priori information, appears of key importance for the

recovery of video structures due to dictionary coherence. 3D video structures are extracted in a

forward predictive way. Atoms retrieved in a frame at time t are progressively deformed to match

the successive transformations of posterior frames. The set of temporal deformations associated to

a given atom gt
γ together with the initial description of gt

γ form one of the spatio-temporal atoms

used to describe the sequence of frames. The obtained description shows to have encouraging results

in coding applications as well as in video analysis applications.

The forward predictive strategy used to solve the problem, makes occlusions, appearing and

disappearing objects to be poorly handled. Dictionary parameters granularity reduce the resolution

of motion representations. Even if this is necessary for coding purposes, video signal analysis requires

as much resolution as possible to reduce noise in motion estimates of structures. The present

approach assumes that motion is constant all over the support of a 2D geometric feature. However

this is not necessarily true.

This chapter has clearly unmasked most of the unknowns concerning the representation of video

signals by means of the superposition of 3D atoms, able to represent spatial geometry as well as tem-

poral transformations. From the observed advantages and drawbacks of the present implementation,

we can state the following requirements for future research and applications implementation:

• If applications are not limited by delay constraints, fully 3D atoms extraction needs to be

adopted instead of the forward predictive one. This typically introduces in a natural fashion

handling with occlusions, appearing and disappearing objects. In the 3D extraction, the same

principles on the use of Weighted-MP discussed in this chapter can be used. The difference

with respect to the forward prediction scheme is that signal does not need to be processed

respecting its causal nature. Forward prediction toward future and past (according to the

video time line), considering any temporal instant as possible starting point, can be used.
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• A better compromise between complexity and motion resolution recovery is required. Video

analysis requires above all representations able to give parametric descriptions of sequences as

accurate as possible. For the case of video compression, as far as rate is kept limited, motion

resolution is of great importance as well.

• Investigation on better and more structured a priori models is required. From a video analysis

point of view, a better a priori will supply better parameter estimation accuracy. From a

video coding point of view, an appropriate a priori may be the necessary tool to increase R-D

performance.

An interesting example of a fully 3D approach (non-predictive based), that uses an a priori based

exclusively on a BM translational motion estimation, conceived for video coding, can be found in

[151]. In this, however, spatial geometry modeling is conditioned by the BM translational motion

estimation, which does not take the real nature of spatial video structures into account.
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Chapter 8

Conclusions

8.1 Summary

In this dissertation, several aspects of adaptive models for video approximations have been inves-

tigated. Efficient approximation methods for flexible video coding approaches must be capable to

adapt as much as possible to the signal. In video approximations, this implies that signal geometry

must be efficiently modeled. Video is a 3D signal with geometric content in spatial structures as

well as in their temporal evolution.

Temporal geometry information, classically exploited by motion estimation, is typically embed-

ded within separable temporal transforms (like wavelets) in order to extract spatio-temporal signal

components which exploit temporal geometry in a multi-scale fashion. Since video is an example of

piecewise-smooth signal, the effect of adaptive temporal representations has been studied. Indeed,

in the case of motion compensated temporal filtering, temporal wavelet decompositions must be

adapted to the length of object motion trajectories. In the simpler case of non motion compensated

3D subband video coding, motion is assumed to be equal to zero. Hence, when this assumption

fails, temporal transforms must be adapted in length such that wavelet transforms avoid crossing

the temporal edges generated in the signal by moving objects.

Present video representation techniques model temporal geometry without taking into account

the real nature of spatial video structures. Even though recent approaches try to decompose video

signals on a set of multi-scale motion adaptive 3D wavelet functions [12, 160], which already use the

multi-scale spatial nature of video frames, spatial geometry is not taken into account at all.

Ideally, given the 3D geometric nature of video signals, these should be approximated by models

capable to accurately jointly represent space and time geometry. Considering the modeling of video

signals like the superposition of basis functions from a dictionary, basis functions should be capable

to model 3D video components describing a geometric feature and its evolution through time. Very

coherent redundant dictionaries seem to be required for this task. Moreover, the use of frame based

signal decompositions appears to be of no use due to their lack of sparsity preservation. In this

case, the use of highly non-linear decomposition algorithms to achieve sparse video representations

is required. Nevertheless, due to the computationally demanding task to decompose video on dictio-

naries made of 3D spatio-temporal geometry based functions. Rich enough dictionaries (in order to

accurately model all sorts of geometry) are so big that special strategies to extract spatio-temporal

geometric video components must be considered. Moreover, usable highly non-linear decomposition

algorithms such as Matching Pursuits do not work as desired when dealing with highly coherent
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dictionaries of functions.

In this thesis, the extraction of spatio-temporal 3D geometric video components has been studied

in detail. The strategy investigated is based on the retrieval of 2D geometric components in a video

frame, and then looking for their evolution through time. The set of spatial parameters of the 2D

geometric functions together with their variation through time, form the desired 3D geometric video

components. The approach presented in this work adopts a predictive strategy in order to look

for the temporal evolution of 2D geometric components, respecting the causality of the signal. 2D

components are tracked from frame to frame to determine their temporal variation. Retrieving a

sparse representation is the main concern of this work. Hence, as aforementioned, we must use

some highly non-linear decomposition algorithm with our redundant dictionaries (i.e. with the 2D

geometric dictionaries too). A greedy algorithm has been adopted for the features tracking task.

This extracts the trajectory of a geometric feature at every iteration. Indeed, global optimization

of all 2D atom trajectories at once would result into a too complex task.

However, the combination of highly coherent dictionaries with matching pursuits usually does

not work as one would like. Greedy algorithms are a sub-optimal highly non-linear optimization

algorithm capable to find the optimal solution to signal decompositions in particular occasions. One

can ensure the good behavior of matching pursuits when the dictionary in use is incoherent enough.

Though, interesting dictionaries for the decomposition of images and video seem to be quite coher-

ent. In order to solve this problem, which also concerns a very long list of other applications (not just

the ones concerned by video approximations), a new paradigm for highly non-linear decomposition

algorithms is proposed and deeply analyzed in this work. In order to make highly non-linear algo-

rithms to work better with coherent dictionaries, a priori models relating the internal structure of

dictionaries with the signal must be considered. A particular example of these proposed algorithms

is Weighted-MP/OMP. One can significantly enhance signal expansions sparsity by modifying the

algorithm functions selection rule such that the MP/OMP algorithm becomes signal adaptive.

Weighted-MP/OMP within the video expansion problem can be seen as a greedy algorithm

which considers additional information about probable motion trajectories of video components. In

our case, this was implemented by imposing regularity constraints on the motion of neighboring

geometric components as well as by computing pre-estimates of local motion with some pixel-based

matching technique. Geometric video decompositions have been tested also in terms of performance

of video compression as well as for multi-modal audio-visual analysis purposes. The results obtained

have shown to be promising, encouraging to prosecute research on the subject.

In order to have a clear sketch of the main contributions of the thesis, these are recalled in the

following.

Localized Temporal Adaptivity in 3D Wavelet Video Coding

A model based R-D theoretical analysis of different wavelet decomposition strategies has been per-

formed for motion compensation free subband video coding. This analysis has given a better un-

derstanding of coding performance of non-linear video approximations with 3D separable wavelet

basis. A locally adaptive temporal decomposition strategy has been suggested in order to improve

the R-D performance of coding applications.

Intra-Adaptive Motion-Compensated Lifted Wavelets for Video Coding

A piecewise-smooth model concerning the temporal behavior of motion compensated video data has

been described. According to this, and the theoretical background on R-D performance of wavelet
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and oracle based coding schemes, an intra-adaptive scheme of the MCTF extension of H.263++ has

been proposed in order to allow a better modeling of motion trajectories in video signals. This has

allowed to achieve better R-D performances on MCTF video codecs.

Use of a Priori Models within Highly Non-linear Algorithms for Sparse

Repersentations and Approximations

A detailed theoretical analysis has been performed on the influence of using accessory a priori mod-

els in highly non-linear signal expansion algorithms together with coherent dictionaries. Practical

examples validate the theoretical findings as well as they show how a priori information, dictionary

and signals must be related within highly non-linear decomposition algorithms. Very redundant dic-

tionaries for the approximation of signals with particular properties, often include sets of functions

specialized in representing some kind of feature. The good behavior of decomposition algorithms is

directly related with their capacity to assign these specialized functions to the right signal features.

An Efficient Full Search Matching Pursuit Image Decomposition Algo-

rithm

A feasible efficient full search matching pursuit strategy for image decompositions using 2D geo-

metric dictionaries has been proposed. This substitutes previous sub-optimal strategies based on

genetic algorithms, which delivered worse approximation results and showed to be slower. The

proposed decomposition technique allows to obtain efficiently sparse geometric MP based image

approximations.

A Full Geometry Based Video Approximation Scheme

An a priori based predictive greedy strategy to extract 3D primitives from video signals has been

proposed. This has supplied a spatio-temporal geometric video representation scheme based on the

superposition of these video primitives. The obtained representation, when used for signal scalable

compression, has shown to be, in average, more efficient than some state of the art techniques.

This representation approach shows to be also quite interesting as a source of video features for

multi-modal data fusion.

8.2 Future Research

Apparently, it seems to be quite usual that at the end of a PhD thesis one feels like ready to, at

last, start serious research. Hence, plenty of ideas come in mind and a frustrated voice coming from

inside tells you: Why didn’t I think about that before??!! (well, better not to think about that...).

Reached this point, last but not least, let us review a very little set of possible future research

directions to follow; just in case these are of interest for the reader.

Subband Video Coding

Lifting based adaptive subband video decompositions select in a level by level fashion the coding

modes used to tune the intra-adaptive and frame-adaptive steps. This is completely sub-optimal

since its effect on the global signal transform is not taken into account. Instead of locally opti-

mizing the parameters of the video transform, these should be selected in a global optimization

fashion. While this is tractable by prune-join tree decompositions in the non motion compensated
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3D Wavelet case, it is tremendously demanding in terms of computational complexity for the MCTF

case. Indeed, the optimization problem becomes combinatorial with many dimensions. Sub-optimal

approaches, where at least more than one decomposition level is taken into account to select the

lifting steps modes, could be a compromise between complexity and R-D performance.

Applications of A Priori based Weighted Highly Non-linear Algorithms

for Sparse Representations and Approximations

Weighted highly non-linear algorithms for signals decompositions, like Weigthed-MP/OMP, can be

applied to any application requiring the use of coherent redundant dictionaries as well as sparse

signal representations or approximations. General under-determined inverse problems can use this

paradigm as far as a certain model can be established in order to relate signal and internal dictionary

structure.

Good signals modeling involves the retrieval of independent components in signals. This can

be applied to audio analysis and compression, video analysis and compression, image analysis and

compression, data mining and content indexing, “blind” source separation, multi-modal data pro-

cessing, etc. For all this purposes, particularly adapted dictionaries have to be investigated as well as

signal/dictionary based a priori models. A priori models should be carefully studied depending on

the class of signals to approximate in order to determine the guarantees that a particular dictionary

together with a particular a priori model have to achieve good sparse signal decompositions. Much

better application performances than those obtained by using orthonormal basis are expected for

the future.

Efficient Full Search Matching Pursuit Enhancements

Efficient full search approaches for Matching Pursuit decompositions must profit from the implicit

structure of redundant dictionaries and the way basis functions are constructed. The use of steer-

ability properties of some functions may allow much faster computation strategies of scalar products

between all functions of the dictionary and the signal. Moreover, a deep investigation of appropriate

dictionaries for natural images approximations should be performed.

Full Geometry Based Video Approximations

The spatio-temporal video representation presented in this thesis is based on a predictive causal

strategy for the extraction of 3D video geometric components. To avoid difficulties handling objects

occlusions and apparitions, a 3D approach should be considered instead. A fully 3D decomposition

based on a GOP should be taken into account. In this way, spatio-temporal geometric components

can be extracted from any spatio-temporal location in the GOP. This approach would be more

respectful with the video structure. Moreover, the general problem formulation should be defined in

a slightly different way. 3D components extraction should be performed in a even higher non-linear

optimization way in order to jointly optimize the selection of the 2D geometric shapes together

with the motion parameters retrieval. In addition, this could be done such that, the same motion

parameters are imposed to a neighborhood of nearby atoms. The neighborhood should be decided

within the optimization procedure leading to a complex chicken-egg segmentation and classification

procedure. However, it is not clear whether such an approach is computationally feasible. In addition

to all that, other geometric dictionaries can also be investigated.
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Applications of 3D Full Geometric Video Descriptions

As demonstrated in this PhD thesis, 3D video geometric components may be used as basic building

blocks for compression models as well as features for video analysis applications. For each one of

this applications, one may investigate different dictionaries in order to decide which may be more

useful in each case. Appropriate coding strategies as well as appropriate data fusion approaches

must be investigated.
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Appendix A

Performance Proofs of 3D Schemes

on the Moving Horizon Model

A.1 Proof of Theorem 3.2

Proof: The R-D analysis of classic Packet Wavelet for video coding (2D+1D separable wavelet

decomposition) is analogous to the one performed in Sec. 3.4.2. The main change, concerns the

generated number of wavelet coefficients. Due to the 2D+1D condition of the present transform,

now, decomposition levels will refer to the 2D ones. Hence, in the remaining of the proof, index j

will involve all spatio-temporal coefficients at spatial scale 2−j .

The number of coefficients per spatial decomposition level for the Moving Horizon model are

such that:

nj ∼ 3 · 22j



(j + 2) +

J−j
∑

j′=1

2j′



 . (A.1)

Consequently, the total number of coefficients involved in the approximation of our synthetic signal

is

NJ ∼
J
∑

j=0

nj +
no

3
= 4J

(

4J +
32

3

)

− 4 · 2J +
4

3
. (A.2)

The use of the fixed packet scheme, for the 2D+1D dyadic decomposition, does not modify the overall

maximum decay of coefficients depending on the level. In effect, temporally diagonal subbands are

the same for the present scheme and for the isotropic 3D wavelet decomposition. In this case, the

amplitude decay of coefficients, the rate needed to code them and distortion introduced for every

coefficient are also:

|cj,k| ∼ 2−
3j
2 ,

Rcj,k
∼ log2

(

1

∆

)

=
3J

2
,

Dcj,k
∼ ∆2 ∼ 2−3J .

Following from Eq. A.2, we establish the relation between rate, distortion and the finest level (J) of
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detail involved in the signal approximation as

R ∼ 4J

(

6J2 + 48J +
256

3

)

− 2J (6J + 32) + 2J +
8

3
,

D ∼ 2−J

(

4J +
53

3
− 4 · 2−J +

4

3
· 4−J

)

. (A.3)

The value of J as a function of R is required to determine the global behavior of D(R).

At this point, a lower bound on the distortion may be computed. For this, we need to approximate

the value of R by a lower bound such that J can be easily solved:

R & 4J

(

6J2 + 48J +
256

3

)

− 2J (6J + 32) +
8

3

= 4J (3J + 16) (3J + 8)
2

3
− 2J (3J + 16) 2 +

8

3

≥ 4J (3J + 11)
2 2

3
− 2J (3J + 11) 2 +

8

3

= 4J

(

J +
11

3

)2

6 − 2J

(

J +
11

3

)

6 +
8

3
(A.4)

In order to solve (A.4), we consider the change of variables J ′ = J + 11/3 and y =
√

J ′2J ′

. This,

turns (A.4) into a simple one variable second order equation:

R & 6 · 4−11/3y2 − 6 · 2−11/3y +
8

3
.

Taking the solution that implies a positive relation between y and R results into:

y . 4 · 22/3 +
4

3

√

−14 · 21/3 + 12 · 21/3R.

Combining this with the change of variable y =
√

J + 11/32(J+11/3) and solving for J , one obtains

an upper bound on the dependency of J on R. That is,

J .
W

(

4

3
log(2)

(

3 · 22/3 +
√

2
√

21/3 (−7 + 6R)

))

− 11 log(2)

3

log(2)
. (A.5)

The desired lower bound on the D(R) is, thus, obtained from the combination of (A.3) and

(A.5). Hence,

D(R) &
32

3 log(2)

(

3W(E(R)) − 11

log(2)

)

22/3W(E(R))

E(R)

+
424 · 22/3

3

W(E(R))

E(R)
+

8192

3

(

W(E(R))

E(R)

)3

−512 · 21/3

(

W(E(R))

E(R)

)2

(A.6)

where E(R) = 4
3 log(2)

(

3 · 22/3 +
√

2
√

21/3 (−7 + 6R)
)

.

At high rates, D(R) can be approximated by a much simpler expression that corresponds to its

asymptotic behavior. In effect, the three last terms of (A.6) become insignificant while rate increases.
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E(R) behaves linearly with
√

R and W(E(R)) can be approximated by log(E(R)). Hence, D(R),

at high rates, can be expressed as:

D(R) ∼ log2 (R)√
R

, (A.7)

which proves Theorem 3.2.

A.2 Proof of Theorem 3.3

Proof: We follow again the procedure adopted in Sec. 3.4.2 and 3.4.3 to determine an upper

bound on the D(R) as well as its asymptotic behavior at high rates.

This time, the number of coefficients per spatial decomposition level for the Moving Horizon

model is:

nj ∼ 3 · 22j



2 +

J
∑

j′=j+1

2j′−j



 , (A.8)

which gives a the total of non zero coefficients:

NJ ∼
J
∑

j=0

nj +
no

3
= 4J12 − 2J4. (A.9)

The same characterization used for |cj,k|, Rcj,k
and Dcj,k

in sections 3.4.2 and 3.4.3 applies in

here. Thus, the distortion and rate behavior with respect to J can be expressed as:

R ∼ 4J (18J + 96) − 2J (6J + 32) − 8,

D ∼ 2−J19 − 4−J4. (A.10)

An upper bound on R can be obtained in the following way:

R ∼ 4J (18J + 96) − 2J (6J + 32) − 8 (A.11)

= 4J

(

J +
32

6

)

18 − 2J6

(

J +
32

6

)

− 8 (A.12)

≤ 4J

(

J +
32

6

)

18 − 2J6

√

J +
32

6
− 8. (A.13)

From this, we can easily solve J if two changes of variable are applied to convert (A.13) into a

second order equation, i.e. J ′ = J + 32/6 and y =
√

J ′2J ′

. We follow the same procedure to that of

Sec. 3.4.3. Hence,

R . 4J ′

J ′4−32/618 − 2J ′

2−32/66
√

J ′ − 8 (A.14)

= y24−32/618 − 2−32/66y − 8, (A.15)

and

y &
16

3
21/3 +

16

3

√

17 · 22/3 + 2 · 22/3R. (A.16)

It just remains to apply backward the previous variable changes to (A.16) to get the final bound on

J :

J &

3 W

(

2 log(2)

(

16

3
21/3 +

16

3

√

17 · 22/3 + 2 · 22/3R

)2
)

− 32 log(2)

6 · log(2)
. (A.17)
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An upper bound on D(R) follows from (A.10) and (A.17):

D(R) . 304 · 25/6

√

W
(

2 log(2)E(R)
2
)

√

log(2)E(R)
− 2048 · 22/3

W
(

2 log(2)E(R)
2
)

log(2)E(R)
2 , (A.18)

where E(R) = 16/3(21/3 +
√

17 · 22/3 + 2 · 22/3R). Thus, D(R), at high rates, can be expressed as:

D(R) ∼
√

log(R)

R
, (A.19)

which proves Theorem 3.3.
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Proofs on the Use of A Priori

Models in Greedy Algorithms

B.1 Proof of Theorem 5.1

Proof: The inner product between the residual at a certain iteration of MP and an atom from

the dictionary can be interpreted as the probability of that atom to be selected. According to [174],

we see that, at every iteration, the following should be satisfied for a Weak(α) greedy algorithm:

ρ (rk) =

∥

∥

∥
WΓ

(

DT
Γ
rk

)∥

∥

∥

∞
∥

∥WΓ

(

DT
Γ rk

)∥

∥

∞
< α, (B.1)

where, as stated previously, WΓ, WΓ are two diagonal sub-matrices of W (f,D) containing the weights

wi ∈ (0, 1] corresponding to DΓ and DΓ. According to the assumption that rk ∈ span(DΓ) and

that the columns of DΓ are linearly independent, then rk = (DΓWΓ) (DΓWΓ)
+

rk = PΓrk = PT
Γ rk,

where PΓ is the orthogonal projector on the space spanned by DΓ. This gives:

∥

∥WΓ

(

DT
Γ
rk

)∥

∥

∞
∥

∥WΓ

(

DT
Γ rk

)∥

∥

∞
=

∥

∥

∥WΓDT
Γ

(DΓWΓ) (DΓWΓ)
+

rk

∥

∥

∥

∞
∥

∥WΓ

(

DT
Γ rk

)∥

∥

∞
=

∥

∥

∥

∥

WΓDT
Γ

(

(DΓWΓ)
+
)T

(DΓWΓ)
T

rk

∥

∥

∥

∥

∞
∥

∥WΓ

(

DT
Γ rk

)∥

∥

∞
.

This quantity can be bounded by:

∥

∥

∥

∥

WΓDT
Γ

(

(DΓWΓ)
+
)T
(

WΓDT
Γ

)

rk

∥

∥

∥

∥

∞
‖WΓ (DΓrk)‖∞

≤

∥

∥

∥

∥

WΓDT
Γ

(

(DΓWΓ)
+
)T
∥

∥

∥

∥

∞,∞
=
∥

∥

∥(DΓWΓ)
+

(DΓWΓ)
∥

∥

∥

1,1
.

Given that ‖ · ‖1,1 is the maximum `1 norm of the columns of a matrix, and that the weighting
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matrices are diagonal, then the Exact Recovery Condition is

sup
gi∈D

Γ

∥

∥

∥(DΓWΓ)
+

gi · wi

∥

∥

∥

1
< α, (B.2)

where wi is the corresponding a priori factor of gi from the diagonal of WΓ.

B.2 Proof of Theorem 5.3

Proof: Theorems 5.1 and 5.2 give the conditions under which Weighted Weak -MP and WBP

recover the optimal set of atoms. In this proof the factor α is conserved independently of the

algorithm in use. Note that for the particular results of WBP and Weighted-MP/OMP this value

equals 1.

Starting from (B.2) and following the procedure suggested in [174] an upper bound based on µw
1

can be obtained:

sup
gi∈D

Γ

∥

∥

∥
(DΓWΓ)

+
gi · wi

∥

∥

∥

1
=

sup
gi∈D

Γ

∥

∥

∥

∥

(

(

DΓWT
Γ

)T (
DΓWT

Γ

)

)−1
(

WΓDT
Γ

)

gi · wi

∥

∥

∥

∥

1

≤

∥

∥

∥

∥

(

(

WΓDT
Γ

) (

WΓDT
Γ

)T
)−1

∥

∥

∥

∥

1,1

· sup
gi∈D

Γ

∥

∥

(

WΓDT
Γ

)

gi · wi

∥

∥

1
.

(B.3)

The first term on the right hand side of the inequality corresponds to the 1, 1-norm of the inverse

Gram matrix of the weighed sub-dictionary of optimal functions. This can be expressed as:

(

(

WΓDT
Γ

) (

WΓDT
Γ

)T
)−1

= (I + Aw)
−1

, (B.4)

where I denotes the identity matrix and Aw is a symmetric matrix. Due to the diagonal weight ma-

trices WΓ, the matrix Aw is not composed only of the off-diagonal elements. Adding and subtracting

the identity matrix, we can rewrite (B.4) in the following way:

(I + Aw)
−1

=
(

I +
((

(

WΓDT
Γ

) (

WΓDT
Γ

)T
)

− I
))−1

.

Akin to [174] this can be expanded by means of Neumann series [105] and, if ‖Aw‖1,1<1, we have:

∥

∥

∥(I + Aw)
−1
∥

∥

∥

1,1
=

∥

∥

∥

∑∞
k=0 (−Aw)

k
∥

∥

∥

1,1

≤
∞
∑

k=0

‖Aw‖k
1,1 =

1

1 − ‖Aw‖1,1
.

Thus,
∥

∥

∥

∥

(

(

WΓDT
Γ

) (

WΓDT
Γ

)T
)−1

∥

∥

∥

∥

1,1

≤ 1

1 − ‖Aw‖1,1
. (B.5)

The 1, 1-norm of Aw can be expressed as:

‖Aw‖1,1 = sup
gγ∈DΓ





∑

l 6=γ

| < gl, gγ > | · wl · wγ + |1 − w2
γ |



 , (B.6)
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where the summation comes from the off-diagonal elements and the last term comes from the

diagonal part. Note that for convergence of the Neumann series we need ‖Aw‖1,1<1. This is

ensured by hypothesis since ‖Aw‖1,1 ≤ µw
1 (m − 1) + εmax and

µw
1 (m − 1) + εmax < 1

by (5.10) and (5.11). From (B.5) it follows that:
∥

∥

∥

∥

(

(

WΓDT
Γ

) (

WΓDT
Γ

)T
)−1

∥

∥

∥

∥

1,1

≤ 1

1 − (µw
1 (m − 1) + εmax)

.

(B.7)

Coming back to Eq. (B.3), the second term can be bounded as

sup
gi∈DΓ

∥

∥

(

WΓDT
Γ

)

gi · wi

∥

∥

1
≤ µw

1 (m). (B.8)

Finally, from (B.7) and (B.8) we obtain

µw
1 (m)

1 − (µw
1 (m − 1) + εmax)

< α, (B.9)

and this proves the theorem.

B.3 Proof of Theorem 5.4

Let us consider first two preliminary lemmas that will be used in the proof of this theorem. These

correspond to those used in the methodology appearing in [95], but are adapted to the case where

a priori information is used.

Lemma B.1 Let Γ be an optimal set, with |Γ| = m, associated to the exact sparse expansion of

signal f and the reliable a priori knowledge weighting matrix W (f,D) (and the WΓ sub-matrix).

Then, the square singular values (σ2
minw

) of the matrix (DΓWΓ) are such that:

σ2
minw

≥ 1 − µw
1 (m − 1) − εmax. (B.10)

Note that if εmax � 1, then σ2
minw

& 1 − µw
1 (m − 1), which mimics the result of classic Weak-MP

[95].

Proof: Consider the Gram matrix G , (DΓWΓ)
T

(DΓWΓ), then the singular values σ2
kw

are the

eigenvalues (λk) of G. From the Geršgorin Disk Theorem [105] an upper bound on the eigenvalues

of λk can be drawn in the way performed in [54, 82, 94, 95, 142]. This shows that every eigenvalue

of G lies in one of the m disks

∆k =







z : |Gkk − z| ≤
∑

j 6=k

|Gjk|







. (B.11)

Hence, since
∑

j 6=k |Gjk| =
∑

j 6=k |< wj · gj , wk · gk >| ≤ µw
1 (m − 1) then:

|Gkk − λk| ≤ µw
1 (m − 1), (B.12)
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where Gkk ≥ 1 − εmax and since µw
1 (m − 1) + εmax < 1,

σ2
minw

≥ 1 − εmax − µw
1 (m − 1). (B.13)

Lemma B.2 For any index set Γ of |Γ| = m, the corresponding data dependent weighting matrix

WΓ and a coefficients vector b,

sup
γ∈Γ

|< DΓb, gγ · wγ >| ≥ ‖DΓb‖2

∥

∥W−1
Γ b

∥

∥

1

. (B.14)

Moreover, given a residual rk = f − fk such that rk ∈ span (gγ , γ ∈ Γ) and the smallest square

singular value of DΓ (σ2
minw

) then,

sup
γ∈Γ

|< DΓb, gγ · wγ >|

‖rk‖
≥

√

σ2
minw

m
. (B.15)

For the sake of clarity of the section, the proof of this lemma is included in the Appendix.

Proof: To prove this lemma, we just need to follow the procedure appearing in [95, 142] which

uses results from DeVore and Temlyakov [45].

‖DΓb‖2
=

〈

DΓb, DΓWΓW−1
Γ b

〉

=
∑

γ∈Γ

bγ

wγ
〈gγ · wγ , DΓb〉

≤
∑

γ∈Γ

∣

∣

∣

∣

bγ

wγ

∣

∣

∣

∣

|〈DΓb, gγ · wγ〉|

≤
∥

∥W−1
Γ b

∥

∥

1
sup
γ∈Γ

|〈DΓb, gγ · wγ〉| .

(B.16)

For the final proof of the Lemma two additional results are needed.

• By the Jensen’s Inequality [90]
∥

∥W−1
Γ b

∥

∥

1
can be bounded as

∥

∥W−1
Γ b

∥

∥

2

1
≤ m ·

∥

∥W−1
Γ b

∥

∥

2

2
. (B.17)

In fact:

∥

∥W−1
Γ b

∥

∥

2

1
=

(

m−1
∑

i=0

∣

∣

∣

∣

bi

wi

∣

∣

∣

∣

)2

= m2

(

m−1
∑

i=0

|bi|
m · wi

)2

≤ m2
m−1
∑

i=0

∣

∣

∣

∣

bi

wi

∣

∣

∣

∣

2
1

m
≤ m ·

∥

∥W−1
Γ b

∥

∥

2

2
.

• By means of the Singular Value Decomposition [87] any
∥

∥W−1
Γ bk

∥

∥

2

2
(where k indicates the

iteration number) can be bounded as

‖rk‖2

σ2
minw

≥
∥

∥W−1
Γ bk

∥

∥

2

2
. (B.18)



B.3. Proof of Theorem 5.4 181

This is proved by:

‖rk‖2
= ‖DΓbk‖2

= bT
k

(

DΓWΓW−1
Γ

)T
DΓWΓW−1

Γ bk

= bT
k

(

W−1
Γ WΓDT

Γ

)

DΓWΓW−1
Γ bk

= bT
k W−1

Γ (DΓWΓ)
T

DΓWΓW−1
Γ bk

= bT
k W−1

Γ

(

UΓW
ΣΓW

V T
ΓW

)T
...

(

UΓW
ΣΓW

V T
ΓW

)

W−1
Γ bk

= bT
k W−1

Γ

(

VΓW
ΣT

ΓW
UT

ΓW

)

...
(

UΓW
ΣΓW

V T
ΓW

)

W−1
Γ bk,

where UΓW
and VΓW

are orthonormal matrices and ΣΓW
is a diagonal matrix such that

diag (ΣΓW
) = (σ0w

, σ1w
, ..., σkw

, ..., σmw
) .

From now on consider y = V T
ΓW

W−1
Γ bk. Therefore,

‖rk‖2
= bT

k W−1
Γ VΓW

Σ2
ΓW

V T
ΓW

W−1
Γ bk

= yT Σ2
ΓW

y =

m−1
∑

k=0

σ2
kw

· y2
k

≥ σ2
minw

‖y‖2
= σ2

minw

∥

∥W−1
Γ bk

∥

∥

2
.

Thus, finally from (B.17) and (B.18) it follows

‖rk‖2

σ2
minw

≥ ‖W−1
Γ bk‖2

1

m
, (B.19)

that jointly with (B.16) gives the result stated by Lemma B.2:

sup
γ∈Γ

|< DΓb, gγ · wγ >|

‖rk‖
≥

√

σ2
minw

m
.

Finally, Theorem 5.4 can be proved as follows:

Proof: Let rk+1 = f − fk be the residual of the Weighted-MP/OMP algorithm at the kth

iteration, then it is known that:

‖rk+1‖2 ≤ ‖rk‖2 −
∣

∣< rk, gγk+1
>
∣

∣

2
, (B.20)

where the inequality applies for OMP, while for the case of MP the equality holds. In our case the

selection of gγk+1
is driven by W (f,D), i.e.

∣

∣

〈

rk, gγk+1

〉∣

∣ = α · 1

wγ
sup

γ
|〈rk, gγ · wγ〉| . (B.21)
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Hence,

‖rk+1‖2 ≤ ‖rk‖2 − α2 · 1

w2
γ

sup
γ

|< rk, gγ · wγ >|2

≤ ‖rk‖2









1 − α2

1

w2
γ

sup
γ

|< rk, gγ · wγ >|2

‖rk‖2









.

(B.22)

Then, from Eqs. (B.15), (B.10) and given wγ ≤ 1, it follows that:

‖rk+1‖2 ≤ ‖rk‖2

(

1 − α2 σ2
minw

w2
γm

)

≤ ‖rk‖2

(

1 − α2 σ2
minw

m

)

≤ ‖rk‖2

(

1 − α2 1 − µw
1 (m − 1) − εmax

m

)

≤ ‖f‖2

(

1 − α2 1 − µw
1 (m − 1) − εmax

m

)k+1

.

(B.23)

B.4 Proof of Theorem 5.5

Proof: To demonstrate the result of Theorem 5.5, we follow the steps of the original proofs by

Tropp [175] and Gribonval and Vandergheynst [95]. This time however, a priori knowledge is taken

into account. First of all, let us remind the following statements:

• fopt
m ∈ span (Γm)

• rk = f − fk

• ropt
m = f − fopt

m is such that ropt
m ⊥ (fopt

m − fk) ∀ 0 ≤ k < m, hence ‖rk‖2
2 = ‖fopt

m − fk‖2
2 +

‖f − fopt
m ‖2

2.

In order to ensure the recovery of any atom belonging to the optimal set Γ = Γm, the following

needs to be satisfied:

ρw (rk) =
‖DΓ · WΓ · rk‖∞
‖DΓ · WΓ · rk‖∞

< α, (B.24)
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where α ∈ (0, 1] is the weakness factor [173]. To establish (5.15), the previous expression has to be

put in terms of fopt
m and fk. Hence,

ρw (rk) =
‖DΓ · WΓ · rk‖∞
‖DΓ · WΓ · rk‖∞

=
‖DΓ · WΓ · (f − fk)‖∞
‖DΓ · WΓ · (f − fk)‖∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)

+ DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞

≤
∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
+

∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞

=

∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
+ ρw (fopt

m − fk) ,

(B.25)

where the second term can be upper bounded since (f opt
m − fk) ∈ span(Γ) [49],

ρw
(

fopt
m − fk

)

≤ µw
1 (m)

1 − (µw
1 (m − 1) + εmax)

. (B.26)

The first term of the last equality in (B.25) can be upper bounded in the following way:

∥

∥DΓ · WΓ ·
(

f − fopt
m

)∥

∥

∞
∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
=

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

f − fopt
m

)〉∣

∣

∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
, (B.27)

and by the Cauchy-Schwarz inequality,

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

f − fopt
m

)〉∣

∣

∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
≤

sup
γ∈Γ

‖gγ · wγ‖2 ·
∥

∥f − fopt
m

∥

∥

2

∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞

=

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

∥

∥DΓ · WΓ ·
(

fopt
m − fk

)∥

∥

∞
=

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fk

)〉∣

∣

.

(B.28)

In order to further upper bound the expression above, the denominator can be lower bounded, as

shown in [49]. Indeed, by the singular value decomposition:

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fk

)〉∣

∣ ≥

√

σ2
minw

m

∥

∥fopt
m − fk

∥

∥

2
, (B.29)

where σ2
minw

is the minimum of the squared singular values of G , (DΓWΓ)
T

(DΓWΓ), and can

be bounded as σ2
minw

≥ 1 − εmax − µw
1 (m − 1). Moreover, in (B.28), ‖f − fopt

m ‖2 can be defined

as ‖f − fopt
m ‖2 = (1 + η) · ‖ropt

m ‖2, where η ≥ 0 stands for a sub-optimality factor which indicates

whether fopt
m can be reached and, if not possible (i.e. η 6= 0), sets the best possible reachable

approximation error. Hence, (B.28) can be rewritten as:

sup
γ∈Γ

|wγ | ·
∥

∥f − fopt
m

∥

∥

2

sup
γ∈Γ

∣

∣

〈

gγ · wγ ,
(

fopt
m − fk

)〉∣

∣

≤
sup
γ∈Γ

|wγ | · (1 + η) ·
∥

∥ropt
m

∥

∥

2

√

1 − µw
1 (m − 1) − εmax

m

∥

∥fopt
m − fk

∥

∥

2

. (B.30)
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Thus, from (B.30) and (B.26), a sufficient condition for the recovery of a correct atom can be

expressed as:

ρw (rk) ≤
sup
γ∈Γ

|wΓ| · (1 + η) ·
∥

∥ropt
m

∥

∥

2

√

1 − µw
1 (m − 1) − εmax

m

∥

∥fopt
m − fk

∥

∥

2

+
µw

1 (m)

1 − µw
1 (m − 1) − εmax

=
wmax

Γ

√

(1 − µw
1 (m − 1) − εmax) m · (1 + η) ·

∥

∥ropt
m

∥

∥

2
+
∥

∥fopt
m − fk

∥

∥

2
µw

1 (m)

(1 − µw
1 (m − 1) − εmax)

∥

∥fopt
m − fk

∥

∥

2

< α.

(B.31)

Considering that ‖fopt
m − fk‖2

2 = ‖rk‖2
2 − ‖ropt

m ‖2
2, it easily follows that

wmax
Γ

√

(1 − µw
1 (m − 1) − εmax) m · (1 + η) ·

∥

∥ropt
m

∥

∥

2
+

√

‖rk‖2
2 − (1 + η)2

∥

∥ropt
m

∥

∥

2

2
µw

1 (m)

(1 − µw
1 (m − 1) − εmax)

√

‖rk‖2
2 − (1 + η)2

∥

∥ropt
m

∥

∥

2

2

< α.

(B.32)

Then, we solve for ‖rk‖2
2:

‖rk‖2
2 > (1 + η)2

∥

∥ropt
m

∥

∥

2

2






1 +

(

wmax
Γ

)2

(1 − µw
1 (m − 1) − εmax)

(α (1 − µw
1 (m − 1) − εmax) − µw

1 (m))
2






. (B.33)

For simplicity, let us consider the case where a full search atom selection algorithm is available.

Thus, replacing α = 1 in (B.33) proves Theorem 5.5.

B.5 Proof of Corollary 5.3

Proof: For simplicity, let us use an upper bound on the left hand side of Eq. (5.16). Indeed,

the factor 0 < (wΓ
max)

2 ≤ 1 is removed:

(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

≤
(

1 +
m (1 − (µw

1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

)

.

Let us suppose the a priori knowledge in use is reliable. Then the following relations can be

assumed:

µw
1 (m − 1) + µw

1 (m) + εmax ≤ µ1(m − 1) + µ1(m) < 1 (B.34)

and

µw
1 (m − 1) + εmax ≤ µ1(m − 1). (B.35)

Now we can proof the inequality. Let us make the hypothesis that the following is true:

(1 − (µw
1 (m − 1) + εmax))

(1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2 ≤ (1 − µ1(m − 1))

(1 − (µ1(m − 1) + µ1(m)))
2 .

Then,

1 ≤ (1 − µ1(m − 1))

(1 − (µw
1 (m − 1) + εmax))

· (1 − (µw
1 (m − 1) + µw

1 (m) + εmax))
2

(1 − (µ1(m − 1) + µ1(m)))
2 . (B.36)
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According to (B.34) and (B.35), the following can be considered:

τ1 , µ1(m − 1) − (µw
1 (m − 1) + εmax) (B.37)

τ2 , µ1(m − 1) + µ1(m) − (µw
1 (m) + µw

1 (m − 1) + εmax) (B.38)

where 0 ≤ τ1 � µ1(m) and 0 ≤ τ2 � µ1(m−1)+µ1(m). Hence, being δ , τ2/ (1 − (µ1(m − 1) + µ1(m)))

the second fraction in (B.36) can be substituted:

1 ≤ (1 − µ1(m − 1))

(1 − (µw
1 (m − 1) + εmax))

· (1 + δ)
2
. (B.39)

Moreover, being δ′ , τ1/ (1 − µ1(m − 1)), the remaining fractional term of (B.39) may be considered

such that

1 ≤ 1

1 + δ′
· (1 + δ)

2
= (1 + δ) · 1 + δ

1 + δ′
. (B.40)

From this, clearly (1 + δ) ≥ 1. So, if (1 + δ) ≥ (1 + δ′) then Corollary 5.3 is proved.

Hence, let us check, finally, if this last condition holds. Inserting in (1 + δ) ≥ (1 + δ ′) the

definitions of δ and δ′ we find:

τ2

(1 − (µ1(m − 1) + µ1(m)))
≥ τ1

(1 − µ1(m − 1))
,

which will be always true if
τ2

τ1
≥ 1.

Let us assume, then, that τ2 ≥ τ1. This, together with (B.37) and (B.38), yields:

(µ1(m) − µw
1 (m)) ≥ 0,

which asserts all hypothesis and concludes the whole proof.

B.6 Proof of Theorem 5.6

Proof: Let us consider k such that ‖rk‖2
2 satisfies Eq. (5.15) of Theorem 5.5. Then, it is known

that for Weak -MP:

‖rk−1‖2
2 − ‖rk‖2

2 ≥ |〈rk, gγk
〉|2 , (B.41)

where the inequality applies for OMP, while in the case of MP the equality holds. Moreover,

considering the weighted selection, then

‖rk−1‖2
2 − ‖rk‖2

2 ≥ α sup
γ∈Γ

|〈rk, gγ · wγ〉|2
1

w2
γ

= α sup
γ∈Γ

∣

∣

〈

fopt
m − fk, gγ · wγ

〉∣

∣

2 1

w2
γ

, (B.42)

where the last equality follows from the assumption that Eq. (5.15) of Theorem 5.5 is satisfied and

because (f − fopt
m ) ⊥ span(Γ). And by (B.29),

‖rk−1‖2
2 − ‖rk‖2

2 ≥ α

w2
γ

σ2
minw

m

∥

∥fopt
m − fk

∥

∥

2

2
. (B.43)

As stated before, ‖fopt
m − fk‖2

2 = ‖rk‖2
2−‖ropt

m ‖2
2, hence ‖fopt

m − fk−1‖2
2−‖fopt

m − fk‖2
2 = ‖rk−1‖2

2−
‖rk‖2

2, which together with (B.43) gives:

∥

∥fopt
m − fk

∥

∥

2

2
≤
∥

∥fopt
m − fk−1

∥

∥

2

2

(

1 − α

w2
γ

σ2
minw

m

)

≤
∥

∥fopt
m − fk−1

∥

∥

2

2

(

1 − α
σ2

minw

m

)

. (B.44)



186 Appendix B. Proofs on the Use of A Priori Models in Greedy Algorithms

Finally, by simply considering 0 ≤ l ≤ k by recursion it follows:

‖rk‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2 ≤

(

1 − α
σ2

minw

m

)k−l
(

‖rl‖2
2 −

∥

∥ropt
m

∥

∥

2

2
(1 + η)2

)

, (B.45)

and the Theorem is proved.

B.7 Proof of Theorem 5.7

In order to prove Theorem 5.7, several intermediate results are necessary. These follow easily by

taking into account the use of a priories in the proofs of Theorem 7 in [95]. The detailed procedure

is described in the following.

Lemma B.3 Let W (f,D) be a reliable a priori information and {rk} : k ≥ 0 a sequence of residuals

produced by Weighted-MP/OMP, then as long as ‖rk‖2
2 satisfies Eq. (5.15) of Theorem 5.5, for any

1 ≤ k < m such that Nk < Nm,

Nm − Nk < 1 +
m

1 − µw
1 (m − 1) − εmax

[

log

(
∥

∥ropt
k

∥

∥

2

2
∥

∥ropt
m

∥

∥

2

2

)

+ log

(

1 + λw
k

1 + λw
m

)

]

, (B.46)

where

λw
l ,

l (1 − (µw
1 (l − 1) + εmax)) ·

(

wmax
Γl

)2

[1 − (µw
1 (l − 1) + µw

1 (l) + εmax)]
2 , (B.47)

in which l corresponds to the size of a particular optimal set of atoms (l = |Γl|).

Proof: From Theorem 5.6, it follows that for l = Nk, k = Nm − 1, defining

βw
l , 1 − 1 − µw

1 (l − 1) − εmax

l
, (B.48)

where l is defined as in (B.47), and starting from the condition in the residual
∥

∥rNm−1

∥

∥

2

2
as defined

in the Definition 5.4, the following is accomplished if α = 1:
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.(B.49)

Operating on (B.49) as in [95], it easily follows that:

(

1

βw
m

)Nm−1−Nk

<
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∥ropt
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∥

2

2
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,

thus,

Nm − 1 − Nk log
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1
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< log
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2

2
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2

2
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.
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If t ≥ 0 then log(1 − t) ≤ −t and so

1

log
(

1
βw

m

) ≤ m

1 − µ1(m − 1) − εmax
.

This proves the result presented in (B.46) and so the Lemma.

In order to use Lemma B.3 in Theorem 5.7, an estimate of the argument of the second logarithm

in (B.46) is necessary. This can be found in the following Lemma.

Lemma B.4 For all m such that µw
1 (m − 1) + µw

1 (m) + εmax < 1 and 1 ≤ k < m, we have:

λw
m ≥ m ·

(

wmax
Γ

)2
(B.50)

λw
k

λw
m

≤ k

m
·
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) ·
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(1 − µw
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) ·
(
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)2 (B.51)

Proof: Consider the definition of λw
m of (B.47). Then since µw

1 (l − 2) + µw
1 (l − 1) + εmax ≤

µw
1 (l − 1) + µw

1 (l) + εmax for 2 ≤ l ≤ m, the following can be stated:

λw
l−1

λw
l

≤ l − 1
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·
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1 (l − 2) − εmaxl−1

)

·
(

wmax
Γl−1

)2
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1 (l − 1) − εmaxl

) ·
(
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)2 . (B.52)

By assuming k + 1 ≤ l ≤ m the Lemma is proved.

Finally, building on the results obtained from Theorem 5.6 and Lemmas B.3 and B.4, Theorem 5.7

can be proved.

Proof: To prove Theorem 5.7 we need to upper bound the factor
1 + λw

k

1 + λw
m

in Eq. (B.46). For

this purpose let us consider the following:

(1 + λw
k )

(1 + λw
m)

≤ (1 + λw
k )

(λw
m)

≤ 1
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m

+
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k

λw
m

. (B.53)

Together with the results of Lemma B.4, it gives:
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Hence, using Eq. (B.46) we obtain
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Theorem 5.7 is thus proved by particularizing the previous expression for the case where k = 1. For

the case of Nm ≥ N1 + 1 = 2, this yields that

Nm − N1 < 1 +
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Which, since µw
1 (m − 1) <

1 − εmax

2
and 1 − µw
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This is only possible if 3
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Appendix C

Analysis of Block Dictionaries

Influence on Video Representations

C.1 Proof of Theorem 7.1

Consider the situation posed in sec. 7.4.1 where the dictionary D is the union of several sub-

dictionaries such that:

D =

N−1
⋃

i=0

DBi
. (C.1)

Let f be a function such that

f ∈ span
(

gγBi
: i ∈ [0,m − 1], gγBi

∈ DBi

)

, (C.2)

i.e. f can be expressed as a linear combination of atoms gγBi
where no more than one primitive

is taken from each dictionary block DBi
. This is a very restrictive situation. However several

examples can be found in practice as depicted in Sec. 7.4.1 where this situation may apply. Given

the additional constraints imposed to the dictionary and the signal f , a refinement of the exact

recovery condition (Stability Condition) defined in theorem 4.1 can be established.

A new measure on the coherence can thus be introduced where the block based division of the

dictionary is taken into account. Borrowing ideas from [142] where the same coherence measure was

used for a similar situation, we define the Babel block function µ1B
(m).

Definition C.1 ([142]) Let D =
⋃N−1

i=0 DBi
denote a block dictionary and Γ the set of sub-blocks

from where, at most a function is taken from each, then the cumulative coherence function µ1B
(m)

is

µ1B
(m) , max

Γ| ‖Γ‖0=m
max
j /∈Γ,l

∑

i∈Γ

max
k

∣

∣

∣
< gBi

k , g
Bj

l >
∣

∣

∣
, (C.3)

This measure defines the worst cumulative dot product possible among two functions of different

blocks for the worst selection of the Γ set of blocks.

We can now prove Theorem 7.1.
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Proof: From (4.21) and following the procedure suggested in [174], it follows:

sup
gγ /∈DΓ

∥

∥

∥(DΓ)
+

gγ

∥

∥

∥

1
= sup

gγ /∈DΓ
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∥

∥

(

DT
Γ DΓ

)−1
DT

Γ gγ

∥

∥

∥

1

≤
∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

1,1
supγ /∈DΓ

∥

∥DT
Γ gγ

∥

∥

1

(C.4)

The first term that corresponds to the 1, 1 − norm of the inverse of the Gram matrix can be

expressed as:
(

DT
Γ DΓ

)−1
= (I + A)

−1
, (C.5)

where I denotes the identity matrix and A all the off-diagonal components of the dictionary Gram

matrix. Expanding (C.5) by means of Neumann series and using ‖A‖1,1<1 we have:

∥

∥

∥

(

DT
Γ DΓ

)−1
∥

∥

∥

1,1
=

∥
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∥
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(−A)
k
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∥
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∥

∥

1,1

≤
∞
∑

k=0

‖A‖k
1,1 =

1

1 − ‖A‖1,1
. (C.6)

‖A‖1,1 is the biggest `1 norm column of matrix A and

‖A‖1,1 = max
k

∑

j 6=k

| < gk, gj > | ≤ µ1B
(m − 1). (C.7)

The second term of (C.4) term can be upper bounded as follows:

sup
gγ /∈DΓ

∥

∥DT
Γ gγ

∥

∥

1
= sup

gγ /∈DΓ

∑

gl∈DΓ

| < gγ , gl > | ≤ µDB
+ µ1B

(m − 1), (C.8)

where µDB
denotes the maximum coherence (inner product) between two functions into a block. In

order to be more explicit, (C.8) represents the worst possible case for the addition of cross products

between the optimal set of m atoms and an atom not belonging to this set. This is, the m− 1 worst

possible cross products between atoms belonging to different blocks of D plus the worst possible

coherence between two atoms belonging to the same block.

Hence, exact recovery of the the right set of atoms is ensured when:

µDB
+ µ1B

(m − 1)

1 − µ1B
(m − 1)

< α (C.9)
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