309 research outputs found

    Parallel algorithms and concentration bounds for the Lovasz Local Lemma via witness DAGs

    Full text link
    The Lov\'{a}sz Local Lemma (LLL) is a cornerstone principle in the probabilistic method of combinatorics, and a seminal algorithm of Moser & Tardos (2010) provides an efficient randomized algorithm to implement it. This can be parallelized to give an algorithm that uses polynomially many processors and runs in O(log3n)O(\log^3 n) time on an EREW PRAM, stemming from O(logn)O(\log n) adaptive computations of a maximal independent set (MIS). Chung et al. (2014) developed faster local and parallel algorithms, potentially running in time O(log2n)O(\log^2 n), but these algorithms require more stringent conditions than the LLL. We give a new parallel algorithm that works under essentially the same conditions as the original algorithm of Moser & Tardos but uses only a single MIS computation, thus running in O(log2n)O(\log^2 n) time on an EREW PRAM. This can be derandomized to give an NC algorithm running in time O(log2n)O(\log^2 n) as well, speeding up a previous NC LLL algorithm of Chandrasekaran et al. (2013). We also provide improved and tighter bounds on the run-times of the sequential and parallel resampling-based algorithms originally developed by Moser & Tardos. These apply to any problem instance in which the tighter Shearer LLL criterion is satisfied

    A new unifying heuristic algorithm for the undirected minimum cut problems using minimum range cut algorithms

    Get PDF
    AbstractGiven a connected undirected multigraph with n vertices and m edges, we first propose a new unifying heuristic approach to approximately solving the minimum cut and the s-t minimum cut problems by using efficient algorithms for the corresponding minimum range cut problems. Our method is based on the association of the range value of a cut and its cut value when each edge weight is chosen uniformly randomly from the fixed interval. Our computational experiments demonstrate that this approach produces very good approximate solutions. We shall also propose an O(log2 n) time parallel algorithm using O(n2) processors on an arbitrary CRCW PRAM model for the minimum range cut problems, by which we can efficiently obtain approximate minimum cuts in poly-log time using a polynomial number of processors

    Optimal parallel string algorithms: sorting, merching and computing the minimum

    No full text
    We study fundamental comparison problems on strings of characters, equipped with the usual lexicographical ordering. For each problem studied, we give a parallel algorithm that is optimal with respect to at least one criterion for which no optimal algorithm was previously known. Specifically, our main results are: % \begin{itemize} \item Two sorted sequences of strings, containing altogether nn~characters, can be merged in O(logn)O(\log n) time using O(n)O(n) operations on an EREW PRAM. This is optimal as regards both the running time and the number of operations. \item A sequence of strings, containing altogether nn~characters represented by integers of size polynomial in~nn, can be sorted in O(logn/loglogn)O({{\log n}/{\log\log n}}) time using O(nloglogn)O(n\log\log n) operations on a CRCW PRAM. The running time is optimal for any polynomial number of processors. \item The minimum string in a sequence of strings containing altogether nn characters can be found using (expected) O(n)O(n) operations in constant expected time on a randomized CRCW PRAM, in O(loglogn)O(\log\log n) time on a deterministic CRCW PRAM with a program depending on~nn, in O((loglogn)3)O((\log\log n)^3) time on a deterministic CRCW PRAM with a program not depending on~nn, in O(logn)O(\log n) expected time on a randomized EREW PRAM, and in O(lognloglogn)O(\log n\log\log n) time on a deterministic EREW PRAM. The number of operations is optimal, and the running time is optimal for the randomized algorithms and, if the number of processors is limited to~nn, for the nonuniform deterministic CRCW PRAM algorithm as we

    Deterministic parallel algorithms for bilinear objective functions

    Full text link
    Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph GG with mm edges and nn vertices, this takes O~(log2n)\tilde O(\log^2 n) time and (m+n)no(1)(m + n) n^{o(1)} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (1997) for maximum acyclic subgraph and Gale-Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson-Lindenstrauss Lemma
    corecore