3,366 research outputs found

    Non-contact measures to monitor hand movement of people with rheumatoid arthritis using a monocular RGB camera

    Get PDF
    Hand movements play an essential role in a person’s ability to interact with the environment. In hand biomechanics, the range of joint motion is a crucial metric to quantify changes due to degenerative pathologies, such as rheumatoid arthritis (RA). RA is a chronic condition where the immune system mistakenly attacks the joints, particularly those in the hands. Optoelectronic motion capture systems are gold-standard tools to quantify changes but are challenging to adopt outside laboratory settings. Deep learning executed on standard video data can capture RA participants in their natural environments, potentially supporting objectivity in remote consultation. The three main research aims in this thesis were 1) to assess the extent to which current deep learning architectures, which have been validated for quantifying motion of other body segments, can be applied to hand kinematics using monocular RGB cameras, 2) to localise where in videos the hand motions of interest are to be found, 3) to assess the validity of 1) and 2) to determine disease status in RA. First, hand kinematics for twelve healthy participants, captured with OpenPose were benchmarked against those captured using an optoelectronic system, showing acceptable instrument errors below 10°. Then, a gesture classifier was tested to segment video recordings of twenty-two healthy participants, achieving an accuracy of 93.5%. Finally, OpenPose and the classifier were applied to videos of RA participants performing hand exercises to determine disease status. The inferred disease activity exhibited agreement with the in-person ground truth in nine out of ten instances, outperforming virtual consultations, which agreed only six times out of ten. These results demonstrate that this approach is more effective than estimated disease activity performed by human experts during video consultations. The end goal sets the foundation for a tool that RA participants can use to observe their disease activity from their home.Open Acces

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Nonlocal Graph-PDEs and Riemannian Gradient Flows for Image Labeling

    Get PDF
    In this thesis, we focus on the image labeling problem which is the task of performing unique pixel-wise label decisions to simplify the image while reducing its redundant information. We build upon a recently introduced geometric approach for data labeling by assignment flows [ APSS17 ] that comprises a smooth dynamical system for data processing on weighted graphs. Hereby we pursue two lines of research that give new application and theoretically-oriented insights on the underlying segmentation task. We demonstrate using the example of Optical Coherence Tomography (OCT), which is the mostly used non-invasive acquisition method of large volumetric scans of human retinal tis- sues, how incorporation of constraints on the geometry of statistical manifold results in a novel purely data driven geometric approach for order-constrained segmentation of volumetric data in any metric space. In particular, making diagnostic analysis for human eye diseases requires decisive information in form of exact measurement of retinal layer thicknesses that has be done for each patient separately resulting in an demanding and time consuming task. To ease the clinical diagnosis we will introduce a fully automated segmentation algorithm that comes up with a high segmentation accuracy and a high level of built-in-parallelism. As opposed to many established retinal layer segmentation methods, we use only local information as input without incorporation of additional global shape priors. Instead, we achieve physiological order of reti- nal cell layers and membranes including a new formulation of ordered pair of distributions in an smoothed energy term. This systematically avoids bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure. To access the perfor- mance of our approach we compare two different choices of features on a data set of manually annotated 3 D OCT volumes of healthy human retina and evaluate our method against state of the art in automatic retinal layer segmentation as well as to manually annotated ground truth data using different metrics. We generalize the recent work [ SS21 ] on a variational perspective on assignment flows and introduce a novel nonlocal partial difference equation (G-PDE) for labeling metric data on graphs. The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was introduced in J. Math. Imaging & Vision 58(2), 2017. Due to this parameterization, solving the G-PDE numerically is shown to be equivalent to computing the Riemannian gradient flow with re- spect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this potential and show that the basic geometric Euler scheme for inte- grating the assignment flow is equivalent to solving the G-PDE by an established DC program- ming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical schemes is provided and illustrated by numerical experiments

    Frameworks in medical image analysis with deep neural networks

    Get PDF
    In recent years, deep neural network based medical image analysis has become quite powerful and achieved similar results performance-wise as experts. Consequently, the integration of these tools into the clinical routine as clinical decision support systems is highly desired. The benefits of automatic image analysis for clinicians are massive, ranging from improved diagnostic as well as treatment quality to increased time-efficiency through automated structured reporting. However, implementations in the literature revealed a significant lack of standardization in pipeline building resulting in low reproducibility, high complexity through extensive knowledge requirements for building state-of-the-art pipelines, and difficulties for application in clinical research. The main objective of this work is the standardization of pipeline building in deep neural network based medical image segmentation and classification. This is why the Python frameworks MIScnn for medical image segmentation and AUCMEDI for medical image classification are proposed which simplify the implementation process through intuitive building blocks eliminating the need for time-consuming and error-prone implementation of common components from scratch. The proposed frameworks include state-of-the-art methodology, follow outstanding open-source principles like extensive documentation as well as stability, offer rapid as well as simple application capabilities for deep learning experts as well as clinical researchers, and provide cutting-edge high-performance competitive with the strongest implementations in the literature. As secondary objectives, this work presents more than a dozen in-house studies as well as discusses various external studies utilizing the proposed frameworks in order to prove the capabilities of standardized medical image analysis. The presented studies demonstrate excellent predictive capabilities in applications ranging from COVID-19 detection in computed tomography scans to the integration into a clinical study workflow for Gleason grading of prostate cancer microscopy sections and advance the state-of-the-art in medical image analysis by simplifying experimentation setups for research. Furthermore, studies for increasing reproducibility in performance assessment of medical image segmentation are presented including an open-source metric library for standardized evaluation and a community guideline on proper metric usage. The proposed contributions in this work improve the knowledge representation of the field, enable rapid as well as high-performing applications, facilitate further research, and strengthen the reproducibility of future studies

    Novel 3D Ultrasound Elastography Techniques for In Vivo Breast Tumor Imaging and Nonlinear Characterization

    Get PDF
    Breast cancer comprises about 29% of all types of cancer in women worldwide. This type of cancer caused what is equivalent to 14% of all female deaths due to cancer. Nowadays, tissue biopsy is routinely performed, although about 80% of the performed biopsies yield a benign result. Biopsy is considered the most costly part of breast cancer examination and invasive in nature. To reduce unnecessary biopsy procedures and achieve early diagnosis, ultrasound elastography was proposed.;In this research, tissue displacement fields were estimated using ultrasound waves, and used to infer the elastic properties of tissues. Ultrasound radiofrequency data acquired at consecutive increments of tissue compression were used to compute local tissue strains using a cross correlation method. In vitro and in vivo experiments were conducted on different tissue types to demonstrate the ability to construct 2D and 3D elastography that helps distinguish stiff from soft tissues. Based on the constructed strain volumes, a novel nonlinear classification method for human breast tumors is introduced. Multi-compression elastography imaging is elucidated in this study to differentiate malignant from benign tumors, based on their nonlinear mechanical behavior under compression. A pilot study on ten patients was performed in vivo, and classification results were compared with biopsy diagnosis - the gold standard. Various nonlinear parameters based on different models, were evaluated and compared with two commonly used parameters; relative stiffness and relative tumor size. Moreover, different types of strain components were constructed in 3D for strain imaging, including normal axial, first principal, maximum shear and Von Mises strains. Interactive segmentation algorithms were also evaluated and applied on the constructed volumes, to delineate the stiff tissue by showing its isolated 3D shape.;Elastography 3D imaging results were in good agreement with the biopsy outcomes, where the new classification method showed a degree of discrepancy between benign and malignant tumors better than the commonly used parameters. The results show that the nonlinear parameters were found to be statistically significant with p-value \u3c0.05. Moreover, one parameter; power-law exponent, was highly statistically significant having p-value \u3c 0.001. Additionally, volumetric strain images reconstructed using the maximum shear strains provided an enhanced tumor\u27s boundary from the surrounding soft tissues. This edge enhancement improved the overall segmentation performance, and diminished the boundary leakage effect. 3D segmentation provided an additional reliable means to determine the tumor\u27s size by estimating its volume.;In summary, the proposed elastographic techniques can help predetermine the tumor\u27s type, shape and size that are considered key features helping the physician to decide the sort and extent of the treatment. The methods can also be extended to diagnose other types of tumors, such as prostate and cervical tumors. This research is aimed toward the development of a novel \u27virtual biopsy\u27 method that may reduce the number of unnecessary painful biopsies, and diminish the increasingly risk of cancer

    DEEP-AD: The deep learning model for diagnostic classification and prognostic prediction of alzheimer's disease

    Get PDF
    In terms of context, the aim of this dissertation is to aid neuroradiologists in their clinical judgment regarding the early detection of AD by using DL. To that aim, the system design research methodology is suggested in this dissertation for achieving three goals. The first goal is to investigate the DL models that have performed well at identifying patterns associated with AD, as well as the accuracy so far attained, limitations, and gaps. A systematic review of the literature (SLR) revealed a shortage of empirical studies on the early identification of AD through DL. In this regard, thirteen empirical studies were identified and examined. We concluded that three-dimensional (3D) DL models have been generated far less often and that their performance is also inadequate to qualify them for clinical trials. The second goal is to provide the neuroradiologist with the computer-interpretable information they need to analyze neuroimaging biomarkers. Given this context, the next step in this dissertation is to find the optimum DL model to analyze neuroimaging biomarkers. It has been achieved in two steps. In the first step, eight state-of-the-art DL models have been implemented by training from scratch using end-to-end learning (E2EL) for two binary classification tasks (AD vs. CN and AD vs. stable MCI) and compared by utilizing MRI scans from the publicly accessible datasets of neuroimaging biomarkers. Comparative analysis is carried out by utilizing efficiency-effects graphs, comprehensive indicators, and ranking mechanisms. For the training of the AD vs. sMCI task, the EfficientNet-B0 model gets the highest value for the comprehensive indicator and has the fewest parameters. DenseNet264 performed better than the others in terms of evaluation matrices, but since it has the most parameters, it costs more to train. For the AD vs. CN task by DenseNet264, we achieved 100% accuracy for training and 99.56% accuracy for testing. However, the classification accuracy was still only 82.5% for the AD vs. sMCI task. In the second step, fusion of transfer learning (TL) with E2EL is applied to train the EfficientNet-B0 for the AD vs. sMCI task, which achieved 95.29% accuracy for training and 93.10% accuracy for testing. Additionally, we have also implemented EfficientNet-B0 for the multiclass AD vs. CN vs. sMCI classification task with E2EL to be used in ensemble of models and achieved 85.66% training accuracy and 87.38% testing accuracy. To evaluate the model’s robustness, neuroradiologists must validate the implemented model. As a result, the third goal of this dissertation is to create a tool that neuroradiologists may use at their convenience. To achieve this objective, this dissertation proposes a web-based application (DEEP-AD) that has been created by making an ensemble of Efficient-Net B0 and DenseNet 264 (based on the contribution of goal 2). The accuracy of a DEEP-AD prototype has undergone repeated evaluation and improvement. First, we validated 41 subjects of Spanish MRI datasets (acquired from HT Medica, Madrid, Spain), achieving an accuracy of 82.90%, which was later verified by neuroradiologists. The results of these evaluation studies showed the accomplishment of such goals and relevant directions for future research in applied DL for the early detection of AD in clinical settings.En términos de contexto, el objetivo de esta tesis es ayudar a los neurorradiólogos en su juicio clínico sobre la detección precoz de la AD mediante el uso de DL. Para ello, en esta tesis se propone la metodología de investigación de diseño de sistemas para lograr tres objetivos. El segundo objetivo es proporcionar al neurorradiólogo la información interpretable por ordenador que necesita para analizar los biomarcadores de neuroimagen. Dado este contexto, el siguiente paso en esta tesis es encontrar el modelo DL óptimo para analizar biomarcadores de neuroimagen. Esto se ha logrado en dos pasos. En el primer paso, se han implementado ocho modelos DL de última generación mediante entrenamiento desde cero utilizando aprendizaje de extremo a extremo (E2EL) para dos tareas de clasificación binarias (AD vs. CN y AD vs. MCI estable) y se han comparado utilizando escaneos MRI de los conjuntos de datos de biomarcadores de neuroimagen de acceso público. El análisis comparativo se lleva a cabo utilizando gráficos de efecto-eficacia, indicadores exhaustivos y mecanismos de clasificación. Para el entrenamiento de la tarea AD vs. sMCI, el modelo EfficientNet-B0 obtiene el valor más alto para el indicador exhaustivo y tiene el menor número de parámetros. DenseNet264 obtuvo mejores resultados que los demás en términos de matrices de evaluación, pero al ser el que tiene más parámetros, su entrenamiento es más costoso. Para la tarea AD vs. CN de DenseNet264, conseguimos una accuracy del 100% en el entrenamiento y del 99,56% en las pruebas. Sin embargo, la accuracy de la clasificación fue sólo del 82,5% para la tarea AD vs. sMCI. En el segundo paso, se aplica la fusión del aprendizaje por transferencia (TL) con E2EL para entrenar la EfficientNet-B0 para la tarea AD vs. sMCI, que alcanzó una accuracy del 95,29% en el entrenamiento y del 93,10% en las pruebas. Además, también hemos implementado EfficientNet-B0 para la tarea de clasificación multiclase AD vs. CN vs. sMCI con E2EL para su uso en conjuntos de modelos y hemos obtenido una accuracy de entrenamiento del 85,66% y una precisión de prueba del 87,38%. Para evaluar la solidez del modelo, los neurorradiólogos deben validar el modelo implementado. Como resultado, el tercer objetivo de esta disertación es crear una herramienta que los neurorradiólogos puedan utilizar a su conveniencia. Para lograr este objetivo, esta disertación propone una aplicación basada en web (DEEP-AD) que ha sido creada haciendo un ensemble de Efficient-Net B0 y DenseNet 264 (basado en la contribución del objetivo 2). La accuracy del prototipo DEEP-AD ha sido sometida a repetidas evaluaciones y mejoras. En primer lugar, validamos 41 sujetos de conjuntos de datos de MRI españoles (adquiridos de HT Medica, Madrid, España), logrando una accuracy del 82,90%, que posteriormente fue verificada por neurorradiólogos. Los resultados de estos estudios de evaluación mostraron el cumplimiento de dichos objetivos y las direcciones relevantes para futuras investigaciones en DL, aplicada en la detección precoz de la AD en entornos clínicos.Escuela de DoctoradoDoctorado en Tecnologías de la Información y las Telecomunicacione

    Sonar image interpretation for sub-sea operations

    Get PDF
    Mine Counter-Measure (MCM) missions are conducted to neutralise underwater explosives. Automatic Target Recognition (ATR) assists operators by increasing the speed and accuracy of data review. ATR embedded on vehicles enables adaptive missions which increase the speed of data acquisition. This thesis addresses three challenges; the speed of data processing, robustness of ATR to environmental conditions and the large quantities of data required to train an algorithm. The main contribution of this thesis is a novel ATR algorithm. The algorithm uses features derived from the projection of 3D boxes to produce a set of 2D templates. The template responses are independent of grazing angle, range and target orientation. Integer skewed integral images, are derived to accelerate the calculation of the template responses. The algorithm is compared to the Haar cascade algorithm. For a single model of sonar and cylindrical targets the algorithm reduces the Probability of False Alarm (PFA) by 80% at a Probability of Detection (PD) of 85%. The algorithm is trained on target data from another model of sonar. The PD is only 6% lower even though no representative target data was used for training. The second major contribution is an adaptive ATR algorithm that uses local sea-floor characteristics to address the problem of ATR robustness with respect to the local environment. A dual-tree wavelet decomposition of the sea-floor and an Markov Random Field (MRF) based graph-cut algorithm is used to segment the terrain. A Neural Network (NN) is then trained to filter ATR results based on the local sea-floor context. It is shown, for the Haar Cascade algorithm, that the PFA can be reduced by 70% at a PD of 85%. Speed of data processing is addressed using novel pre-processing techniques. The standard three class MRF, for sonar image segmentation, is formulated using graph-cuts. Consequently, a 1.2 million pixel image is segmented in 1.2 seconds. Additionally, local estimation of class models is introduced to remove range dependent segmentation quality. Finally, an A* graph search is developed to remove the surface return, a line of saturated pixels often detected as false alarms by ATR. The A* search identifies the surface return in 199 of 220 images tested with a runtime of 2.1 seconds. The algorithm is robust to the presence of ripples and rocks
    corecore