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Abstract		
 
 
Hand	 movements	 play	 an	 essential	 role	 in	 a	 person’s	 ability	 to	 interact	 with	 the	

environment.	 In	 hand	 biomechanics,	 the	 range	 of	 joint	 motion	 is	 a	 crucial	 metric	 to	

quantify	changes	due	to	degenerative	pathologies,	such	as	rheumatoid	arthritis	(RA).	RA	

is	 a	 chronic	 condition	 where	 the	 immune	 system	 mistakenly	 attacks	 the	 joints,	

particularly	those	in	the	hands.	Optoelectronic	motion	capture	systems	are	gold-standard	

tools	to	quantify	changes	but	are	challenging	to	adopt	outside	laboratory	settings.	Deep	

learning	executed	on	standard	video	data	can	capture	RA	participants	 in	 their	natural	

environments,	potentially	supporting	objectivity	in	remote	consultation.			

	

The	three	main	research	aims	in	this	thesis	were	1)	to	assess	the	extent	to	which	current	

deep	learning	architectures,	which	have	been	validated	for	quantifying	motion	of	other	

body	segments,	can	be	applied	to	hand	kinematics	using	monocular	RGB	cameras,	2)	to	

localise	where	in	videos	the	hand	motions	of	 interest	are	to	be	found,	3)	to	assess	the	

validity	of	1)	and	2)	to	determine	disease	status	in	RA.	

	

First,	 hand	 kinematics	 for	 twelve	 healthy	 participants,	 captured	with	OpenPose	were	

benchmarked	against	those	captured	using	an	optoelectronic	system,	showing	acceptable	

instrument	 errors	 below	 10°.	 Then,	 a	 gesture	 classifier	 was	 tested	 to	 segment	 video	

recordings	of	twenty-two	healthy	participants,	achieving	an	accuracy	of	93.5%.	Finally,	

OpenPose	and	the	classifier	were	applied	to	videos	of	RA	participants	performing	hand	

exercises	to	determine	disease	status.	The	inferred	disease	activity	exhibited	agreement	

with	 the	 in-person	 ground	 truth	 in	 nine	 out	 of	 ten	 instances,	 outperforming	 virtual	

consultations,	which	agreed	only	six	times	out	of	ten.		

	

These	results	demonstrate	that	this	approach	is	more	effective	than	estimated	disease	

activity	performed	by	human	experts	during	video	consultations.	The	end	goal	sets	the	

foundation	for	a	tool	that	RA	participants	can	use	to	observe	their	disease	activity	from	

their	home.		
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Chapter	1 Introduction		
 

1.1 Background	and	motivation		
 
 
The	human	hand	is	an	essential	structure	for	achieving	various	tasks	of	daily	living	(1).	

Its	movements	play	a	 fundamental	 role	 in	an	 individual’s	ability	 to	 interact	with	 their	

surroundings	 (2).	 Therefore,	 quantifying	 hand	movements	 is	 essential	 to	 understand	

hand	movement	disorders	(3).	The	examination	of	the	kinematics	of	the	human	hand	can	

help	estimate	changes	due	to	disease	or	treatment.	

	

Vast	is	the	literature	to	describe	and	measure	human	hand	motion.	Goniometers	are	often	

adopted	in	clinical	practice.	However,	the	reliability	of	goniometric	measures	has	been	

discovered	to	be	variable	(4)	and	often	unreliable	(5–7).	Glove	(8,9)	and	motion	sensing	

devices,	 e.g.,	 Kinect	 (Xbox	 360	 Sensor	 Microsoft)	 cameras	 (10),	 have	 been	 tested	 to	

capture	hand	movements,	but	have	 the	drawback	of	 intensive	manual-postprocessing,	

which	limits	the	generalizability	of	these	approaches.	Traditional	optoelectronic	marker-

based	 motion	 capture	 systems	 are	 considered	 gold-standard	 measurements	 (11)	 to	

calculate	 hand	 movement.	 They	 necessitate	 the	 attachment	 of	 markers	 to	 the	

participants’	skin	(12),	positioned	in	accordance	with	the	anatomy	of	the	human	hand,	

which	serves	as	reference	points	(landmarks).	These	tracking	systems	produce	accurate	

results	when	 tracking	 the	small	 joints	of	 the	hand	 (13);	however,	 the	practicability	of	

embracing	these	methods	outside	the	laboratory	is	restricted	by	their	capture	volume,	

camera	resolution,	the	impracticality	of	the	presence	of	markers	during	many	activities,	

and	financial	factors	(10).	

	

In	the	past	few	years,	markerless	hand	tracking	methodologies	to	capture	and	quantify	

hand	kinematics	have	seen	significant	developments	(14–16).	Hand	pose	estimation	from	

markerless	visible	inputs	has	been	a	long-standing	active	research	field.	Its	attractiveness	

is		progressively	increasing	due	to	the	introduction	of	inexpensive	red	green	blue	(RGB)	

cameras	and	the	capabilities		of	deep	learning	methodologies	(16,17)	that	have	permitted	
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better	precision	and	robustness.	These	advances	 in	video-based	pose	estimation	have	

allowed	automatic	 inference	of	 two-dimensional	and	 three-dimensional	centres	of	 the	

joints	directly	from	video	recordings.	Furthermore,	the	accuracy	of	selected	markerless,	

open-source	 software	 for	 pose	 estimation	 has	 been	 compared	 against	 gold-standard	

measurements	 (18–20)	 to	 enable	 the	 tracking	of	 human	 locomotion	 adoption	outside	

laboratory	settings.	However,	relevant	deep	learning	architectures	and	models	have	only	

been	validated	for	the	lower	limb,	and	a	critical	demand	to	compare	these	approaches	for	

the	human	hand	remains.	

	

Adopting	markerless	pose	estimation	models	to	capture	and	identify	human	limbs	has	

generated	the	need	for	action	recognition	models	to	automatically	identify	where	actions	

occur	in	extended	video	sequences	and	reduce	manual	labelling	(21,22).	Comprehending	

human	movements	in	video	recordings	has	a	pivotal	role	in	numerous	applications	(23),	

including	 classification,	 segmentation	 and	 content-based	 annotation	 approaches	 for	

feature	 extraction.	 However,	 the	 understanding	 of	 human	 hand	 activities	 within	 a	

continuous	 video	 sequence	 remains	 a	 complicated	 undertaking	 due	 to	 the	 extensive	

variability	 of	 images	on	 a	 frame-by-frame	basis	 (24)	 and	 the	uncertain	boundaries	 of	

hand	gestures	(25),	with	several	studies		suggesting	that	both	temporal	segmentation	and	

classification	ought	to	be	performed	in	parallel	with	continuous	gesture	recognition	(24–

27).		

	

A	 few	studies	have	presented	a	workflow	for	translating	these	deep	architectures	and	

models	 to	 clinical	 populations	 to	 infer	 movement	 parameters	 and	 benchmark	 the	

accuracy	 of	 these	models	 against	 clinical	workflows	 (20,28–30).	 The	 ability	 to	 obtain	

motion	metrics	 remotely	 from	users	 in	 their	natural	 environment	becomes	extremely	

attractive	in	clinical	research	to	investigate	effective	interventions	that	could	decrease	

the	burden	on	participants	with	movement	impairments.	Capturing	mobility	endpoints	

remotely	is	beneficial	for	assisting	chronic	degenerative	pathologies,	such	as	rheumatoid	

arthritis	(RA)	(31).		

	

RA	is	an	autoimmune	disease	(32)		in	which	the	body’s	immune	system	attacks	the	joints,	

making	them	swollen,	stiff,	and	painful.	Unmonitored	RA	leads	to	synovial	joint	damage	

that	 results	 in	progressively	swollen	 joints,	 causing	a	 reduced	range	of	motion	(ROM)	
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(33).	The	condition’s	complications	can	lead	to	permanent	deformity	and	destruction	of	

the	 joints,	particularly	 for	 the	 interphalangeal	 joints	of	 the	hand	(34),	where	RA	often	

starts.	The	National	 Institute	 for	Health	and	Care	Excellence	 (NICE)	guidelines	 for	RA	

recommend	 occupational	 therapy	 and	 hand	 exercise	 interventions	 based	 on	 disease	

activity	 levels	 to	 minimise	 the	 loss	 in	 mobility	 (35).	 These	 guidelines	 propose	

intervention	strategies	where	the	best	clinical	outcomes	are	achieved	through	face-to-

face	monthly	monitoring	 to	determine	 if	 the	disease	activity	 is	 active	or	 in	 remission.	

Based	 on	 disease	 progression,	 the	 treatment	 is	 amended	 and	 optimised.	 Frequent	

monitoring	 aims	 to	 identify	 possible	 flares	 (36),	 typical	 of	 the	 condition,	 and	 amend,	

interrupt	or	improve	possible	interventions.		

	

The	 American	 College	 of	 Rheumatology/	 European	 League	 Against	 Rheumatism	

(ACR/EULAR)	recommendations	for	RA	(37)	show	that	hand	ROM	is	a	good	indicator	of	

generalised	 disease	 activity	 and	 tailored	 hand	 exercises	 programmes	 can	 support	

recovery	 interventions	 (e.g.,	 recovering	 loss	 in	 mobility).	 Strategies	 that	 have	 been	

implemented	 to	 capture	 hand	 movements	 for	 this	 population	 include	 instrumented	

gloves	(38,39),	motion-sensing	devices	(40),	and	optoelectronic	motion	tracking	systems	

(41).	 However,	 there	 are	 problems	 associated	 with	 embracing	 these	 approaches	 in	

clinical	 practice.	 Gloves	 may	 limit	 the	 joints’	 ROM.	 Motion-sensing	 devices	 and	

optoelectronic	motion	tracking	systems	are	applicable	in	only	limited	scenarios	and	are	

challenging	 to	 deploy	 remotely	 in	 daily	 activities.	 Evidence	 suggests	 there	 is	 a	 vital	

clinical	need	for	a	monitoring	technology	that	can	remotely	measure	clinical	endpoints	of	

disease	progression	for	RA	patients,	an	approach	less	user-dependent	and	that	needs	less	

assessor	input	(31,42,43).	

	

The	need	for	remote	strategies	that	can	replace	face-to-face	assessments	is	emphasised	

by	 the	 increased	 incidence	 of	 RA,	 causing	 a	 growing	 demand	 for	 rheumatologists	 to	

monitor	 this	 condition,	 despite	 a	 workforce	 shortage	 in	 this	 field	 (44).	 In	 2009	 the	

National	Audit	Office	revealed	that	only	10%	of	RA	patients	received	adequate	follow-

ups,	 consisting	 of	 monthly	 in-person	 assessments	 to	 determine	 disease	 activity.	 This	

issue	 has	 been	 aggravated	 by	 the	 COVID-19	 pandemic	 that	 has	 dramatically	 affected	

rheumatology	 workflows,	 including	 services	 and	 patient	 interactions	 (45).	 In-person	

consultations	 and	 face-to-face	 in	 clinics,	 once	 routine,	 have	 been	 replaced	 by	 virtual	
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consultations	 that,	 although	 generally	 accepted	 (46,47),	 have	 struggled	 to	 capture	

objectively	clinical	endpoints	of	disease	progression	in	RA.	

To	 address	 these	 needs,	 a	 remote	monitoring	 tool	 that	 uses	 a	 single	monocular	 RGB	

camera	and	the	above-mentioned	deep-learning-based	algorithms	could	be	leveraged	to	

capture	and	assess	the	ROM	of	the	small	hand	joints	in	RA	patients.	This	approach	could	

support	current	remote	monitoring	procedures	to	acquire	objective	clinical	endpoints	in	

RA	 disease	 progression,	 improve	 ongoing	 virtual	 consultations,	 and	 facilitate	 more	

frequent	 monitoring	 from	 ubiquitous	 technologies.	 More	 regular,	 accurate,	 and	

systematic	monitoring	 of	 disease	 activity	 status	 could	 even	 assist	 the	 design	 of	more	

tailored	interventions	(48)	for	this	population.	

1.2 Research	aims	and	objectives	
 

This	thesis	aims	to	investigate	the	use	of	monocular	RGB	cameras	to	estimate	joint	ROM	

and	assess	disease	activity	in	patients	with	RA.		

		

The	work	presented	is	divided	into	three	parts.	The	first	part	evaluates	the	accuracy	of	a	

markerless	 tracking	 system	 against	 the	 gold-standard	marker-based	model.	Here,	 the	

hand	ROM	of	healthy	volunteers	captured	using	the	two	tracking	modalities	is	compared.	

Furthermore,	 as	 part	 of	 this	 comparative	 evaluation,	 several	 filtering	 techniques	 and	

different	image	enhancement	visualisations	are	examined	to	consider	extreme	cases	in	

which	the	selected	markerless	tracking	did	not	perform	well.	

	

The	 second	 part	 of	 this	 thesis	 describes	 the	 implementation	 of	 a	 novel	 hand	 gesture	

recognition	model.	This	model	aims	to	classify	and	segment	continuous	video	recordings	

to	 identify	only	 the	 subsets	of	 the	videos	where	 relevant	hand	gestures	occur.	On	 the	

extracted	subsegments,	the	above-validated	markerless	tracking	was	then	executed.		

		

In	the	third	and	last	part	of	the	thesis,	the	previous	models,	implemented	and	validated	

on	healthy	volunteers,	are	extended	to	RA	patients.	The	disease	activity	obtained	a	priori	

in	the	clinic	(also	called	ground	truth)	is	compared	against	the	disease	activity;	i)	visually	

estimated	by	a	clinician	over	a	remote	virtual	consultation,	ii)	inferred	by	the	markerless	

models	based	on	hand	joint	ROM.		
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The	specific	objectives	were	to:		

1. compare	and	validate	a	state-of-the-art	markerless	hand	pose	estimation	method	

in	 capturing	 finger	 joint	 ROM	 against	 the	 gold-standard	 marker-based	

optoelectronic	motion	tracking.	

2. 	develop	a	novel	gesture	recognition	model	to	automatically	classify	and	segment	

extended	video	sequences	to	assist	the	markerless	ROM	detector.		

3. expand	these	models	to	patients	with	RA,	evaluating	the	capability	of	these	models	

against	current	virtual	consultations	to	assess	RA	disease	activity.		

These	goals	are	investigated	in	specific	chapters,	as	follows.	

	

1.3 Thesis	outline	and	chapter	summary	
 
Chapter	 2	 offers	 an	 overview	 of	 optical-based	 approaches	 utilized	 for	 tracking,	

measuring,	and	configuring	hand	ROM.	It	moves	from	goniometric	assessments,	glove-

sensing	 devices,	 and	motion-sensing	 devices	 to	 active	 and	 passive	marker-based	 and	

markerless	hand	pose	estimation	methods.	Finally,	it	also	presents	an	overview	of	active	

and	passive	hand	gesture	recognition	models	and	how	they	have	been	used	to	segment	

and	classify	hand	gesture	signatures	from	continuous	video	recordings.	

	

Chapter	3	gives	an	overview	of	the	epidemiology	and	costs	of	RA.	This	work	discusses	

how	RA	is	assessed	in	the	clinic,	its	limitations,	and	how	ROM	has	been	measured	for	this	

population	over	the	last	decades.	A	comprehensive	review	is	conducted	to	evaluate	the	

most	well-known	published	studies	on	 tracking	hand	ROM	in	RA.	Finally,	 this	chapter	

outlines	alternative	remote	monitoring	tools	used	to	capture	clinical	endpoints	for	this	

population	and	how	they	have	been	used	to	support	virtual	consultations.	

	

The	aim	of	Chapter	4	 is	 to	validate	a	methodology	 that	enables	markerless	hand	pose	

estimation	for	healthy	volunteers,	comparing	a	markerless	approach	to	a	marker-based	

system.	Here,	hand	ROM	is	acquired	from	a	commercially	available	marker-based	motion	

capture	system	synchronized	with	an	RGB	camera.	Following	data	labelling	and	filtering,	

the	 measured	 phalangeal	 ROMs	 extracted	 using	 a	 marker-based	 technology	 are	

compared	with	phalangeal	ROMs	obtained	with	the	markerless	approach.	The	technique	
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analyzed	in	this	chapter	presents	the	error	in	degrees,	suggesting	the	usability	of	such	a	

markerless	technique	applied	in	clinical	practice.	

	

Chapter	5	introduces	a	novel	hand	gesture	recognition	model,	developed	to	identify	a	set	

of	defined	hand	gesture	signatures	when	capturing	colour	video	frames,	with	the	goal	of	

optimizing	markerless	hand	tracking	techniques.	Here,	an	action	detection	classifier	that	

looks	 at	 both	 appearance	 and	 spatiotemporal	 parameters	 of	 consecutive	 frames	 is	

illustrated.	 To	 leverage	 the	 need	 for	 large-scale	 dataset	 to	 train	 a	 deep-learning	

architecture,	 the	 implemented	 network	 uses	 an	 available	 open-source	 dataset.	

Furthermore,	it	uses	a	technique	known	as	transfer	learning,	to	fine-tune	the	model	on	

the	hand	gestures	of	relevance	in	the	clinical	context	of	RA.	

	

In	Chapter	6,	the	models	developed	in	Chapters	4	and	5	are	extended	to	deliver	a	remote	

monitoring	 proof-of-concept	 that	 captures	 interphalangeal	 joint	 ROM	 and	 estimates	

disease	 activity.	 Chapter	 6	 presents	 the	 outcome	 measures	 over	 this	 cross-sectional	

investigation.	The	clinical	data,	 including	ground	truth	disease	activity	captured	in	the	

clinic,	visual	examination	performed	over	a	virtual	consultation	and	inferred	joint	ROM,	

are	 collected,	 and	 assessed.	 This	 chapter	 compares	 the	 results	 of	 the	 assessment	

conducted	in	clinic	when	all	the	components	were	examined,	including	blood	tests,	pain	

measures	 and	 joint	 assessment,	 against	 the	 pipeline	 implemented	 in	 Chapter	 4	 and	

Chapter	5,	and	a	virtual	consultation	where	a	rheumatologist	assessed	the	disease	activity	

based	on	visual	examination.		

	

Finally,	Chapter	7	 summarises	 the	main	 findings	 from	each	chapter	and	discusses	 the	

implications	of	 these	 findings.	This	 includes	providing	 indications	on	the	 impact	these	

results	may	 have	 on	 the	management	 of	 RA.	 This	 chapter	 also	 summarises	 the	main	

strengths	 and	 limitations	 and	 the	 contribution	 to	 the	 field.	 The	 methods	 adopted	 to	

conduct	the	analyses	are	also	discussed,	suggesting	possible	improvements	and	technical	

constraints.	Recommendations	for	future	research	suggests	the	need	for	a	longitudinal	

clinical	investigation.	The	latter	would	look	at	individual	components	of	disease	activity	

score	in	RA.
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Chapter	2 Optical-based	
measurements	for	
quantifying	hand	kinematics	
 

2.1 Introduction		
 
The	hand	is	the	most	intricate	anatomical	structure	in	the	human	body,	and	its	mobility	

is	essential	 to	enable	 interaction	with	the	surrounding	environment	(49).	A	functional	

human	hand	can	deliver	a	broad	range	of	motions	(ROMs)	to	perform	different	tasks	(50).	

Decreased	hand	mobility	may	happen	for	diverse	reasons.	Common	causes	include	finger	

injuries	(51)	and	ageing	(52).	However,	hand	motion	can	be	compromised	also	by	chronic	

pathologies	that	affect	the	nervous	system,	like	Parkinson’s	disease	(53),	or	the	immune	

system,	 like	 rheumatoid	 arthritis	 (RA)	 (54).	 To	 assess	 human	 hand	 impairments,	

clinicians	 often	 use	 visual	 examinations	 or	 clinical	 grading	 scores.	 However,	 these	

assessments	 rely	 on	 the	 evaluator’s	 experience,	 which	 affects	 cross-comparison	

reliability	 of	 diagnosis	 (54).	 An	 unbiased	 quantification	 is	 desirable	 to	 preserve	 and	

possibly	enhance,	clinical	decision-making.	

	

	

To	provide	objective	quantification	of	human	hand	movements,	an	individual’s	hand	can	

be	 expressed	 as	 a	 range	 of	 rigid	multibody	mechanisms	 (55),	made	 of	 a	 collection	 of	

segments	 linked	by	 joints.	These	articulations	connecting	 the	segments	have	single	or	

multiple	degrees	of	freedom	(DoF)	(56).	The	human	hand	has	27	DoF	(57),	involving	a	

total	of	 four	bones	 for	each	 finger,	 including	metacarpals,	proximal	phalanges,	middle	

phalanges,	and	distal	phalanges	(50)	(Figure	1).	
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Figure	 1:	 Human	 hand	 skeletal	 structure	 illustrating	 the	 phalanges	 bones	 and	 joints.	

Reproduced	with	permission	from	(58).	 

	

The	 articulations	 between	 the	 metacarpals	 and	 proximal	 phalanges	 are	 called	 the	

metacarpophalangeal	 (MCP)	 joints.	The	articulation	between	the	proximal	and	middle	

phalanges	is	the	proximal	interphalangeal	(PIP)	joint.	The	joint	between	the	middle	and	

the	distal	phalanges	is	called	the	distal	interphalangeal	(DIP)	joint	(59).	Thumbs	do	not	

possess	a	middle	phalanx;	hence,	they	have	an	MCP	and	a	single	interphalangeal	(IP)	joint	

(50).	Of	the	27	DoF,	the	2nd–5th	fingers	each	have	four	DoFs,	including	two	DoFs	for	the	

MCP	joint	and	one	DoF	for	each	of	the	PIP	and	the	DIP	joints,	while	the	thumb	has	five	

DoFs,	with	six	DoFs	for	the	wrist,	three	for	rotations	and	three	for	translations(57).	Once	

the	 DoFs	 are	 recognized,	 inverse	 kinematics	 may	 be	 applied	 to	 locate	 the	 individual	

articulations	and	reconstruct	the	full	kinematic	chain	(55).		

	

A	large	variety	of	instrumented	tools	have	been	used	to	objectively	quantify	human	hand	

kinematics	(57).	Amongst	the	many	approaches	utilized	in	clinics,	goniometers	(Figure	

2)	are	broadly	accepted	for	statically	measuring	hand	movements	(60).	Depending	on	the	

joint	under	examination,	several	types	of	goniometers	(5,61,62)	can	be	chosen,	varying	

in	 size	 and	 shape.	 Goniometers	 offer	 a	 low-priced	 and	 transportable	 solution	 to	
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quantifying	ROM	(5,7,62).	Nonetheless,	they	can	be	affected	by	lack	of	reproducibility	(4);	

thus,	new	approaches	to	measurement	have	been	explored.	

	

	
Figure	2:	Illustration	of	a	short	arm	universal	goniometer	for	finger	joint	angle	used	to	

measure	the	metacarpophalangeal	joint	angle	of	the	index	finger.		

	

Alternative	methods	to	capture	hand	movements	include	acoustic,	mechanical,	magnetic,	

and	 optical	 systems	 (63).	 Visual-based	 methods	 aim	 to	 provide	 minimal	 obstruction	

while	 working	 with	 single	 or	 multiple	 cameras	 to	 locate	 human	 joints	 (64).	 These	

tracking	devices	have	been	 categorised	based	upon	 their	working	principles,	 dividing	

these	 methods	 into	 marker-based	 and	 markerless	 (65).	 Marker-based	 systems	 can	

operate	using	two	working	principles:	active	tracking,	by	attaching	a	light	source	to	the	

user’s	skin,	and	passive	tracking,	by	affixing	reflective	markers	to	the	user’s	skin.	Both	

methodologies	use	infrared	(IR)	cameras	(55).	These	optoelectronic	systems,	properly	

utilized,	can	produce	accurate	results	and	are	frequently	employed	as	the	gold	standard	

measurement	 to	 quantify	movements	 (66).	However,	 the	 practicability	 of	 using	 these	

methods	 within	 a	 home	 surrounding	 is	 restricted.	 The	 adoption	 of	 these	 practices	

continues	 to	 be	 confined	 to	 laboratory	 settings	 for	 manifold	 reasons,	 including	 the	

physical	space	and	economic	limitations	(10).		

	

The	 field	 of	 optical	markerless	hand	 tracking	has	 seen	 significant	 advancements	with	

novel	deep-learning-based	methodologies	published	from	2014	(67).	This	is	due	to	the	

ubiquity	of	low-priced	RGB	cameras	and	the	introduction	of	deep	convolutional	neural	

networks	(CNNs),	which	have	facilitated	heightened	accuracy	levels	and	robustness	(68).	

CNNs	 (69)	 are	 a	 class	 of	 neural	 networks,	 most	 traditionally	 used	 to	 analyse	 image	
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frames.	Using	CNNs,	open-source	libraries,	such	as	OpenPose	(17)	and	RGBNet	(16)	have	

been	implemented,	exhibiting	great	potential	to	recognize	hand	joint	centres	from	two	

dimensional	 color	 frames.	 These	markerless	 approaches	 can	provide	 estimates	 of	 the	

declination	of	joint	angles,	producing	accurate	results	(62,70,71).	However,	even	if	the	

accuracy	of	 these	open-source	 tools	 continuous	 to	grow,	 their	adoption	 in	 the	 field	of	

hand	 biomechanics	 has	 not	 yet	 occurred	 (72),	 as	 the	 finessing	 of	 such	 algorithms	 is	

usually	outside	the	field	of	traditional	hand	biomechanics.			

	

Notwithstanding	 the	 potential	 of	 these	 markerless	 solutions,	 some	 hesitancy	 in	 the	

biomechanics	 community	 is	 present	 (72).	 To	 ease	 this	 translation	 process,	 a	 few	

procedures	have	recently	emerged	to	embrace	these	markerless	estimation	procedures	

in	lower	limb	biomechanics,	as	the	community	requires	validated	accuracy	to	adopt	such	

solutions	(18,73).	For	instance,	using	more	than	one	RGB	camera	to	reduce	the	occlusion	

introduced	by	other	body	segments,	exploiting	a	direct	linear	transformation	(18)	and	

triangulation	 techniques	 (73).	 These	 novel	 methodologies	 have	 benchmarked	 the	

accuracy	 three-dimensional	kinematics	captured	using	 these	markerless	systems	(e.g.,	

OpenPose)	against	three-dimensional	kinematics	captured	using	gold-standard	marker-

based	 passive	 optical	 capture	 technologies	 (18).	 However,	 introducing	more	 cameras	

would	limit	the	reproducibility	of	a	study	in	home	settings.		

	

Therefore,	 recent	 investigations	 have	 compared	 the	 two-dimensional	 kinematics	

inferred	 by	 adopting	 these	 techniques	 against	 more	 traditional	 three-dimensional	

motion	tracking	systems	(19,74).	The	accuracy	and	validity	of	these	approaches	for	the	

lower	limb	have	encouraged	the	adoption	of	these	algorithms	to	quantify	gait	kinematics	

also	on	impaired	participants	(20,28).	These	solutions	have	illustrated	that	markerless	

motion	 capture	 is	 a	 practical	 instrument	 that	 can	 augment	 current	 research	

opportunities,	rather	than	acting	as	an	outright	substitute	for	conventional	laboratory-

based	 strategies.	 However,	 these	 studies	 have	 only	 validated	 markerless	 tracking	

technologies	for	the	lower	limb,	and	the	question	of	whether	they	could	be	embraced	for	

hand	kinematics	remains	open.	
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2.2 Optical	systems	to	quantify	joint	range	of	motion		
	

In	 the	 late	 1950s,	Noer	 and	Pratt	 (75)	 introduced	 a	measurement	 type	 of	 protractor,	

called	 a	 goniometer,	 to	 estimate	 the	 declination	 of	 phalanges	 joint	 angles.	 The	

preliminary	 version	 for	 measuring	 the	 ROM,	 issued	 by	 the	 American	 Academy	 of	

Orthopedic	 Surgeons	 (AAOS)	 in	 1965,	 recommended	 that	 estimating	 joint	 angles	was	

influenced	by	more	considerable	inter-reader	variability	than	goniometric	assessments	

(76).	 By	 then,	 the	 goniometer	 had	 become	 omnipresent	 in	 clinical	 practice	 (76).	 In	

modern	practice,	health	care	professionals	frequently	use	goniometers	to	estimate	joint	

ROM	(60).	The	goniometer	(Figure	2)	is	utilized	to	estimate	and	assess	both	a	the	angle	

of	a	specific	joint	pose	and	the	entire	ROM	(77).	The	assessor	collects	the	measures	by	

locating	the	goniometer	along	with	the	articulations	estimated	(78).	These	instruments	

support	clinical	decision-making	and	assist	health	care	professionals	in	monitoring	their	

patients	 to	 maximize	 and	 enhance	 the	 outcomes	 (79).	 One	 type	 of	 goniometry	

instrumentation	extensively	used	in	hand	therapy	and	occupational	therapy	is	called	the	

universal	goniometer	(Figure	2)	(80).	

	
Research	to	assess	the	reliability	of	universal	goniometers	has	described	low	inter-reader	

and	 intra-reader	 reliability,	with	high	variability	 (4,81,82).	 In	Macionis’	 study	 (7),	 the	

errors	of	measurements	of	universal	goniometers	ranged	from	2.4°	to	4.9°.	Other	studies	

on	 the	 unsteadiness	 of	 universal	 goniometers	 stated	 variation	 of	 7°–9°	amongst	

therapists	 when	 measuring	 joint	 angles	 (83,84),	 leading	 to	 a	 27°	variance	 in	 the	

phalanges	articulations.	In	Somers	et	al.’s	study	(85),	it	was	highlighted	that	a	large	part	

of	the	reliability	variation	in	universal	goniometers	is	due	to	the	influence	of	experience	

in	goniometric	assessments.	

	

One	of	the	difficulties	in	modern	practice	is	that	these	tools	demand	physical	contact	with	

the	 finger	 to	 obtain	 the	 most	 reliable	 precision	 (50).	 However,	 tissue	 injuries	 and	

dermatological	 conditions	 can	 generate	 challenges	 with	 practical	 use	 because	 of	 the	

danger	 of	 contamination,	 bandages,	 or	 discomfort.	 With	 the	 development	 of	 new	

technologies,	new	goniometer	models	have	been	gradually	introduced	and	improved	to	

assist	clinicians	(6,86,87).		
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A	substitute	to	conventional	goniometric	estimations	is	the	application	of	visual	tracking	

methods.	 Several	 approaches	 have	 been	 applied	 to	 recognise	 the	 hand’s	 gesture	 and	

shape.	The	most	commonly	trusted	arrangement	for	hand	motion	capture	(88)	employs	

optical	sensing	technologies.	

	

Optical	systems	for	use	in	movement	capture	include	those	using	IR	light-emitting	diodes	

(LED),	depth	cameras,	and	RGB	cameras;	single	or	multiple	cameras	(64)	may	also	be	

used	 to	 sense	 position.	 There	 are	 two	 commonly	 used	 techniques	 of	 optical	 motion	

capture	(8).	The	first	methodology	applies	markers	to	the	human	body,	while	the	second	

does	not	(10).	In	both	cases,	a	set	of	two	or	more	cameras	is	located	around	the	limb	of	

the	movement	to	be	analysed.	Software	then	associates	the	many	perspectives	and	uses	

camera	 intrinsic	 and	 extrinsic	 parameters	 (e.g.,	 focal	 length)	 to	 estimate	 three-

dimensional	coordinates	for	the	objective	of	interest.		

	

2.2.1 Marker-based	
 
In	marker-based	optical	systems,	markers	are	attached	to	the	segments	of	interest	(64).	

Two	types	of	marker-based	optoelectronic	systems	can	be	used,	including	active,	where	

markers	are	IR	LEDs	(63),	and	passive	modes	(66).	Active	systems	utilize	markers	that	

emit	light	(66)	(Figure	3).	These	brightened	markers	function	as	the	main	signal	source	

and	are	often	deployed	using	IR	LEDs.	The	application	software	prevents	the	swapping	

of	markers	with	one	another	and	identifies	them	also	after	occlusion.	

	
Figure	 3:	 Example	 of	 an	 active	 optical	 motion-capture	 set-up.	 Reproduced	 with	

permission	from	(89).		

	

Active	 markers	 provide	 measurements	 that	 are	 considered	 more	 reproducible	 than	

standard	 goniometry	 assessments	 (66).	However,	 they	 come	with	 several	 limitations.	
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presenting	 different	 marker	 configurations	 developed	 specifically	 to	 assess	 hand	

kinematics	(98)	(Figure	4B).	

	

Anatomical	marker	sets	use	bony	anatomical	landmarks	as	the	attachment	sites	of	single	

markers	(60,99,100).	Anatomical	landmarks	are	characterized	by	a	bony	prominence	and	

require	marker	placement	via	palpation	procedures	(101).	As	palpation	errors	of	up	to	a	

few	 millimetres	 have	 been	 shown	 to	 result	 in	 angular	 errors	 of	 several	 degrees,	

significant	inter-participant	differences	can	pose	a	threat	to	set-up	reliability	due	to	large	

variability	 (102).	 However,	 the	 main	 disadvantage	 is	 related	 to	 the	 fact	 that	 many	

landmarks	 are	 adjacent	 to	 the	 joints,	 where	 skin	movement	will	 be	 greatest,	 causing	

markers	to	move	non-rigidly	with	respect	to	the	underlying	bones	(103).	One	variant	of	

marker-based	techniques	is	the	use	of	clusters	of	markers	that	are	mounted	on	a	rigid	or	

semi-rigid	plate.		

	

For	some	lower	limb	segments,	this	technique	has	been	shown	to	reduce	artifacts	related	

to	soft	tissue	movement	over	bone,	as	only	the	markers	on	the	plates	are	tracked	during	

functional	tasks	(104).	However,	there	is	limited	evidence	on	the	use	of	marker	clusters	

to	reduce	the	incidence	of	soft	tissue	artifacts	in	the	upper	limbs	(96).		

	

These	passive	optical	technologies	have	the	advantage	of	being	able	to	cover	large	areas	

(105).	Another	advantage	is	the	possibility	of	collecting	data	over	extended	time	intervals	

(106).	 This	 technique	 has	 the	 advantage	 of	 being	 highly	 accurate	 compared	 to	

goniometry	assessment,	when	capturing	three-dimensional	motion	(106).	The	method	is	

non-encumbering	to	the	patient	or	participant,	with	the	only	apparatus	being	small	low	

mass	reflective	markers,	compared	to	electro	goniometers	that	can	heavily	limit	motion	

(72).	 Another	 great	 advantage	 of	 this	 motion	 tracking	 technology	 is	 that	 it	 is	 not	

influenced	by	metal	or	electromagnetic	interference	(107).		

	

However,	this	capture	system	possesses	some	disadvantages,	including	the	line	of	sight	

requirement,	and	greater	accuracy	comes	at	a	greater	price,	compared	to	goniometers	

(66).	 Most	 are	 affected	 by	 large	 execution	 time	 during	 simulation,	 complicated	 by	

challenging	algorithmic	analysis		(55).	The	use	of	such	systems	can	be	considerably	time-

consuming	 because	 the	 accurate	 placing	 of	 markers,	 one-by-one,	 is	 slow.	 Moreover,	
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errors	can	be	caused	by	muscle	deformation	during	a	movement	and	skin	sliding,	which	

occurs	 frequently	 with	 older	 people	 (103).	 Given	 the	 advantages	 of	 passive	 optical	

systems	and	the	recent	improvements	in	computing	speed	and	digital	cameras	that	have	

reduced	the	above	disadvantages,	video-based	marker	systems	are	now	considered	the	

gold	standard	in	hand	kinematics	research	(66).	

	

Once	the	centres	of	the	joints	under	inspection	have	been	determined,	inverse	kinematics	

are	used	to	assess	the	configuration	of	the	joints	in	a	kinematic	chain	(108).	There	are	

different	methods	for	performing	inverse	kinematics	(109,110).	To	date,	the	most	used	

technique	implemented	in	commercially	available	optoelectronic	passive	motion	capture	

systems	makes	use	of	the	Forward	And	Backward	Reaching	Inverse	Kinematics	(FABRIK)	

algorithm;	 FABRIK	 (111)	 is	 an	 iterative	 algorithm	 developed	 for	 tracking	 marker	

locations	(112).		

	

2.2.2 Markerless		

In	 recent	 years,	 markerless	 two-dimensional	 and	 three-dimensional	 tracking	

technologies	 have	 been	demonstrated	 to	 be	 a	 powerful	 tool	 for	 accurately	 estimating	

hand	 movements	 outside	 laboratory	 settings	 (113).	 Many	 technologies	 have	 been	

introduced	to	quantify	two-dimensional	and	three-dimensional	phalangeal	joint	angles	

and	 finger	 position,	 such	 as	 digital	 goniometers,	 and	 commercially	 portable	 motion-

sensing	devices	(14)	and	cameras	(114)	linked	to	tracking	software	(115).	However,	tiny	

and	 hardly	 apparent	 articulations,	 occlusions,	 and	 lighting	 changes	 can	 make	 this	

approach	 to	 tracking	 an	 even	 more	 challenging	 problem	 compared	 to	 marker-based	

assessments	(114).	

2.2.2.1 Motion-sensing	devices	

Some	recently	introduced	software-based	digital	goniometers	utilize	accelerometers	to	

calculate	 two-dimensional	 joint	 angles	 (116–118).	 These	 goniometers	 have	 various	

advantages,	 including	 availability,	 facility	 of	 measurement,	 and	 one-hand	 usability.	

However,	 there	 is	 low	 transferability	 of	 the	 technique	 to	 clinical	 settings	 due	 to	 time	

requirements	and	instrumentation	(119).	To	calculate	two-dimensional	joint	angles	from	

images,	 an	 additional	 issue	 relates	 to	 the	 arrangements	 of	 cameras,	 which	 can	 cause	



Chapter	2	Optical-based	measurements	for	quantifying	hand	kinematics	

 16	

difficulties	in	detecting	smaller	joints	(120),	suggesting	that	automated	methods	based	

on	machine	learning	may	be	needed.	

Portable	 and	 commercial	 optical	measurement	 systems	 also	 have	 been	 introduced	 to	

accurately	 assess	 hand	 kinematics	 (14).	 Capture	 of	 hand	movements	with	 ubiquitous	

optical	devices	has	attracted	researchers’	attention,	particularly	with	the	introduction	of	

the	Microsoft	Kinect	Sensor	(Microsoft	Corp.,	Redmond,	WA,	USA)	(121)	and	the	Leap	

Motion	 Controller™	 (Leap	 Motion,	 San	 Francisco,	 CA,	 USA)	 (122),	 both	 illustrated	 in	

Figure	5.	These	commercially	available	gaming	and	user	interface	systems	can	offer	non-

contact	 and	 rapid	 solutions	 compared	 to	 goniometric	 assessments	 in	measuring	 both	

body	and	finger	movements	(123).		

	 		
																												(A)																																												(B)			
		

Figure	5:	Example	of	two	motion	sensing	devices.	(A)	Microsoft	Kinect	reproduced	with	

permission	from	(124).	(B)	Leap	Motion	Controller™	reproduced	with	permission	from	

(123).		

	

Microsoft	Kinect	consists	of	a	collection	of	sensors,	including	an	RGB	and	depth	camera	

(121).	 This	 tool	 can	 detect	 both	 raw	 depth	 images	 and	 a	 three-dimensional	 virtual	

skeleton	 of	 the	 body	 (125).	 Research	 studies	 have	 broadened	 the	 Kinect	 range	 of	

capabilities,	originally	designed	to	track	only	the	 larger	 limb	segments,	 to	expand	to	a	

three-dimensional	 model	 of	 the	 human	 hand.	 In	 2013	Metcalf	et	 al.	(10)	 presented	 a	

Kinect-based	system	to	detect	and	assess	hand	mobility.	However,	it	has	been	reported	

to	have	an	accuracy	of	less	than	15°	when	capturing	finer	hand	phalangeal	motions	(50),	

potentially	because	it	was	designed	to	monitor	motion	of	the	entire	body	(126).	Other	

limitations	 include	the	 limited	distance	detection	depth	and	the	extreme	sensitivity	 to	

sunlight,	making	the	device	not	suitable	for	outdoor	applications	(127).	

	

The	Leap	Motion	Controller™	(LMC)	captures	three-dimensional	hand	movements	using	

three	IR	LEDs	and	two	RGB	cameras	(14).	The	IR	LEDs	track	the	position	of	the	palm,	
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wrist	orientation,	and	the	five	digits	(122),	outputting	a	point	cloud	with	one	point	for	the	

centre	of	the	palm	and	one	for	each	joint.	The	LMC™	has	been	applied	to	a	large	range	of	

applications	 ranging	 from	 gaming	 to	 hand	 gesture	 recognition	 (128,129).	 However,	

drawbacks	 include	 the	 fact	 that	users	 cannot	 set	 the	 sample	 rate	and	output	data	are	

frequently	missing	points	(128).	

To	address	these	challenges,	the	popularity	of	inexpensive	depth	and	RGB	cameras,	new	

approaches,	as	well	as	new	insights,	have	enabled	greatly	improved	accuracy	levels	and	

robustness	 for	 markerless	 hand	 pose	 estimation	 (130).	 	 The	 state-of-the-art	 hand	

tracking	methodologies	have	seen	great	advancement	in	the	field,	particularly	with	the	

introduction	of	convolutional	neural	networks	(CNNs)	in	many	methods	(17,131–133),	

and	large	datasets	being	published	(134).		

2.2.2.2 Machine	learning	approaches		
	

CNNs	 are	 broadly	 utilized	 for	 automated	 feature	 extraction	 from	 imagery	 content.	 A	

general	CNN	architecture	is	illustrated	in	Figure	6.	

 
Figure	6:	Example	of	a	convolutional	neural	networks	and	its	 layers.	Reproduced	with	

permission	from	(135).		

	

These	CNN	architectures	embody	three	main	steps	of	processing	(also	known	as	layers)	

that	include	the	input	layer,	the	feature	extraction	layer	and	output	layer.	The	input	layer	

takes	imagery	content	as	input	and	sends	the	data	to	the	feature	extraction	layer,	also	

known	as	the	hidden	layer.	The	feature	layers	include	a	pooling,	and	a	classification	layer	

(136).	 In	 the	convolution	 layer,	every	neuron	 is	associated	with	a	 filtering	(or	kernel)	

window	 that	 is	 convolved	with	 the	 input.	 This	 convolution	 operation	 is	 comprised	 of	

individual	convolution	units,	known	as	neurons,	each	associated	with	a	set	of	parameters,	

known	as	the	weights.	The	weights	transform	the	input	data	for	each	associated	neuron.	
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The	output	of	this	convolution	step	is	a	set	of	N	images,	one	for	each	of	the	N	neurons.	

Because	 of	 convolution	 and	 the	 use	 of	 signed	weights,	 these	 new	 images	 can	 contain	

negative	 values.	 Activation	 functions,	 typically	 taking	 the	 form	 of	 so-called	 Rectified	

Linear	Units	(ReLU)	are	applied;	one	obvious	effect	of	such	units	this	is	that	they	replace	

negative	values	with	zero	(137).	In	a	more	abstract	sense,	they	encourage	sparsity	in	the	

outputs	 of	 neuronal	 responses,	 and	 allow	 units	 to	 behave	 in	 a	 non-linear	 fashion,	

increasing	the	types	of	mappings	performed	by	the	network	above	purely	linear	systems.	

	

The	 outputs	 of	 the	 convolution	 layers	 are	 also	 called	 feature	 maps.	 Following	 the	

convolution	layers,	spatial	pooling	layers	are	often	included	to	reduce	the	dimensions	of	

the	feature	maps	and	expand	the	context	of	inputs	seen	by	deeper	units.	The	design	of	

many	CNN	architectures	alternates	between	convolution	and	pooling	layers,	for	instance,	

Szegedy	et	al.	(137)	presented	a	CNN	with	five	convolution	layers	followed	by	one	pooling	

layer.	 At	 the	 end	 of	 convolution	 and	 pooling	 layers,	 there	 is	 typically	 a	 multilayer	

perceptron	 network	 that	 performs	 the	 classification,	 based	 on	 the	 feature	 maps	

computed	by	the	previous	layers.		

 

CNNs	 have	 been	 used	 previously	 for	 hand	 tracking	 (136,138,139).	 For	 instance,	

Molchanov	et	al.	(140)	and	Flores	et	al.	(141)	both	presented	three-dimensional	CNNs	

using	depth	sensors	to	recognize	hand	poses,	allowing	automatic	extraction	of	diverse	

image	 features	 including	 edges,	 circles,	 lines,	 and	 texture,	 as	 well	 as	 automatic	

classification.	 These	 models	 have	 proven	 effective	 for	 feature	 extraction	 when	 large	

datasets	are	used.	However,	these	architectures	present	some	problems	when	looking	at	

temporal	dynamic	behaviours,	and	therefore	are	combined	with	other	architectures	or	

layer	types.	

 

Recurrent	neural	networks	(RNN)	also	have	been	adopted	(142,143)	to	track	dynamic	

motion	 trajectories.	 In	 an	 RNN,	 connections	 between	 nodes	 implicitly	 move	 along	 a	

temporal	 sequence.	 This	 allows	 the	 network	 to	 be	 responsive	 to	 time-varying	

information.	RNNs	are	distinct	from	purely	feed-forward	networks,	as	the	one	described	

above.	In	purely	feed-forward	networks,	data	move	only	in	one	direction	from	the	input	

layer,	through	the	hidden	layers,	to	the	output	layer.	These	networks	have	no	memory	of	

the	input	they	receive	and	are	not	able	to	predict	what’s	coming	next,	considering	only	
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the	current	input.	In	RNNs,	the	information	cycles	through	a	loop	(Figure	7).	This	enables	

RNNs	to	be	able	to	recall	what	occurred	in	the	training	and,	when	deciding,	to	consider	

both	the	current	input	and	the	state	of	the	inputs	received	previously.		

	
(A) 																																							(B)	

Figure	7:	An	illustration	of	(A)	a	recurrent	neural	network	and	(B)	a	feed-forward	neural	

network.	Reproduced	with	permission	from	(144).			

	

Even	if	these	architectures	perform	well,	they	can	be	affected	by	a	major	challenge	known	

as	vanishing	gradients.	A	gradient	is	a	partial	derivative	with	respect	to	its	inputs.	It	can	

be	seen	as	a	slope	of	a	function,	where	the	higher	is	the	value,	the	steeper	is	the	slope,	and	

the	faster	the	RNN	model	learns;	in	contrast,	 if	the	slope	is	zero,	the	RNN	model	stops	

learning.	Vanishing	gradients	occur	when	the	values	of	a	gradient	are	too	small,	and	the	

model	stops	learning	or	takes	too	long	as	a	result.		

	

The	 vanishing	 gradient	 problem	 was	 partially	 solved	 through	 the	 introduction	 of	 a	

structure	 called	 long	 short-term	memory	 (LSTM),	 an	 extension	of	RNN.	LSTMs	assign	

weights	to	help	RNNs	let	new	information	in,	forget	information,	or	assign	importance	

enough	to	impact	the	output.	This	is	because	LSTMs	contain	information	in	a	memory	and	

can	be	seen	as	a	gated	cell.	Gates	determine	whether	 to	 let	new	 input	 in	 (input	gate),	

delete	the	information	or	let	it	impact	the	output	at	the	current	timestep	(output	gate)	

(Figure	8).	The	gates	in	LSTMs	take	in	the	form	of	sigmoids,	meaning	their	value	ranges	

smoothly	from	zero	to	one.	The	fact	that	they	show	a	smooth	transition	from	"off"	to	"on"	

enables	 them	 to	 support	 back-propagation.	 Therefore,	 the	 problem	 of	 vanishing	

gradients	 is	 solved	 through	LSTM	because	 it	keeps	 the	gradients	steep	enough,	which	

keeps	the	training	relatively	short	and	the	accuracy	high.		
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Using	these	architectures,	markerless	hand	tracking	from	depth-based	cameras	has	seen	

significant	 progress	 due	 to	 the	 low	 cost	 associated	 with	 these	 sensors	 (148).	

Traditionally,	 depth-based	 tracking	 was	 the	 main	 approach	 in	 human	 body	 tracking	

estimation	(130).	Several	studies	have	suggested	that	these	systems	scale	well	with	the	

size	of	 the	training	dataset	(15).	The	availability	of	a	 large-scale,	accurately	annotated	

dataset	is	therefore	a	key	factor	for	advancing	the	field	of	pose	estimation.		

	

Markerless	 tracking	 with	 RGB	 cameras	 has	 a	 more	 extensive	 range	 of	 applications,	

considering	 the	 ubiquitous	 availability	 of	 these	 devices.	 However,	 RGB-based	 image	

networks	contain	less	information	than	depth	disparity	maps,	are	more	difficult	to	train,	

and	require	a	wider	set	of	data	(149).	The	major	challenges	encountered	in	defining	RGB-

based	 pose	 estimation	 models	 include	 large-dimensional	 problems,	 uncontrolled	

environments,	self-occlusions,	processing	speed,	and	rapid	hand	motion.		

	

Amongst	some	notable	recognised	efforts	 in	 the	 field	of	 three-dimensional	markerless	

RGB-based	hand	pose	estimation,	there	is	the	methodology	introduced	by	Zimmermann	

et	al.	(16).	Like	other	works	on	three-dimensional	markerless	pose	estimation,	they	used	

a	 two-part	 pipeline.	 First,	 they	 detected	 keypoints	 (joint	 centres)	 in	 two-dimensional	

coordinates	and	then	elevated	the	set	into	three-dimensions.	Methodologies	for	moving	

from	 two-dimensional	 to	 three-dimensional	 space	 include	 neighbour	matching	 (150),		

mixture	 of	 probabilistic	 principal	 component	 analysis	 bases	 (151),	 or	 direct	 linear	

transformation	using	multiple	RGB	cameras	(18).	Zimmermann	et	al.	(16),	 first	used	a	

CNN	named	HandSegNet	(Figure	10)	to	segment	the	hand.	Then	the	image	was	cropped	

and	 resized	 before	 running	 a	 two-dimensional	 joint	 detection	 based	 on	 a	 probability	

density	map,	 called	 PoseNet.	 To	 extract	 three-dimensional	 coordinates,	 a	 regression-

based	 network	 was	 used.	 Here,	 the	 length	 of	 the	 distance	 between	 the	 joints	 was	

normalised.	Ultimately,	a	three-dimensional	matrix	was	applied	to	rotate	keypoints.		
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Figure	 10:	 Proposed	 architecture	 to	 estimate	 three-dimensional	 hand	 keypoints.	

Reproduced	with	permission	from	(16).		

	

While	 this	application	was	proven	 to	be	effective,	 the	 latency	 the	system	shown	to	be	

excessive	due	to	the	nature	of	the	processing	pipeline	(114).	On	top	of	this	issue,	the	hand	

has	very	high-speed	movement	capabilities	that	make	it	difficult	for	many	algorithms	to	

reliably	perform	tracking	of	digits	or	joints	across	consecutive	frames	(149).		

	

To	address	all	these	issues,	Simon	et	al.	(152)	proposed	a	multicamera	approach	using	

more	 than	 500	 RGB	 cameras	 in	 a	 rounded	 space	 (Figure	 11).	 First,	 they	 used	 a	

synthetically-generated	dataset	to	train	a	hand	pose	model.	Then,	they	put	a	volunteer	in	

the	multicamera	set-up	and	used	the	previously	trained	hand	model	on	each	of	the	500	

RGB	cameras	while	capturing	motions	for	each	view.	The	algorithm	produced	inaccurate	

results	when	the	hands	were	occluded.	To	address	these	inaccuracies	due	to	occlusion,	

they	proposed	a	further	step	that	they	called	the	triangulation	step.	 In	this	stage,	 they	

lifted	 two-dimensional	 coordinates	 to	 three-dimensions,	 knowing	 all	 the	 intrinsic	 and	

extrinsic	 parameters	 of	 the	 cameras.	 Here,	 they	 used	 a	 RANdom	 Sample	 Consensus	

(RANSAC)	algorithm,	a	technique	to	estimate	parameters	by	random	sampling	observed	

data.	 Finally,	 they	 used	multiple	 views	 to	 project	 the	 three-dimensional	 views	 to	 the	

frame	to	be	annotated.	The	authors	(152)	used	this	approach	to	obtain	a	fully	annotated	

dataset	without	having	to	annotate	data	manually.	Once	the	new	dataset	was	obtained,	

they	trained	the	original	CNN	three	more	times	to	obtain	a	model	that	could	deal	with	

occlusion,	run	fast	and	was	able	to	provide	good	results	even	with	rapid	hand	motions.	

However,	the	model	only	worked	for	two-dimensional	estimation.		
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Figure	 11:	 The	 process	 implemented	 in	 Simon	 et	 al.’s	 (152)	 work.	 Reproduced	 with	

permission		from	(152).		

	
	
To	test	the	accuracy	of	OpenPose	(152),	Nakano	et	al.	(18)	presented	a	study	that	tested	

its	performance,	the	RGB-based	markerless	work	presented	by	Simon	et	al.	against	a	gold	

standard	 marker-based	 optoelectronic	 motion	 capture	 set-up	 for	 full	 body	 tracking	

(without	 hands),	 using	 multiple	 RGB	 cameras.	 They	 adopted	 a	 direct	 linear	

transformation	 (153)	 to	 elevate	 three-dimensional	 coordinates	 from	 two-dimensional	

keypoints	detected	with	OpenPose.	Their	study	illustrated	an	accuracy	of	30	millimetres	

(mm)	when	comparing	the	two	tracking	methodologies.		

	

To	reduce	the	number	of	cameras	used	when	testing	the	accuracy	of	OpenPose	against	

gold	standard	marker-based	tracking,	D’Antonio	et	al.	(73)	implemented	a	pipeline	made	

of	 two	RGB	cameras	 for	 lower	 limb	motion	 tracking.	They	used	a	 linear	 triangulation	

algorithm	to	convert	two-dimensional	coordinates	obtained	from	OpenPose	into	three-

dimensional	coordinates.	Results	revealed	that	their	approach	had	a	root	mean	square	

error	(RMSE)	that	was	always	less	than	9.9°.	

	
Following	these	studies,	there	has	been	a	great	deal	of	interest	in	validating	OpenPose	as	

a	 tool	 for	markerless	motion	capture,	particularly	 in	gait	biomechanics,	using	 just	one	

camera	 to	 collect	 data	 outside	 laboratory	 settings.	 	 Sakurai	 and	 Okada	 compared	

parameters	of	gait	analysis	acquired	by	OpenPose	using	just	a	single	video	camera	with	

those	obtained	with	a	conventional	system	using	IR	cameras	(154).	Their	study	showed	

an	 error	 of	 approximately	 5°	 between	 the	 systems	 observed	 in	 lower	 extremity	 joint	

angles.	 Similarly,	 Stenum	 et	 al.	 (19)	 matched	 OpenPose	 against	 three-dimensional	

kinematics	captured	with	a	marker-based	optoelectronic	motion	capture.	They	obtained	

an	error	 that	was	always	 less	 than	7.4°	when	 the	 two	methodologies	were	compared.	

Drazan	 et	 al.	 evaluated	 the	 performance	 of	 OpenPose	 in	 extracting	 lower	 limb	 two-



Chapter	2	Optical-based	measurements	for	quantifying	hand	kinematics	

 24	

dimensional	 sagittal	 kinematics	 from	 a	monocular	 RGB	 camera	 during	 vertical	 jumps	

against	a	gold	stand	motion	technology;	they	obtained	a	robust	agreement	with	a	RMSE	

below	 3.2°	 across	 the	 hip,	 knee,	 and	 ankle	 trials	 (74).	 These	 studies	 deliver	 further	

evidence	 that	markerless	 systems	 can	 be	 a	 practicable	 instrument	 for	 biomechanical	

research,	extending	beyond	the	laboratory,	although	they	are	yet	to	be	proven	for	hands.		

	

2.3 Dynamic	hand	gesture	recognition		
 
Automated	action	recognition	is	the	method	of	identifying	specific	human	movements	by	

a	 machine	 (155).	 Specifically,	 hand	 gesture	 recognition		 has	 been	 used	 for	 different	

applications	(156),	(157).	An	often-used	distinction	embraces	two	main	classes	of	hand	

gesture	classification,	 including	device-based	and	vision-based	models	(158).	The	 first	

group	 attempts	 to	 solve	 the	 problem	 of	 recognition	 using	 sensor-based	 devices	

(159,160).	 However,	 these	 tools	 do	 not	 fulfil	 the	 human	 hand	 mobility	 naturalness,	

forcing	users	to	carry	and	wear	them	while	performing	hand	gestures	and	obstructing	

fingers	physical	appearance	(161).	Vision-based	approaches	(161)	have	the	advantage	of	

being	 unconstrained	 and	 non-obstructive,	 compared	 to	 instrumented	 device-based	

systems	(158).	Furthermore,	the	developments	in	the	field	of	vision	algorithms	for	hand	

gesture	recognition	have	gained		attention	for	their	applicability	to	various	different	use	

cases,	such	as	sign	language	interpretation	and	robotic	applications	(162).		

	

Vision-based	 approaches	 for	 hand	 gesture	 recognition	 can	 be	 classified	 into	 models	

based	 on	 feature	 extraction	 and	models	 based	 on	 observable	 features.	 Using	 feature	

extraction,	algorithms	can	be	 loosely	divided	 into	appearance-based	and	model-based	

approaches	 (163).	 Appearance-based	 (or	 static)	 models	 are	 linked	 to	 a	 straight	

comparison	of	gestures	against	two-dimensional	image	features	(163).	These	models	use	

parameters	 derived	 from	 images.	 The	 most	 popular	 features	 include	 hand	 contours,	

colors,	shape,	optical	flow,	image	edges,	and	other	local	hand	features	(161).	Here,	the	

hand	 pose	 does	 not	 vary	 during	 the	 gesturing	 time	 (164),	 as	 the	 algorithm	 aims	 to	

represent	the	observed	features	of	the	hand	without	any	motion	information	(161).	Some	

approaches	 have	 used	 filtering	 techniques	 based	 on	morphological	 operations	 (165),	

applied	to	enhance	the	relevant	details	or	remove	holes	and/or	noise	(166).	Other	studies	

have	 utilized	 Haar-like	 features	 (167)	 to	 detect	 edges	 or	 lines,	 with	 the	 drawback	 of	
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tedious	manual	process	and	no	motion	information.	Model-based	approaches	(16,152)	

employ	a	range	of	algorithms	(e.g.,	OpenPose)	to	extract	skeleton	features	as	tracking	tool	

to	then	assess	the	final	gesture	based	on	the	keypoints	extracted.	The	drawback	of	these	

approaches	is	the	need	for	computationally	intensive	models	that	can	limit	the	speed	of	

the	process	and	reduce	its	adoptability.		

	

When	 hand	 gesture	 recognition	 is	 classified	 according	 to	 observational	 features,	

continuous	video	recordings	are	recognized	based	on	temporal	relationships,	known	as	

dynamic	gesture	recognition	(Figure	13).	Dynamic	gesture	recognition	models	observe	

and	measure	parameters	such	as	orientation,	trajectories,	and	speed	(168),	considering	

that	spatial-temporal	structure	patterns	characterise	the	motions.	These	motion	patterns	

can	be	modelled	along	with	multi-scale	temporal	trajectories,	describing	estimations	of	

visible	events.	Since	such	large	temporal	trajectories	can	describe	hand	motion;	dynamic	

gesture	 identification	 can	 be	 achieved	 by	 estimating	 the	 association	 or	 the	 length	

between	 such	 trajectories	 (169).	 The	 most	 challenging	 issue	 of	 dynamic	 gesture	

identification	 is	 the	 spatiotemporal	 mutability	 of	 different	 actions	 varying	 in	 length,	

appearance,	 and	 speed.	 These	 features	make	 the	 task	 of	 dynamic	 gesture	 recognition	

more	challenging	compared	to	static	gesture	recognition.	

	

	

	

	

	
	
	
	
	
	
	

	

Figure	12:	A	flowchart	to	classify	hand	gestures	into	static	and	dynamic.	

	

All	of	these	investigations	concentrate	on	action	classification	from	video	clips	that	are	

often	previously	trimmed	to	only	consider	a	single	action	within	a	video	sequence,	even	

if	 video	 sequences	 are	 performed	 continuously	 during	 a	 recording	 (170).	 These	
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continuous	recordings	have	generated	a	volume	of	captured	sequences	that	is	constantly	

increasing.	Starting	from	segmented	sequences,	existing	studies	(171)	perform	manual	

video	 segmentation	 to	 trim	 the	 videos	 into	 clips	 containing	 individual	 actions	 and	

expedite	 content	 extraction	 from	 each	 segmented	 clip.	 The	 problem	 with	 these	

methodologies	is	that	they	tend	to	disregard	the	long-term	dependency	of	consecutive	

video	frames	within	hand	gesture	actions.	Furthermore,	the	process	is	labour	intensive	

and	not	scalable.	There	is	the	need	for	a	system	that	can	efficiently	recognise	and	segment	

actions	within	long	video	sequences.	

 

2.3.1 	Action	classification		
 
A	 number	 of	 traditional	 approaches	 have	 been	 explored	 for	 dynamic	 hand	 gesture	

classification,	 including	dynamic	time	warping	(172),	the	hidden	Markov	model	(160),	

Gaussian	process	dynamical	model	(173).	These	techniques	can	observe	dynamic	hand	

gestures	in	terms	of	motion	signature	and	trajectory.	The	drawbacks	of	these	methods	

include	the	application	to	only	short	time	frame	tasks	(172),	or	the	adaptation	of	these	

probabilistic	approaches	to	one	state	at	the	time	(160),	limiting	their	adoption	with	wide	

range	of	parameters	(173).	Furthermore,	these	traditional	methodologies	are	difficult	to	

generalize	to	different	use	cases.			

	

Deep	learning	methods	have	aimed	to	reach	better	outcomes,	considering	the	dynamic	

behaviour	of	hand	motion,	with	the	advantage	of	being	more	sensitive	to	learn	rapid	time-

varying	features.	Taken	individually,	time,	appearance,	or	space	parameters,	might	not	

be	sufficient	to	classify	a	gesture	when	considering	 long	video	sequences.	To	this	end,	

conventional	CNNs	are	often	combined	with	other	architectures	to	enable	the	model	to	

learn	the	long	dependencies	that	come	from	consecutive	frames.	While	two-dimensional	

CNNs	are	generally	adopted	for	appearance-based	models,	three-dimensional	CNNs	can	

be	utilized	for	dynamic	spatial	and	temporal	features.	However,	3D	CNNs	are	inadequate	

to	learn	long-term	temporal	information	(26).	Molchanov	et	al.	(174)	offered	a	solution	

combining	 three-dimensional	 CNNs	 and	 RNNs.	 RNNs	 (142,143)	 extract	 parametric	

features	by	looking	at	current	input	and	what	the	model	has	estimated	from	the	inputs	

received	previously.	The	aim	of	Molchanov’s	approach	was	 to	connect	spatiotemporal	

features	and	then	transfer	them	into	an	RNN.	However,	the	spatial	correlation	knowledge	

was	 missing	 in	 the	 “pure”	 RNN	 phase.	 A	 few	 studies	 (25,26)	 have	 illustrated	 good	
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performances	 by	 combining	 three-dimensional	 CNNs	 and	 LSTMs.	 However,	 these	

architectures	have	been	adopted	when	both	RGB	and	depth	data	are	combined,	and	the	

question	of	whether	RGB	sequences	alone	can	be	fed	into	these	architectures	for	action	

classification	is	left	open.	

	

2.3.2 	Action	segmentation		

Numerous	approaches	have	been	presented	to	segment	continuous	clips	from	uncropped	

videos	recordings.	Kuehne	et	al.	(175)	proposed	an	end-to-end	generative	framework	for	

video	 segmentation	 using	 the	 hidden	 Markov	 model	 for	 video	 segmentation	 and	

recognition	of	human	activities,	with	the	drawback	of	intensive	manual	labour.	Ni	et	al.	

(176)	presented	an	approach	based	on	RNNs	 to	perform	sliding	window	detection	 to	

segment	 continuous	 actions.	 The	 issue	 with	 this	 methodology	 is	 linked	 to	 the	

identification	of	peripherical	boundaries	only,	with	no	global	overview	of	the	temporal	

events.		

To	 overcome	 these	 disadvantages,	 recent	 approaches	 have	 suggested	 making	 a	

distinction	 between	 gestural	 frames,	 when	 the	 action	 is	 taking	 place,	 and	 translation	

frames	by	merging	both	shape	and	spatiotemporal	parameters.	Such	an	approach	has	

been	presented	by	Wang	(25)	(Figure	13	and	Figure	14).		

	
Figure	13:	An	example	of	continuous	gesture	sequence	made	of	transitional	and	gestural	

frames.	Reproduced	with	permission	from	(25).			

This	 approach	 also	 takes	 in	 input	 RGB-depth	 data;	 an	 application	 for	 hand	 gesture	

classification	and	segmentation	that	utilizes	RGB	data	is	yet	to	be	proven.	Furthermore,	

this	approach	utilizes	a	binary	classifier;	a	similar	approach	when	multiple	classes	are	

involved	is	yet	to	be	tested	and	evaluated.		
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Figure	 14:	 An	 example	 of	 the	 temporal	 segmentation	 results.	Reproduced	 with	

permission	from	(25).			

	

2.4 Discussion	
 
Goniometric	measures	are	widely	adopted	 in	clinic	but	have	demonstrated	high	 intra-

reader	variability.	More	accurate	marker-based	optoelectronic	motion	capture	systems	

continue	to	be	the	gold	standard	metrics	to	capture	hand	kinematics	but	are	difficult	to	

adopt	outside	lab	settings.	The	latest	studies	on	deep	learning	architecture	have	enabled	

the	capture	of	keypoints	 from	monocular	RGB	cameras.	These	markerless	approaches	

can	support	researchers	to	gain	data	from	users	in	their	natural	environments.	But	while	

the	computer-vision	community	keeps	increasing	the	accuracy	of	markerless	algorithms,	

the	 implementation	 of	 these	 models	 is	 generally	 outside	 the	 scope	 of	 classic	 hand	

biomechanics	research.		

	

In	 2019,	 Seethapathi	 et	 al.	 (177)	 suggested	 that	 deep-learning-based	 human	 pose	

tracking	algorithms	did	not	prioritise	the	parameters	that	are	important	in	the	field	of	

movement	 biomechanics.	 The	 application	 of	 markerless	 techniques	 in	 biomechanics	

settings	may	still	be	limited	due	to	occlusion,	and	a	lack	of	validated	approaches.	These	

challenges	may	be	fixed	in	various	modes.	Several	studies	have	suggested	that	a	possible	

way	 to	 mitigate	 these	 limitations	 would	 be	 to	 ponder	 the	 temporal	 continuity	 in	

movement,	 introducing	a	gesture	recognition	component	 that	would	 identify	 the	 joint	

dynamics	and	reconstruct	 the	signal	when	 tracking	 is	 lost.	Recently,	 researchers	have	
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suggested	that	looking	at	the	temporal	continuity	of	gestures	to	reduce	the	impact	of	an	

error	in	keypoint	detection	models	(160,168).	This	would	enable	automatic	recognition	

of	a	motion	path	to	enhance	markerless	tracking	precision.		

	

To	address	this	action	recognition	task,	initial	research	has	focused	on	static	hand	gesture	

analysis	(178,179).	However,	most	recent	works	have	offered	a	novel	action	recognition	

procedure	that	enlarges	previous	approaches	by	analysing	the	spatiotemporal	continuity	

of	 the	 hand	 gesture	 (160,168).	 These	 techniques	 are	 known	 as	 dynamic	 gesture	

recognition	and	can	deliver	both	classification	and	segmentation.	

	

	The	usability	of	markerless	tools	to	capture	hand	kinematics	would	also	be	a	valuable	

tool	 in	 clinical	 research	 applications.	 For	 instance,	 enhanced	 comprehension	 of	 the	

mechanics	that	dictate	the	finger	movement	dynamics	captured	on	impaired	hands	from	

their	natural	environment	could	provide	support	in	current	clinical	practice.	
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Chapter	3 Rheumatoid	

arthritis		
3.1 Background		
 
 
Several	 studies	 have	 demonstrated	 how	 recent	 technology	 advancements	 in	 pose	

estimation	 applied	 to	 impaired	 populations	 can	 transform	 health	 care	 practice	

(20,28,180).	The	increased	health	care	costs	(181),	the	lack	of	specialized	clinical	staff	

(31),	and	drives	in	private	health	care	systems	to	increase	financial	margins	(182)	are	

leading	 physicians	 to	 leave	 translational	resource-intensive	 clinical	 practices	 and	

adopt	alternative	approaches	to	deliver	care.	

	

The	rheumatology	community,	amongst	other	clinical	specializations,	has	been	adjusting	

to	this	developing	landscape,	welcoming	possibilities	that	arise	from	data-driven	digital	

clinical	 interpretation	(183).	As	rheumatoid	arthritis	(RA)	resides	at	the	foundation	of	

rheumatology	 practice,	various	improvements	 have	 been	 proposed	to	 support	 RA	

management	(47,184,185).	

	

RA	 is	 a	 long-term,	 inflammatory	 symmetric	polyarthritis	 in	which	 the	body’s	 immune	

system	mistakenly	 attacks	 the	 joints	 (186).	 It	 can	 cause	 persistent	 pain,	 damage,	 and	

long-term	disability,	 especially	 in	 the	hands	 (187).	The	 condition	usually	 starts	 in	 the	

small	joints	of	the	hands	and	later	spreads	to	involve	the	larger	joints	(188).	Therefore,	

for	the	majority	of	people	living	with	this	condition,	hands	are	often	affected	by	swelling,	

weakness,	and	restricted	mobility,	resulting	in	loss	of	function	that	can	bring	significant	

challenges,	such	as	physical	suffering	and	diminished	quality	of	life	(186).		

	

Given	 the	 degenerative	 nature	 of	 RA,	 early	 diagnosis	 is	 important	 for	 preventing	 the	

progression	of	inflammation	and	deformities,	with	gradual	joint	damage	that	can	steer	to	

mobility	 decline	 (187).	 There	 are	 several	 validated	 assessment	 methods	 used	 by	
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clinicians	to	investigate	symptoms	of	RA	(39).	Van	der	Heijde	et	al.	introduced	what	is	

nowadays	considered	the	leading	metric	to	assess	the	disease	activity	in	RA,	known	as	

the	Disease	Activity	Score	using	28	joints	(DAS-28)	(189).	

Using	DAS-28,	RA	is	monitored	through	routine	visits	at	settled	periods	(190),	usually	

occurring	every	3	to	6	months.	However,	disease	severity	and	signs	of	illness	progression	

vary	hugely	between	appointments,	and	it	has	been	evidenced	that	fixed	intervals	may	

not	 detect	 the	 crucial	 time	 points	 of	 such	 symptom	 aggravation	 (181).	 Frequent	

monitoring	 can	 open	 up	 to	 better	 disease	management,	 decreasing	 health	 care	 costs,	

while	maximizing	the	effects	of	therapies	and	reducing	disability	(48).	However,	for	RA	

frequently	in-person	consultations	attendance	is	low	(183),	which	generate	worsening	

symptoms	(34),	and	increases	health	care	costs.	

To	 overcome	 these	 limitations,	 remote	 monitoring	 tools	 have	 recently	 emerged	 as	

valuable	instruments	for	supporting	RA	management.	These	approaches	(191)	have	been	

using	patient-initiated	endpoints	to	offer	the	opportunity	to	trace	symptom	severity	in	

everyday	 settings.	 Despite	 their	 ambition,	 evidence	 suggests	 huge	 variability	 in	

engagement	with	such	remote	monitoring	solutions	due	to	the	lack	of	objectivity	when	

the	clinical	endpoints	are	traced	(183).	

In	parallel	with	these	solutions,	to	contain	disease	activity	and	decrease	hospitalizations,	

the	 National	 Institute	 for	 Health	 and	 Care	 Excellence	 (NICE)	 RA	 pathway	 (192)	

recommends	a	3-pronged	management	plan;	i)	non-pharmacological	management	(hand	

exercise	 programmes),	 ii)	 drug	 treatment	 (disease-modifying	 antirheumatic	 drugs	

(DMARDs)	 and	 rituximab)	 and	 iii)	 surgical	 treatment.	 Although	medications	 improve	

hand	symptoms,	the	range	of	motion	(ROM)	and	muscle	function	are	not	regained	(193).	

This	 is	 because	 DMARDs	 and	 biologics	 (a	 form	 of	 pharmaceutical	 treatment)	 do	 not	

reverse	muscle	wasting.	To	address	this	issue,	hand	exercise	programmes	are	a	standard	

component	of	RA	management	practice.		

Specific	 hand	 activities	 have	 been	 developed,	 demonstrating	 an	 enhancement	 in	 joint	

ROM	 for	 individuals	 with	 RA	 (194).	 These	 hand	 exercise	 programmes	 have	 been	

indicated	to	be	effective	in	the	management	of	RA;	however,	a	systematic	review	(183)	

suggested	that	patients	do	not	adhere	to	these	programmes.	The	main	reason	is	linked	to	
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those	systems	not	being	connected	with	patients’	 therapy	regime	and	disease	activity,	

and	a	lack	of	objective	outcome	tracking.		

As	hand	ROM	is	a	strong	indicator	of	disease	activity	(195,196),	and	a	crucial	component	

in	the	management	of	RA,	a	few	attempts	to	measure	hand	ROM	for	this	population	have	

emerged.	This	chapter	describes	objective	hand	tracking	methodologies	used	in	RA	and	

their	 limitations	 in	 adopting	 such	 solutions	 in	 home-based	 settings.	 Notwithstanding	

their	end	goals,	these	objective	tracking	methods	have	restrictions.	A	great	deal	of	effort	

is	required	for	both	physicians	in	evaluating	the	data,	and	RA	patients	in	discovering	how	

to	 interact	 with	 the	 system	 (197).	 Simblett	 et	 al.	 suggested	 potential	 interest	 of	 RA	

patients	in	a	monitoring	platform	that	can	easily	capture	disease	activity	and	objectively	

track	joint	ROM	during	at	home-based	exercise	programmes,	limiting	the	burden	on	both	

clinicians	and	patients	(198).		

3.1.1 Epidemiology	and	costs		

The	 National	 Audit	 Office	 estimates	 that	 approximately	 580,000	 adults	 in	 England	

currently	 have	 RA,	 with	 a	 further	 26,000	 new	 cases	 diagnosed	 each	 year	 and	

approximately	1%	of	the	UK	adult	population	affected	(188).	The	condition	affects	0.6%	

of	the	US	population	(199),	with	1.3	million	American	adults	estimated	to	be	affected	in	

2005.	By	2007,	the	number	increased	to	1.5	million	adults	with	RA	in	the	United	States	

(200).	In	Europe,	RA	has	a	prevalence	of	up	to	1.1%,	while	the	annual	incidence	varies	

between	about	20	and	50	cases	per	100,000	inhabitants	(32).	In	general,	the	prevalence	

of	RA	in	the	population	of	developed	countries	ranges	approximately	from	0.5%	to	1.1%	

(200).	Mortality	hazards	are	usually	60%	to	70%	higher	in	patients	with	RA	compared	to	

the	general	population	(201),	and	 the	disease	 is	 three	 times	more	 frequent	 in	women	

than	men	(40).	In	the	UK,	the	prevalence	of	RA	is	1.16%	in	women	and	0.44%	in	men,	

increasing	with	age	to	5%	in	those	aged	over	55	years	(202).		

The	lost	productivity	associated	with	RA	is	substantial	because	of	the	progressive	nature	

of	the	condition	(203).	Many	individuals	report	missing	work	or	choosing	not	to	work	

because	of	disease-related	disabilities	(203).	Approximately	20%	to	70%	of	individuals	

with	RA	who	were	working	at	the	inception	of	their	condition	had	to	leave	work	after	

seven	to	ten	years	because	RA	resulted	in	disability	(203).	As	a	consequence,	in	developed	
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countries	the	indirect	cost	of	RA	has	been	estimated	to	be	nearly	three	times	higher	than	

the	cost	of	treating	the	disease	(204).		

Based	on	a	report	by	the	National	Rheumatoid	Arthritis	Society	in	2010,	the	overall	cost	

of	 RA	 to	 the	 UK	 economy	 was	 almost	 £8	 billion	 per	 annum,	 with	 NHS	 expenditure	

totalling	 approximately	 £700	 million	 (205).	 In	 parallel,	 based	 on	 2005	 U.S.	

Medicare/Medicaid	 data,	 the	 total	 annual	 societal	 costs	 of	 RA	 (direct,	 indirect,	 and	

intangible)	 reached	 $39.2	 billion	 (206).	 These	 costs	 included	direct	 ($8.4	 billion)	 and	

indirect	($10.9	billion)	costs,	intangible	costs	due	to	quality-of-life	deterioration	($10.3	

billion),	and	increased	costs	due	to	premature	mortality	($9.6	billion)	(206).	

3.1.2 	Aetiology		
 
The	 detailed	 aetiology	 of	 RA	 is	 unknown,	 but	 advances	 in	 molecular	 research	 have	

attributed	50%	of	 the	risk	of	developing	RA	 to	genetic	 factors	 (207).	The	onset	of	 the	

condition	starts	when	the	T-cells	of	the	immune	system	infiltrate	the	connective	tissue	

that	 lines	the	 inside	of	 the	 joint	capsule,	called	the	synovium,	 leading	to	synovial	 joint	

damage	that	results	in	hypertrophy	(enlargement	of	the	tissue)	and	inflammation	of	the	

local	area	(208).	The	joint	damage	occurs	because	of	the	inflamed	synovial	membrane,	

also	known	as	erosive	synovitis.	In	particular,	if	the	inflammation	goes	unchecked,	it	can	

damage	the	cartilage	and,	in	some	cases,	can	have	extraarticular	involvement	(209).		

	

Over	time,	this	loss	of	cartilage	makes	the	joint	spacing	between	bones	become	smaller.	

As	a	consequence,	the	joints	affected	can	become	unstable,	painful,	and	lose	their	mobility	

(210).	The	resulting	inflammation	(Figure	15),	causes	the	inside	of	the	joints	to	thicken,	

leading	to	eventual	degenerative	joint	destruction	(39).	
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Figure	 15:	 Rheumatoid	 arthritis	 joint	 breakdown.	 Reproduced	 with	 permission	 from	

(61).			
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Inflammation,	therefore,	causes	the	joints	to	degenerate,	which	leads	to	progressive	joint	

damage	that	cannot	be	reversed	(39).	Deformities	arise	because	of	joint	cartilage	being	

eroded,	 which	 can	 then	 extend	 into	 the	 bone	 cortex.	 Using	 body	 compensatory	

mechanisms	may	 also	 result	 in	 high	 joint	 forces	 (211)	 generating	 deformities.	In	 the	

hand,	deformities	can	reach	all	articulations,	causing	partial	dislocation	of	a	 joint,	also	

known	 as	 subluxation	 (212),	 and	 deformities	 in	 the	 metacarpophalangeal	 (MCP),	

interphalangeal	(IP)	joints,	and	the	wrist	(40).		

	

The	common	forms	of	deformities	in	RA	occur	due	to	volar	subluxation	of	the	proximal	

IP	 joints	 and	 ulnar	 deviation	 at	 the	MCP	 joints	 (213)	 or	 swan-neck	 and	 boutonnière	

deformities	for	instability	at	the	MCP	and	IP	joints	of	the	fingers	and	thumb,	respectively	

(214)	(Figure	16).	These	deformities	can	affect	some	or	all	the	joints	of	the	hand	(Figure	

17).		

	

 
	

Figure	16:	 Illustration	of	hand	deformities	due	to	rheumatoid	arthritis	showing	swan-

neck	deformity	and	boutonnière	 fingers	deformity.	Reproduced	with	permission	 from	

(215).		
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(A)																																																																								(B)	

Figure	 17:	 (A)	 Two	 hands	 showing	 bilateral	 metacarpophalangeal	 (MCP)	 synovitis	

evolving	to	boutonnière	deformity.	(B)	Two	hands	illustrating	bilateral	ulnar	deviation,	

swan-neck	 deformity,	 fully	 developed	 boutonnière	 deformity.	 Reproduced	 with	

permission	from	(216).		

 
 
3.1.3 	Clinical	assessment		
 

In 1969	Ansell	presented	a	study,	proposing	how	a	standard	hand	examination	should	be	

conducted	 on	 individuals	 with	 RA	 (217).	 In	 this	 paper	 it	 was	 suggested	 that	 the	

examination	of	 the	hand	should	start	at	 the	wrist,	 to	 investigate	whether	 it	 is	 fixed	 in	

palmar	flexion.	Interrogation	should	include	the	site	of	pain,	the	presence	of	stiffness	and	

its	duration,	symptoms	of	altered	sensation,	and	which	is	the	dominant	hand.	Then,	each	

of	the	MCP,	PIP,	and	DIP	joints	should	be	examined	for	swelling,	fluid	accumulation,	and	

bony	enlargement.	According	to	Ansell,	the	range	of	movement	at	each	joint	should	then	

be	 recorded,	 together	with	 any	 deformity.	 The	 limitation	 of	 this	 assessment	 is	 that	 it	

relies	solely	on	visual	examination,	which	is	linked	to	the	expertise	of	the	assessor	(218).	

In	 1987,	 to	 remove	 the	 hierarchy	 of	 certainty	 around	 diagnosis,	 the	 American	

Rheumatism	 Association	 developed	 a	 table	 that	 outlined	 the	 seven	major	 criteria	 for	

classifying	RA	around	diagnosis	(219)	(Table	1).	
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Table	 1:	 1987	 American	 College	 of	 Rheumatology	 Criteria	 for	 rheumatoid	 arthritis	

classification.	Table	reproduced	with	permission	from	(219).	

 
Criterion	 Definition	

Morning	Stiffness	

	

Morning	 stiffness	 in	 and	 around	 the	 joints,	

lasting	 at	 least	 1	 hour	 before	 maximal	

improvement	

	

Arthritis	of	3	or	more	joint	areas	

	

At	 least	 3	 joint	 areas	 simultaneously	have	had	

soft	 tissue	 swelling	 or	 fluid	 (not	 bony	

overgrowth	alone)	observed	by	a	physician.	The	

14	 possible	 areas	 are	 right	 or	 left	 PIP,	 MCP,	

wrist,	elbow,	knee,	ankle,	and	MTP	joints	

	

Arthritis	of	hand	joints	

	

At	 least	1	area	swollen	(as	defined	above)	 in	a	

wrist,	MCP,	or	PIP	joint	

	

Symmetric	arthritis	 Simultaneous	 involvement	 of	 the	 same	 joint	

areas	(as	defined	in	2)	on	both	sides	of	the	body	

(bilateral	involvement	of	PIPs,	MCPs,	or	MTPs	is	

acceptable	without	absolute	symmetry)	

	

Rheumatoid	nodules	 Subcutaneous	nodules,	over	bony	prominences,	

or	 extensor	 surfaces,	 or	 in	 juxta-articular	

regions	(near	a	joint),	observed	by	a	physician	

	

Serum	rheumatoid	 Demonstration	of	 abnormal	 amounts	of	 serum	

rheumatoid	factor	by	any	method	for	which	the	

result	has	been	positive	

Radiographic	changes	

	

Radiographic	 changes	 typical	 of	 rheumatoid	

arthritis	 on	 posteroanterior	 hand	 and	 wrist	

radiographs,	 which	 must	 include	 erosions	 or	

unequivocal	bony	decalcification	localized	in	or	

most	 marked	 adjacent	 to	 the	 involved	 joints	

(osteoarthritis	changes	alone	do	not	qualify)	
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A	range	of	studies	over	the	last	three	decades	has	looked	at	conventional	radiographs	of	

the	hands	and	feet	to	assess	structural	joint	damage	due	to	RA	(220).	These	radiographic	

measures	have	been	adopted	due	to	their	ability	to	provide	an	objective	marker	of	disease	

activity	 and	assess	 any	 improvements	or	 failures	of	 treatments.	However,	 it	 has	been	

demonstrated	in	several	studies	that	these	techniques	are	not	sensitive	enough	to	detect	

changes	early	in	the	disease	process	(221).	This	is	because	erosions	may	only	become	

visible	up	to	two	years	after	the	onset	of	disease,	and	soft	tissue	involvement	may	not	be	

detected	at	all	(222).	Considering	these	limitations,	alternative	methodologies	that	can	

provide	a	detailed	and	early	quantification	and	detection	of	disease	activity	have	been	

investigated.		

	

Currently,	 RA	 patients	 are	 assessed	 and	 examined	 in	 outpatient	 clinics	 following	 the	

treat-to-target	 guidelines	 provided	 by	 the	 European	 League	 Against	 Rheumatism	

(EULAR)	 (190).	 The	 guidelines	 state	 that	 the	 DAS-28	 should	 be	 captured	 and	 stored	

frequently,	every	month	for	patients	with	high/moderate	disease	activity,	and	every	3-6	

months	for	patients	with	low	disease	activity	scores	or	who	are	in	remission.	The	DAS-28	

involves	four	domains	(223)	including	a	clinician-reported	swollen	joint	count	(SJC),	a	

clinician-reported	 tender	 joint	 count	 (TJC),	 a	 global	 measure	 of	 symptoms,	 and	 a	

biomarker	of	inflammation.		

	

Joint	 tenderness	 is	 the	 presence	 of	 pain	 in	 a	 joint	 at	 rest	 with	 pressure	 or	 on	 the	

movement	of	the	joint	(224).	To	obtain	the	TJC,	the	examiner	documents	which	joints	the	

patient	indicates	are	painful	on	palpation	with	enough	pressure	to	blanch	the	nail	bed	of	

the	examiners	 thumb	and	 index	 fingers	 (225).	Joint	swelling	 is	 recorded	as	soft	 tissue	

swelling	that	is	detectable	along	the	joint	margins,	when	a	synovial	effusion	is	present	

(224).	 Fluctuation,	 defined	 as	 significant	 disease	 variation	 exceeding	 the	 standard	

deviation	of	the	previous	scores	(226),	is	a	characteristic	feature	of	swollen	joints.	Large	

fluctuation	influences	the	range	of	joint	movement,	particularly	in	the	small	joints	of	the	

hand	(224).	To	assess	the	SJC,	the	examiner	documents	which	joints	have	palpable	soft	

tissue	swelling,	excluding	joints	affected	only	by	deformity	or	bony	hypertrophy	(225).		

	

Establishing	joint	swelling	is	considered	in	literature	(227)	to	be	the	only	objective	and	

the	most	crucial	component	of	 the	DAS-28	 for	 two	reasons:	 (1)	 joint	swelling	 is	a	key	
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predictor	of	future	damage	within	a	joint	and	(2)	joint	swelling	is	linked	to	joint	range	of	

movement.	 It	 is	 therefore	 essential	 that	 the	 swollen	 joint	 component	 of	 the	 DAS	 is	

accurately	assessed.	Excessive	swelling	can	cause	a	reduced	joint	ROM.	To	address	this	

issue	 several	 techniques	 have	 been	proposed	 to	 objectively	measure	 joint	ROMs.	 The	

introduction	of	objective	measures	of	disease	activity	presents	a	landmark	change	in	the	

management	 of	 RA,	 and	 it	 is	 now	 routinely	 measured	 in	 clinic	 visits	 (228)	 using	

goniometric	 assessment,	 to	 assess	 ROM	 in	 heathy	 and	 swollen	 joints.	 The	 clinician	

reported	SJC	and	TJC	considers	28	joints,	including	the	MCPs	and	PIPs	of	the	fingers	and	

the	thumbs,	IPs	of	the	thumbs,	wrists,	elbows,	shoulders,	and	knees	(Figure	18).	

	

Figure	18:	Illustration	of	tender	and	swollen	joints	counts	of	the	Disease	Activity	Score	

28	(DAS-28)	representing	a	fictitious	case.	Reproduced	with	permission	from	(229).	 
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The	 other	 two	 components	 of	 the	 DAS-28	 are	 a	 global	 measure	 of	 symptoms	 and	 a	

biomarker	of	inflammation.	The	global	measure	of	symptoms	is	tracked	using	a	patient’s	

global	health	assessment	(GH),	which	 involves	pain	evaluation	using	a	100	mm	visual	

analogue	scale	with	0 = best,	100 = worst	(228).	A	biomarker	of	 inflammation	estimates	

the	 blood	 laboratory	 parameters	 of	 an	 acute	 phase	 reactant,	 such	 as	 erythrocyte	

sedimentation	rate.		

	

Once	all	 the	parameters	are	obtained,	 the	DAS-28	calculation	reports	a	score	between	

zero	and	nine,	with	scores	below	2.6	reflecting	excellent	disease	control,	while	scores	

>5.1	 indicate	severe	disease	activity.	The	four	 items,	 including	the	TJC	measure	(TJC	∈

[0, … , 28]),	the	SJC	measure	(SJC	∈ [0,… , 28])	and	the	global	health	(GH)	pain	measure	

(as	a	visual	analogue	score	in	mm	GH	∈ [0,… , 100]),	combined	with	the	c-reactive	protein	

(CRP)	 measure	 (CRP	 in	 mg/L	 ∈ [0,… , 300])	 in	 equation	 3.1	 or	 with	 the	 Erythrocyte	

Sedimentation	 Rate	 (ESR)	 measure	 (ESR	 in	 mm/hr	 ∈ [1,… , 300]	 )	 in	 equation	 3.2	

obtained	from	the	blood	tests,	are	entered	into	a	formula	and	are	calculated	as	follows	to	

obtain	a	dimensionless	DAS	score:	

	

𝐷𝐴𝑆28"#$ = 0.56o𝑇𝐽𝐶28 + 0.28o𝑆𝐽𝐶28

+	

0.014𝐺𝐻+0.36		ln(𝐶𝑅𝑃 + 1) + 0.96	

	

	

(3.1)	
	

𝐷𝐴𝑆28%&# = 0.56o𝑇𝐽𝐶28 + 0.28o𝑆𝐽𝐶28

+	

0.014𝐺𝐻+0.70	ln(𝐸𝑆𝑅)	

	

(3.2)	
	

Equations	3.1	and	3.2	also	include	the	Ritchie	articular	index	(230),	and	cut-off	values	of	

low	 and	 high	 levels	 of	 disease	 activity	 derived	 and	 published	 (231).	 Finally,	 the	

appropriate	cut	off	point	for	remission,	low,	high	and	very	high	disease	activity	has	been	

measured	 (231),	 and	was	most	 recently	 validated	 statistically	 (232);	 for	 instance,	 the	

remission	cut-off	value	over	a	longitudinal	study	was	reported	to	be	2.6.	
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3.1.4 	Limitations		
 
Multiple	clinical	trials	(233)	over	three	decades	have	shown	that	the	best	outcomes	are	

achieved	when	patients	are	treated	to	obtain	the	target	of	extremely	low	disease	activity.	

To	succeed	in	this,	RA	patients	need	frequent	monitoring.	The	best	outcomes	have	been	

observed	 in	 studies	 that	 reviewed	 disease	 activity	 monthly	 (234,235),	 titrating	

medication	accordingly.	Review	appointments	should	take	place	a	month	after	treatment	

to	enable	patients	to	be	transferred	onto	alternative	treatment	pathways.	However,	the	

2009	 National	 Audit	 Report	 revealed	 that	 only	 10%	 of	 RA	 patients	 were	 receiving	

adequate	follow-ups	(236).		

Another	problem	is	the	adoption	of	the	DAS-28	in	rheumatology	practice.	The	DAS-28	

score	 has	 demonstrated	 great	 clinical	 value	 in	 evaluating,	 monitoring	 and	 treating	

individuals	with	RA	 (218).	However,	only	a	 small	percentage	of	 rheumatologists	have	

incorporated	these	tools	into	their	standard,	everyday	clinical	practice	(237).	This	is	due	

to	 the	 time	required	 to	administer	a	questionnaire,	assess	 the	patient’s	 joint	pain	and	

swelling,	 score	 the	 results	 and	 record	 the	 information	 in	 a	 readily	 retrievable	 format	

(238).	

	

Individuals	 living	with	RA	undergo	 frequent	 symptom	 fluctuations,	with	 an	 increased	

level	 of	 joint	 inflammation	 in	 between	 clinical	 appointments	 and	 exacerbated	 illness	

signs,	 known	 as	 flares	 (239).	 These	 flares	 are	 intense	 episodes	 of	 the	 disease	

manifestation	at	an	unpredicted	point	in	time.	However,	clinical	consultations	happen	at	

fixed	 points	 in	 time.	 Furthermore,	 these	 consultations	 rely	 upon	 the	 history	 of	 flare	

episodes,	which	is	subject	to	recall	bias	and	difficulty	in	summarizing	symptom	intensity	

objectively.		

	

RA	treatment	using	medications	that	suppress	the	immune	system	are	titrated	according	

to	 disease	 severity.	 Treatments	 include	 painkillers,	 non-steroidal	 anti-inflammatory	

drugs,	steroids,	and	disease-modifying	drugs	(192).	Each	patient	typically	undergoes	an	

evaluation	of	each	medication	class	or	combination	of	medications	starting	with	the	least	

aggressive	 and	 then	 escalated	 upwards	 until	 the	 disease	 becomes	 manageable	 (low	

disease	activity/symptoms)	or	ideally	in	remission,	i.e.,	treat-to-target	(233).	However,	
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even	 then,	 disease	 flare-ups	 often	 occur;	 these	 are	 poorly	 documented	 and	 harm	 the	

therapy	regime,	which	can	cause	further	pain	and	distress.	

3.2 Alternative	tools	to	capture	clinical	endpoints	
	
3.2.1 	Smartphone-based	technologies		
 
Remote	measurement	 tools	have	appeared	as	valuable	 instruments	 to	promote	health	

management,	and	 there	are	 increasing	 indications	 to	confirm	 the	cost-effectiveness	of	

such	interventions.	They	represent	a	fast-growing	field	for	the	provision	of	care.		

	

There	has	been	a	growing	appetite	to	adopt	such	remote	solutions	into	the	clinical	care	

of	RA	to	provide	a	device	for	patients	to	be	more	actively	connected	in	their	disease.	Many	

techniques	 have	 emerged	 to	 increase	 the	 usability	 of	 the	 DAS-28,	 using	 remote	

monitoring.	Amongst	the	different	components	of	the	DAS-28	score,	biomarker	levels	can	

easily	 be	 obtained	 using	 commercially	 available	 home	CRP	 testing	 kits	 (43).	 In	 2007,	

Figueroa	et	 al.	 demonstrated	 that,	while	 the	SJC	of	patients	 and	physicians	 correlated	

poorly,	 a	 patient’s	 self-assessment	 of	 joint	 tenderness	 is	 reliable	 with	 physician	

recognition	 (238).	 Several	 studies	 have	 proposed	 computerized	 questionnaires	 to	

capture	traditional	patient	symptom	severity	scores,	allowing	the	data	from	all	previous	

visits	to	be	readily	available	using	mobile	applications.		

	

A	review	on	the	mobile	applications	for	the	management	of	RA	has	identified	a	total	of	19	

tools	able	to	run	on	Android	or	iPhone	Operating	Systems	(iOS)	for	symptom	assessments	

in	RA	(191).	In	this	systematic	review,	Grainger	et	al.	illustrated	that	several	applications	

did	not	adhere	 to	 standard	guidelines	 for	how	 to	capture	disease	activity	and	did	not	

involve	 clinical	 experts	 during	 the	 development	 of	 these	 tools,	 leading	 to	 uncertain	

outcomes.	However,	it	has	also	been	shown	that	when	clinical	teams	are	involved	in	the	

co-design	of	mobile	applications,	these	solutions	can	have	a	positive	impact	on	the	health	

outcomes	of	patients	with	RA	(183).	

	

An	 example	 of	 a	mobile	 technology	 co-designed	with	 clinical	 team	 is	 the	 approach	 of	

Austin	 et	 al.	 (42).	 They	 conducted	 a	 study	 named	Remote	Monitoring	 of	 Rheumatoid	

Arthritis	(REMORA).	During	their	research,	they	integrated	electronic	health	records	to	
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detect	 daily	 symptoms,	 including	 flares.	 The	 objective	 of	 this	 investigation	 was	 to	

demonstrate	the	acceptability	of	reporting	symptoms	using	a	smartphone	app	and	found	

that	this	approach	was	adopted	confidently	by	people	with	RA	and	their	clinical	team,	

with	 a	 high	 degree	 of	 engagement.	 Nevertheless,	 visible	 signs	 of	 disease	 progression,	

which	are	considered	fundamental	to	assess	the	disease	activity	(240),	were	still	lacking.	

In	 another	 investigation,	 the	 disease	 activity	 was	 captured	 collecting	 both	 objective	

kinematic	 data,	 using	 an	 accelerometer,	 and	 symptom	 reporting,	 such	 as	 patient-

reported	questionnaires	and	digitally	 recorded	 joint	 counts	 (43).	As	 this	 solution	also	

contained	data	on	the	range	joint	ROM,	the	aggregate	of	these	two	types	of	data	could	

predict	in-clinic	RA	activity.	However,	this	level	of	input	for	remote	monitoring	solutions	

is	unusual.		

	

Figueroa	et	al.	established	the	importance	of	a	mechanism	to	remotely	assess	the	ROM,	

as	 it	 is	 linked	 to	 how	 many	 joints	 are	 swollen	 (241).	 The	 assessment	 of	 mobility,	

particularly	hand	mobility,	can	also	potentially	serve	as	an	early	indicator	of	change	in	

disease	 activity	 and	 thus	 allow	 timely	 adaptation	 of	 patient	management	 procedures	

(41).	 This	 early	 quantification	 and	 detection	 of	 disease	 activity	would	 be	 particularly	

important	to	allow	personalized	treatment	regimens	in	remote	monitoring	applications	

and	 amend	 subjective	 patient-reported	 outcome	 measures	 (234).	 Objective	

quantification	 can	provide	an	 important	 step	 towards	understanding	hand	movement	

disorders	and	evaluating	 the	effect	of	possible	 interventions	(242).	However,	multiple	

reviews	have	suggested	a	lack	of	objective	data	in	the	apps	available	(31,191,243,244).		

3.2.2 	Physical-therapy	management	
 
It	 has	 been	 estimated	 that	 the	 application	 of	 pharmacological	 treatment	 in	 RA	 raises	

direct	 healthcare	 costs	 by	 300%	 (245),	 while	 cost-efficiency	 remains	 questionable.	

Moreover,	muscle	 strength	 and	 joint	ROM	are	 not	 immediately	 increased	when	using	

drug	treatment	(193).	Amongst	the	non-pharmacological	management	approaches,	hand	

exercise	programmes	are	low-cost	approaches	that	have	proved	to	enhance	joint	mobility	

(195),	and	may	even	enhance	the	effects	of	medication	(246).	

	

Several	approaches	have	been	proposed	for	exercises	to	improve	hand	mobility	for	RA	

(184,195,247).	Various	types	of	exercise	are	employed	to	address	different	aspects	of	the	
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RA	patient	experience,	with	the	majority	reporting	beneficial	responses	(194).	Hammond	

et	 al.	 (193)	 evaluated	 nineteen	 trials	 to	 assess	 the	 effectiveness	 of	 functional	 hand	

exercise	programmes	in	RA.	They	used	the	PEDro	scoring	system	(248),	consisting	of	11	

criteria	to	determine	the	validity	of	a	study.	The	top-scoring	study,	introduced	a	generic	

upper	 limb	programme,	named	the	Education,	Self-Management,	and	Upper	Extremity	

Exercise	 (EXTRA),	 for	 people	 with	 RA	 (249).	 The	 study	 with	 the	 next	 greatest	 score	

developed	a	hand	and	wrist	specific	exercise	programme	for	individuals	with	RA,	named	

the	iSARAH	programme	(246).	The	iSARAH	hand	exercise	intervention	consisted	of	seven	

mobility	 exercises	 and	 four	 strength	 exercises	 against	 resistance	 (Figure	 19).	 The	

mobility	exercises	included	MCP	flexion/extension,	tendon	gliding,	finger	radial	walking,	

wrist	circumduction,	finger	abduction/addition,	hand	behind	the	head,	hand	behind	the	

back.	 The	 strength	 exercises	 included	 eccentric	 wrist	 extension,	 gross	 grip,	 finger	

adduction,	 and	 pinch	 grip.	 The	 incorporation	 of	 these	 hand	 exercise	 programmes	 in	

mobile	applications	has	been	explored	in	different	studies	(250),	merging	hand	exercises	

and	 qualitatively	 questionnaire	 to	 support	 self-management	 interventions,	 while	

enhancing	both	adherence	and	long-term	effectiveness.	

	
Figure	 19:	 The	 Strengthening	 and	 Stretching	 for	 Rheumatoid	 Arthritis	 of	 the	 Hand	

exercise	programme.	Reproduced	with	permission	from	(251).		
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A	systematic	review	of	eight	studies	on	hand	exercises	for	RA	published	between	2000	

and	2014	concluded	that	remote	hand	exercises	improve	hand	ROM	(243).	As	the	range	

of	movement	 is	 directly	 linked	 to	 the	 disease	 activity	 score,	 it	 is	 important	 to	 assess	

objectively	the	mobility	range	of	RA	individuals	when	these	techniques	are	embraced	to	

provide	 a	 more	 targeted	 intervention.	 As	 result,	 disease	 activity	 scores	 when	 hand	

exercises	are	adopted,	have	demonstrated	significant	improvements	in	the	short	term	(at	

2.5	(249),	3	(252),	and	4	(246)	months).		

Despite	their	purpose,	research	suggests	large	variability	when	RA	patients	engaged	with	

such	 remote	 solutions	 with	 low	 (11%)	 levels	 of	 adherence	 (183).	 In	 several	

investigations	 this	 was	 linked	 to	 the	 difficulty	 in	 fulfilling	 a	 qualitative	 survey	

(183,253,254),	but	mostly	it	was	reported	that	individuals	perceived	low	clinical	value	as	

the	data	were	not	objective	and	not	connected	with	their	 illness	 intensity	and	disease	

activity	(198).	Moreover,	studies	have	demonstrated	that	these	programmes	demand	a	

high	effort	for	the	sufferers	and	the	health	care	team	involved	(195,255).	However,	when	

patients	are	given	feedback	(197),	or	as	soon	as	the	data	are	linked	with	the	clinical	team	

to	 also	 consider	 their	 therapy	 regime	 (256),	 adherence	 to	 these	 interventions	 can	 be	

improved	(256).		

3.2.3 	Marker-based	objective	technology-based	assessments	

Clinicians	and	researchers	have	acknowledged	the	importance	of	objective	measures	of	

hand	mobility	 to	benefit	RA	assessment	(39).	Smolen	et	al.	 (257)	also	recognized	that	

physicians	can	reliably	evaluate	the	condition	by	monitoring	and	recording	hand	motion	

daily.	Similarly,	Majithia	and	Geraci	(258)	discussed	how	it	is	vital	to	diagnose	RA	at	early	

stages	 to	 prevent	 the	development	 of	 small	 joint	 erosion.	 To	 address	 the	need	 for	 an	

objective	component	that	could	track	remotely	the	range	of	movement	from	RA	patients	

a	few	techniques	are	presented.		

Goniometry	has	shown	short-term	efficacy	of	the	treatment	of	synovitis	in	RA	(259),	and	

improved	treatment	interventions	and	enhanced	quality	of	life	scoring	(260)	when	used	

in	 combination	 with	 closed	 monitoring	 to	 deliver	 targeted	 treatment	 interventions.	

However,	 the	 process	 is	 manual	 and	 demands	 a	 qualified	 therapist,	 which	 makes	 it	

repetitive	 and	 cumbersome.	 Furthermore,	 as	 discussed	 in	 Chapter	 2,	 the	 goniometric	
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assessment	presents	 reliability	 concerns	due	 to	 inter	and	 intra-reader	 inconsistencies	

(120).	

	

Marker-based	optoelectronic	motion	 capture	 technology	has	 also	been	used	 to	obtain	

accurate	measurements	of	joint	mobility	for	this	population	(261,262).	These	methods	

can	correctly	assess	the	joint	ROM	against	values	of	a	reference	(healthy)	population	to	

determine	the	extent	of	disability	(263).	One	study	reported	mean	reductions	of	up	to	

17%	in	hand	ROM	in	the	early	stages	of	the	disease	(i.e.	within	7–12	months	of	diagnosis)	

compared	with	age-	and	gender-matched	healthy	individuals	(264).	A	study	reported	that	

RA	patients	had	finger	ROM	deficits	of	17-28%	after	two	to	four	years,	compared	with	

healthy	volunteers,	rising	to	35-49%	after	eight	years	(265).	The	most	widely	accepted	

standard	values	that	have	been	used	as	an	indication	of	disease	activity	describe	a	loss	of	

mobility	 of	 20-30%	 on	 average	 for	 RA	 patients.	 Epps	 et	 al.	 (266)	 suggested	 the	

implementation	of	a	global	 joint	 range	of	movement	score	 to	catch	 the	significance	of	

hand	movements	in	RA.	The	results	of	the	ROM	for	a	healthy	population	compared	to	an	

RA	population	for	finger	joint	movement	are	reported	in	Table	2.		

	
Table	2:	The	metacarpophalangeal	(MCP)	joint,	proximal	(PIP)	joint,	and	interphalangeal	

(IP)	joint	ranges	of	motion	(ROM)	for	healthy	and	rheumatoid	arthritis	(RA)	participants.	

 
Joint	 Finger	 Healthy	ROM		 RA	ROM	(flexion/abduction)	

MCP	 Thumb	 0°	to	55°	(267)	 below	25°(268)	

	 Index	 0°	to	90°	(267)	 below	55°	(268)	

	 Medium	 0°	to	90°	(267)	 below	60°	(268)	

	 Ring	 0°	to	90°	(267)	 below	40°	(268)	

	 Little		 0°	to	90°	(267)	 below	50°	(268)	

PIP	 Thumb	 0°	to	80°	(267)	 below	60°(268)	

	 Index	 0°	to	100°	(267)	 below	40°(268)	

	 Middle	 0°	to	100°	(267)	 below	40°(268)	

	 Ring	 0°	to	100°	(267)	 below	40°	(268)	

	 Little	 0°	to	100°	(267)	 below	40°	(268)	

Finger	Intersects	(web-space)	 25°	to	50°	(267)	 below	20°	(268)	
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The	problem	with	optoelectronic	systems,	as	discussed	in	Chapter	2,	is	the	difficulty	in	

adopting	 them	outside	 laboratory	 settings.	Therefore,	over	 the	past	 few	years	 several	

markerless	techniques	have	been	tested	to	capture	clinical	endpoints	from	uncontrolled	

environments.	

	

3.2.4 	Markerless	assessments	

As	discussed	in	Chapter	2,	joint	ROM	may	also	be	assessed	using	digital	photogrammetry.	

A	 preliminary	 approach	 to	 quantitatively	 measure	 rheumatic	 hand	 ROM	 from	

photographs	was	 proposed	 by	Highton	 et	 al.	 (269)	 in	 1996.	 In	 their	work,	 they	 used	

images	of	hands	illustrating	which	anatomical	features	should	be	used	(Figure	20).	

	
Figure	 20:	 Images	 of	 dorsal	 and	 lateral	 view	 of	 closed,	 spread,	 and	 open	 hand	 of	 the	

twelve	measures	used	by	Highton	et	al.	to	assess	the	rheumatic	hand.	Reproduced	with	

permission	from	(269).		

 
Although	 this	 method	 illustrates	 clear	 parameters	 to	 look	 at	 when	 assessing	 a	

rheumatoid	 hand,	 Meals	 et	 al.	 (270)	 demonstrated	 that	 digital	 photogrammetry	 has	

limited	effectiveness	compared	to	goniometric	assessment,	which	in	itself	has	shown	vast	

inter-rater	variability.	

	

To	address	the	need	for	more	accurate	approaches	to	measurement,	sensors	and	motion	

sensing	 devices	 have	 been	 explored.	 Hamy	 et	 al.	 (43)	 presented	 an	 objective	way	 to	

capture	motion	parameters	using	gyroscopes	and	accelerometers	in	iPhones.	While	their	

study	could	only	be	used	to	assess	wrist	mobility,	these	investigations	also	suggested	the	

need	for	an	objective,	more	patient-centric	digital	endpoints	data	collection	to	track	the	

progress	of	RA.		
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Similarly,	 Lima	 et	 al.	 (271)	 used	 a	 Leap	Motion	 Controller™	 sensor	 to	 estimate	 hand	

angles;	however,	 they	got	high	errors	when	 the	 two	methods	were	 compared.	This	 is	

emphasised	by	the	recent	work	from	Ganguly	et	al.	(272).	They	presented	a	comparison	

between	the	gold-standard	optoelectronic	motion	capture	system	and	the	Leap	Motion	

Controller™,	suggesting	that	the	Leap	Motion	is	not	suitable	for	hand	motion	capture	in	

clinical	settings.	

	

Most	 recently,	 Phutane	 et	 al.	 (41)	 presented	 a	 study	 to	monitor	 hand	motions	 in	 RA	

patients	using	markerless	radar	technology.	The	study	illustrated	the	potential	 for	the	

development	of	a	markerless	recording	technique	that	can	support	the	characterization	

of	hand	movement,	showing	that	the	system	could	be	used	to	acquire	measurements	from	

a	variety	of	movements	observed	in	activities	of	daily	living.	However,	the	system	is	not	

scalable	in	a	home-based	setting	and	requires	a	high	level	of	human	feature	manipulation.	

	

In	 recent	 years,	 the	 development	 of	 deep	 learning	 algorithms	 has	 led	 to	 significant	

advances	in	video-based	markerless	hand	tracking,	as	discussed	in	Chapter	2.	Some	of	

these	approaches	have	been	extended	to	objectively	track	RA.	Cejnog	et	al.	presented	a	

framework	for	automatic	hand	ROM	evaluation	of	RA	patients	using	an	Intel	RealSense®	

SR300	depth	sensor	(40).	They	used	a	Convolutional	Neural	Network	(CNN)	named	Pose-

REN	 (273)	 to	 estimate	 the	 21	 points	 of	 reference.	 The	 flexion/extension	 angles	were	

obtained	by	extracting	the	vectors	between	the	adjacent	joints	for	the	MCP,	PIP	and	DIP,	

while	for	abduction/adduction	the	opening	angle	was	computed	as	the	angle	between	the	

midpoint	of	the	MCP	joints	of	both	fingers	and	each	PIP	joint.	This	study	demonstrated	

that	 hands	 with	 RA	 could	 be	 automatically	 discriminated	 from	 those	 of	 healthy	

participants.	The	angles	at	the	joints	could	be	used	as	an	indication	of	current	movement	

capabilities	from	a	simple	movement	cycle	and	this	was	enough	to	distinguish	RA	patients	

from	the	control	group.		

	

Even	 if	 the	 solution	 suggested	 by	 Cejnog	 et	 al.	 is	 novel	 and	 more	 scalable	 than	 a	

laboratory-based	solution,	depth	cameras	still	have	several	limitations	when	adopted	in	

home-based	 settings	 (e.g.,	 ambient	 lightening	 saturating	 the	 sensor),	 as	 discussed	 in	

Chapter	 2.	 All	 the	 described	 technologies,	 represent	 an	 effective	 yet	 limited	 way	 of	
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capturing	 clinical	 endpoints	objectively.	However,	 they	 still	 require	highly	 engineered	

and	customised	features	to	be	adopted	in	a	home-based	setting.			

	

3.3 	Discussion		
 

Movement	dysfunctions	have	been	often	 reported	 in	RA	patients	 (195).	The	 impaired	

status	of	RA	patients	can	be	explained	by	 the	degradation	of	 the	 joints,	which	creates	

swelling	that	results	in	a	decreased	joint	range	of	movement,	as	reported	in	the	EULAR	

recommendations	for	the	management	of	RA	(190),	particularly	in	the	small	joints	of	the	

hands	(188).	There	is	a	need	for	embracing	novel	methodologies	to	support	the	diagnosis	

and	management	of	RA.	By	doing	so,	remote	monitoring	apps,	such	as	those	discussed	in	

the	systematic	review	by	Grainger	et	al.	(191),	play	an	important	role,	but	lack	objectivity.	

	

Since	 the	 hand	 is	 a	 good	 indicator	 of	 disease	 activity	 and	 is	 the	 part	 of	 the	 body	

predominantly	affected	by	this	autoimmune	disease,	manifold	interventions	have	been	

designed	to	maintain	and	improve	mobility	with	hand	exercise	programmes.	To	reach	the	

integration	of	a	system	that	can	remotely	and	objectively	support	the	management	of	RA,	

some	 techniques	 have	 been	 presented	 (40,41,43),	 but	 demand	 delicately	 adjusted	

parameters.		

	

The	 field	 of	 remote	 management	 of	 RA	 continues	 to	 strive	 to	 provide	 a	 better	 and	

optimized	 treatment	 decision.	 The	 new	 era	 of	markerless	 hand	 pose	 estimation	 from	

monocular	RGB	cameras	has	demonstrated	great	improvements	in	other	clinical	domains	

and	can	be	an	opportunity	to	reconstruct	remote	management	strategies	for	RA.	
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Chapter	4 Comparison	of	
contact	and	non-contact	
measures	to	track	hand	
kinematics	in	healthy	
participants 

 

4.1 Introduction		
 

Optical	 marker-based	 motion	 tracking	 systems	 have	 been	 used	 to	 measure	 motion	

parameters	and	are	categorised	based	upon	their	working	principle,	dividing	them	into	

marker-based	and	markerless	(65).	Marker-based	motion	capture	systems	work	through	

active	 and	 passive	 tracking,	 for	 instance,	 by	 attaching	 reflective	markers	while	 using	

infrared	(IR)	cameras	to	record	motions	(55).	Passive	optical	marker-based	settings	are	

considered	the	gold	standard	to	measure	human	movement	in	the	field	of	biomechanics	

(274).	 However,	 conventional	 marker-based	 motion	 capture	 systems	 are	 expensive,	

localised	to	the	laboratory,	not	easily	accessible	to	the	broad	population,	and	are	difficult	

to	adopt	in	medical	environments	(275,276).		

	

In	2020	a	survey	(277)	conducted	on	affiliates	of	the	Academy	of	Orthopaedic	Physical	

Therapy	 discovered	 that	 57.9%	 of	 patients	 and	 clinicians	 were	 using	 video	 content	

captured	 from	 their	 personal	 devices	 to	 qualitatively	 assess	 human	 motion	 during	

orthopaedic	 physical	 therapy.	 In	 parallel,	 Owoeye	 et	 al.	 (278)	 expressed	 the	 need	 for	

portable,	scalable,	and	quantifiable	solutions	 that	could	be	added	efficiency	 to	current	

resource-intensive	clinical	procedures.	

	

The	work	presented	in	this	chapter	was	partially	funded	by	Innovate	UK	Project	No:	75908.	
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To	extend	the	validity	of	OpenPose	to	the	clinical	population,	Sato	et	al.	(20)	assessed	the	

walking	 cadence	 of	 the	 two-dimensional	 sagittal	 keypoints	 assessed	 with	 OpenPose	

against	 a	 traditional	 motion	 capture	 for	 people	 with	 Parkinson's	 disease.	 More	

specifically,	 their	 approach	 aimed	 to	 calculate	 the	 gait	 distribution	 and	 assess	 the	

periodicity	 of	 each	 sequence.	 The	 study	 reported	 good	 agreement	 between	 the	 two	

methodologies.	 However,	 their	 investigation	 incorporated	 only	 two	 people	 with	

Parkinson's	 and	 needed	 hand-crafted	 parameters.	 Therefore,	 Kidziński	 et	 al.	 (28)	

extended	the	pipeline	presented	by	Sato	et	al.	(20)	for	1026	people	with	cerebral	palsy.		

	

The	objective	assessment	of	finger	kinematics	is	fundamental	to	enhance	the	knowledge	

of	hand	mobility	in	both	healthy	and	impaired	populations.	However,	from	the	previously	

described	 investigations,	 it	 is	not	 clear	 if	 these	 studies	 can	be	adapted	 to	address	 the	

specific	needs	of	finger	kinematics,	where	relative	segment	motion	is	on	a	much	smaller	

scale	than	the	relative	segment	motion	during	human	gait;	although,	the	angular	ROM	of	

the	joints	in	the	hand	are	often	higher	that	those	seen	in	gait.	Therefore,	this	chapter	aims	

to	 compare	 the	 three-dimensional	 kinematics	 obtained	with	 a	 gold	 standard	marker-

based	optoelectronic	motion	capture	system	(Qualisys	AB,	Gothenburg,	Sweden)	against	

two-dimensional	 hand	 kinematics	 obtained	 executing	 OpenPose	 on	 frames	 acquired	

from	a	monocular	RGB	camera.	

	

4.2 Materials	and	methods		
 
4.2.1 Experimental	setup	
 
The	protocol	was	approved	by	the	Imperial	College	Research	Ethics	Committee	(ICREC).	

Twelve	 healthy	 volunteers	 (eight	 female,	 four	 male)	 participated	 in	 this	 experiment	

(Figure	 21).	 Participants	 were	 asked	 to	 attend	 a	 single	 session	 of	 recording	 of	 hand	

kinematics	 at	 the	 Upper	 Limb	Motion	 Analysis	 Laboratory	 (White	 City	 Campus,	W12	

0BZ).	Upon	arrival,	participants	were	briefed	on	the	project,	guided	through	a	review	of	

the	participant	information	sheet,	asked	to	sign	the	consent	form,	and	informed	of	the	set	

of	sequences	to	perform.	Written	informed	consent	was	obtained	from	each	participant.	

Participants	were	 visually	 supported	 by	 a	 PowerPoint	 presentation	 that	 guided	 them	

through	the	hand	exercises	to	be	performed	with	both	the	right	and	left	hands.	
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Figure	21:	Twelve	healthy	participants	at	the	Upper	Limb	Motion	Analysis	Laboratory	at	

Imperial	College	London.	

 
All	 participants	 involved	 in	 this	 investigation	were	 healthy	 volunteers,	 with	 no	 hand	

impairment.	 Participants	were	 asked	 to	 perform	 interventions	 relevant	 to	 improving	

ROM,	 selected	 from	 amongst	 the	 hand	 exercises	 previously	 adopted	 in	 literature	

(195,247,279).	

	

The	tasks	performed	in	this	study	were	chosen	to	include	different	numbers	of	degrees	

of	freedom	(DoF).	The	first	exercise	was	finger	abduction	and	adduction	of	the	2nd	to	5th	

digits.	During	this	task	(Figure	22A),	participants	were	asked	to	spread	the	fingers	away	

from	 the	 long	middle	 finger	 (abduction),	 and	 then	 to	 bring	 the	 fingers	 back,	 near	 the	

middle	 finger	 (adduction).	 This	 exercise	was	 repeated	 four	 times	 for	 each	 hand.	 The	

second	exercise	was	radial	walking,	which	consisted	of	sliding	the	fingers	one	at	a	time	

towards	 the	 thumb.	 This	 task	was	 repeated	 twice	 for	 each	 finger.	 The	 third	 exercise	

selected	was	metacarpophalangeal	 (MCP)	 joint	 flexion	 (Figure	 22B).	 During	 the	MCP	

flexion	task,	while	sitting	with	forearm	resting	on	table,	participants	were	asked	to	bend	

the	MCP	joints	of	the	2nd	to	5th	digits.	This	activity	was	repeated	twice	for	each	hand.	In	

the	final	task,	participants	were	asked	to	perform	thumb	opposition	(Figure	22C),	placing	

the	pad	of	the	thumb	opposite	to	the	2nd	to	5th	digits.	They	were	instructed	to	bend	the	

proximal	interphalangeal	(PIP)	as	much	as	possible.	This	activity	was	repeated	twice	for	
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each	hand.	To	summarize,	a	total	of	four	hand	exercises	were	performed	including	finger	

abduction	and	adduction,	radial	walking,	MCP	flexion,	and	thumb	opposition.		

	

									  	

																									(A)																																															(B)																																																		(C)	

Figure	22:	 Illustration	showing	three	of	 the	 four	hand	exercises	performed	during	the	

marker-based	versus	markerless	investigation	on	healthy	volunteers.	The	hand	exercises	

include	(A)	abduction	and	adduction,	(B)	metacarpophalangeal	 flexion,	and	(C)	thumb	

opposition.	

 
After	performing	these	exercises,	the	keypoints	were	extracted	using	both	the	marker-

based	and	the	markerless	motion	capture	technologies,	and	the	hand	kinematics	were	

measured	and	compared.	The	full	experiment	set-up	is	illustrated	in	Figure	23.			

	

	
	
 
 
 
 
 
 
 
 
 

	

	

Figure	23:	Flowchart	of	the	experimental	set-up	of	the	marker-based	versus	markerless	

investigation.	
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4.2.2 Marker-based	pre-processing 
	

A	 total	 of	 twenty-six	 passive	 reflective	 hemisphere	 retro-reflective	 four	 millimetre	

markers	were	placed	at	specific	positions	on	the	dorsal	surface	of	the	right	wrist,	hand,	

fingers	 and	 thumb	 in	 accordance	 with	 the	 Hand	 &	 Wrist	 Kinematics	 (HAWK)	 (10)	

protocol.	These	semi-spherical	markers	were	placed	using	double-sided	adhesive	tape,	

including	 the	 first,	 second,	 third,	 fourth	 and	 fifth	 proximal,	 intermediate,	 and	 distal	

phalanges.	Markers	were	placed	directly	over	the	joint	centres	and	on	the	fingertips	on	

the	distal	border	of	the	nail	(Figure	24).	

	

	
Figure	24:	The	Hand	And	Wrist	Kinematics	(HAWK)	protocol	with	hemispherical	marker	

placement.	The	image	contains	the	marker	placement	for	the	distal	heads	of:	the	ulnar	

(WRU),	the	radial	styloid	(WRR),	the	1st	(MCP1),	the	2nd	(MCP2),	the	3rd	(MCP3),	the	4th	

(MCP4),	 and	 the	5th	 (MCP5)	metacarpals,	 the	proximal	phalanx	of	 the	 thumb	(IP),	 the	

proximal	phalanx	of	the	2nd(PIP2),	the	3rd	(PIP3),	the	4th	(PIP4),	and	the	5th	(PIP5)	fingers,	

the	medial	phalanx	of	 the	2nd(DIP2),	 the	3rd	(DIP3),	 the	4th	 (DIP4),	 and	 the	5th	 (DIP5)	

fingers,	the	distal	phalanx	of	the	thumb	(FT1),	2nd(FT2),	the	3rd	(FT3),	the	4th	(FT4),	the	

5th	(FT5)	fingers.	The	image	contains	the	marker	placement	also	for	the	dorsal	aspects	of	

the	ulnar	(FAU)	and	of	the	radius	(FAR).	The	image	contains	the	marker	placement	also	

for	the	proximal	head	of	the	1st	(CMC1),	2nd	(CMC2),	and	5th	(CMC5)	metacarpal	at	the	

carpometacarpal	joint.	Finally,	the	CMCVM	visual	marker	is	created	halfway	between	the	

CMC2	and	the	CMC5.	Reproduced	with	permission	from	(280).		

	

The	three-dimensional	joint	coordinates	gathered	from	the	markers	were	captured	using	

an	eight-camera	Qualisys	motion	capture	system	(Oqus	500	+	cameras,	<0.4	mm	error,	
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Qualisys	AB,	Gothenburg,	Sweden)	and	the	Qualisys	track	manager	(QTM)	software.	The	

data	collection	took	place	over	two	different	acquisitions,	with	six	participants	in	each	

acquisition.	During	 the	 first	acquisition,	RGB	video	data	were	recorded	using	an	Oqus	

RGB	camera	(Qualisys	AB,	Gothenburg,	Sweden).	Here,	both	the	optical	motion	capture	

data	and	the	video	data	were	captured	at	a	30	Hz	frame	rate.	In	the	second	acquisition,	

the	video	data	were	recorded	using	an	additional	camera	(Logitech	StreamCam).	During	

these	 recordings,	 the	 capture	 rate	 of	 the	 Qualisys	 system	 was	 set	 at	 60	 Hz	 and	 the	

Logitech	camera	was	synchronized	with	the	motion	capture	QTM	software	using	custom-

written	LabVIEW	(Laboratory	Virtual	Instrument	Engineering	Workbench	from	National	

Instruments	 Corporation)	 code.	 The	 QTM	 system	 was	 set	 to	 capture	 continuous	

recordings	for	300	seconds	for	each	hand,	one	hand	at	a	time.			

 

After	the	calibration	and	the	synchronization	of	the	system	with	the	RGB	external	camera,	

participants	were	 visually	 supported	 by	 a	 PowerPoint	 presentation	 that	 guided	 them	

throughout	a	set	of	hand	tasks	described	above.	These	were	performed	with	both	 the	

right	and	the	left	hands,	while	seated	on	a	standard	height	chair	with	both	feet	flat	on	the	

floor.		

4.2.3 Marker-based	postprocessing	
 
Several	steps	were	carried	out	before	extracting	the	joint	angle	computation,	including	

labelling,	refining,	filtering,	and	segmenting	the	marker-based	data.	

	

Automatic	 Identification	 of	 Markers	 (AIM)	 is	 a	 function	 in	 QTM	 that	 automatically	

identifies	and	labels	the	trajectories	tracked	during	a	recording.	Once	a	model	is	created,	

the	connections	between	the	markers	are	defined	by	the	original	model,	with	new	trials	

that	can	be	added	 to	 the	model	 to	give	 it	additional	examples	of	distances	and	angles	

between	markers.	Adding	new	trials	to	an	AIM	model	will	help	the	software	apply	it	more	

easily	to	future	test	participants.	Given	this	feature	offered	by	QTM,	a	model	was	created	

in	accordance	with	the	Hand	&	Wrist	Kinematics	(HAWK)	(10)	marker	placement.		

	

Following	the	labelling,	the	smoothing	tool	in	the	trajectory	editor	of	the	QTM	software	

was	used	to	reduce	spikes	and	noise	in	the	data	output	from	the	motion	capture	system.	

A	2nd	order	Butterworth	filter	with	5	Hz	cut	off	frequency	was	selected	due	to	the	large	
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frame	ranges	and	presence	of	high-frequency	noise.	The	filter	served	as	a	low-pass	filter	

to	attenuate	information	above	the	5	Hz	cut-off.	Finally,	the	filtered	data	were	manually	

segmented	to	isolate	the	different	exercises	for	both	the	right	and	the	left	hands.	

	
4.2.4 Markerless	data	pre-processing	
 
Video	data	were	captured	using	an	Oqus	RGB	camera.	The	cameras	were	connected	to	

the	master	computer	that	was	utilized	during	the	experiment	and	synchronized	with	the	

motion	capture	QTM	software.	The	video	data	were	captured	from	a	frontal	view	of	the	

participants,	 however	 the	 posture	 of	 the	 hand	 changed	 with	 respect	 to	 the	 camera	

throughout	 the	 trail.	 OpenPose	 (version	 1.7.0)	 was	 installed	 from	 GitHub	 (CMU-

Perceptual-Computing-Lab,	 2020)	 and	 run	 with	 an	 NVIDIA	 Tesla	 K80	 graphics	

processing	unit	under	default	 settings	 to	extract	 the	keypoints.	OpenPose,	 is	 a	 library	

written	in	C++	using	OpenCV	and	Caffe	that	detects	21	keypoints	on	each	of	the	hands.		

	

To	 capture	 the	 hand	 ROM,	 the	 video	 data	 were	 first	 segmented	 into	 eight	 different	

exercises.	 Then	OpenPose	was	 executed	 on	 each	 frame	 of	 the	 video.	 The	 locations	 of	

twenty-one	keypoints	of	participants’	hands	were	 independently	estimated	 from	each	

frame	via	OpenPose,	as	illustrated	in	Figure	25.		

	
Figure	 25:	 Keypoint	 visualization	 in	 output	 from	 OpenPose	 (17)	 that	 illustrates	 the	

inferred	keypoints	overlapped	onto	the	image	frames	for	healthy	participants.	

	

Data	in	output	from	OpenPose	were	visually	observed.	Instances	where	the	fingers	were	

incorrectly	labelled	due	to	the	system	swopping	one	finger	with	another,	were	manually	

labelled,	assigning	the	correct	value	to	the	respective	finger.	Other	inconsistencies,	 for	
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instance,	those	where	the	fingers	were	incorrectly	labelled	and	the	tracking	was	missing	

due	to	intrinsic	problems	with	OpenPose,	were	not	manually	corrected.		

	
4.2.5 Markerless	postprocessing	
	

Once	the	finger	keypoints	were	extracted	using	OpenPose a	two-stage	motion	artefact	

filtering	 technique,	 previously	 implemented	 in	 similar	 studies	 using	OpenPose	 on	 the	

lower-limb	(18,20,177),	was	adopted	to	smooth	the	raw	signal	and	decrease	the	noise	

generated	by	the	architecture.		

	

The	first	step	of	the	two-stage	motion	artifice	involved	an	outlier	removal,	the	Hampel	

filter,	which	has	been	shown	to	be		an		accepted	approach	for	outliers	removal	for	raw	

signals	series	in	output	from	OpenPose	(281).	The	goal	of	the	Hampel	filter	is	to	identify	

and	replace	the	outliers	in	each	series	(282).	The	filtering	technique	removes	the	outliers	

by	computing	the	median	of	a	window	comprised	of	current	and	adjacent	samples	and	

calculating	the	standard	deviation	of	each	sample	using	the	median	absolute	deviation.	If	

the	 considered	 sample	 varies	 from	 the	 window	median	 by	 more	 than	 the	 threshold	

(dependent	on	 the	 signal	distribution)	multiplied	by	 the	 standard	deviation,	 the	 filter	

replaces	the	sample	with	the	median.	The	Hampel	has	two	parameters	to	be	tuned,		the	

multiplying	 coefficient	 of	 the	 standard	 deviation	 (SD),	 that	 was	 kept	 at	 one	 and	 the	

window	 size	 that	 was	 set	 to	 four.	 No	 threshold	 was	 set	 for	 what	 was	 defined	 as	 an	

“outlier”,	opting	 for	a	visual	 inspection	of	 the	highest	number	of	outliers	 identified	an	

approach	previously	taken	in	the	literature	(283–285).	

	

Following	 the	 application	 of	 the	 Hampel	 filter	 for	 removal	 of	 outliers,	 a	 generalized	

accepted	approach	to	treating	the	raw	signal	in	output	from	OpenPose	is	to	smooth	the	

raw	signal	further	using	a	Butterworth	filter	(283,285).	The	Butterworth	filter,	is	a	one	

of	 the	most	 used	 frequency	 filters	 to	 smooth	 raw	 kinematics	 data	 (286),	 and	 largely	

adopted	to	smooth	raw	signals	in	output	from	OpenPose	(18,287),	was	defined	as:	

|𝐻(𝜔)| =
1

o1 + (𝜔)'(
	 (4.1)	

where	𝜔	is	the	cutoff	frequency	and	𝑛	is	the	filter	order.		
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A	common	challenge	in	the	field	of	biomechanics	is	determining	the	cut-off	frequency	for	

the	 Butterworth	 filter	 (283,285).	 	 While	 some	 studies	 prefer	 the	 RANSAC	 approach,	

introduced	in	Chapter	2,	the	cut-off	frequency	based	on	the	residual	analysis	proposed	

by	 Winter	 et	 al.	 (288)	 has	 been	 largely	 adopted	 for	 OpenPose	 signals	 suggesting	 a	

frequency	 selection	 below	 3	 Hz	 for	 a	 second	 order	 Butterworth	 filter	 (18,20).	

Furthermore,	 based	 on	 the	 cut-off	 determination	 using	 a	 residual	 analysis	 previous	

investigations	 reported	 that	 even	 with	 the	 forward	 and	 backward	 filtering	 (e.g.	

colloquially	known	as	‘filtfilt()')	typically	adopted	to	avoid	phase	lags,	phase	distortion	

was	still	observed	at	1	Hz	and	2	Hz	(18,289).	This	was	also	observed	in	our	results	for	

cut-off	 frequencies	 at	 1	 Hz	 and	 2	 Hz	 (Figure	 26).	 Therefore,	 based	 on	 benchmarking	

comparison,	 the	 second	 step	 of	 the	 two-stage	motion	 artefact	 selected	 to	 smooth	 the	

signal	was	a	zero-lag	second	order	Butterworth	filter	with	a	3	Hz	cut-off.	Therefore,	the	

filtering	technique	was	used	as	a	low-pass	filter	to	attenuate	information	above	the	3	Hz	

cut-off	frequency.		

	
																										(A)																																																																																			(B)	

Figure	26:	(A)	The	effect	of	a	zero-lag	second	order	Butterworth	filter	with	1	Hz,	2	Hz	and	

3	 Hz	 cut	 off	 frequencies	 (c/o	 freq.)	 applied	 to	 the	 OpenPose	 signal	 of	 the	 (B)	 thumb	

interphalangeal	(IP)	joint	angle.	Reproduced	with	permission	from	(343).		

	
The	consistency	of	the	tracking	system	in	inferring	the	two-dimensional	keypoints	from	

single	 frames	 showing	 hands	 with	 and	 without	 markers	 was	 investigated	 for	 one	
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participant	 performing	 one	 action.	 The	 visible	 markers	 were	 removed	 first	 using	

CycleGAN	 (290)	 and	 then	 using	 an	 inpainting	 technique	 (291).	 More	 details	 on	 this	

reliability	test	are	presented	in	Appendix	A1.		

4.2.6 Hand	kinematics		
	
Once	 the	 centres	 of	 the	 joints	 were	 located	 using	 both	 the	 maker-based	 and	 the	

markerless	motion	capture	technologies,	the	hand	kinematics	were	measured.	DIP	joints	

were	 considered	 to	have	one	degree	of	 freedom	(DoF),	PIP	and	 thumb	 IP	 joints	were	

considered	 to	have	one	DoF,	 and	MCP	 joints	 had	 two	DoF.	A	 total	 of	 36	 time-varying	

angular	positions	were	measured	for	each	participant,	with	432	time	series	extracted	for	

each	methodology	(marker-based	and	markerless).			

	

The	middle	finger	was	used	as	a	reference	for	the	abduction	and	adduction	task.	The	eight	

time-varying	angles	included	the	intersection	between	the	thumb	and	the	middle	finger	

(Figure	27A),	the	index	and	the	middle	finger,	the	ring	and	the	middle	finger,	and	little	

finger	and	the	middle	finger,	for	the	left	and	the	right	hands.	Therefore,	eight	angles	were	

measured	for	each	participant	during	the	abduction	and	adduction	exercise.		

	

During	the	radial	walking	task,	the	reference	digit	was	always	considered	the	one	that	

slid	radially	prior	to	digit	performing	the	sliding.	The	eight	angles	measured	included	the	

intersects	between	the	thumb	and	the	index,	the	index	and	the	middle	(Figure	27B),	the	

middle	and	the	ring,	and	the	ring	and	the	little	finger,	both	the	right	and	the	left	hands.		

 

 
																																																														(A)																																			(B)	

Figure	27:	Measured	position	for	the	metacarpophalangeal	(MCP)	joint	of	the	index	finger	

(A),	and	of	the	thumb	(B).	Reproduced	with	permission	from	(343). 
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For	 the	MCP	 flexion	 task	 the	measured	 angles	were	 the	MCP	 angles	 of	 thumb,	 index	

(Figure	28A),	middle,	ring,	and	little	fingers	for	a	total	of	eight	angle	time	series	for	the	

right	and	the	left	hands.	Finally,	during	the	thumb	opposition,	ten	angles	were	measured.	

Those	angles	included	the	MCP	of	the	thumb	(Figure	28B),	and	IP	of	the	thumb	(Figure	

28C),	and	PIP	angles	of	the	index	(Figure	28D),	the	middle,	the	ring,	and	the	little	finger.		

	
(A) (B)	

	
(C)																																																					(D)	

Figure	28:	Measured	position	for	the	metacarpophalangeal	(MCP)	joint	of	the	index	finger	

(A),	and	of	the	thumb	(B).	Measured	angles	of	the	proximal	interphalangeal	(PIP)	joint	of	

the	index	finger	(C),	and	of	the	thumb	(D).	Reproduced	with	permission	from	(343).	

	

To	describe	the	angles	of	the	MCP,	PIP	and	DIP	joints,	the	included	angles	between	the	

segments	were	determined.		Using	the	segments	illustrated	in	Figure	29,	the	angles	were	

calculated	as:	
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𝑇𝐴𝑀 = 	𝛼 + 	𝛽 + 	𝛾			so					

𝑆� = 	𝛼� +	𝛽� +	𝛾� = 	 𝜀* + 2𝜀+ + 2𝜀" + 𝜀, +	𝛼) +	𝛽) + 𝛾)𝜀,	

(4.6)																																						

	
The	measurement	of	the	TAM	is	error	prone	(50).	Thus,	the	ASSH	Total	Active	Flexion	

(TAF)	is	often	used	as	a	metric	(292).	Instead	of	adding	the	total	measures	captured	with	

all	the	joints	maximally	flexed,	the	TAF	refers	to	the	measurement	of	active	flexion	of	one	

digit	(292).	Thus,	TAF	isolates	the	maximum	flexion	angle	minus	the	minimum	flexion	

angle,	for	a	given	activity,	for	MCP,	the	PIP,	and	the	DIP	joints,	as	illustrated	in	Figure	30.	

Therefore,	assessing	the	active	flexion	measures	of	joints	under	inspection	for	the	specific	

exercise	was	selected	as	the	preferred	choice	for	this	investigation.	

 
Figure	 30:	 Trends	 indicating	 the	 total	 active	 flexion	 measurement	 for	 the	 index	

metacarpophalangeal	flexion.		

	

Once	TAF	was	extracted	 for	each	digit	and	 for	each	of	 the	exercises	under	 inspection,	

Bland–Altman	plots	(293)	and	linear	regression	were	used	to	illustrate	the	agreement	

between	 the	 methodologies.	 In	 Bland–Altman	 analysis	 the	 agreement	 between	 two	

measures	is	assessed	with	the	estimation	of	the	standard	deviation	(SD)	of	differences	

with	95%	limits	of	agreement	(LoA)	±1.96	SDs	of	the	mean.		

	

4.3 Results		
	

Representative	plots	for	abduction	and	adduction	(Figure	31A),	radial	walking	(Figure	

31B),	MCP	flexion	(Figure	31C),	and	thumb	opposition	(Figure	31D)	show	the	similarity	
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between	 the	 two	 trends	 determined	 using	 OpenPose	 and	 obtained	 with	 the	

optoelectronic	motion	capture	system,	during	the	four	tasks	performed.		

	

												(A)																																																																														(B)	

	

										(C)																																																																														(D)	

Figure	31:	Examples	of	raw	data	for	(A)	index-to-middle	finger	angle	for	four	repetitions	

of	the	abduction	and	adduction	task,	(B)	index-to-middle	finger	angle	for	two	repetitions	

of	 the	 radial	 walking	 task,	 (C)	 index	metacarpophalangeal	 (MCP)	 joint	 angle	 for	 two	

repetitions	of	the	MCP	flexion	task,	(D)	index	proximal	interphalangeal	joint	angle	for	the	

thumb	opposition	task,	estimated	using	OpenPose	(ML;	solid	lines)	and	measured	with	

the	 optoelectronic	 system	 (QTM;	 dashed	 lines)	 for	 one	 representative	 healthy	

participant.		

	

As	a	metric	of	comparison	of	the	two-time	series,	once	the	angles	were	obtained	from	the	

two	 tracking	 techniques,	 the	 differences	were	 computed	 using	 the	 root	mean	 square	

error	 (RMSE)	 (Figure	 32	 and	 Figure	 33).	 The	 predicted	 TAF	 measured	 for	 finger	

abduction	 and	 adduction,	 radial	 walking,	 MCP	 flexion,	 and	 thumb	 opposition	 was	

compared	 against	 the	 total	 TAF	 measured	 using	 the	 optoelectronic	 motion	 capture	

system	using	the	Bland–Altman	analysis	and	linear	regression	(Figure	34).	
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During	 the	 abduction	 and	 adduction	 activity,	 the	 finger	 kinematics	 estimated	 with	

OpenPose	had	a	RMSE	below	9°	(Figure	32A),	with	the	main	error	reported	for	the	ring-

to-little	 angle	 due	 to	 occlusion	 by	 the	 other	 fingers.	 Furthermore,	 the	 TAF	 values	

exhibited	a	mean	difference	between	OpenPose	and	the	optoelectronic	motion	capture	

system	of	4.7°	(Figure	34A)	with	LoA	of	8.8°	and	0.6°,	and	an	𝑅'	of	0.73	showing	good	

agreement	between	the	two	methods.	

During	the	radial	walking	task	performed	on	the	table,	the	finger	kinematics	estimated	

with	OpenPose	had	a	RMSE	below	9°	(Figure	32B).	The	TAF	values	(Figure	34B)	showed	

a	mean	difference	 between	 the	methods	 of	 5.0°	with	 LoA	 ranging	 from	13.3°	 to	 -3.2°	

(Figure	 6B).	 However,	 the	 coefficient	 of	 determination	 (𝑅'=0.40)	 suggested	 larger	

variability,	compared	to	the	abduction	and	adduction	activity.	

The	MCP	 flexion	exercise	when	comparing	 the	 two	methodologies	presented	an	error	

below	11°	(Figure	33A),	apart	from	two	participants	who	had	error	values	between	11°	

and	12°.	The	Bland-Altman	plot	(Figure	34C)	presented	a	mean	difference	of	6.8°	(Figure	

6C)	with	LoA	that	go	from	14.5°	for	the	upper	limit	(+1.96	SD)	to	-0.8°	for	the	lower	limit.	

The	comparison	between	the	two	methodologies	yielded	a	modest	𝑅'	value	of	0.53.	

	

Finally,	during	thumb	opposition,	the	RMSEs	(Figure	33B)	were	below	10°	for	93.3%	of	

the	estimated	values,	while	the	other	6.7%	reported	an	error	between	12°	and	14.5°.	The	

main	reason	for	the	higher	errors	in	10%	of	values	was	occlusion	by	the	other	fingers,	

and	 OpenPose	 inadvertently	 swopping	 finger	 segment	 values.	 The	 mean	 difference	

between	values	(Figure	34D)	was	4.7°	with	LoA	9.64°	and	-0.23°,	and	an	𝑅'	value	of	0.85.	
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(A)	

	
(B)	

Figure	 32:	 Boxplots	 of	 root	 mean	 square	 differences	 between	 the	 OpenPose	 and	 the	

optoelectronic	 marker	 system	 during	 (A)	 finger	 abduction	 and	 adduction,	 (B)	 radial	

walking.	Each	colour	represents	a	different	subject.	
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(A)	

	
(B)	

Figure	 33:	 Boxplots	 of	 root	 mean	 square	 differences	 between	 the	 OpenPose	 and	 the	

optoelectronic	marker	system	during	(A)	finger	metacarpophalangeal	(MCP)	flexion	and	

(B)	thumb	opposition.	Each	colour	represents	a	different	subject.	

 



Chapter	4	Comparison	of	contact	and	non-contact	measures		

 68	

	
(A)	

 
(B) 

 
(C) 

 
(D) 

Figure	 34:	 Bland-Altman	plots	 (left)	 and	 linear	 regression	 (right)	 plots	 of	 total	 active	

flexion	 for	 (A)	 abduction	 and	 adduction,	 (B)	 radial	 walking,	 (C)	MCP	 flexion	 and	 (D)	

thumb	opposition	of	the	2nd,	3rd,	4th	and	5th	digits	of	the	left	and	the	right	hands.	
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4.4 Discussion		
 
This	chapter	proposes	a	tracking	measurement	system	to	assess	specific	hand	activities	

using	one	monocular	RGB	camera.	The	technique	uses	a	convolutional	neural	network	

(CNN),	OpenPose,	and	two	filtering	techniques,	the	Hampel	and	the	Butterworth	filters,	

to	 evaluate	 a	 home-based	method	 able	 to	 capture	 finger	 kinematics.	 The	 accuracy	 of	

OpenPose	in	tracking	two-dimensional	finger	kinematics	was	assessed	by	comparing	it	

with	 the	 three-dimensional	 finger	 kinematics	 obtained	 using	 a	 marker-based	motion	

capture	system.		

	

Acceptable	 accuracy	 when	 comparing	 the	 two	 methodologies	 was	 defined	 based	 on	

instrument	 error	 of	 universal	 goniometers,	which	 are	 trusted	 devices	 used	 in	 clinical	

practice	to	measure	hand	kinematics.	Studies	when	comparing	goniometer	measurement	

against	 optoelectronic	 motion	 capture	 systems	 have	 reported	 an	 instrument	 error	

ranging	from	2.4°	to	9°	in	measuring	finger	kinematics	(4,294).	One	drawback	to	using	

goniometry	in	clinical	practice	is	that	it	involves	lengthy	processes	and	requires	face-to-

face	assessments;	 thus,	alternative	solutions	have	been	 investigated	over	 the	past	 few	

years.		

	

Research	 into	 markerless	 pose	 estimation	 has	 presented	 the	 potential	 for	 adopting	

commercial	 technologies	 to	capture	clinical	hand	metrics	 remotely.	An	example	 is	 the	

Leap	Motion	Controller™,	which	has	been	proposed	as	a	portable	and	alternative	solution	

to	 the	 gold-standard	 motion	 capture	 systems	 (128,295).	 However,	 most	 recently,	

Ganguly	et	al.	reported	an	error	that	ranged	from	19.31°	to	28.29°	when	inferring	the	

proximal	 and	 metacarpophalangeal	 joint	 positions	 using	 the	 Leap	 Motion	 Controller	

(272),	making	it	unsuitable	to	replace	gold-standard	capture	in	clinical	settings.		

	

Markerless	technologies	that	leverage	deep-learning	architectures	have	exhibited	great	

potential	 for	 motion	 tracking,	 using	 monocular	 video	 cameras.	 For	 instance,	 two-

dimensional	pose	 estimation	models	have	been	validated	 for	human	gait	 (18,19,296),	

reporting	 an	 error	 of	 5°	 to	 15°.	 Leveraging	 these	 findings,	 this	 chapter	 offers	 a	

preliminary	proof-of-concept	investigation	showing	that	hand	pose	estimation	of	hand	

kinematics	using	OpenPose	can	be	reach	similar	levels	of	accuracy	to	assess	kinematics	
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during	 hand	 specific	 exercises.	 The	 comparison	 between	 the	 marker-based	 and	 the	

markerless	 technologies	presented	 an	 error	below	10°,	 apart	with	 a	 few	outliers	 that	

occurred	with	a	3.4%	frequency	rate.		

	

Differences	 when	 comparing	 the	 two	 methodologies	 may	 be	 introduced	 by	 several	

factors,	including	the	nature	of	the	video	recording.	For	instance,	OpenPose	depends	on	

images	 labelled	 with	 keypoints,	 whereas	 marker	 placement	 relies	 on	 the	 physical	

location	of	anatomical	 landmarks.	Another	possible	cause	of	misalignment	that	caused	

outliers	 could	 be	 linked	 to	 the	 comparison	 of	 the	 two-dimensional	 keypoints	 and	 the	

three-dimensional	 motion	 capture	 parameters.	 When	 calculating	 the	 included	 angle	

between	two	vectors	from	a	projection	of	the	three-dimensional	landmarks	onto	a	plane,	

fingers	can	still	move	in	the	three-dimensional	space,	leading	to	potential	differences	in	

the	angle	calculation.	When	assessing	the	other	potential	reasons	for	these	outliers,	self-

occlusion	was	also	observed.			

Across	 the	 different	 hand	 exercises	 illustrated	 in	 this	 chapter,	 the	 coefficients	 of	

determination	 (𝑅')	 presented	 good	 agreement	 (higher	 than	 0.7)	 between	 the	 two	

methods	for	the	abduction	and	adduction	and	the	thumb	opposition	activities.	Lower	𝑅'	

values,	representing	lower	agreement	between	the	two	methods,	were	observed	for	the	

radial	walking	and	the	MCP	flexion	activities.		

	

During	the	radial	walking	task,	it	was	noted	that	the	hand	positioned	vertically	reduced	

the	amount	of	keypoints	lost,	compared	to	when	the	hand	was	seated	on	the	table.	This	

was	due	 to	 the	nature	 in	which	OpenPose	was	 trained	 to	 infer	hand	kinematics	 from	

monocular	RGB	cameras.	Given	the	modest	agreement	of	the	two	tracking	systems	during	

the	radial	walking	task,	and	since	the	abduction	adduction	activity	was	able	to	extract	the	

same	joint	ranges	of	motion	as	the	radial	walking	exercise,	it	is	noted	that	the	abduction	

and	adduction	task	would	be	the	preferred	activity	for	translation	into	clinical	practice	

applications	monitored	using	OpenPose.	

	

The	modest	𝑅'	value	(0.53)	observed	during	the	MCP	flexion	task	can	be	attributed	to	the	

fact	that	during	RGB	video	acquisition	the	2nd,	3rd,	and	4th	digits	were	partially	occluded	

by	the	5th	digit.	Furthermore,	it	was	visually	observed	that	during	occlusion	OpenPose	
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inverted	the	tracking,	swapping	the	digits’	values	and	causing	visible	errors	for	18%	of	

the	 dataset.	 This	 error	 could	 be	mitigated	 by	 adopting	 visual	manual	 postprocessing	

techniques,	 as	 proposed	 by	 Stenum	 et	 al.	 (19).	 However,	 this	 approach	 could	 not	 be	

automated	and	would	limit	the	adoption	of	any	activity	into	clinical	practice.		

	

OpenPose	provides	the	joint	centres	locations	together	with	the	confidence	values.	When	

the	confidence	value	was	low,	then	error	unrelated	to	occlusion,	angle	calculation,	and	

the	nature	of	the	video	recording	was	attributed	to	intrinsic	parameters,	as	this	tracking	

methodology	 does	 not	 estimate	 hand	 movements	 perfectly	 from	 frame-to-frame,	 as	

suggested	in	previous	investigations	(19).		

To	assess	if	visible	markers	applied	on	the	participants’	skin	were	introducing	errors,	two	

image-to-image	 translation	 techniques	 were	 tested	 to	 remove	 the	 remove	 visible	

marker’s	location.	The	techniques,	known	as	CycleGAN	(290)and	image	inpainting	(291),	

are	described	in	Appendix	A1.	As	a	result,	it	was	noted	that	the	presence	of	the	markers	

did	not	compromise	the	performance	of	the	markerless	CNN	tracking	system.		

	

The	Bland-Altman	plots	(Figure	34)	illustrated	that	the	biases	(mean	differences)	across	

the	methods	were	 consistent,	 ranging	 from	4.70°	 to	 6.8°.	 Therefore,	 by	 offsetting	 the	

results	with	the	consistent	biases	detected	in	these	acquisitions,	the	accuracy	of	future	

results	could	potentially	be	improved.	Given	the	constituency	of	the	biases	produced	in	

output,	 further	adoption	of	these	findings	would	include	an	automated	bias-correcting	

solution.	

	

Despite	 the	promising	 features	demonstrated	by	pose	estimation	models	 to	 track	 fine	

movements	of	the	human	hands,	video-annotation	and	manual	segmentation	still	limits	

the	scalability	of	this	approach	to	clinical	applications.	An	approach	that	would	enable	

automated	segmentation	and	video	segment	classification,	 leveraging	video-level	 label	

data,	could	extend	the	capabilities	of	this	investigation	into	clinical	settings	and	provide	

the	ability	to	examine	larger	volumes	of	video	data	in	uncontrolled	environments.		
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Chapter	5 Hand	gesture	
recognition	for	automatic	
temporal	segmentation		
	
5.1 Introduction	
  

Hand	 gestures	 are	 a	 vitally	 important	 form	 of	 non-verbal	 communication.	 The	

interpretation	of	 hand	 gestures	with	wearable	 sensors	 (9,297),	 or	 cameras	 (162,298)	

aims	to	transform	the	gestures	into	meaningful	instructions;	this	interaction	is	known	as	

hand	gesture	recognition.	The	active	field	of	hand	gesture	recognition	has	seen	significant	

improvements	over	the	past	few	years	(155)	and,	most	recently,	combined	with	the	latest	

advancements	in	computer	vision,	has	encouraged	the	development	of	new	technologies	

to	support	rehabilitation	(159,299),	robot	control,	and	home	automation	(300).		

	

Computer	 vision	 techniques	 rely	 on	 convolutional	 neural	 networks	 (CNNs)	 to	 extract	

two-dimensional	 (appearance-based)	 and	 three-dimensional	 (motion-based)	 array	

features.	CNNs	are	generally	used	in	image	recognition	to	process	pixel	data.	They	take	

raw	 pixel	 data	 as	 input,	 train	 the	 designed	 architecture,	 and	 automatically	 extract	

features.	 These	models	 have	 been	 divided	 into	 static	 (two-dimensional)	 and	 dynamic	

(three-dimensional)	 based	 on	 the	 model’s	 output	 features.	 Several	 investigations	

(139,141,165)	 have	 implemented	 two-dimensional	 static	 appearance-based	 hand	

gesture	recognition	models	(also	known	as	two-dimensional	CNN	models)	intending	to	

develop	a	computationally	inexpensive	classifier	to	extract	stable	shapes	of	the	human	

hand.	However,	these	models	do	not	consider	the	spatio-temporal	parameters	that	occur	

from	 sequential	 frames	 of	 a	 video	 recording,	 as	 appearance	 alone	 cannot	 accurately	

identify	 the	 gesture	 signature	 (26).	 Therefore,	 new	 approaches,	 known	 as	 three-

dimensional	dynamic	hand	gesture	recognition,	have	emerged	to	fill	this	gap.		

	



Chapter	5	Hand	gesture	recognition	for	automatic	segmentation	

 73	

Three-dimensional	dynamic	hand	gesture	recognition	models	also	rely	on	CNNs,	act	like	

conventional	 two-dimensional	 CNNs,	 and	 have	 spatial-temporal	 filters.	 Since	 their	

introduction	in	2015	(140),	these	models	have	been	primarily	embraced	for	hand	gesture	

recognition	 (140,157,301),	 presenting	 excellent	 characteristics	 in	 recognising	 hand	

actions	from	both	appearance	and	spatio-temporal	features.	However,	they	require	more	

parameters	than	two-dimensional	CNNs,	meaning	vast	datasets,	and	making	them	more	

challenging	 to	 train	 (147).	 Furthermore,	 these	approaches	have	additional	drawbacks	

that	include	cost,	the	logistical	challenges	of	dealing	with	complex	and	lengthy	datasets,	

and	 the	 requisite	 quality	 of	 captured	 images	 needed	 for	 appropriate	 training.	 To	

overcome	 these	 drawbacks,	 previous	 research	 has	 leveraged	 a	 technique	 known	 as	

transfer	learning	(302).		

	

Transfer	learning	is	a	methodology	where	architecture	is	implemented	and	trained	on	a	

specific	activity	and	is	then	adopted	for	a	different	but	linked	activity	(Figure	35).	This	

technique	is	often	employed	to	tackle	the	issue	of	a	deficiency	of	training	data	(303,304).	

A	usual	objective	of	transfer	learning	techniques	is	to	learn	visual	features	from	the	initial	

assignment	(304).	This	technique	can	train	and	acquire	a	forthcoming	linked	task	from	

fewer	data	samples.	Transfer	learning	is	adopted	when	a	novel,	minor	dataset	is	smaller	

than	the	dataset	used	to	train	the	pre-trained	architecture.	

	

	
Figure	35:	Schematic	of	the	approach	to	transfer	learning.	Reproduced	with	permission	

from	(305).	
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Another	hurdle	 in	dynamic	gesture	recognition	 for	 three-dimensional	CNN	represents	

recognising	 specific	 actions	 when	 dealing	 with	 continuous	 video	 streams	 (306).	

Identifying	 human	 activities	 within	 video	 sequences	 is	 difficult	 because	 of	 the	 vast	

irregularity	 of	 hand	 actions	 on	 a	 time	 scale,	 unclear	 frame	quantity,	 distribution,	 and	

limits	 of	 gesture	 signatures.	 Furthermore,	 hand	 motions	 are	 often	 intricate	 and	

articulated	and,	when	performed	in	an	uncontrolled	environment,	can	lead	to	occlusion	

that	can	limit	the	tracking.	However,	the	ability	to	track	and	segment	hand	gestures	in	the	

real	 world	 can	 answer	 the	 need	 of	 applying	 these	 models	 to	 more	 realistic	 and	

generalisable	tasks.	

Manual	 segmentation	 of	 continuous	 video	 recordings	 is	 considered	 the	most	 adopted	

technique	 when	 training	 hand	 gesture	 recognition	 (307).	 However,	 the	 process	 is	

lengthy,	and	often	a	large	proportion	of	frames	is	left	unlabelled,	causing	indexing	issues	

in	the	training	of	novel	classification	methods.	The	ability	to	automatically	detect	action	

in	video	recordings	has	an	essential	function	for	different	applications	that	require	end-

to-end	process	automation.	But,	while	much	work	has	been	produced	on	increasing	the	

accuracy	 of	 hand	 gesture	 recognition	 models	 and	 enhancing	 the	 strength	 of	 these	

approaches	 (138,155,298),	 just	 a	 few	 attempts	 have	 been	 presented	 for	 temporal	

segmentation	(25,27).	

Attempts	at	temporal	segmentation	have	focused	on	motion	trajectory	(308)	and	skeletal	

tracking	 (309)	 from	 depth	 cameras.	 However,	 these	 systems	 were	 sensitive	 to	 the	

backgrounds	and	lighting	conditions.	A	different	approach,	presented	by	Camgoz	et	al.,	

suggested	windowing	the	continuous	video	stream	for	segmentation	(310).	However,	the	

length	of	 the	sliding	volume	was	fixed,	often	cutting	part	of	 the	critical	 features	of	 the	

gestures.	Moreover,	appearance	and	hand	motion	information	complement	a	temporal	

segmentation	classifier	(25).	Still,	Camgoz	et	al.	also	used	only	time-series	data	detected	

from	hand	motion,	with	no	appearance	information	(310).	In	contrast,	Wang	presented	a	

segmentation	method	that	contained	both	action	and	appearance-based	information,	and	

used	both	RGB	and	depth	capture	modalities	(25).	

Increasing,	enormous	datasets	of	human	movement	are	publicly	available,	as	researchers	

seek	 to	 pool	 resources	 and	 work	 more	 openly.	 The	 20BN	 Jester	 is	 a	 state-of-the-art	

dataset	and	the	largest	of	human	hand	gestures	collected	from	monocular	RGB	cameras.	
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It	contains	a	total	of	148,092	videos	corresponding	to	5,331,312	frames	(157).	Each	video	

is,	on	average,	three	seconds,	and	the	dataset	contains	a	total	of	27	classes.		

This	aim	of	this	chapter	is	to	present	the	training	of	a	CNN	using	a	small	set	of	data	and	

the	development	of	a	narrow	architecture	that	can	run	efficiently	for	continuous	hand	

gesture	recognition.	The	key	objectives	of	this	chapter	include:	

1) To	 implement	 and	 to	 test	 the	 accuracy	 of	 a	 three-dimensional	 CNN	 model	

combined	 with	 a	 long-shot	 term	memory	 (LSTM)	 unit	 to	 reliably	 classify	 and	

segment	 continuous	 video	 recordings	 and	 improve	 current	 manual-based	

segmentation	when	deploying	models	capable	of	executing	tasks	smoothly	in	real-

world	scenarios.	

	

2) To	evaluate	the	performance	of	transfer	learning	in	implementing	an	architecture	

that	 is	 trained	on	a	 larger	scale	dataset,	and	 then	 fine-tuned	with	a	small-scale	

dataset.	

	
3) To	lay	the	foundations	for	a	small-scale	and	reliable	model,	paving	the	way	to	a	

broader	and	optimised	application	that	can	be	used	to	automatically	detect	where	

to	run	the	keypoint	hand	tracking	network.	

	

5.2 Materials	and	methods	
5.2.1 Experimental	setup		
 
Twelve	healthy	volunteers	(six	female,	six	male)	participated	in	this	experiment.	All	the	

participants	were	healthy,	presenting	with	no	hand	pathology,	no	loss	in	mobility,	and	no	

experience	of	upper	limb	joint	surgery	or	fracture	in	the	six	months	preceding	the	data	

collection.	All	participants	were	also	informed,	both	verbally	and	in	writing,	of	their	right	

to	withdraw	from	the	study	at	any	time.	Written	informed	consent	was	obtained	from	

each	participant.	 They	were	 all	 able	 to	 speak	 and	 read	English	 sufficiently	 to	provide	

consent.	The	protocol	was	approved	by	the	Imperial	College	Research	Ethics	Committee	

(ICREC).	The	entire	pipeline	adopted	in	the	study	is	illustrated	in	Figure	36.	
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Figure	 36:	 Flowchart	 of	 the	 experimental	 setup	 for	 the	 hand	 gesture	 recognition	

investigation.	The	pipeline	uses	 transfer	 learning,	pre-training	 the	architecture	on	 the	

20BN	Jester	dataset	(157),	a	three-dimensional	convolutional	neural	network	(3DCNN),	

a	long	short	term	memory	(LSTM)	and	the	output	function	(Softmax).	

 

5.2.2 Data	collection	
 
Participants	were	asked	to	record	one	video	sequence	during	online	video	meetings.	To	

support	the	video	data	acquired	by	each	participant,	there	was	a	timed	PowerPoint	to	

make	 the	 video	 acquisition	 consistent,	 to	 support	 participants	 on	 the	 activities	 to	 be	

performed	 during	 the	 recordings,	 and	 to	 inform	 participants	 on	 the	 way	 to	 position	

themselves	relative	to	the	device	for	the	recordings.	

	

To	perform	the	hand	gestures,	participants	were	asked	to	use	a	standard	device	camera	

to	capture	the	required	hand	exercises	using	any	laptop,	smartphone,	desktop	computer.	

A	standard	camera	was	defined	as	a	camera	developed	from	2012	onwards	that	was	able	

to	capture	video	recordings	at	a	rate	of	thirty	frames	per	second.	To	assess	if	the	data	

were	 captured	 from	 an	 acceptable	 browser	 and	 operating	 system,	 participants	 were	

asked	to	check	that	the	specifications	of	the	recording	system	were	listed	in	Table	3.	

3DCNN	Video	
acquisition		

Markerless	
Tracking		

LSTM	

Softmax	

Temporal	
segmented	
classes	

20BN	Jester	

Transfer	
Learning	
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Table	3:	List	of	supported	browsers	and	operating	systems	and	browsers	for	online	data	

acquisition	using	users'	RGB	cameras.		

Type	 Platform	 Software	Version	Support		

Mobile	 Android	 8	('Android	Oreo')	and	above	

	 IOS	 Nine	and	above	

Web	 Chrome	Desktop	 Previous	four	major	versions	

	 Chrome	Mobile	 Previous	four	major	versions	

	 Firefox	Desktop	 Previous	three	major	versions	

	 Firefox	Mobile	 Previous	three	major	versions	

	 MS	Edge	 Current	updated	versions	

	 Internet	Explorer	 Current	updated	versions	

	 Safari	Desktop	 Previous	three	major	versions	

	 Safari	Mobile	 Previous	three	major	versions	

Following	 the	 exercises	 presented	 in	 Chapter	 4,	 the	 hand	 activities	 performed	 by	

participants	 in	 this	 part	 of	 the	 investigation	 included	 abduction	 and	 adduction,	

metacarpophalangeal	 (MCP)	 flexion,	 and	 thumb	opposition.	 Each	was	performed	 four	

times	with	both	the	left	and	right	hands.	During	these	exercises,	participants	were	asked	

to	hold	the	position	for	five	seconds.	Four	classes	of	gestures	were	defined	based	on	the	

trials	(Figure	37).	

	
Figure	 37:	 Illustration	 showing	hand	 gestures	 classified	 during	 each	 trial:	 no	 gesture,	

abduction	and	adduction	(Abd	and	add),	metacarpophalangeal	(MCP)	flexion	and	thumb	

opposition.	
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The	hand	 gesture	 sequences	were	 captured	 from	 continuous	 video	 recordings	 of	 250	

seconds.	The	continuous	video	sequences	were	then	manually	segmented	and	labelled.	

Examples	representing	the	data	collected	from	these	twelve	participants	are	illustrated	

in	Figure	38.		

	

	
Figure	 38:	 Examples	 of	 anonymized	 frames	 of	 the	 videos	 from	 the	 dataset	 of	 twelve	

participants.	The	images	show	the	variance	in	the	people’s	appearance	and	background	

scenes.	

	

To	 improve	 the	performance	 of	 the	 training	 and	 testing,	 the	 sample	 size	 of	 the	 video	

sequences	was	increased	using	the	video	data	captured	during	the	experiment	described	

in	Chapter	4.	In	Chapter	4,	the	video	data	were	collected	using	a	Logitech	RGB	camera	

from	a	total	of	twelve	individuals.	To	ensure	that	the	presence	of	visible	markers	on	the	

hands	 did	 not	 influence	 the	 training	 of	 the	 gesture	 classifier,	 visible	 markers	 were	

removed	using	an	image-to-image	technique,	known	as	image	inpainting	(291)	(Figure	

39).	 To	 avoid	 having	 the	 same	 healthy	 participant	 in	 the	 study	 twice,	 data	 from	 two	

participants	were	excluded.	The	acquired	dataset	consisted	of	video	sequences	collected	

from	22	participants	performing	three	different	activities,	intercut	by	"no	gestures".		
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(A) 																																								(B)	

Figure	39:	Comparison	of	(A)	original	images	with	visible	markers	on	the	hand	and	(B)	

image	inpainting	(291)	technique	with	markers	removed.	

	

In	addition	to	the	captured	data,	the	20BN	Jester	dataset	acquired	by	Materzynska	et	al.	

(157)	(Figure	40)	was	used.	The	classes	of	interest	in	this	study,	including	"no	gesture",	

"abduction	and	adduction",	"MCP	flexion",	and	"thumb	opposition",	were	not	present	in	

the	 Jester	 dataset.	 These	 specific	 hand	 activities,	 also	 validated	 in	 Chapter	 4	 to	

markerlessly	extract	kinematics,	were	considered	relevant	for	their	adoption	in	clinical	

settings.		

	
Figure	 40:	 Examples	 of	 videos	 from	 the	public	 20BN	 Jester	 dataset.	 Reproduced	with	

permission	from	(157).		
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into	an	LSTM.	The	tensor	in	output	is	then	flattened	into	a	single	dimension,	inputted	into	

a	fully	connected	layer	and	finally,	the	activation	function	(Softmax)	predicts	the	classes.	

The	 multi-dimensional	 input	 tensors	 were	 flattened	 into	 a	 single	 dimension.	 The	

flattened	layer	is	often	employed	in	the	presence	of	multi-dimensional	output.	This	layer	

aims	to	produce	a	linear	output	that	can	be	conveyed	onto	a	dense	layer.	A	dense	layer	

(also	called	 fully	 connected)	 joined	every	 input	neuron	 to	every	output	neuron	 in	 the	

preceding	layer.	Finally,	the	Softmax	function	produced	a	vector	that	denoted	the	list	of	

probability	classes	of	possible	results.	Based	on	the	output	from	the	Softmax	the	frames	

were	then	segmented	into	those	where	the	activities	occurred	and	those	where	there	was	

no	gesture.	The	class	"no	gesture"	was	provided	in	case	no	activity	was	performed,	but	

also	 for	 frames	without	 a	 hand,	when	participants	 placed	 the	 hand	down	 following	 a	

performed	activity.	

	

The	CNN	model	was	trained	in	Google	Colaboratory	and	the	TensorFlow	framework	was	

used	to	deploy	the	model	(312).	The	baseline	model	was	pre-trained	on	five	classes	of	the	

20BN	 Jester	 dataset,	 including	 count-to-five,	 swiping	 down	 and	 left,	 thumb-up,	 and	

thumb-down.	These	activities	were	selected	to	include	different	image	frames	of	isolated	

digits	and	the	palm	with	all	the	digits	for	both	the	left	and	right	hands.	Starting	from	the	

architecture	trained	on	the	above	mentioned	five	classes	belonging	to	the	20BN	Jester	

dataset,	 a	 technique	known	as	 transfer-learning	 (303)	was	 then	used	 to	 fine-tune	 the	

model	to	the	activities	performed	in	this	study.	The	technique	took	the	parameters	from	

the	previously	trained	model,	froze	the	last	layers	to	avoid	the	weights	in	the	last	(frozen)	

layers	being	updated,	and	then	new	trainable	layers	were	added,	together	with	new	data	

to	fine-tune	the	model.			

	

A	total	of	four	tests	were	performed.	During	the	first	two	tests,	transfer	learning	was	used	

with	 three	 convolutional	 layers.	 Then,	 to	 increase	 performance,	 an	 additional	

convolutional	 layer	and	an	 increased	sample	size	were	considered.	The	 first	 two	tests	

were	 evaluated	 over	mini-batches	 of	 13	 epochs,	 following	 the	 segmentation	 classifier	

proposed	by	Wang	(25).	The	last	two	tests	were	evaluated	over	a	batch	size	of	64	epochs,	

training	batch	also	presented	in	Wang	(25)	investigation.	The	12GB	NVIDIA	Tesla	K80	
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graphics	processing	unit	provided	by	Google	Colaboratory	was	used	for	training	of	the	

20BN	Jester	dataset	 for	 the	baseline	model,	which	took	approximately	nine	and	a	half	

hours.	For	the	first	and	the	second	tests,	the	training	times	were	respectively	one	and	a	

half	hours	and	two	and	a	half	hours,	while	for	the	last	two	tests,	they	were	two	and	four	

hours.		

	

The	classifier	accuracy	was	determined	using	the	function	‘numpy.argmax	’	to	obtain	the	
highest	 predicted	 class	 scores	 for	 each	 data	 point.	 Furthermore,	 the	 metric	 used	 to	

evaluate	the	performances	of	the	model	was	the	Jaccard	index	or	intersection	over	union	

value	(313).	The	index	is	often	used	for	segmentation	classifiers	and	was	computed	to	

analogise	a	set	of	predicted	labels	with	a	set	of	the	corresponding	true	labels.	Letting	A	

and	B	be	the	set	of	frames	predicted	and	ground	truth	manually	labelled,	respectively,	the	

index	is	defined	as:	

𝐽𝐴𝐶𝐶𝐴𝑅𝐷 = 	
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|	

(5.2)	

	

The	 Jaccard	 index	 varies	 from	 zero	 to	 one,	 the	 larger	 is	 the	 index,	 the	 higher	 is	 the	

accuracy	of	the	segmentation	classifier.	

	

5.3 Results	
	

Training	and	validation	accuracies	for	13	and	64	epochs	for	12	and	22	participants	show	

limited	levels	of	accuracy	(below	70%)	reached	for	13	epochs	(Figure	42A)	and	increased	

level	 of	 accuracy	 (93.95%)	 reached	 for	 64	 epochs	 (Figure	 42B).	 In	 the	 training	 and	

validation	 curves	 illustrated	 for	64	epochs,	 the	 training	performed	on	22	participants	

outperforms	 the	 training	on	12	participants.	Overfitting	was	observed	during	 training	

after	50	epochs,	in	both	cases	(12	and	22	participants),	suggesting	that	additional	training	

would	not	result	in	the	model	having	improved	learning.	
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									(A)	

	
							(B)	

Figure	42:	 	Results	of	the	training	and	validation	for	a	training	batch	of	(A)	13	epochs	

(batch	 size)	 for	12	and	22	participants	and	 (B)	64	epochs	 for	12	and	22	participants.	

Dashed	lines	indicate	validation	curves.	

 
 
A	 representative	 output	 from	 the	 Softmax	 function	 (Figure	 43)	 of	 the	 temporal	

segmentation	 for	 a	 continuous	 video	 recording	 for	 the	 three-dimensional	 CNN	 hand	

gesture	classifier	trained	for	64	epochs	and	22	participants	illustrates	the	agreement	with	

manual	segmentation	(ground	truth).	



Chapter	5	Hand	gesture	recognition	for	automatic	segmentation	

 85	

 
Figure	43:	An	example	of	the	temporal	segmentation	and	classification	 in	output	 from	

Softmax	function	of	the	three-dimensional	convolutional	neural	network	for	64	epochs	

and	 22	 participants	 (dashed	 lines)	 compared	 against	 the	 ground	 truth	 manually	

segmented	 for	 Participant	 1	 for	 the	 labels	 "no	 gesture"	 (class=0),	 "abduction	 and	

adduction"	 (class=1),	 "metacarpophalangeal	 (MCP)	 flexion"	 (class=2),	 and	 "thumb	

opposition"(class=3).	

	

 
The	mean	Jaccard	index	and	the	accuracy	percentage	values	for	64	epochs	for	12	and	22	

participants	for	all	the	recordings	are	illustrated	in	Table	4.	

	

Table	4:	Comparison	of	the	three-dimensional	convolutional	neural	network	for	12	and	

22	participants	using	the	mean	Jaccard	index	𝐽.� 	and	the	accuracy	percentage	(%).	

Dataset		 Number	of	frames		 Mean	Jaccard	Index	𝐽!6	 Accuracy	(%)	

12	participants	 89,984	 0.794	 83%	

22	participants		 113,410	 0.812	 93.95%	

 

	

The	training	runs,	executed	for	batch-sized	64,	computed	an	initial	mean	Jaccard	index	

that	reached	0.794	(±	0.44),	increasing	to	0.812	(±	0.105)	for	the	enlarged	sample	size	of	

22	participants.	The	validation	accuracy	showed	83%	(±	0.05),	increasing	to	an	accuracy	

level	of	93.95%	(±	0.37)	when	additional	participants	were	included.	The	"no	gesture"	

label	 agreed	 with	 the	 manually	 segmented	 ground	 truth	 96.47%	 of	 the	 time	 for	 all	

participants.	The	"abduction	and	adduction"	class	agreed	with	the	ground	truth	92.5%	of	

the	time	for	all	participants.	The	"MCP	flexion"	label	agreed	with	the	manually	obtained	

labels	95.7%	of	the	time	for	all	participants.	Finally,	the	"thumb	opposition"	class	was	in	

agreement	with	the	ground	truth	90.93%	of	the	time	for	all	participants.	
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5.4 Discussion	
 

This	chapter	illustrates	a	CNN	that	automatically	classifies	and	segments	a	single	video	

containing	specific	hand	exercises	including	no	gesture,	abduction	and	adduction,	MCP	

flexion,	 and	 thumb	opposition.	 The	 segmentation	 of	 continuous	 video	 recordings	was	

based	 upon	 a	 classifier	 that	 identified	when	 the	 label	 "no	 gesture"	 was	 present.	 The	

presented	pipeline	addressed	the	challenge	of	hand	gesture	recognition	from	long	video	

sequences	captured	using	a	monocular	RGB	camera.		

	

The	implementation	of	the	three-dimensional	CNN	was	based	on	a	model	known	as	C3D,	

proposed	by	Tran	et	al.	(311)	and	made	of	an	high-resolution	and	a	low-resolution	sub-

architecture,	 both	 trained	 individually.	 Even	 if	 the	 C3D	 model	 presented	 good	

performance,	 the	 cost	 of	 training	 two	different	models	 is	 high,	 so	 a	modified	 version,	

which	incorporated	the	two	networks	into	one,	was	used	in	this	chapter.	This	modified	

C3D,	 however,	 could	 only	 detect	 short	 temporal	 characteristics	 from	 short	 video	

sequences,	while	the	aim	of	this	chapter	was	to	introduce	a	network	that	detects	short-

term	 temporal	 features	 from	 long	 video	 sequences.	 Therefore,	 the	 final	 CNN	 was	

combined	with	an	LSTM	unit,	 capable	of	 learning	 the	 long-term	dependencies	 in	 long	

video	sequences.	

	

The	studies	previously	presented	that	combined	three-dimensional	CNN	with	LSTM	units	

for	hand	activity	recognition	used	both	RGB	and	depth	modalities	to	extract	the	motion	

signature	(25,26),	while	the	three-dimensional	architecture	implemented	in	this	chapter	

was	only	based	on	an	RGB	sequence,	showing	a	similar	level	of	accuracy	(93.95%)	can	be	

reached	 also	 from	 a	 single	 acquisition	modality.	 Furthermore,	 the	 proposed	 network	

outperformed	the	82%	accuracy	presented	by	Hakim	et	al.	(26).	The	overfitting	observed	

after	64	epochs	was	similar	to	that	of	other	investigations	that	used	dual	modalities	(25,	

26).	The	use	of	transfer	learning	to	reach	an	acceptable	(above	80%)	level	of	accuracy	

enables	 the	 possibility	 of	 scaling	 this	 approach	 to	 include	 different	 hand	 gesture	

activities,	showing	how	the	model	can	be	trained	effectively	on	a	small	dataset	to	create	

an	effective	small-size	segmentation	classifier.	
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The	mean	Jaccard	recorded	in	Wang’s	study	was	0.6127	for	the	RGB	modality	(25),	while	

in	this	investigation	the	mean	Jaccard	reached	0.794,	outperforming	the	value	presented	

in	Wang’s	investigations.	However,	Wang’s	accuracy	was	based	on	the	Montalbano	hand	

dataset,	containing	different	hand	activities	from	those	implemented	in	this	investigation.	

Therefore,	further	investigations	would	be	needed	to	compare	the	performances	of	this	

network	 using	 this	 metric.	 Furthermore,	 no	 inconsistency	 was	 shown	 across	 the	

segmented	 video	 recordings	 for	 action	 and	 participants,	 meaning	 that	 segmentation	

accuracy	was	not	based	on	specific	actions	or	on	specific	participants.		

	

The	end-goal	for	this	model	 is	to	enable	a	more	effective	markerless	inference	of	two-

dimensional	 keypoints	 extracted	 from	 frames	 of	 video	 recordings	 when	 the	 relevant	

hand	gestures	are	recorded.	The	markerless	keypoints	detection	architecture	validated	

in	Chapter	4,	OpenPose	(17),	is	a	much	larger	and	more	computationally	expensive	model	

compared	to	the	three-dimensional	CNN	introduced	in	this	chapter.	This	approach	would	

enable	users	to	upload	video	data	and	obtain	hand	kinematics	from	OpenPose	run	only	

on	 the	relevant	sub-sets	of	 frames,	 instead	of	 the	entire	video	 length,	 creating	a	more	

computationally	efficient	approach	with	an	inexpensive	computational	classifier	that	is	

more	accessible	and	adaptable	to	mobile	applications	in	a	way	that	overcomes	capacity	

restriction.		

	

To	 adopt	 and	 scale	 this	 application	 in	 real-work	 scenarios,	 if	 multiple	 classes	 are	

considered,	future	directions	could	include	testing	this	approach	for	real-time	application	

using	a	finite	state	machine	system	that	can	decrease	the	classes	under	inspection	and	

increase	 the	 accuracy	 for	 real-time	 application.	 To	 further	 improve	 the	 model's	

performance	 for	 real-time	 applications,	 the	 input	 image	 size	 or	 the	 number	 of	 layers	

could	be	increased.	On	top	of	the	20BN	Jester	dataset,	an	additional	dataset	could	be	used	

to	enhance	the	model’s	performance.	The	Jester	dataset	was	developed	by	actors	and	did	

not	provide	numerous	occlusion	cases.	Regardless,	in	realistic	circumstances,	occlusion	

exists.	Recordings	captured	in	unconstrained	scenarios	may	incorporate	additional	types	

of	 interference,	 such	 as	blurry	hand	gestures	 if	 the	participants	 or	 the	 camera	moves	

suddenly	during	the	acquisition.	Rescuing	 identifiable	cues	of	 image	 interference	for	a	

real-time	hand	recognition	model	would	be	an	attractive	research	direction.	
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Furthermore,	 while	 the	 supervised-based	 transfer	 learning	 produced	 expected	

outcomes,	the	approach	presented	in	this	chapter	could	be	transported	to	unsupervised	

learning	 and	 could	 support	 the	 automated	 labelling	 and	 segmentation	 of	 long	 video	

recordings,	increasing	the	models’	generalizability.	

	

Most	recently,	there	has	been	the	diffusion	of	novel	architectures	for	deep	learning,	such	

as	 the	 "transformers"	 that	 aim	 to	 replace	 more	 traditional	 recurrent	 modules,	 such	

LSTMs,	for	long	sequence	interactions	(314).	These	techniques	have	been	explored	to	a	

limited	 extent,	 with	 one	 study	 that	 uses	 them	 for	 dynamic	 hand	 gesture	 recognition	

(315).	However,	that	study	included	depth	modality	to	reach	a	level	of	accuracy	similar	

to	the	one	presented	in	this	investigation,	for	longer	sequences.	Furthermore,	these	novel	

transformer	 techniques	 are	 computationally	 more	 demanding,	 compared	 to	 LSTM	

techniques	 (316).	 Therefore,	 LSTM	 was	 the	 final	 choice	 when	 trading	 off	 long-term	

precision	with	computational	complexity.	

	

Adapting	current	gesture	recognition	techniques	to	the	specific	mobility	short	exercise	

sequences	would	have	benefits	that	go	beyond	this	single	application.	A	real-time	device	

that	requires	minimal	manual	processing	could	process	and	identify	multiple	gestures	as	

soon	as	an	image	frame	is	received.	This	approach	could	be	deployed	into	online	hand	

gesture	recognition	studies	for	advanced	assistance	systems,	surveillance,	aided	robotics,	

and	clinical	applications.	For	instance,	the	pipeline	illustrated	here	could	be	integrated	

into	remote	monitoring	clinical	solutions,	presenting	the	training	of	a	model	that	uses	a	

smaller	dataset	implemented	on	a	small	architecture	that	can	run	efficiently	to	solve	the	

classification	problem	 for	hand	 temporal	 segmentation.	This	would	pave	 the	way	 to	a	

broader	 application	 in	 hand	 tracking	 models,	 incorporating	 other	 hand	 activities	

categories,	 and	obtaining	a	more	generalizable	approach,	 that	would	 include	different	

hand	exercise	programmes	and	different	hand	conditions.		
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Chapter	6 Clinical	proof	of	
concept:	a	non-contact	
measure	to	monitor	hand	
movements	in	rheumatoid	
arthritis	
 
6.1 Introduction		
 

Rheumatoid	arthritis	(RA)	is	an	autoimmune	condition	causing	soreness	due	to	swollen	

and	 damaged	 joints.	 It	 affects	 around	 1%	 of	 the	 world’s	 population	 and	 treatments	

depend	upon	drugs	that	repress	the	immune	system,	adjusted	according	to	the	disease	

severity.	Clinical	trials	over	the	last	three	decades	have	established	that	the	best	clinical	

outcomes	are	achieved	when	RA	participants	are	treated-to-a-target	(Figure	44)	of	low	

disease	activity	(310–312).	To	accomplish	this,	RA	patients	demand	frequent	monitoring.	

The	best	outcomes	have	been	observed	in	studies	that	reviewed	disease	activity	on	a	bi-

monthly-basis,	titrating	medication	accordingly	(310–312).		

	

In	 1990,	 a	 landmark	 change	 in	 RA	 management	 was	 the	 introduction	 of	 objective	

measures	 to	 quantify	 swollen	 joints	 and	 effectively	 assess	 disease	 activity	 using	 a	

technique	known	as	the	Disease	Activity	Score	(28	Joints)	(DAS-28)	(48).	The	DAS-28	is	

nowadays	 considered	 in	 clinical	 practice	 the	 principal	 system	 to	 objectively	measure	

disease	activity	changes	in	RA.	The	system	includes	inspection	of	joints	within	the	hands,	

wrists,	elbows,	shoulders,	and	knees.		

The	work	presented	in	this	chapter	was	partially	funded	by	the	'Proof	of	Concept	Award	Competition	for	Translational	Musculoskeletal	
Technology	Projects',	programme	within	the	Bioengineering	Department	at	Imperial	College	London	supported	by	the	Wellcome	Trust	
Musculoskeletal	Medical	Engineering	Accelerator.	
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Figure	 44:	 Rheumatoid	 arthritis	 (RA)	 treat-to-target	 scheme.	 Early	 inflammatory	

arthritis	patients	can	join	the	disease-modifying	anti-rheumatic	drug	(DMARD)	titration	

pathway	even	if	the	three-week	window	from	their	general	practitioner	referral	to	first	

appointment	 has	 been	 missed.	 MDT:	 multi-disciplinary	 team;	 US:	 ultrasound;	 MTX:	

methotrexate;	 HCQ:	 hydroxychloroquine;	 DAS-28:	 Disease	 Activity	 Score	 (28	 Joints);	

Reproduced	with	permission	from	The	British	Society	for	Rheumatology	(320).	

 
	

The	DAS-28	involves	four	domains:	clinician	reporting	swollen	joint	count	(SJC),	clinician	

reporting	tender	joint	count	(TJC),	a	global	measure	of	pain	using	a	visual	analogue	100-

mm	long	horizontal	scale,	and	a	biomarker	of	inflammation	from	a	blood	test,	including	
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the	C-reactive	protein	(CRP)	or	erythrocyte	sedimentation	rate	(ESR)	levels.	The	different	

items	are	inserted	into	a	calculator	that	provides	in	output	a	score	between	zero	to	nine,	

with	scores	below	2.6	reflecting	excellent	disease	control	(or	patient	being	in	remission),	

while	 scores	 above	 5.1	 indicate	 very	 active	 disease.	 The	 DAS-28	measurement	 takes	

around	30	minutes	to	record,	and	currently	requires	RA	patients	physically	present	in	

the	clinic.		

	

Many	studies	have	highlighted	the	necessity	for	a	practical	alternative	that	can	capture	

and	quantify	disease	activity	remotely	(48,321,322).	In	the	past	two	years	of	the	COVID-

19	pandemic,	 there	has	been	an	obligatory	move	towards	virtual	consultations,	 taking	

place	 using	 video	meetings	 (323),	with	 the	 option	 to	 remotely	 prescribe	medications	

based	on	the	visible	signs	of	illness	progression.	The	service	of	video	consultations	can	

offer	visual	clues	that	previously	only	could	be	acquired	during	the	in-person	assessment.	

However,	it	is	conceivable	to	miss	valuable	clinical	information	with	virtual	assessments,	

as	such	methodologies	can	lack	objectivity.	The	telehealth	virtual	consultation	is	based	

upon	 clinician	 observation	 and	 qualitative	 assessments	 but	 could	 be	 theoretically	

improved	using	digital	home	monitoring	devices.		

	

Remote	monitoring	offers	the	possibility	of	determining	disease	activity	remotely.	Most	

systems	 tend	 to	 isolate	 single	 components	 of	 the	 DAS-28	 and	 use	 these	 to	 estimate	

disease	activity	(319).	For	instance,	the	biomarker	levels	has	been	obtained	using	home	

commercially	 available	 ESR/CRP	 testing	 kits	 (324).	 However,	 CRP	 and	 ESR	 are	 not	

condition-specific	tests	and	can	only	observe	if	an	inflammation	is	ongoing,	which	makes	

them	not	reliable	as	the	only	metric	to	track	disease	activity	in	RA	(325).	Other	studies	

have	 illustrated	 the	 possibility	 of	 capturing	 qualitative	 patient	 pain	 scores	 (226).	

Nevertheless,	such	qualitative	assessment	can	be	unreliable	and	not	condition	specific.	

For	 TJC,	 several	 investigations	 have	 illustrated	 a	 good	 correlation	 between	 joint	

tenderness	learnt	through	patient	self-assessment	and	the	scored	measured	by	clinicians	

(244,326).	However,	the	same	studies	have	found	only	a	very	poor	correlation	in	patient	

self-assessment	for	SJC.		

	

The	 limitation	 in	 capturing	 SJC	 in	 RA	 has	 paused	 the	 integration	 of	 these	 remote	

monitoring	 tools	 into	 RA	 clinical	 practice,	 including	 virtual	 consultations.	 The	 main	
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reason	for	this	is	that	joint	swelling	has	been	considered	the	most	critical	component	of	

the	DAS-28	 as:	 i)	 it	 can	 cause	 a	 reduced	 range	 of	motion	 (ROM)	 (327),	 ii)	 it	 is	 a	 key	

predictor	of	future	damage	within	a	joint,	iii)	its	absence	can	point	towards	alternative	

diagnoses	 such	 as	 fibromyalgia	 (328).	 Crucially,	 medications	 for	 RA	 do	 not	 help	

fibromyalgia,	and	if	RA	therapies	were	erroneously	prescribed	for	fibromyalgia,	the	drugs	

could	result	in	harm	for	patients	(328).	The	assessment	of	swollen	joints	is	aggravated	in	

the	small	joints	of	the	hand,	where	SJC	could	serve	as	an	early	indicator	of	disease	activity,	

thus	allowing	timely	adaptation	of	treatment	plan	procedures	(224).	It	is,	therefore,	vital	

that	the	SJC	is	accurately	assessed.		

 

Given	the	importance	that	swelling	plays	in	the	small	joints	of	the	hand	for	RA	patients,	

several	hand	interventions	have	been	implemented	to	improve	hand	mobility	and	restore	

swollen	joints	(329).	These	exercise	programmes	are	performed	using	participants’	own	

cameras	and	represent	a	low-cost	and	widely	accepted	remote	procedure,	currently	part	

of	 the	 NICE	 pathways	 to	 manage	 RA	 (35).	 These	 interventions	 have	 demonstrated	

increased	ROM	and	improved	swollen	joints	in	the	short	term	(330).	However,	they	do	

not	provide	any	feedback	on	the	improvements	each	time	the	intervention	is	performed,	

are	not	linked	to	the	clinical	records	of	the	patients	and,	for	these	reasons,	studies	have	

demonstrated	that	they	lose	adherence	(256,331).		

	

To	emphasize	the	importance	that	small	joints	of	the	hand	play	in	RA	disease	activity,	in	

2010	 the	 American	 College	 of	 Rheumatology	 and	 the	 European	 League	 Against	

Rheumatism	(ACR/EULAR)	implemented	a	joint	distribution	criteria	(Table	5)	to	classify	

disease	activity	based	on	the	involvement	of	small	joints	of	the	hand	(320).		

	

Table	5:	Disease	activity	quantification	based	on	the	swollen	joints	of	the	hand	according	

to	the	2010	American	College	of	Rheumatology/	European	League	Against	Rheumatism	

(ACR/EULAR)	Classification	Criteria	for	Rheumatoid	Arthritis	(RA).		

RA	joint	involvement		 Disease	activity		

<1	swollen	joint	 remission	

1-3	swollen	joints	 low	disease	activity	

4-10	swollen	joints	 active	disease	activity		

>10	swollen	joints	 very	active	disease	activity	
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Objective	quantification	of	the	ROM	in	small	joints	of	the	hand	for	RA	patients	has	been	

investigated	in	several	studies	(40,265,268,332,333).	The	aim	of	these	investigations	was	

to	implement	a	mechanism	to	record	and	assess	how	many	joints	are	swollen,	defining	

ROM	thresholds	for	flexion	and	abduction	under	which	joints	could	be	classified	as	being	

swollen.	The	ultimate	goal,	once	 the	SJC	has	been	 implemented,	was	 to	determine	 the	

disease	activity	status	for	RA	patients	based	on	swelling	in	the	joints	of	the	hand.	These	

studies	 have	 reported	 a	 17-28%	 reduction	 in	 ROM	when	 the	 condition	 is	 at	 its	 early	

stages,	increasing	to	35-49%	after	eight	years	(265).	Based	on	these	findings,	thresholds	

under	which	these	joints	could	be	classified	as	swollen	in	relation	to	the	ROM	deficits	for	

individuals	who	have	had	RA	for	more	than	eight	years	are	summarised	in	Table	2.	

	

These	 investigations	have	been	 implemented	using	different	 techniques,	 ranging	 from	

gold-standard	optoelectronic	motion	capture	to	goniometers.	Due	to	financial	and	time	

constraints	 that	 deter	 the	 use	 of	 gold-standard	 optoelectronic	 motion	 capture,	

goniometric	 assessment	 has	 been	 preferred	 in	 the	 clinic,	 and	 is	 performed	 by	

rheumatology	 nurses.	 However,	 these	 assessments	 require	 face-to-face	 consultation,	

which	 is	 not	 always	 feasible	 given	 the	periodicity	 at	which	 the	 condition	needs	 to	 be	

monitored.	A	system	that	would	provide	objective	tracking	of	hand	kinematics	could	also	

infer	 disease	 activity	 and	 would	 be	 able	 to	 support	 more	 frequent	 monitoring	 and	

improve	treat-to-target	approaches.		

	

The	latest	advancements	in	deep	neural	networks	together	with	the	ubiquity	of	standard	

video	cameras	provide	the	opportunity	to	gather	clinical	endpoints	remotely.	Amongst	

other	convolutional	neural	network	(CNN)	approaches	discussed	in	Chapter	3,	OpenPose	

(17)	has	been	shown	to	obtain	reliable	two-dimensional	(x,	y)	keypoints	from	monocular	

RGB	cameras	without	the	requirement	for	markers	or	special	gloves.	This	tool	has	been	

validated	 against	 gold-standard	 optoelectronic	 motion	 capture	 systems	 for	 gait	

kinematics	and	has	been	adopted	on	clinical	populations,	e.g.,	 cerebral	palsy	 (28)	and	

Parkinson’s	disease	(20).		

	

Leveraging	 these	 validations	 against	 optoelectronic	 systems	 for	 the	 CNN-based	 two-

dimensional	(x,	y)	keypoint	detectors,	these	algorithms	have	been	applied	to	video	data	

gathered	 during	 telehealth	 consultations.	 Rosique	 et	 al.	 (334)	 implemented	
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telerehabilitation	 software	 based	 on	 two-dimensional	 keypoints	 extracted	 using	

OpenPose	for	the	lower	limb.	Similarly,	Chua	et	al.	(335)	implemented	a	telehealth	system	

that	 used	 video	 captured	 during	 remote	 consultation	 to	 infer	 posture	 and	 angular	

movement	for	patients	with	mobility	impairments	in	the	lower	limb.		

	

In	Chapter	4,	the	feasibility	of	applying	OpenPose	to	infer	the	centres	of	the	joints	of	the	

digits,	including	metacarpophalangeal	(MCP),	proximal	interphalangeal	(PIP),	and	distal	

interphalangeal	 (DIP)	 joints,	has	been	validated	 for	 specific	hand	exercises	against	 an	

optoelectronic	 motion	 capture	 system.	 Therefore,	 similarly	 to	 the	 above-mentioned	

studies	validated	for	the	lower	limb	and	applied	to	telehealth	consultations,	this	chapter	

embraces	this	validation	to	deliver	a	pipeline	that	can	be	used	to	deliver	objectivity	to	

remote	assessments.		

	

One	potential	challenge	of	this	approach	is	that	identifying	the	motions	of	interest	with	

videos	 provided	 by	 patients.	 Being	 able	 to	 break	 down	 the	 inputs	 of	 OpenPose	 into	

specific	 segments	 according	 to	 motion	 type	 makes	 its	 application	 more	 scalable	 and	

relevant	 to	 remote	 motion	 assessment.	 Several	 CNNs	 incorporating	 long	 short-term	

memory	(LSTM)	have	been	described	in	Chapter	3	to	address	this	task.	In	Chapter	5,	a	

classifier,	trained	on	an	available	hand	gesture	dataset,	20BN	Jester	dataset	(157),	was	

fine-tuned	using	transfer	learning	to	the	gestures	of	relevance	in	this	study.	These	hand	

exercises	are	often	adopted	innervations	to	restore	loss	in	mobility	and	reduce	swelling	

in	rheumatoid	hands.	The	segmentation	technique	described	in	Chapter	5	could	be	used	

to	partition	the	videos	and	reduce	the	computational	costs,	so	that	OpenPose	outputs	can	

be	considered	only	when	the	relevant	actions	are	taking	place.		

	

The	first	aim	of	this	chapter	is	to	validate	a	remote	monitoring	tool	that	uses	specific	hand	

exercises	 for	 individuals	with	RA	 to	determine	disease	 status	based	on	 swollen	 joints	

count	(Figure	46),	by	considering	the	following	objectives:	

	

i. To	collect	anonymized	RGB	video	recordings	of	individuals	with	RA	performing	

hand	activities,	gathered	with	the	disease	activity	score	measured	in	the	clinic.	

ii. To	 determine	 the	 accuracy	 of	 temporal	 segmentation	 of	 continuous	 video	

recordings	into	sections	containing	pre-specified	hand	exercises.	



Chapter	6	Clinical	proof	of	concept	to	monitor	hand	movements	in	RA	

 96	

iii. To	 compare	 the	 inferred	 disease	 activities	 and	 the	 number	 of	 swollen	 joints	

disease	activity	observed	during	the	virtual	consultation,	both	compared	against	

the	ground	truth.		

	

	
	
	
 
 
 
 
 
 
 
 
 
 
 

 
Figure	45:	Flowchart	of	the	pipeline	illustrating	the	telehealth	and	the	algorithm-based	

approach	to	assess	disease	status.	Both	are	compared	with	the	ground	truth	gathered	in	

the	clinic.	

	

The	second	aim	is	to	indicate	if	the	presented	pipeline	can	provide	a	means	to	navigate	

through	 the	 new	 territories	 of	 remote	 virtual	 consultations,	 enabling	 more	 frequent	

disease	activity	monitoring	that	exploits	RA	patients’	own	technologies.		

	

6.2 Materials	and	methods  

6.2.1 Participants	and	data	collection		
 
The	 protocol	 was	 approved	 by	 the	 King's	 College	 Research	 Ethics	 Committee	 and	

included	 permission	 for	 the	 Imperial	 College	 London	 principal	 investigators	 and	 co-

investigators	to	have	access	to	the	data	and	utilize	the	data	for	researcher	purposes.	The	

inclusion	 criteria	 involved	 collecting	 videos	 of	 adults	 over	 16	 years	 of	 age,	willing	 to	

anonymously	take	part	in	the	study,	with	a	diagnosis	of	RA	that	met	the	2010	ACR/EULAR	

criteria	(37)	for	more	than	eight	years,	and	with	regular	hand	anatomy	(defined	as	no	

missing	fingers).	A	requirement	of	the	study	was	for	participants	to	be	able	to	record	an	
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RGB	video	from	any	device,	with	the	hand	in	the	field	of	view	of	the	camera,	not	occluded	

by	clothing,	with	good	lighting	conditions.		

	

Participants	with	RA	were	identified,	and	video	recordings	collected	with	the	support	of	

the	National	Rheumatoid	Arthritis	 Society	 (NRAS),	 a	patient-led	association	 in	 the	UK	

specialized	 in	 RA	 and	 juvenile	 idiopathic	 arthritis.	 The	 NRAS’s	 letter	 of	 support	 is	 in	

Appendix	A2.	To	maintain	 consistency	 in	 the	video	acquisition,	 the	 timed	PowerPoint	

presentation	adopted	 in	 the	Chapters	4	and	5	was	shared	with	NRAS	and	provided	to	

participants	for	the	video	recordings.	Written	informed	consent	was	obtained	from	each	

participant.	 Eleven	 RA	 patients	 (eight	 female,	 three	 male)	 participated	 in	 this	 study	

Figure	46.	

	

Figure	46:	Cropped	sections	of	videos	of	the	ten	participants	with	rheumatoid	arthritis	

performing	hand	function	activities	captured	using	a	monocular	RGB	camera.	

	

Individuals	with	RA	participating	 in	 the	 study	 reported	 a	median	 disease	 duration	 of	

eleven	 years,	 ranging	 from	 eight	 to	 thirty-five.	 The	 video	 acquisition	was	 set	 for	 250	

seconds	each	for	a	total	of	72,500	frames	collected.	Each	recording	showed	RA	patients	

performing	 hand	 exercises	 including	 abduction	 and	 adduction,	 metacarpophalangeal	

(MCP)	 flexion,	 and	 thumb	 opposition.	 The	 exercises	 were	 repeated	 twice	 for	 each	

participant	with	both	the	left	and	the	right	hands.	Alongside	each	video,	disease	activity	

scores	were	 collected	 in	person,	within	 the	 five	days	previous	 to	 the	video	 recording,	

looking	at	all	the	four	components	of	the	DAS-28	including	global	symptom	measure,	CRP	
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blood	test,	SJC,	and	TJC.	The	video	recordings	of	the	eleven	RA	patients	performing	hand	

activities	 and	 the	 corresponding	 disease	 activity	 associated	 to	 each	 participant	 were	

electronically	shared	by	the	charity.			

	

Once	the	video	recordings	were	obtained,	a	virtual	consultation	was	simulated	with	an	

experienced	rheumatologist	consultant	at	King's	College	Hospital	NHS	Foundation	Trust.	

The	 rheumatologist	 was	 not	 previously	 instructed	 on	 the	 ground	 truth	 of	 the	 video	

recordings	 and	 did	 not	 receive	 any	 information	 on	 the	 participants	 prior	 to	 the	

consultation.	 The	 simulated	 virtual	 consultation	 consisted	 of	 one	 asynchronous	

telehealth	video	call.	 Asynchronous	telehealth,	also	known	as	“store-and-forward”,	has	

been	adopted	in	clinical	practice	during	COVID-19	to	simulate	synchronous	consultations	

(taking	place	for	all	parties	involved	at	the	same	time)	during	remote	assessments	(336).	

To	simulate	an	outpatient	appointment	taking	place	by	video,	each	pre-recorded	video	

was	presented	to	the	rheumatologist	who	observed	the	patients	doing	the	exercises	to	

label	the	joints	with	mobility	compromised	and	suggested	a	classification	of	low,	active,	

and	very	active	disease	activity.	This	was	done	to	deliver	a	visually	based	impression	of	

the	presence	of	swollen	joints.		

6.2.2 Data	processing	
 
All	the	videos	received	electronically	from	the	NRAS	were	manually	anonymized	(faces	

blurred)	 before	 executing	 the	 segmentation	 classifier.	 Of	 the	 eleven	 video	 recordings	

received,	one	 recording	 from	one	participant	was	 found	 to	be	 corrupted;	 therefore,	 it	

could	 not	 be	 used	 in	 this	 investigation.	 All	 the	 video	 recordings	 were	 acquired	 at	 a	

standard	 resolution	of	640 × 480	and	observed	 to	 ensure	 that	 the	hands	were	 always	

present	in	the	field	of	view	of	the	camera,	and	that	the	timing	was	consistent.		

	

Before	applying	the	segmentation	classifier,	the	recordings	were	manually	labelled.	Video	

sequences	were	classified	as	belonging	to	one	of	the	four	classes,	including	"no	gesture",	

"abduction	and	adduction",	"MCP	flexion",	and	"thumb	opposition".	The	continuous	video	

sequences	were	 then	 temporally	segmented	to	only	consider	 the	relevant	parts	of	 the	

videos	where	 the	exercises	occurred	 in	 the	 three-dimensional	CNN	classifier	with	 the	

long-short	term	memory	(LSTM)	unit	for	temporal	segmentation	illustrated	in	Chapter	5	

to	isolate	the	activities	were	the	hand	exercises	occurred.	The	code	was	executed	locally,	
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and	 the	 results	 from	 the	 network	 were	 compared	 against	 manual	 segmentation	 to	

evaluate	 the	 accuracy	 of	 the	 technique	 on	 an	 impaired	 population.	 The	 classifier	

performances	were	assessed	using	the	accuracy	percentage	(%)	and	the	Jaccard	index	𝐽.� 	

(313).	The	Jaccard	index	varies	from	zero	to	one.	The	larger	is	the	index,	the	higher	is	the	

accuracy	of	the	segmentation	classifier.	

	

For	each	frame	of	the	segmented	video	sequences,	only	the	regions	where	abduction	and	

adduction,	MCP	 flexion,	 and	 thumb	 opposition	 exercises	 took	 place	were	 considered,	

while	the	transition	frames	where	no	exercise	occurred	were	eliminated.	OpenPose	was	

used	 within	 a	 Google	 Colaboratory	 notebook.	 The	 OpenPose	 output	 delivered:	 1)	 a	

JavaScript	Object	Notation	file	for	every	video	frame	containing	pixel	coordinates	(origin	

at	the	upper	left	corner	of	the	video)	of	each	keypoint	detected	in	the	frame,	reported	

points	were	the	estimated	(x,	y)	coordinates,	in	pixels,	of	the	centres	of	the	MCP,	proximal	

interphalangeal	(PIP),	distal	interphalangeal	(DIP)	joints	and	tips	of	the	2nd,	3rd,	4th	and	

5th	digits,	for	the	right	and	left	hands;	2)	a	new	video	file	with	a	stick	figure	overlayed	on	

top	of	the	original	video	recording	that	represents	the	detected	keypoints	(Figure	47).		

	

Figure	 47:	 Visualization	 output	 from	 OpenPose	 output	 that	 illustrates	 the	 inferred	

keypoints	 overlapped	 onto	 the	 image	 frames	 for	 four	 individuals	 with	 rheumatoid	

arthritis.	

 
The	raw	data	were	then	filtered.	Following	the	approach	in	Chapter	4,	the	multiplying	

coefficient	of	 the	standard	deviation	(SD)	of	 the	Hampel	 filter	was	set	 to	one,	and	 the	

window	size	was	set	to	four.	A	Butterworth	filter	with	a	cut-off	frequency	of	3	Hz	was	also	

applied.	The	combination	of	the	two	filtering	techniques	is	a	widely	adopted	approach	to	

smooth	the	sequence	in	output	from	OpenPose	(283,284).	
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Once	the	raw	signals	were	obtained	and	filtered,	the	time-varying	angles	were	extracted	

for	each	exercise.	From	the	abduction	and	adduction	activity	the	four	time-varying	angles	

corresponding	 to	 the	 finger	 intersect,	defined	as	 the	 intersection	between	each	 finger	

with	the	middle	finger,	were	extracted	for	each	hand.	From	the	MCP	flexion	exercise	the	

MCP	 angles	 were	 estimated.	 Finally,	 for	 the	 thumb	 opposition	 activity	 the	 PIP	 time-

varying	angles	were	inferred	for	both	the	right	and	the	left	hand.		

Once	the	time-varying	angles	were	extracted	for	each	frame,	the	total	active	flexion	(TAF)	

angles	for	each	exercise	were	determined.	TAF	separates	the	highest	flexion	angle	and	

the	lowest	flexion	angle	for	a	given	hand	exercise.	The	average	values	of	the	TAF	were	

estimated,	and	the	number	of	swollen	joints	were	assessed,	based	on	the	value	in	Table	

2.	Finally,	based	on	the	number	of	swollen	joints	the	ACR/EULAR	criteria	(Table	5)	were	

adopted	to	classify	the	disease	status.		

Given	the	biases	provided	in	output	in	Chapter	4,	bias-correcting	was	evaluated.	The	TAF	

values	to	estimate	the	number	of	swollen	joints	were	unbiased	by	offsetting	the	output	

with	the	bias	values	observed	in	the	Bland-Altman	plots.	The	bias	values	were	4.72°	for	

the	abduction	and	adduction	activity,	6.82°	 for	 the	MCP	flexion	task,	and	4.70°	 for	 the	

thumb	opposition	task.		

Finally,	to	evaluate	the	level	of	agreement	between	the	two	methodologies,	the	Cohen's	

kappa	 correlation	 coefficient	 (337)	was	determined.	The	usage	of	 this	 coefficient	was	

based	on	studies	adopting	 it	 in	 the	 literature	when	comparing	 ratings	against	 scoring	

indexing	 systems	 (28,	 345).	 This	 metric	 assessed	 the	 agreement	 between	 the	 two	

assessments	 performed	 by	 two	 raters	 (Rater	 1	 and	 Rater	 2).	 The	 Cohen's	 kappa	

coefficient	 can	 be	 expressed	 as	 a	 contingency	 table	 (Table	 6),	 that	 expresses	 the	

distribution	of	the	variables	given	two	assessments	and	two	raters,	where	x1	represents	

the	total	number	of	instances	that	both	raters	were	in	agreement,	x2	indicates	the	total	

number	of	 instances	 that	caused	disagreement	between	the	two	raters	due	to	Rater	2	

being	incorrect	and	Rater	1	correct,	x3	 indicates	disagreement	between	the	two	raters	

representing	the	total	number	of	instances	that	Rater	1	was	incorrect	and	Rater	2	correct,	

finally	x4	represents	the	total	number	of	instances	where	both	raters	were	incorrect.	The	

Cohen's	kappa	correlation	coefficient	is	calculated	as:	



Chapter	6	Clinical	proof	of	concept	to	monitor	hand	movements	in	RA	

 101	

𝜅 =
𝑃! − 𝑃"
1 − 𝑃"

 
(6.1)	

where	𝑃!	indicates	the	detected	agreement	probability	derived	by	adding	the	number	of	
times	the	raters	agreed	(x1+	x4)	and	dividing	it	by	the	total	number	of	tests	(x1+	x2+	x3+	

x4),	and	𝑃"	refers	to	the	predicted	agreement	probability,	obtained	by	the	total	number	of	
instances	Rater	1	rated	"Correct”	(x1+	x2)	divided	by	the	total	number	of	tests,	multiplied	

by	 the	 total	 number	of	 instances	Rater	2	 rated	 "Correct”	 (x1+	 x3)	divided	by	 the	 total	

number	of	tests,	added	to	the	total	number	of	times	that	Rater	1	rated	"Incorrect”		(x3+	

x4)	divided	by	the	total	number	of	tests,	multiplied	by	the	total	number	of	times	that	Rater	

2	rated	incorrect	(x2+	x4)	divided	by	the	total	number	of	tests.	

Table	6:	An	example	of	a	2x2	grid	to	interpret	results	of	the	Cohen's	kappa	correlation.	

	 	 Rater2	

	 	 Correct	 Incorrect	

	

Rater	1	
Correct	 x1	 x2	

Incorrect	 x3	 x4	

	

6.3 Results		
From	 the	 assessment	 in	 the	 clinic,	 one	RA	participant	was	 classified	with	 very	 active	

disease	 activity	 (DAS-28	 score	 over	 5.1),	 two	 were	 categorised	 with	 active	 disease	

activity	 (ranging	 from	 3.2	 to	 5),	 two	 more	 were	 classified	 with	 low	 disease	 activity	

(ranging	 from	 2.6	 to	 3.2),	 and	 six	 were	 in	 remission	 (below	 2.6).	 One	 participant	 in	

remission	 had	 the	 video	 corrupted	 and	was	 the	 only	 one	 not	 used	 in	 the	 study.	 The	

disease	 stages	 provided	 by	 the	 rheumatologist,	who	 visually	 observed	 the	 video	 data	

during	 the	 simulated	 virtual	 consultation	 determined	 that	 eight	 participants	 were	 in	

remission	and	two	participants	had	active	disease	activity	(for	one	of	the	two	the	disease	

activity	was	classified	as	being	very	active).	These	results	reported	by	rheumatologist	

during	 visual	 inspection	 and	 the	 results	 of	 the	 approach	 proposed	 in	 this	 study	 are	

illustrated	 in	Figure	48,	both	are	 compared	against	 the	ground	 truth	measured	 in	 the	

clinic.	 The	 figure	 illustrates	 the	 disease	 activity	 level	 obtained	 from	 the	 pipeline	
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implemented	 in	 this	chapter	has	a	higher	agreement	with	 the	ground	 truth	compared	

with	the	assessment	obtained	through	an	asynchronous	telehealth	video	consultation.	

	

	
Figure	 48:	 Bar	 chart	 representing	 categorical	 results	 obtained	 during	 the	 simulated	

clinical	telehealth	consultation	(in	pink)	and	the	algorithm-based	pipeline	(in	green)	both	

compared	against	the	ground	truth	(in	blue)	obtained	in	the	clinic	for	the	ten	participants	

with	 rheumatoid	 arthritis	 (RA).	 The	 disease	 activity	 level	 goes	 shows	 RA	 patients	 in	

remission	with	low,	active,	and	very	active	disease	activity	levels.		

 
Results	from	the	segmentation	classifier	demonstrated	84%	(±	0.51)	accuracy	across	the	

set	 with	 the	 mean	 Jaccard	 index	𝐽.� 	 of	 0.761	 (±	 0.2).	 The	 accuracy	 was	 uniformly	

distributed	across	all	exercises,	and	all	participants,	reaching	89%,	apart	from	participant	

5	 (with	 very	 active	 disease	 activity),	 where	 the	 segmentation	 results	 were	 74%,	 the	

lowest	 predicted	 class	 scores.	 Illustrations	 of	 gesture	 segmentation	 for	 participant	 5	

(Figure	49A)	and	participant	1	 in	remission	(Figure	49B)	 for	 the	segmented	activities	

show	poor	agreement	for	the	participant	with	very	active	disease	activity.	In	contrast,	a	

better	agreement	between	the	manually	segmented	activities	and	the	output	 from	the	

three-dimensional	 CNN	 was	 presented	 for	 participant	 1.	 Based	 on	 the	 segmentation	

output,	for	participant	5	a	manual	correction	was	implemented	in	around	7%	of	the	entire	

dataset	to	ensure	that	OpenPose	could	be	correctly	executed	on	the	segmented	exercises.	
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(A)	

	
(B)	

Figure	 49:	 Continuous	 temporal	 hand	 gesture	 segmentation	 and	 classification	 for	 the	

labels	 "no	 gesture"	 (class=0),	 "abduction	 and	 adduction"	 (class=1),	

"metacarpophalangeal	(MCP)	flexion"	(class=2),	and	"thumb	opposition"(class=3)	for	(A)	

patient	 number	 5	 with	 very	 active	 disease	 activity,	 and	 for	 (B)	 patient	 number	 1	 in	

remission.	 The	 ground	 truth	 (solid	 line)	 is	 compared	 against	 the	 three-dimensional	

convolutional	neural	network	(3DCNN)	results	(dashed	lines).		

	

A	 representative	 plot	 for	 the	 MCP	 flexion	 activity	 (Figure	 50)	 to	 illustrate	 the	

correspondence	 between	 MCP	 raw	 kinematics	 from	 healthy	 participants	 obtained	 in	

Chapter	4	and	unhealthy	kinematics	gathered	from	RA	patients.	The	plot	illustrates	how	

the	average	MCP	values	for	twelve	healthy	participants	obtained	with	OpenPose	show	

higher	ROMs	than	 those	 for	patients	with	 low,	active,	and	very	active	disease	activity.	

From	the	values	in	Table	3	in	Chapter	3,	a	ROM	threshold	was	set	at	50°,	representing	the	

maximum	flexion	value	under	which	an	MCP	joint	could	be	defined	as	having	restricted	

movement.		
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Figure	 50:	 Raw	 data	 output	 from	 OpenPose	 during	 metacarpophalangeal	 flexion	 for	

twelve	healthy	participants	(in	blue;	average	+/-	one	standard	deviation);	average	values	

of	 two	 participants	 with	 low	 disease	 activity	 (in	 green),	 average	 values	 of	 two	

participants	 with	 active	 disease	 activity	 (in	 pink);	 one	 participant	 with	 very	 active	

disease	activity.	Red	dashed	line	indicates	the	maximum	flexion	value	threshold	under	

which	the	metacarpophalangeal	joint	is	defined	unhealthy.		

	

Once	the	raw	data	were	estimated,	the	TAF	values	were	extracted	to	obtain	the	swollen	

joints	and	classify	RA	patients'	disease	activity	levels	(Figure	48).	Bias	values	obtained	in	

Chapter	4	for	the	left	and	right	hands	were	applied	to	offset	the	TAF	values	and	increase	

disease	 activity	 estimation.	 The	 biases	 were	 4.72°,	 6.82°	 and	 4.70°	 for	 abduction-

adduction,	MCP	flexion,	and	thumb	opposition,	respectively.	Once	applied,	no	difference	

was	 recorded	 in	 the	 disease	 activity	 status	 when	 offsetting	 the	 TAF	 values	 by	 the	

calculated	bias,	as	illustrated	for	MCP	and	PIP	joint	angles	for	unbiased	(Figure	51A)	and	

biased	(Figure	51B)	data	across	participants.	Results	suggest	that	further	investigations	

from	 a	 gold-standard	 marker-based	 motion	 capture	 system	might	 be	 needed	 to	 find	

possible	bias	values	specific	to	this	population.	
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(A)	

	
(B)	

Figure	51:	Scatterplots	showing	(A)	unbiased	and	(B)	biased	total	active	flexion	angles	of	

the	metacarpophalangeal	 (MCP)	 and	proximal	 interphalangeal	 (PIP)	 joints	 during	 the	

metacarpophalangeal	flexion	and	the	thumb	opposition	activities.		

	

The	unbiased	Cohen's	kappa	coefficient	between	 the	ground	 truth	and	 the	 telehealth-

based	 estimation	 was	 .4,	 indicating	 fair	 agreement	 between	 the	 two	 methods.	 The	

Cohen's	 kappa	 coefficient	 between	 the	 ground	 truth	 and	 algorithm-based	 estimations	

implemented	 in	 this	 chapter	 reported	 a	 value	 of	 .8,	 indicating	 substantial	 agreement	

between	the	two	methods.	
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6.4 Discussion		
	
Exploiting	 the	 pipeline	 implemented	 in	 Chapter	 4	 for	 the	 validation	 of	 OpenPose	 in	

tracking	hand	kinematics	for	specific	hand	exercises,	in	this	third	and	final	investigation,	

the	validated	keypoint	detector	was	used	to	extract	hand	kinematics	from	video	of	RA	

participants	performing	hand	exercises	in	front	of	a	monocular	RGB	camera.	To	optimize	

the	 keypoint	 tracker	 and	 enable	 a	 smooth	 deployment	 in	 real-word	 applications,	 an	

additional	segmentation	classifier	implemented	in	Chapter	5,	was	adopted	with	the	aim	

of	 automatically	 detecting	 when	 hand	 activity	 occurred	 within	 a	 video	 sequence.	

Following	 a	 successful	 (84%	 of	 accuracy)	 segmentation	 of	 the	 classes,	 the	 keypoint	

detector	 automatically	 extracted	 the	 joint	 coordinates	 in	 each	 sub-set	 segmented,	

thereby	 enabling	 the	 extraction	 of	 MCP,	 PIP	 joint	 angles	 and	 kinematics	 of	 finger	

intersects.	 The	 values	 extracted	 were	 used	 to	 estimate	 disease	 activity.	 The	 inferred	

disease	scores	were	compared	with	those	obtained	from	video	data	visually	marked	by	a	

rheumatologist	 and	 those	 assessed	apriori	 during	 a	 face-to-face	meeting	 in	 the	 clinic,	

which	was	designated	as	the	ground	truth.		

	

The	agreement	between	the	ground	truth	and	the	algorithm-based	estimation,	illustrated	

in	Figure	48,	outperformed	the	rheumatologist’s	assessment	of	the	video.	The	categorical	

scores	for	the	five	RA	participants	in	remission	agreed	with	the	scores	provided	by	the	

two	types	of	estimations,	as	participants	exhibited	a	standard	hand	ROM.	This	result	was	

anticipated	 as	 for	 RA	 patients	 in	 remission,	 the	 end	 goal	 reported	 in	 the	 therapeutic	

recommendations	for	the	management	of	RA	by	the	ACR/EULAR	2010	is	for	patients	to	

maintain	a	full	ROM	(338).	Normal	ROM	in	the	MCP,	PIP	joints,	and	angle	intersects	have	

also	been	reported	in	Mohammed	et	al.’s	investigation	of	RA	patients	in	remission	(339).	

	

Of	the	two	RA	patients	with	low	disease	activity	(participants	2	and	10),	the	algorithm-

based	assessment	was	in	agreement	with	the	ground	truth	for	participant	10,	but	not	for	

participant	2,	while	the	video	consultation	disagreed	with	the	ground	truth	in	both	cases.	

The	mocked	 video	 consultation	 also	 conflicted	with	 the	 ground	 truth	 for	 RA	 patients	

diagnosed	 active	 disease	 activity	 (participants	 4	 and	 7),	 while	 the	 algorithm-based	

approach	picked	up	the	limited	ROM	in	both	instances.	These	results	are	aligned	with	a	

cross-sectional	 investigation	 of	 the	 hand	 and	 wrist	 joints	 in	 rheumatoid	 patients	
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suggesting	that	abnormality	in	the	MCP	and	PIP	joints	is	not	easily	identifiable	by	visual	

cues	and	necessitates	objective	quantification	(260).		

	

Finally,	both	(telehealth	and	algorithm-based)	estimations	were	in	agreement	with	the	

one	 participant	 (participant	 5)	 with	 very	 active	 disease	 activity,	 showing	 extremely	

limited	ROM.	However,	the	sample	size	of	two	patients	per	category	for	active	disease	

activity	and	one	patient	for	very	active	disease	activity	are	not	representative	and	further	

research	would	be	needed	to	enlarge	the	population	and	further	validate	the	results.	

	

Cohen’s	 kappa	 was	 adopted	 as	 a	 measure	 of	 agreement	 between	 different	 forms	 of	

assessments;	 this	 is	 widely	 uses	 in	 estimating	 agreements	 in	 assessment	 in	 clinical	

evaluations	that	 involve	complex	observations	(260).	This	study	found	a	0.8	and	a	0.4	

agreement	 for	 the	 algorithm-based	 implementation	 and	 the	 simulated	 telehealth	

consultation	 (260).	 This	 illustrates	 that	 the	 proposed	 methodology	 based	 on	

convolutional	units	could	outperform	simulated	telehealth	assessments.	Instead	of	using	

the	Cohen’s	kappa	 index,	 some	studies	have	suggested	 that	 the	Fleiss’	kappa	could	be	

considered	to	evaluate	the	agreement	in	studies	where	OpenPose	is	evaluated	(340,341).	

However,	 it	 was	 not	 used	 in	 this	 study	 as	 evidence	 suggests	 that	 the	 Fleiss’	 kappa	

provides	weak	evidence	on	the	significance	agreement	level.		

The	 entire	 methodology	 presented	 in	 this	 chapter	 comes	 with	 some	 limitations	 that	

would	need	to	be	addressed	in	future	research.	The	OpenPose	workflow	depends	on	a	

few	 post-processing	 steps,	 some	 of	 which	 were	 performed	manually	 to	 clean	 up	 the	

dataset.	For	 instance,	manual	post	processing	was	done	on	 the	one	subject	where	 the	

segmentation	 provided	 74%	 accuracy	 (Figure	 49A).	 The	 proposed	 manual	

postprocessing	 steps	 suggest	 that	 further	 training	 for	 the	 three-dimensional	 CNN	

temporal	 classifier	would	be	needed.	 Furthermore,	 unbiasing	 the	data	with	 the	 offset	

values	 observed	 in	 Chapter	 4	 did	 not	 correct	 the	 disagreement	 between	 the	

rheumatologist	ratings	and	the	algorithm-based	ratings,	emphasising	the	need	for	further	

data	 collection	 from	 an	 optoelectronic	 motion	 capture	 system,	 specific	 to	 an	 RA	

population.	
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It	should	be	noted	that	simulated	telehealth	video	consultations	did	not	occur	during	an	

actual	video	call	between	RA	patients	and	the	rheumatologist	assessor.	The	evaluation	

was	only	based	on	pre-recorded	videos	guided	by	the	PowerPoint	presentation,	where	

the	 rheumatologist	 observed	 patients'	 hand	 motions.	 However,	 in	 a	 standard	

telemedicine	consultation,	the	rheumatologist	could	have	interactions	with	the	patient,	

which	would	 be	missing	 in	 this	 case.	 However,	 this	 telehealth	 framework	 using	 pre-

recorded	 asynchronous	 pre-recorded	 video	 recordings	 was	 suggested	 as	 the	 activity	

mainly	during	the	COVID-19	pandemic	to	optimize	rheumatology	resources	(336).	

	
Furthermore,	 because	 the	 videos	 and	 the	 linked	disease	 activity	 score	 utilized	 in	 this	

investigation	were	provided	by	a	collaborator,	relevant	underlying	features	that	would	

increase	the	understanding	of	the	obtained	results	may	have	been	lost.	For	instance,	it	

was	noted	how	many	joints	were	swollen	for	each	participant,	but	the	ROMs	for	each	joint	

obtained	 from	 clinical	 goniometric	 assessment	 were	 not	 provided.	 While	 objective	

assessment	of	the	joint	ROM	can	lead	to	improved	access	and	more	accurate	outcomes,	

the	current	clinical	practice	involves	providing	a	count	of	swollen	joints	based	on	visual	

examination.	 That	 said,	 the	 validated	 swollen	 joint	 count	 for	 RA	 has	 already	 been	

developed	in	several	other	clinical	investigations.	However,	the	kinematics	gathered	from	

video	could	have	been	compared	with	those	obtained	in	clinic	using	goniometry-based	

assessment.	Moreover,	since	the	videos	and	ground	truth	disease	activity	were	collected	

in	a	close	time	frame,	but	separately,	in	future	investigations	researchers	could	evaluate	

if	data	collected	on	the	same	visit	would	affect	the	accuracy	of	assessments.		

Finally,	it	is	anticipated	that	a	larger	dataset	in	a	cross-sectional	or	longitudinal	diagnostic	

clinical	investigation	containing	identifiable	information	of	RA	participants	can	be	used	

to	provide	more	comprehensive	results.	Such	an	approach	would	enable	a	CNN	model	to	

be	trained	that	would	increase	the	validity	of	the	study	presented	here.	The	robustness	

of	such	a	methodology	would	include	data	collection	from	participants	across	different	

clinical	centres,	possibly	considering	retrospective	data	to	predict	disease	activity	trends.	

This	 investigation	 provides	 an	 introductory	 exploration	 into	 the	 objective	 automated	

assessment	of	RA	participants	looking	at	hand	kinematics.	Results	are	encouraging,	and	

provide	preliminary	evidence	to	assess	how	a	vision-based	technology	can	improve	the	
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quality	of	video	consultations	for	the	assessment	of	disease	activity	status	for	people	with	

RA.	This	 is	desirable	 in	the	context	of	reducing	the	need	for	patients	to	travel	and	has	

been	deemed	to	be	particularly	desirable	given	the	recent	experience	of	the	COVID-19	

pandemic.	More	broadly,	this	could	improve	patient	outcomes	through	increased	patient	

access	to	care,	while	offering	optimization	of	healthcare	resource	utilization,	including,	

but	 not	 limited	 to,	 reducing	 RA	 flares,	 urgent	 care	 and	 emergency	 room	 visits,	 and	

hospitalizations,	all	these	aspects	can	be	more	fully	explored	in	future	studies.		
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Chapter	7 Discussion	and	
conclusion	
 
 

7.1 Introduction	
	

Hand	kinematics	provide	valuable	metrics	to	assess	and	monitor	healthy	and	impaired	

participants.	Rheumatoid	arthritis	 (RA),	 an	autoimmune	condition	where	 the	 immune	

system	affects	the	smaller	joints	first,	particularly	the	fingers	joints,	can	be	estimated	via	

monitoring	the	hands.	RA	demands	a	recurrent	level	of	continuing	observation,	but	face	

to	face	examinations	are	lengthy	and	remote	consultation	can	lack	objectivity.		

In	this	thesis,	attention	has	been	given	to	deep-learning-based	models	that	are	able	to	

infer	 from	 a	 single-coloured	 video	 recording	 the	 centre	 of	 the	 joint	 location.	 Such	

technology	has	been	applied	to	impairment	in	gait,	and	this	thesis	aimed	to	1)	validate,	

2)	optimise,	and	3)	translate	these	models	to	hand	function	of	RA	patients.		

This	thesis	has	been	developed	through	three	key	objectives:		

1. to	determine	how	accurately	hand	pose	estimation	models	can	evaluate	human	

hand	kinematic	parameters,	 suggesting	 a	pipeline	 for	 executing	objective	hand	

pose	estimation	examination	using	monocular	RGB	cameras.		

2. to	 propose	 a	 temporal	 segmentation	 classifier	methodology	 that	 differentiates	

between	relevant	hand	gesture	frames	and	transitional	 frames,	combining	both	

spatio-temporal	motion	parameters	and	appearance	information.	

3. to	infer	disease	activity	of	patients	with	RA	based	on	hand	kinematics	extracted	

using	 the	 validated	markerless	 system,	 run	 on	 a	 subset	 of	 a	 continuous	 video	

sequence	segmented	using	the	temporal	segmentation.		

	

If	proven	successful,	this	leads	to	a	validated	pipeline	that	can	support	RA	patients	and	

clinicians	to	more	frequently	assess	disease	status	and	promote	a	low-cost	management	

tool	that	can	be	used	with	RA	patients	to	track	and	contain	their	disease	through	chronic	
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and	degenerative	progression.	Chapters	2	and	3	provide	a	review	of	systems	for	hand	

kinematics	and	remote	monitoring	 tools	used	 to	capture	clinical	endpoints	 in	RA.	The	

evaluation	of	the	accuracy	assessment	for	the	two-dimensional	hand-oriented	keypoint	

detector	is	then	described	in	Chapter	4.	Chapter	5	proposes	a	hand	gesture	recognition	

methodology	from	continuous	video	sequences.	Finally,	Chapter	6	validates	the	models	

in	Chapter	4,	and	5	on	participants	with	hand	issues	due	to	RA.	

	

7.2 Main	findings		
	
The	next	three	sections	summarise	how	this	research	addressed	the	objectives.	

7.2.1 Objective	1:	Two-dimensional	video-based	technology	
to	track	hand	kinematics			

 

Chapter	4	presented	an	open-source	coloured	video-based	hand	pose	estimation	model	

that	delivers	estimations	of	the	centre	of	the	joints	of	healthy	human	hands.	The	selected	

hand	pose	estimation	model	proposed	in	Chapter	4	needs	only	a	two-dimensional	digital	

video	input	to	output	spatiotemporal	hand	kinematic	metrics.	The	key	findings	include:	

	

i. The	validated	filtering	approach	previous	proposed	by	Yao	et	al.	(279)	for	lower	

limb	 kinematics	 extracted	 with	 OpenPose,	 extends	 to	 finger	 kinematics	 when	

using	the	same	keypoint	detector;	the	pipeline	includes	an	Hampel	filter	with	a	

window	size	of	4	for	outlier	removal	followed	by	a	Butterworth	filter	with	a	3	HZ	

cut-off	frequency.	

ii. The	markers	 introduced	by	 the	 optoelectronic	motion	 capture	 system	 (ground	

truth)	 did	 not	 influence	 the	 two-dimensional	 hand	 kinematics	 outputted	 by	

OpenPose.	

iii. The	root	mean	square	error	(RMSE)	showed	acceptable	accuracy	(defined	based	

on	goniometry	measures	to	be	below	10°)	for	the	proposed	hand	activities,	apart	

with	a	few	outliers	that	occurred	at	a	rate	of	3.4%	of	the	dataset.		

iv. The	coefficient	of	determination	(𝑅')	of	 the	 linear	regression	between	 the	total	

active	flexion	(TAF)	values	obtained	from	ground	truth	and	OpenPose	presented	

good	 agreement	 (above	 0.7)	 for	 the	 abduction	 and	 adduction	 and	 the	 thumb	
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opposition	tasks,	and	lower	agreement	(0.4 < 𝑅' < 0.53)	for	radial	walking	and	

the	metacarpophalangeal	(MCP)	flexion	activities.		

v. The	Bland-Altman	plots illustrated	that	the	mean	differences	between	the	ground	

truth	and	OpenPose	ranged	consistently	and	went	from	4.7°	to	6.8°. 	

	

Results	indicated	that	OpenPose	could	be	used	as	markerless	technology	to	track	hand	

kinematics	 in	clinical	studies,	particularly	when	the	MCP	joints,	 the	PIP	joints,	and	the	

finger	interests	are	under	inspection.		

	

7.2.2 Objective	2:	Segmentation	classifier	
 
Chapter	 5	 offered	 an	 approach	 for	 large-scale	 video	 segmentation	 for	 hand	 gesture	

recognition.	 The	 video	 sequences	 were	 first	 segmented	 into	 single	 hand	 gesture	

sequences	 by	 classifying	 the	 frames	 into	 the	 different	 gestures.	 For	 one	 each	 of	 the	

segmented	 hand	 gesture	 series,	 the	 suggested	 technique	 utilized	 spatiotemporal	

information	based	on	a	three-dimensional	convolutional	neural	network	combined	with	

a	long-short-term	memory	unit.	To	enhance	the	accuracy	of	the	model	the	training	was	

performed	on	a	large-scale	hand	dataset	and	fine-tuned	for	the	relevant	hand	gestures	

with	are	part	of	the	strategies	to	help	RA	participants	do	their	hand	exercises	regularly.		

	

Validation	curves	performed	over	for	batch-sized	64	indicated	good	performances	of	the	

model,	reaching	an	accuracy	of	93.95%	(±	0.37)	with	a	mean	Jaccard	index	of	0.812	(±	

0.105)	for	a	sample	size	of	22	participants.	The	presented	model	illustrated	the	possibility	

of	training	a	model	utilising	a	small	set	of	data	(113,410	fully	labelled	frames),	compared	

to	 the	 more	 traditional	 convolutional	 neural	 networks	 that	 require	 vast	 labelling	

datasets.	 The	 presented	 pipeline	 adopted	 a	 small-sized	 architecture	 that	 could	 be	

executed	to	the	acceptance	of	keypoint	trackers	and	facilitate	their	adoption.	

	

7.2.3 Objective	3:	Proof	of	concept	
 
	
Given	the	degenerative	nature	of	RA,	common	illness	signs	include	swelling,	which	causes	

decreased	movement	of	the	hands.	Therefore,	the	assessment	of	swollen	joints	leads	to	a	
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disease	activity	estimate,	Chapter	6	shows	the	performances	of	adopting	the	approaches	

described	in	Chapters	4	and	5	to	assess	disease	activity	in	individuals	with	RA.	

	

The	key	findings	include:	

	

i. The	 clinically	 in-person	 assessed	 ground	 truth	 and	 the	 algorithm-based	

estimation	agreed	nine	times	out	of	ten.	The	asynchronous	telehealth	estimation	

was	in	accord	with	clinically	in-person	assessed	ground	truth	six	instances	out	of	

ten.		

ii. The	temporal	segmentation	model	presented	an	accuracy	of	84%	(±	0.51	SD)	with	

a	mean	 Jaccard	 index	 of	 0.761	 (±	 0.2)	 for	 the	 entire	 dataset.	 Furthermore,	 the	

accuracy	was	 uniformly	 distributed	 across	 the	 different	 activities,	 reaching	 an	

accuracy	of	89%	for	all	participants,	apart	from	the	RA	participant	with	very	active	

disease	activity,	which	presented	an	accuracy	of	74%.	

iii. The	Cohen's	kappa	coefficient	estimated	between	 the	 in-clinic	assessed	ground	

truth	 and	 the	 asynchronous	 telehealth	 inspection	 was	 .4	 (fair	 agreement).	 In	

contrast,	the	kappa	coefficient	between	the	in-person	assessed	ground	truth	and	

the	algorithm-based	estimations	was	.8	(substantial	agreement).	

	

Results	 support	 the	 evidence	 that	 objective	 automated	 assessment	 in	RA	 can	 support	

disease	 activity	 fluctuations	 and	 enhance	 health	 care	 delivered	 during	 asynchronous	

video	consultations.			

 

7.3 Main	strengths	and	limitations	
 
This investigation	has	limitations,	including	the	lack	of	tests	under	different	visualization	

parameters	and	lightening	conditions	and	the	intrinsic	inaccuracy	of	the	tracking	system	

(OpenPose).	Also,	the	selected	pre-trained	network	was	chosen	as	previous	studies	had	

validated	 this	 model	 for	 lower	 limb	 kinematics.	 However,	 a	 pre-trained	 model	 was	

utilized,	and	this	model	was	not	trained	for	the	specific	hand	exercises	identified	in	the	

study.		

	

Another	limitation	was	identified	by	the	extraction	of	two-dimensional	hand	keypoints,	

while	 the	 selected	 architecture	 (OpenPose)	 is	 also	 able	 to	 provide	 three-dimensional	
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parameters	when	more	than	one	camera	is	utilised.	The	difference	in	two-dimensional	

and	three-dimensional	parameters,	as	well	as	discrepancies	in	capturing	the	data	from	

using	different	viewpoints	or	perspectives	(e.g.,	sagittal,	transverse),	was	not	tested	as	

part	of	 this	 thesis	due	 to	 the	key	objective	of	 leveraging	ubiquitous	 technology	where	

users	can	upload	videos	using	their	own	device.	

	

In	Chapter	6,	the	screening	of	the	videos	of	RA	participants	performing	hand	exercises	

was	performed	verbally	by	the	NRAS	and	this	study	might	benefit	to	have	more	control	

over	 the	 captured	 clinical	 endpoints.	 For	 instance,	 playing	 with	 different	 recording	

techniques	 and	 different	 frame	 rates	 to	 evaluate	 the	 evaluate	 the	 possibility	 and	 the	

impact	 that	 the	 frame	 rate	 would	 have	 at	 capturing	 swollen	 joints.	 Also,	 the	 data	

collection	 was	 supplied	 at	 a	 single	 time-point.	 Such	 a	 clinical	 collection	 could	 have	

neglected	 the	 identification	 of	 a	 broader	 clinical	 representation	 (e.g.,	 signs	 of	 illness	

progression	over	a	long	time).		

	

A	major	limitation	of	the	studies	is	the	number	of	participants,	which	was	particularly	

small	 for	 the	 clinical	 proof-of-concept.	 In	 addition,	 the	 classes	 of	 RA	 patients	 were	

unbalanced,	with	 only	 one	 RA	 participant	 belonging	 to	 very	 high	 disease	 activity,	 for	

instance.	For	this	reason,	unbiasing	the	total	active	flexion	values	of	the	biases	observed	

in	 Chapter	 4	 made	 no	 conclusive	 difference,	 and	 the	 results	 might	 have	 been	 more	

decisive	if	kinematics	were	captured	from	a	gold-standard	optoelectronic	marker-based	

system	using	a	larger	and	more	balanced	sample	of	patients.	Particularly,	the	selection	of	

participants	was	not	randomized,	and	women	were	included	more	compared	to	men	for	

the	 experiments	 presented	 in	 Chapter	 4	 and	 Chapter	 6,	 which	 could	 limit	 the	

generalisation	of	 the	outcomes.	Finally,	 it	was	not	evaluated	 if	 the	speed	at	which	 the	

hand	exercises	were	performed	could	influence	the	tracking	capabilities	of	the	selected	

network.	

 

7.4 Future	research	and	overall	conclusions	
 
This	thesis	provides	a	pipeline	that	aim	to	lay	the	foundations	for	a	remote	management	

tool	 that	 can	 be	 used	 by	 participant	 suffering	 with	 RA.	 The	 system	 enables	 remote	

monitoring	by	using	standard	video	cameras	combined	with	two	neural	network	models.	
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One	 model,	 an	 open-source	 model	 that	 tracks	 21	 keypoints	 of	 hand	 kinematics,	 is	

validated	 in	 Chapter	 4	 against	 an	 optoelectronic	 motion	 capture	 system;	 the	 second	

model,	 implemented	 in	Chapter	5,	 enables	 the	 segmentation	and	classification	of	 long	

gesture	 sequences.	 These	 models	 are	 then	 executed	 on	 video	 captures	 of	 users’	

hand/joint	movements	whilst	performing	hand	exercises	in	Chapter	6.	Here	the	networks	

segment	and	assess	 the	ROM,	estimating	 joint	swelling	and	 linking	 that	 to	 the	disease	

progression	with	a	disease	activity	score	provided	in	output.	The	entire	approach	uses	

monocular	 cameras	 with	 the	 aim	 of	 leveraging	 ubiquitous	 technologies	 (e.g.,	 in	

smartphones/laptops)	and	encourage	the	scalability	of	further	investigations.	Given	the	

latest	 advantages	 of	 novel	 smartphone	 devices	 delivered	 with	 dual	 cameras,	 future	

investigations	 could	 include	 capturing	 image	 from	 additional	 cameras,	 enlarging	 the	

capabilities	of	this	current	investigation.	

	

Future	directions	for	the	research	include	a	longitudinal	clinical	investigation,	e.g.,	one-

year	 with	 monthly	 follow-ups,	 of	 this	 population	 that	 would	 furnish	 a	 further	

understanding	 into	 remote	 disease	 management.	 Looking	 at	 similar	 clinical	

investigations,	one	suggestion	would	be	to	enrol	a	larger,	ethnically	diverse	population	

to	 broaden	 and	 generalise	 these	 findings.	 Future	 examinations	 could	 also	 include	 the	

incorporation	of	existing	databases	that	look	at	the	other	components	of	the	DAS-28	to	

implement	other	predictive	algorithms	that	can	work	together	with	visual	examination	

models	to	infer	the	disease	activity.	This	could	include	electronic	health	records	(EHR)	

data	 used	 as	 part	 of	 the	 current	 patient	monitoring	 technology.	 The	 datasets	 include	

community-based	retrospective	datasets,	such	as	the	Norfolk	Arthritis	Register	(342),	the	

Scottish	Early	Rheumatoid	Arthritis	 Study	 	 (343).	With	potential	 improvements	made	

from	 assimilation	 of	 these	 datasets,	 this	 approach	 could	 not	 only	 be	 used	 to	monitor	

patient’s	disease	activity	but	would	support	potential	prediction	of	future	states	of	the	

patient,	leading	to	forecast	future	clinical	outcomes,	as	demonstrated	by	Norgeort	et	al.	

(344)	 in	 their	 preliminary	 investigation.	 This	 could	 enable	 better	management	 of	 the	

disease,	better-informed	decisions	on	patients’	treatment,	and	ultimately	could	improve	

RA	patients’	quality	of	life	and	lowering	costs	for	medications.		
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With	a	system	being	capable	of	forecasting	RA	patient	outcomes,	or	simulating	potential	

outcomes	 under	 different	 treatment	 scenarios,	 the	 field	 of	 rheumatology	 could	 be	

positively	 impacted,	with	applications	 that	go	beyond	the	 tracking	of	 the	condition,	 to	

include	 monitoring	 medication’s	 effectiveness	 and	 helping	 to	 assess	 the	 need	 for	

secondary	 care.	 This	 would	 enable	 physicians	 to	 customise	 current	 therapeutic	

treatment	plans	to	prevent	RA	from	worsening	and	potentially	avoid	disease	flare-ups	

requiring	 hospital	 care;	 ultimately,	 this	 would	 decrease	 hospitalisations,	 numbers	 of	

emergency	department	visits	and	the	number	of	visits	to	general	practitioners.	Overall,	

with	 further	 investigations	 and	 larger	 clinical	 studies	 this	would	 be	 a	 significant	 step	

towards	improving	the	quality	of	care	and	optimising	healthcare	resources.		
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Appendices 
A.1	Influence	of	markers	on	Openpose:	CycleGAN	and	
image	inpainting	approaches	

OpenPose	accuracy	was	tested	in	Chapter	4	to	evaluate	the	effect	of	visible	markers	on	

participant’s	 skin	 when	 using	 the	 keypoint	 detection	 methodology.	 To	 this	 end,	 two	

different	 image-to-image	translation	techniques	were	adopted.	These	techniques	were	

applied	to	get	a	fully	annotated	dataset	and	avoid	the	visibility	of	the	markers	on	the	hand	

data	 recorded	using	 the	optical	motion	 capture	 system.	This	 step	aims	 to	 capture	 the	

features	of	one	frame	and	understand,	with	training,	how	these	features	can	be	converted	

to	another	image.	

First	was	the	CycleGAN	(290)	process.	The	CycleGAN	process	is	part	of	a	class	of	networks	

known	 as	 Generative	 Adversarial	 Networks	 (GAN)	 (346),	 often	 used	 for	 translating	

imagery	data	content.	The	used	GANs	are	a	class	of	deep	learning	that	generate	images	

that	look	realistic,	when	instead	are	fake.	Given	images	with	and	without	markers	in	input	

to	the	network,	one	part	generates	candidates	(generator)	and	the	other	evaluates	them	

(discriminator).	 This	 approach	 aims	 to	 overcome	 the	 lack	 of	 large-scale	 annotated	

datasets	 and	 the	 way	 in	 which	 data	 are	 pre-processed	 to	 provide	 ground	 truth	 for	

kinematic	 estimation.	 In	 this	 work,	 the	 CycleGAN	 process	 (Figure	 52)	 was	 tested	 to	

generate	an	image-to-image	mapping	function,	as	shown	between	visible	and	not	visible	

markers	on	the	hand.	

The	 CycleGAN	 approach	 can	 perform	 automatic	 unsupervised	 training	 utilizing	 the	

frames	from	one	data	source	and	converting	It	to	a	different	source.	This	image-to-image	

translation	process	made	use	of	both	images	with	and	without	markers	to	suppress	the	

visible	 markers	 from	 the	 caption	 images.	 Therefore,	 two	 small	 subsets	 of	 video	

recordings	were	collected	during	the	study	described	in	Chapter	4,	one	with	marker	and	

the	other	without,	both	containing	62	frames.	The	outcomes	from	the	marker	removal	

utilizing	the	CycleGAN	methodology	resulted	in	blurred	images	Figure	53	(second	row),	

and	another	methodology	was	therefore	investigated.		
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One	 sequence	 contained	 the	 frames	with	markers,	 the	 other	 sequence	 contained	 the	

frames	in	output	from	the	image	inpainting	technique	(without	the	visible	markers).	the	

results	 keypoint	 detection	model	was	 run	 on	 the	 two	 video	 sequences	 producing	 the	

same	results	in	output.	The	overall	chosen	final	adopted	process	is	shown	in	the	flowchart	

in	Figure	54.	

	
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure	54:	Flowchart	of	the	final	development	of	both	the	acquisition	and	the	analysis	

used	in	this	investigation	using	image	inpainting;	starting	from	the	motion	capture	trials	

of	 10	 healthy	 volunteers	 to	 the	 development	 of	 the	 final	 hand	 tracking	 model.	 The	

inpainting	process	make	uses	of	just	images	with	markers	to	suppress	the	visible	markers	

from	 the	 caption	 images.	 This	 approach	 produced	 better	 quality	 images	 than	 the	

CycleGAN	for	marker	removal.	

	 

Finally,	to	check	that	the	output	from	OpenPose	stayed	the	same	of	the	same	frames	with	

and	 without	 makers,	 proving	 therefore	 that	 no	 variation	 was	 present	 due	 to	 the	

probability	 variation	 within	 OpenPose,	 the	 model	 was	 executed	 and	 compared.	 The	

results	show	the	tracking	stayed	the	same	in	the	frames	with	and	without	makers.	The	

executed	code	showing	matching	outputs	is	pasted	below.	
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