
DISCRETE
APPLIED
MATHEMATICS

E~~EVIEK Discrete Applied ~~athe~ati~s 65 (1996) lh7- 190

A new unifying heuristic algorithm for the undirected
minimum cut problems using minimum range cut algorithms

Yang Da?, Hiroshi Imaib, Kazuo Iwano’, Naoki Katoh”**, Keiji Ohtsuka”.
Nobuhiko Yoshimura”

UDepartnwnr of Management Science. Kohe lJnirw.sity qf C’omme~c~e. X-2- I GuXue,l-Nishimcrt.~~~,
Kobe 651-21, Japn

Received 4 January 1993; revised 4 November 1993

Abstract

Given a connected undirected multigraph with ~1 vertices and 11~ edges. we first propose a new
unifying heuristic approach to approximately solving the minimum cut and the s- / minimum
cut problems by using efficient algorithms for the corresponding minimum range cut problems.
Our method is based on the association of the range value of a cut and its cut value when each
edge weight is chosen uniformly randomly from the fixed interval. Our computation~t~ expcri-
ments demonstrate that this approach produces very good appI.oxiln~~te solutions. We shall
also propose an 0(log2 PZ) time parallef algorithm using O(n”) processors on an arbitraq
CRCW PRAM model for the minimum range cut problems, by which we can efficiently obtain
approximate minimum cuts in poly-log time using a polynomial number of processors.

1. Introduction

This paper proposes a new unifying heuristic for the minimum cut and the

minimum s-r cut problems by using fast minimum range cut algorithms. We demon-

strate its usefuiness by pe~orming computational experiments.

Let G = (I’, E) be a connected undirected multigraph with n vertices and tn edges.

A cut C associated with a partition (X, I/ --- X) of the vertex set I/ with X f 0. k’ is

defined as C = {(u, v) E El u E X, 2’ E V - X), and ICI is called a c’ut calue of C. A cut

which separates two vertices s and t is called an s-t cut. The cut (resp. s--t cut) C with
minimum /C/ is called a ~~iz~~~~ CM (resp. S--t lninimum cut) and its cut value is called

*Corresponding author. E-mail: naoki@kobeuc.ac.jp

01 H--2 1 ~X~96~~lS.00 i: 1996-Elsevier Science B.V. All rights reserved
SSDI n 166-2 18X(95)00034-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82043993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 Y. Dai et ul. / Discrete Applied Mathematics 65 (1996) I67- I90

the edye connectivity (resp. s-t connectivity). Given a real-valued edge weight function

w(.), the runge of a cut C is defined as the maximum difference of weights of edges used

in C, i.e., ranye = max.., w(e) - min,,&e). The cut fresp. s-t cut) with minimum

range is called the minimum runge cut (resp. minimum range s-t cut).

The minimum cut problem, one of the most fundamental network problems, has

been extensively studied and has many applications, including network reliability and

circuit partitioning [l, 11-12, 13, 18, 27-29, 311. For the undirected minimum cut

problem, the currently fastest algorithm requires 0(~~~(G)log(n2~m)) time [12, 131,

where i,(G) is the edge connectivity of G. For the undirected s-t minimum cut

problem, the currently fastest one requires 0(min{n2’3m, m3/2}) time [ll], which is

based on flow computation. On the other hand, the minimum range cut and the

minimum range s-t cut problems can be solved in Ofm f nlogn) time [23].

Making use of the association between the range of a cut and its cut valuet our

heuristic method provides a different way from the conventional approaches based on

flow computation. That is, when we independently assign each edge a uniform

random weight in [0, 11, the cut C with the smallest range may be expected to have

a small number of edges in C. If this process is iterated, it is highly probable that the

cut C with the fewest edges among those generated is viery close to the minimum cut.

Our minimum cut heuristic algorithm repeatedly runs a @(m + n log n) time minimum

range cut algorithm [23] 1 times by assigning a new edge weight function at each

iteration while maintaining a cut with the fewest edges among those generated. We

have performed our experiments by typically choosing I= log,n or I = $z, so that

the time complexity of our algorithm becomes smaller than those of exact ones.

Our heuristic for the s-t mininlum cut problem works almost in the same fashion

as above by using a O(m + nlog n) time minimum range st cut algorithm

~231.
The above approach can also be extended to the capacitated network with slight

modifications as discussed in Section 2. Let .&” = (G = (V, E), c) be a capacitated

undirected network, where G is an undirected simple graph with n vertices and

m edges, and c is a capacity function from E to R+. For a cut C of J;“, CeeC c(e) is called

a cut value of C. The minimum cut and S-t minimum cut problems for ;ti/ are then

defined in a manner similar to the above case for graphs with unit capacities. The

minimum cut problems for capacitated networks have also been extensively studied

[l, 11, 18, 25, 29, 31 J, and the currently fastest minimum cut (resp. st minimum cut)

algorithm requires O(mn + n210gn) time [29] (resp. O(m~~og(n’~m)) time [l5] or

O(mn + nZ+E) time [25]).

We carry out computational experiments by using the following three types of

networks: (1) NETGEN [26]: We use this widely available network generator [20] to

produce 180 networks with various sizes (n = 150 _ 1000) and densities up to 60%. (2)

RANDOM-CAPACITATED: We generate 180 capacitated random networks in

which each edge appears with a fixed probability p such that (n = 150,300,
p =O.l N 0.6), (n = 500, p = 0.05 - 0.15), and (n = 1000, p = 0.01 - 0.10). (3) TWO-

CLUSTERS: We generate 120 networks with two clusters so that a cut separating two

clusters is a unique minimum cut with some probability [lo]. We compare our

method with exact algorithms, the one by Nagamochi and Ibaraki [29] (resp. [IS) for

the (resp. s-t) minimum cut problem, with measurements including relative errors to

the optimal solutions, the number of trials which successfully finds the optimal. and

cpu times.

Our computational experiments for the minimum cut problem demonstrate that fog

the NETGEN (resp. RANDOM-CAPACITATED, TWO-CLUSTERS) family our

method finds exact minimum cuts with high success ratio for graphs generated. 2X6

cases out of 300 cases (resp. 9.51180, 105.1130), with much smaller cpu times than those

of the NI-algorithm. It is also observed that the overall average number of iterations

necessary to obtain an exact solution firstly is only 2.5 (resp. 8.5, 5.0). F-or the

NETGEN family, within 6 iterations our algorithm computed exact minimum cuts fat

more than 90% of generated graphs.

For the s -t minimum cut problem, our heuristic method shows better quality than

for the minimum cut problem. For example, for the NETGEN family, within

I = log2t~ iterations our method finds exact s-t minimum cuts for all graphs tested

with both unit capacities and general capacities and that our algorithm finds exact .s I

minimum cuts for 93% of generated graphs within only 3 iterations. It is also observed

that the average number of iterations necessary to obtain an exact solution firstly is

only 1.7 (resp. 3.3, 4.8) for the NETGEN (resp. RANDOM-CAPACITIES. TWO-

CLUSTERS) family.

From experiments, our method we think can be useful in practice, although there is

no theoretical guarantee about ratio of the size of the cut found by our heuristic

algorithm to the size of a minimum cut. As will be shortly remarked in Section 5. it is

shown that comparing with the randomized minimum cut algorithm recently dc-

veloped by Karger and Stein [21, 221, our method computes a particular minimum

cut with probability higher than or equal to the one that Karger’s algorithm [21. 22]

does. There is, however, no theoretical guarantee that our heuristic method finds

a minimum cut with strictly higher probability.

Second. as we discuss in Section 4. our heuristic methods can be effectively,

parallelized. Specifically, we shall propose O(log’n) time parallel algorithms using

O(n’) processors on an arbitrary CRCW PRAM model for the minimum range cut

and the minimum range s-t cut problems. Thus, if our heuristic method repeatedly

uses the minimum range cut algorithm I times. it can be done in O(log” 11) time using

O(n”/) processors. This result should be contrasted with the fact that the directed

maxflow problem is P-complete 1161 (i.e.. hence it is not likely to have an NC

algorithm).

This paper is organized as follows: In Section 2, we introduce our new heuristic

approach for finding a minimum cut and an s-t minimum cut. Section 3 reports our

experimental results. Section 4 presents O(log2n) time parallel algorithms using 0(/7’)

processors for the minimum range cut and minimum range s-t cut problems. Finally.

we conclude this paper with discussion on probabilistic analysis of our heuristic

method by comparing with Karger’s algorithm 121, 221.

170 Y. Dai et al. J Discrete Applied Mathematics 65 (I 996) 167-190

2 New heuristic approach to minimum cut and s-t minimum cut problems

As mentioned in the previous section, we propose a new heuristic method to find an

approximate solution for the minimum cut problem (resp. the st minimum cut

problem) by using a fast minimum range cut (resp. minimum range s-t cut) algorithm.

We shall first explain a key idea behind our algorithm for graphs with unit edge

capacities. The idea is that, if we assign each edge a weight according to independent,

uniform distributions over [0, 11, we may expect that a cut with a small range has

a small cut value. This observation comes from the following lemma:

Lemma 1. For a jxed cut C, its range, range(C), is a random variable satisfying

Pr{range(C) < x} = ~C\X~~~-’ - (ICI - 1)x”’

for x with 0 < x d 1, and its expectation is

JWwdC)) = (ICI - 1)/W + 1).

Proof. Let ICI = c. Then, we have

s

1

Pr{range(C) d x} = xc + c.xc-‘dt = xc + c.xc-l _ c.xc.
X

The first term indicates the probability that all edges have weights less than or equal

to x, while the second term is the probability that all weights are between t - x and

t for the range x < t d 1. Then, we have

E(range(C)) =
i

1 { 1 - Pr{range(C) < x)} dx
0

= ‘(1 -((x~+c..x~~~ -c.x’))dx
1 0

= (c - l)/(c + 1). 0

From the above observation, we can naturally obtain the following heuristic

algorithm for the minimum cut problem. That is, we repeatedly run a O(m + n log n)

time minimum range cut algorithm [23] 1 times by assigning a new edge weight

function at each iteration, and maintain a cut with the minimum number of edges

among those obtained. Here 1 is a prespecified parameter. The details of our algorithm

are shown in Fig. 1. A heuristic s-t minimum cut algorithm can be also obtained by

simply replacing the minimum range cut algorithm by a O(m + n log n) time minimum

range s-t cut algorithm of [23].

The above approach can be extended to the capacitated network with slight

modifications. When capacities are all positive integers, we can apply our algorithms

to an equivalent multigraph, which can be obtained by introducing multiple edges

corresponding to the original edge capacity. However, it is costly for practical

Y. Dai et al. /Discrete Applied Mathematics 65 1lYY6) 167~190 171

Procedure Approuimnte-Minimurn-Cut

11)
(2)
(2.1)
(2.2)

(2.3)

I: = the number of iterations; Y*: = to x_:

do k = I to I
For each P E E, assign w(e) a uniform random value in [O. I]:

Compute a minimum range cut C:

if ICI < v* then s: = C: v*: = /(‘I;

end

(3) return(P):

Fig. 1. Algorithm Approximate-Minimum-Cut

purposes, since each computation of a minimum range cut takes O(mW + n logn)

time where W is the maximum edge weight. Instead of doing so, we devise the

following practically efficient method.

As shown in [23], the edges of minimum and maximum spanning trees are sufficient

for computing minimum range (s-r) cuts. Thus, instead of assigning uniform random

weights to c(e) multiple edges, it is sufficient to determine two random variables y and

I” that correspond to minimum and maximum weights among c(e) uniform random

weights. This is done as follows: Let x and .Y’ be two random numbers chosen from an

independent uniform distribution over [0, 11. Assume Y < X’ for simplicity. Then. we

determine J' and I” from x and x’ by the following equations:

?(= 1 - (1 _ y)c(a!2, x’ = (yyr1*2, (1)

The reason why such y and 4” are the desired two weights is as follows. We shall

explain it only for y’ (the case of _V can be explained in an analogous manner). First

observe that Pr{x’ < t} = t2 for 0 < t < 1 since x’ is the maximum of two independent

uniform random variables over [0, 11. Thus, the distribution function ofJ’, denoted by

F(u), is computed as follows:

Since PrjJs’ < u) = Pr{(y’)c(e)i2 < uCCe)/‘) = Pr{x’ < I,C(~)~~), we have the right equation

of (1). After computing such weights y and y’, we introduce two multiple edges

with these weights instead of generating c(e) multiple edges with uniform random

weights.

For the case of real capacities, we execute the same process as above after

scaling all capacities so that the minimum capacity is equal to one. The justification

of this process is made by using the Diophantine approximation of real numbers

as was done in [29]. Notice that the above computation of J’ and j“ can be

efficiently computed, and so does for our heuristic algorithm for capacitated

networks.

172 Y. Dai et ul. I Discrete Applied Mathematics 65 (I 996) 167-I 90

3. Computational experiments

We have conducted computational experiments by typically choosing the iteration

number, 1, as I = log, n and 1 = ,,h so that our heuristic algorithms theoretically run

faster than the corresponding algorithms for optimal solutions. (Exactly speaking, this

statement is not correct for the minimum cut problem for graphs with unit capacities

because the algorithm of [12, 131 runs in O{&(G) log(n’/rn)) time, and when 1(G) is

constant, it is faster than our O((m + n log n) log n) heuristic algorithm with 1 = log, n

iterations.) For an exact algorithm of the minimum cut problem, we chose and

implemented the Nagamochi and Ibaraki (NI) algorithm [29]. Although the algo-

rithm of [12, 131 is theoretically faster than that of [29], we adopted the one of [29]

because it is easy to implement and the one of [12,13] is not applicable to capacitated

networks. For the s-t minimum cut problem, we adopted the Goldberg and Tarjan

(CT) algorithm [lS], and used Rothberg’s implementation which we obtained at

DIMACS Implementation Challenge Workshop [20]‘. We adopted the GT-algo-

rithm for the comparison purpose because as discussed in [20] it is regarded as

a champion aigorithm in practice among many existing maxflow algorithms, and it

can be used for both of graphs with unit capacities and capacitated networks. By using

cpu times of GT-algorithm as a standard measure, we think that we can evaluate how

expensive our algorithm is comparing to the maximum flow computation.

We conducted our experiments for graphs generated by the following three different

generators: ~ETGE~, RANDOM-CAPACITATED, and ~~O-C~~~S~~~S.

(1) NETGEN family [26]: Since NETGEN is a widely available network gener-

ator and has been used as one of benchmark sets for testing network algorithms [26,

201, we use graphs generated by NETGEN as one of our benchmark sets. We generate

180 graphs, 10 graphs each for the following (n, d)(= (vertices, density)) pairs:

n = IO%, 20%, 30%, 40%, 50% and 60% for n = 150, 300, d = 594, lo%, and 15%

for n = 500, and rl = l%, 3%, and 5% for IZ = 1000. In order to generate capacitated

networks, we determined edge capacities by a uniform random distribution over

[l, 100-J

(2) RANDOM-CAPACITATED: The second type of networks is a family of

random capacitated graphs obtained as follows: First prepare 11 vertices and construct

a connected graph by adding rt - 1 edges forming a chain. Other edges are then selected

independently randomly with probability p. The edge capacities are determined by

a uniform random distribution over [l. 1001. We generate 120 graphs, 10 graphs each

for the following (n, p)(= (vertices, probability)) pairs: p = 0.1,0.2,0.3,0.4,0.5, and

‘His implementation uses FIFO queues and periodical distance label updates, and has O(n3) theoretical

time complexity.

Y Dai et al. &Vsuete Applred Muthematic~y 65 (IYM) 167.. I90 I 7.7

0.6 for n = 150, 300, p = 0.05,0.10, and 0.15 for y1 = 5001 and p = 0.01.0.05. and 0.10

for 17 = 1000.

(3) TWO-CLUSTERS: The third type of graphs is a family of random graphs tvith

two clusters defined as follows like:

(3.1) TWO-CLUSTERS-CAPACITATED: First prepare n vertices (P, 1 i =

1,2, . _ ?I]. and randomly partition the vertex set into two sets A and B of equal size.

Then for each set choose)x/2 - 1 edges to construct a connected component. More

precisely, select an edge joining vertex z‘; E A (resp. B) with vertex I’~ E A (resp. I?).

where ,i = min(klk > i, ck E A (resp. B)]. The other edges joining two vertices arc

selected with probability p. The capacities of edges joining vertices in different sets arc

determined by a uniform distribution over [l. 10”./11], and the capacities of edges

joining vertices in the same set are determined by a uniform distribution over [I. IO’].

We generate 60 graphs, 10 graphs each for the foilo~ving (vertices, probability) = (77. p)

pairs: for IZ = 300 p = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Notice that in this type ol

networks, a cut [A, B] separating A and B with high probability becomes a unique

minimum cut whose size is about a half of a cut separating a single vertex.

(3.2) TWO-CLUSTERS-UNIT-CAPACITIES: We use the model of Dyer and

Frieze [lo] and generate random graphs of having two clusters with unit capacities as

follows. Randomly partition the vertex set into two sets A and B with IAl = /B/. and

make both sets connected using the method for TWO-CLUSTERS-CAPACITATED

above. We randomly select edges joining vertices of A with those of B with probability

pnR. Edges joining two vertices of A (resp. B) are selected with probabilities I’,, (resp.

pu). In our experiments. we choose pa : pH = 0.5 and])4R = pA*j‘:~~ with 0.2 6 ;‘ 6 3.

We generate 70 graphs, 10 graphs for each of tt = 300, and pA = flH = 0.5 and

;‘ =0.2,0.4,0.6,0.X, 1.0, 2.0. and 4.0. Notice that in this type of networks, when

;’ < 1.0, a cut [A, B] separating A and B with high probability becomes a unique

minimum cut.

U7e have measured the closeness of our heuristic solutions to exact ones and

compared the running times of our heuristic algorithms with NI- and GT-algorithms.

The results are summarized in Tables 2-9 and Figs. 2--8. Legends used in tables are

summarized in Table 1. We run our heuristic algorithms, NI- and GT-algorithms on

an IBM RSi6000 Model 320 workstation. WC shall explain the details of our results in

the following subsections. We first see results for networks generated by NETGEN.

and discuss results for graphs generated by other generators.

3.3. Results ,fbr the minimum cut problem (NETGEN ,firmilj*)

Table 2 (resp. Table 3) indicates computational results for the NETGEN family.

For the unit capacity case (resp. the general capacitated case), Table 2 (resp. Table 3)

shows that our heuristic algorithm computes exact minil~um cuts within ,, n itcr-

ations for 116 cases out of 120 (resp. 170 cases out of 180). As seen from these tables.

the closeness of our heuristic solutions does not seem to depend on either the number

of vertices and edge densities, or whether edges have unit or general capacities.

174 Y. Dai et al. /Discrete Applied Mathematics 65 (1996) 167-190

Table 1

Legends used in Tables 2-9

Notation Description

A.R. error

11

12

FST(1)

MR(cpu)

NI(cpu)

GT(cpu)

P

Pa (PB)

PM

Avg.

Grand avg.

Average relative error

Number of iterations = log, n

Number of iterations = ,,;%

Average number of iterations until an exact solution

is fn-st obtained (cases for which our algorithm did

not obtain exact solutions within IL iterations are

excluded)

Number of cases out of 10 that our approximate

minimum cut (resp. s-t minimum cut) algorithm suc-

ceeded in computing exact solutions within I? (resp.

i,) iterations

Average cpu time that our algorithm spends to com-

pute approximate solutions for Ii and l2 iterations

Average cpu time that NI-algorithm spends

Average cpu time that CT-algorithm spends

Probability of selecting edge joining two vertices in

graphs of RANDOM-CAPACITATED and TWO-

CLUSTERS-CAPACITATED

Probability of selecting edge joining vertices of set

A (S) in TWO-CLUSTERS-UNIT-CAPACITIES

graphs

Probability of selecting edge joining vertices of sets

A and Bin TWO-CLUSTERS-UNIT-CAPACITIES

graphs

Average of values in the same category. Notice that

MR(cpu) is normalized with respect to NI(cpu) or

GT (CPU)
Average of values in the table. Notice that MR(cpu) is

normalized with respect to NI(cpu) or GT(cpu)

Regarding the computational time, we can see from these tables that our heuristic

algorithm even with & iterations runs much faster than the NI-algorithm especially

for larger graphs. This coincides with the difference of the theoretical time complexi-

ties of our algorithm and the NI-algorithm.

We can observe from Tables 2 and 3 that the cpu time of our algorithm for

capacitated networks is roughly twice of that for graphs with unit capacities. This is

because the overhead required for computing biased weights y and y’ according to Eq.

(1) is significantly large. We are currently investigating how to reduce this overhead.

Notice that we can see the same behavior for our heuristic s-t minimum cut algorithm

as seen from Tables 4 and 5.

Figs. 2 and 3 show the relationship between the number of iterations I and the

average relative error of our best solutions obtained within t iterations. We see that

the overall average number of iterations necessary to obtain an exact soiution firstly is

2.5. It is surprising that this value does not change much depending upon the number

of vertices or graph density. Closely examining our experimental results, it was

Y. Dai et al. /Discrete Applied Mathematics 65 (IYY6) 167- I YO 175

Table 2

Summary of results for minimum cuts for NETGEN graphs wth unit

capacities

Node Density A.R. error (%) FST(/) # MR(cpu)(s) Nl(cpul

(%) (1 1, /I z I (S)

10

20

150 30

40

50

60

Avg.

10

20

300 30

40

50

60

Avg.

Grand avg.

3.2 0.0 3.2 10

2.9 0.9 2.9 9

3.5 1.1 3.0 9

3.0 0.6 2.1 9

1.8 0.5 1.4 9

1.3 0 1.3 10

2.6 0.5 2.3 9.3

2.9 0.0 4.7 10

3.3 0.0 2.x 10

0.0 0.0 1.4 IO

0.0 0.0 2.5 10

1.7 0.0 2.7 IO

0.0 0.0 1.6 10

1.3 0.0 2.6 10.0

2.0 0.3 2.5 9.1

2. I 3.4 6. I

1.7 4.3 7.4

3.4 5.4 8.9

4.0 6.5 10.2

4.6 7.4 11.6

5 .3 8.6 13.0

0.4 0.6

6.3

9.3

12.5

1.5.1

18.X

11.5

0.2

0.3

12.7

18.5

25.0

30.2

37.6

42.9

0.4

0.5

1 .o

47.8

58.4

70. I

80.0

91.9

103.3

1 .o

1.0

revealed that within 6 iterations, our algorithm computed exact minimum cuts for

more than 90% of generated graphs.

3.3. Results jbr the s-t minimum cut problem (NETGEN,fbmily)

We performed similar experiments for s-t minimum cut problems. The results are

summarized in Tables 4 and 5. For the unit capacity case, Table 4 shows that our

algorithm produced optimal solutions for all cases with only I = log, n iterations

except the case when n = 150 and d = 10%. For the general capacity case. Table 5

shows that our algorithm produced optimal solutions for all 180 cases with only

I = log, II iterations.

Thus, the closeness of our heuristic solutions is even better than the minimum cut

problem. In addition, as in the minimum cut problem, the closeness of our heuristic

solutions does not seem to depend on either the number of vertices and edge densities

or whether edges have unit or general capacities.

Figs. 4 and 5 indicate the relationship between the number of iterations I and the

average relative error of our best solutions obtained within 1 iterations. We see that

the overall average number of iterations necessary to obtain an exact solution firstly is

1.5. As in the case of minimum cuts, it is surprising that this value does not change

much depending upon the number of vertices or graph density. From details of our

results, it was revealed that within 3 iterations, our algorithm computed exact s-f

minimum cuts for 93% of generated graphs. Regarding the cpu time, our algorithm

176 Y. Dai et al. /Discrete Applied Mathematics 65 (1996) 167-190

Table 3

Summary of results for minimum cuts for NETGEN capacitated graphs

Node Density A.R. error (%) FST(I) # MR(cpu)(s) NI(cpu)

(%) 11 12 11 12 (s)

10 0.0

20 2.8

150 30 6.0

40 8.4

50 2.4

60 1.3

Avg. 3.5

10 3.7

20 0.0

300 30 0.0

40 0.0

50 7.5

60 0.0

Avg. 1.9

5 7.7

500 10 0.0

15 0.0

Avg. 2.6

1 0.0

1000 3 0.0

5 0.0

Avg. 0.0

Grand avg. 2.2

0.0 1.9 10 3.4 5.5 6.1

1.9 3.1 9 4.8 7.7 7.4

6.0 2.3 8 6.3 10.2 8.9

0.4 2.8 9 7.8 12.7 10.2

0.5 3.6 8 9.3 15.1 11.6

1.3 1.3 9 10.8 17.4 12.9

1.7 2.5 8.8 0.7 1.2 1.0

0.0 3.8

0.0 1.3

0.0 1.7

0.0 2.0

0.2 2.4

0.0 2.2

10.5 20.9 47.2

17.3 34.3 57.9

24.1 48.1 69.2

30.0 59.7 78.8

38.1 75.8 91.7

43.9 87.5 102.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.6

2.2 0.3 1.0

5.6

1.2

1.6

15.2

24.7

34.3

2.8

2.2

3.3

1.9

2.5

2.5

10

10

10

10

8

10

9.7

10

10

9

9.7

10

10

10

10.0

9.4

0.1

25.3

44.3

63.8

0.0

0.4

0.7

38.8

63.0

87.5

0.3

81.2

141.4

203.8

0.1

0.7

191.8

216.6

242.7

1.0

1370.7

1443.0

1519.1

1.0

1.0

with log, y1 iterations is slower than the GT-algorithm when the graph density is low.

However, its cpu time becomes comparable when the graph density becomes high. In

particular, taking into consideration the fact that our algorithm probably computes

exact solutions within three iterations, we can see that our algorithm is faster than the

GT-algorithm for graphs with high density.

We can observe, by comparing Tables 2 and 3 with Tables 4 and 5, that our

heuristic algorithm for the .7-t minimum cut problem is slightly slower than that for

the minimum cut problem. As shown in [23] (also see Section 4) the minimum range

s-r cut is the one with minimum range separating s and t among n - 1 upper critical

cuts (see [23] or Section 4 for the definition) that the minimum range cut algorithm

generates. Thus, we need to test whether each generated upper critical cut separates

s and t. This is the extra work that the minimum range s-t cut algorithm [23] requires

over the minimum range cut algorithm. The time for this work can be regarded as the

difference between the cpu times of approximate minimum and s-t minimum cut

algorithms. We can see from columns MR(cpu) of Tables 2-5 that it is relatively

Y. Dai et al. JDiscrete Applkd Mnthemutics 65 (IYW) lh7- 190

I
- N=150
__...... NC300

177

0 5 10 15 20 25 30

(Iteration)

Fig. 2. Relative errors vs. the number of iterations for NETGEN graphs with unit capacitie\ for the

mlnimum cut problem

- N=150
. 8- NC300

-_-.- Nz500
----- N=lOOO

z

F
t

",s
2

d

-::

a-
5 I I I I 1 I

0 5 10 15 20 25 30

(Iteration)

k’lg. 3. Relative errors vs. the number of iterations for capacitated NETGEN graphs for the mmimum cut

problem.

small compared with the overall cpu time. Thus, if we use our heuristic s-t minimum

cut algorithm for multiple pairs of s and t, the extra time per pair seems to be very

small. On the other hand, if we use the GT-algorithm for this case, we need to apply it

from scratch for each pair. Therefore, in this case, it is expected that our heuristic

178 Y. Dai et al. /Discrete Applied Mathematics 65 (1996) 167- 190

Table 4

Summary of results for s-t minimum cuts for graphs with NETGEN unit

capacities

Node Density A.R. error (%) FST(I) # MR(cpu)(s) GT(cpu)

(X) I, 1, 11 I, (s)

IO 2.0 0.0 2.4 10 2.7 4.3 0.1

20 0.0 0.0 1.3 10 3.2 5.2 0.3

150 30 0.0 0.0 1.2 10 3.9 6.3 0.5

40 0.0 0.0 1.9 10 4.6 7.4 0.9

50 0.0 0.0 1.5 10 5.2 8.3 1.9

60 0.0 0.0 1.4 10 5.9 9.4 2.6

Avg. 0.3 0.0 1.6 10.0 9.3 14.9 1.0

10 0.0 0.0 1.6 10 7.6 15.2 0.5
20 0.0 0.0 1.6 10 10.5 21.0 1.7

300 30 0.0 0.0 1.4 10 15.6 31.0 4.9
40 0.0 0.0 2.1 10 16.3 32.5 7.1
50 0.0 0.0 1.5 10 19.6 39.3 12.4
60 0.0 0.0 2.1 10 22.4 44.8 22.4

Avg. 0.0 0.0 1.7 10.0 4.9 9.8 1.0

Grand avg. 0.2 0.0 1.7 10.0 7.1 12.3 1.0

algorithm will become faster than using the GT-algorithm as the number of s-t pairs

increases. Furthermore, since there exists an O(n’) time all s-t minimum range cuts

algorithm [23], we can apply that algorithm as our heuristic method for finding

approximate all s-t minimum cuts. Performing computational experiments for this

problem is left for the future research.

3.4. Results for RANDOM-CAPACITATED and TWO-CLUSTERS families

RANDOM-CAPACITATED family: Table 6 (resp. Table 7) indicates experimental

results for the minimum cut (resp. s-t minimum cut) problem for the RANDOM-

CAPACITATED family.

As observed from the tables and figures, we can see phenomena similar to those for

the NETGEN family. Although the number of cases in which an optimal solution was

obtained is less than that for the NETGEN family, our method still finds optimal

solutions in 95 cases out of 180 for the minimum cut problem and in 107 cases out of

180 for the s-t minimum cut problem.

As for the cpu time, we observed that our method runs much faster than the

NI-algorithm for the minimum cut problem and runs much slower than GT for the

single s-t minimum cut problem. For the minimum cut problem, Table 6 shows that

as a graph becomes larger and denser, the average relative error (A.R. error) becomes

bigger. However, notice that the average relative error with 4 iterations even for

Y. Dai et al. !Discrete Applied Mathematics 65 (1996) 167 190 179

Table 5

Summary of results for s-t minimum cuts for NETGEN capacitated networks

Node Density A.R. error (%) F‘ST(/) #

(70) I, 1,

MR(cpu)(s) GT(cpu)

1, I I (S)

IO 0.0
20 0.0

150 30 0.0

40 0.0

50 0.0

60 0.0

Avg. 0.0

10 0.0

20 0.0

300 30 0.0

40 0.0

50 0.0

60 0.0

Avg. 0.0

5 0.0

500 IO 0.0

I5 0.0

Avg. 0.0

I 0.0
1000 3 0.0

5 0.0

Avg. 0.0

Grand avg. 0.0

0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0
0.0
0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0
0.0

0.0

0.0

2.0

1.4

1.7

1.9

I.4

1.7

1.7

2.2

1.5

1.8

I.8

2.2

1.4

1.8

I.6

I.6

2.1

I.8

I.3

1.3

2.3

1.6

1.7

10 3.7 6.0 0. I

10 5.0 X.1 0.5

IO 6.4 10.5 0.X

IO 7.9 12.8 1.4

IO Y.4 15.2 3.0

IO 10.8 17.4 4.0

IO.0 II.1 1 x.0 I .o

IO 1 I.1 22. I I .o
IO 17.4 34.7 2.7

IO 23.x 47.6 6.6

10 30.0 59.0 9.6

10 37.8 75.3 18.2

IO 44.2 XX.0 32.2

10.0 46 Y.2 I .o

IO 16.8 43.0 I.5

IO 26.5 67.X 3.7

IO 36.2 91.7 10.3

10.0 7.3 18.6 1 .o

IO 30.0 95.2 0.8

10 47.2 150.2 3.4

10 65.9 2 10.6 9.5

10.0 19.4 61.X 1.0

10.0 9.7 22.5 I .o

largest and densest graphs tested (n = 1000 and p = 0.10) remains 3.85%. while the

cpu time of our method is 5.8 times smaller than that of the NI-algorithm. For the .\ -I

minimum cut problem, Table 7 shows that the average relative errors remain at

a small level within 0.6%. However, considering much smaller cpu times of the

GT-algorithm, the GT-algorithm would be the choice for finding an s-t minimum cut

for a single pair. Notice that for multiple s-r minimum cuts problem our method can

be used as described in the previous subsection.

TWO-CLUSTERS family: Table 8 (resp. Table 9) indicates experimental results for

the minimum cut problem for the TWO-CLUSTERS-CAPACITATED (resp. TWO-

CLUSTERS-UNIT-CAPACITY) family. Notice that in a graph of TWO-CLUS-

TERS-CAPACITATED, there is a unique minimum cut and at a first glance it seems

to be hard for our heuristic to identify such a unique minimum cut. This is because

there exist exponentially many non-minimum cuts, and hence the minimum range

among those of non-minimum cuts may be smaller than that of a unique minimum

cut. However, as Table 8 shows, it finds the minimum cut in 49 cases out of 60 with

Y. Dai et al. /Discrete Applied Mathematics 65 (I 996) 167- 190

- N=150
. . . ,,,=3,,(,

5 10 15

(Iteration)

20 25 30

Fig. 4. Relative errors vs. the number of iterations for NETGEN graphs with unit capacities for the s-t
minimum cut problem.

- N=150
. N=300

---.- N-500
----- N=1000

0 5 10 15 20 25 30
(Iteration)

Fig. 5. Relative errors vs. the number of iterations for capacitated NETGEN graphs for the s-t minimum
cut problem.

Y. Dai et al. JDiscretr Applied Mathematics 65 lIY96j 1~57~~ lY0 1x1

Table 6
Summary of results for minimum cuts for RANDOM-CAPACITATED net-
works

Node p A.R. error (%) FST(I) # MR(cpu)(s~ NI(cpu)

11 I, (, z I (5)

0. I

0.2
150 0.3

0.4

0.5

0.6

Avg.

0.1

0.2

300 0.3

0.4

0.5

0.6

Avg.

0.05

500 0.10

0.15

Avg.

0.01

1000 0.05

0.10

Avg.

Grand avg.

0.00 0.00

1.27 0.00
4.95 0.00

4.82 0.00

4.90 0.59

5.55 2.21

3.6 0.5

6.84 1.81

7.35 3.02
5.41 2.17

7.93 6.49

7.59 6.70

10.83 6.56

7.7 4.5

7.93 2.13

7.91 6.92

5.22 3.04

7.0 4.0

0.00 0.00

8.12 3.72

6.90 3.85

5.0 2.5

5.8 2.7

4.0 10 3.25

5.4 10 4.49
7.4 IO 5.76

4.8 IO 7.15

6.7 6 8.42

8.8 4 9.69

6.2 0.6

12.3

7.7

11.0

1.5

11.0

13.0

IO.28

16.35

22.45

28.62

34.24

40.50

Y.6

8.3

7

3

3

2

3

1

3.2

4

3

3.7

IO

3

2

5.0

5.3

0.3

1 I.0

8.7

8.2

Y.3

3.0

14.7

13.0

10.2

8.5

15.76

24.16
1’ 57 _-._

0. I

27.64

58.62

98.22

0 0

0.3

5.21 6.33

7.22 7.92

9.29 9.33

11.54 10.66

13.58 12.04

1.73 13.41

1 .o I .o

20.43 49.96

32.53 62.37

44.69 74.67

57.09 86.2X

6X.3X 98.58

X0.87 110.66

0.6 I .o

40.23 199.20

61.50 229.9 I

82.89 259.75

0.3 1.0

X7.87 1391.54

187.26 1563.78

313.4X 1809.50

0.1 1.0

0.6 1.0

smaller CPU time than the NI-algorithm. As the table shows the average relative

error of log, y1 iterations becomes prohibitively large more than 15% when a graph

becomes denser (p 3 0.5). However, the average relative error of ,,lk iterations

remains within a satisfiable level (less than 7%). For unit capacity cases (TWO-

CLUSTERS-UNIT-CAPACITIES family), we can observe such good performance in

Table 9, in which our heuristic finds the optimal solution in 56 cases out of 70 cases.

From Table 9, where 7 < 1.0 (that is, a cut [A, B] separating two sets A and B is

probably a unique cut of size less than a half of a cut separating a single vertex). our

algorithm finds optimal cuts in all cases. Fig. 8 shows that when 1’ becomes smaller, the

number of iterations for firstly finding an optimal solution becomes also smaller.

Notice also that the case of ;’ = 1.0 corresponds to the construction of TWO-

CLUSTERS-CAPACITATED and results in Table 8 seem to be similar to those in

Table 9 with y d 1.0.

182 Y Dai et al. /Discrete Applied Mathematics 65 (1996) 167-190

Table 7

Summary of results for .7-t minimum cuts for RANDOM-CAPACITATED

networks

Node p A.R. error (%) FST(I) #

11 12

0.1 0.00

0.2 0.00

150 0.3 0.00

0.4 9.12

0.5 0.99

0.6 0.53

Avg. 1.8

0.1 0.20

0.2 0.42
300 0.3 1.49

0.4 0.22

0.5 2.19

0.6 0.40

Avg. 0.8

0.05 0.24

500 0.10 0.19

0.15 0.29

Avg. 0.2

0.01 0.00

1000 0.05 0.61

0.10 0.28

Avg. 0.3

Grand avg. 0.9

0.00 3.1 10

0.00 2.6 10

0.00 1.8 10

1.41 3.8 4

0.99 3.8 4

0.53 4.8 6

0.5 3.3 1.3

0.20 2.8 9

0.42 2.3 7

0.09 6.4 8

0.22 4.8 8
0.29 6.5 6

0.40 3.0 5

0.3

0.24

0.19

0.29

0.2

0.00

0.61

0.28

4.3

2.4

3.4

2.4

2.7

1.5

2.9

1.8

2.1

3.3

7.2

9

8

8

0.3

0.3

8.3

10

I

8

8.3

7.6

MR(c~u)(s) GT(cpu)

11 I* (s)

3.85 6.18 0.19

5.07 8.18 0.52

6.37 10.29 1.04

1.77 12.57 2.36

9.02 14.60 3.69

10.29 16.65 4.97

7.3 11.8 1.0

11.57 23.02 1.59

17.56 35.00 5.09

23.53 46.90 10.87

29.61 59.12 19.04

35.99 71.69 29.17

41.90 83.86 44.95

2.8 5.5 1.0

18.09 46.00 1.84

26.35 67.05 6.19

34.81 88.73 13.75

5.5 14.1 1.0

32.05 101.92 1.21

62.91 201.01 15.56

102.87 327.75 51.74

10.8 34.5 1.0

6.1 13.9 1.0

Summarizing the above experimental results in various types of networks for both

minimum and s-t minimum cut problems, our method seems to be promising for

practical purposes, because its general framework is simple and minimum range cut

algorithms of [23] are also easy to implement. We believe that our approach gives

a new way to approximately solve the minimum cut and the s-t minimum cut

problems because it does not involve any flow algorithm. However, a challenging

question seems to be how to theoretically estimate the closeness of a heuristic solution

c to the optimal.

4. Parallel algorithm

In this section, we show that a minimum range cut can be computed in 0(log2n)

time using 0(n2) processors on an arbitrary CRCW PRAM model. Thus, the minimum

Y. Dai et al. jDiscrete Applied Mathematics 65 (199tQ 167 I90 IX3

I - N=i50
I
I

. N=300
I -.-.-
I

N=500

I ----- N=lOOO

10 15 20 25 30

(Iteration)

Fig. 6. Relative errors vs. the number of iterations for RANDOM-CAPACITATED graphs for the

minimum cut problem (p = 0.1).

0

L \ -
1 I - N=150
\ '
rl

. NC300

:i
----- N=500

',i
----- NclOOO

9,

\
\
F---7
I ‘1 .--l \

i 1,
i \--_

‘. i '\,

‘__ .-.-_---_-.---_- _-.----\
\

0 5 10 15 20 25 30

(Iteration)

Fig. 7. Relative errors vs. the number of iterations for RANDOM-CAPACITATED graphs for the \ I
minimum cut problem (p = 0.1).

range cut problem belongs to NC. Since our approach for finding approximate

minimum cuts consists of independent (thus, parallelizable) iterations, we can find an

approximate minimum cut in O(log’n) time using 0(n21) processors where I is the

number of iterations.

184 Y. Dai et al. I Discrete Applied Mathematics 65 (I 996) 167- 190

Table 8
Summary or results for TWO-CLUSTERS-CAPACITATED networks (n = 300)

P

0.1

0.2

Min. cut 0.3

0.4

0.5

0.6

Avg

A.R. error (%)

1, I z

0.00 0.00
6.79 0.00

4.72 0.38

2.37 0.72

6.35 3.26

15.52 6.12

6.0 1.9

FSVO #

3.2 10

5.7 IO

7.4 9

5.9 9

4.2 6

8.4 5

5.8 8.2

MR(cpu) (s)

11 1,

10.07 20.03

16.08 32.21

22.58 44.92

28.72 57.4 1

34.95 69.72

41.85 83.37

0.3 0.6

NI(cpu)

(s)

50.09

61.89

12.65

82.78

95.39

105.19

1.0

P A.R. error (%) FST(I) # MR(cpu)(s) GT(cpu)

11 12 11 1, (s)

0.1 0.00
0.2 0.00

s-t min. cut 0.3 0.00

0.4 12.19

0.5 29.38
0.6 20.84

Avg. IO.4

Grand avg. 8.2

0.00 1.5 10 11.43

0.00 2.5 10 17.18

0.00 2.3 10 23.38

0.00 4.8 10 29.58

0.02 5.3 10 35.70
0.02 6.9 9 42.14

0.0 3.9 9.8 0.7

0.9 4.8 9.0 0.5

22.76 6.94

34.26 20.10

46.69 34.48

59.03 67.32

71.23 95.51

84.18 118.55

1.4

1.0

1.0

1.0

Table 9

Summary of results for minimum cuts for TWO-CLUSTERS-UNIT-

CAPACITIES (n = 300, pa = pB = 0.5, pas = pa*y,ln)

7 A.R. error (%) FST(I) # M R (CPU) (s) GT(cpu)

11 1, 1, 12 (s)

0.2 0.00 0.00 1.0 10 10.47 20.90 67.30
0.4 0.00 0.00 1.6 10 10.37 20.70 61.43
0.6 0.00 0.00 4.0 IO 10.42 20.78 67.48
0.8 0.00 0.00 2.8 10 10.42 20.78 67.46
1.0 0.00 0.00 4.1 10 10.40 20.87 67.63
2.0 6.76 5.61 6.3 3 10.52 21.02 67.58
4.0 9.09 6.61 10.7 3 10.61 21.18 67.69

Avg. 2.3 1.8 4.4 8.0 0.2 0.3 1.0

First, we define some notations. Let w(.) be a real-valued edge weight function. For

the sake of simplicity, we assume that all edge weights are distinct. When some edge

weights are not distinct, we can handle them as in [23]. For a cut C, we define max(C)

E C (resp. min(C)) as the edge whose weight is maximum (resp. minimum) among

edges in C. Then range(C) = w(max(C)) - w(min(C)). Let Tmin (resp. T,,,) be a min-

imum (resp. maximum) spanning tree in G. Then we have the following lemma [23].

Y. Dai et al. 111 Discrete Applied Mathematics 65 (I 996) I67 I90 IX5

5 IO 15

(k&ion)

Fig. 8. Kelative crrws vs. the number of iterations for TWO-CLUSTERS-UNIT-CAPACITIES graphs I’OI

the minlmum cut problem.

Lemma 2. For any cut C, wv hmcc max(C) E T,,, rrnll min(C) E T,,,,

From the above lemma, without loss of generality. we can assume that

E = T,ninuT,,,, and m < 2(n - 1). Let bt‘r, N’~, , T<,, 1 be the edge weights of T,,,;,, in

their increasing order. Let E[w, N’] = (e E Elw 6 w(e) < IV’). For an edge LIE 7’,i,,,

we define an upper-critical due, upprr(n(e)), ussociatrd with by(e) by the weight

\c,(= \c(,f)) such that .f E T,,, and E [w(e). wi] forms a cut, but E[\c(c). rci_ r] does not.

The cut E[w(e), Eli] is called the upper-critical cut with respect to e.

When such f’~ T,,, does not exist, upper(w(e)) is not defined. From Lemma 2, the

minimum range can be given as the minimum of \\,(upper(,f,(e))) ~ \v(e) over all

c’ E T,,,,,. Thus. we can devise the parallel algorithm as shown in Fig. 9.

For (l), we have an algorithm on CREW PRAM which runs in O(log’n) with total

work of 0(n2) 132. 3, 191.

For (2), Cole’s merge-sort algorithm [4] runs in O(log M) time with O(n) processors

on a CREW PRAM model.

For (3) we find upper(w(e)) for each L’ E Tmin in parallel. Given e E Tmi,, we can find

upprr(w(e)) by using a binary search of O(log n) iterations. in each of which step

checks whether E[w(e), w(,f)] forms a cut or not for ,f’~ T,,,, by using a connectivity

algorithm. For the connectivity problem, it takes O(log11) time using O(rz + tn)

processors (which is O(n) processors since m < 202 ~ 1) in our case) on an arbitrary

CRCW PRAM model [33, 2, 191. Thus, Step (3) requires 0(log2 n) time using O(n’)

processors on an arbitrary CRCW PRAM model.

186 Y. Dai et al. J Discrete Applied Mathematics 65 (19961 I67- 190

Procedure Parallel-Minimttm-RLa?lge-Cut

(1)
(2)

(3)

(4)

(5)

Find T,,, and If,,,. Let E = T,i,uT,,,.

Sort edges in T,,, with respect to their edge weights.

For each e E T,,,, find an upper(w(e)).

Determine the minimum range from {w(upper(w(e))) - w(e)le E T,;,).

Determine a set of edges which forms a minimum range cut.

Fig. 9. Aigoritllm Parallel-Minimum-Range-Cut.

For (4), there is an O(logn) time EREW algorithm using O(n) processors which
uses a simple tournament method. For (5), suppose E[w(e), w(f)] forms a minimum
range cut such that e E Tmin and fe T,,, which are found in Step (4) : that is, fis the

edge in T,,, satisfying w(f) = ~~~e~(w(e)). This can be done in O(log n) time using
O(n) processors on an arbitrary CRCW PRAM model [33,2]. We first find connected
components after deleting E[w(e), w(f)] from G, which takes O(log n) time using O(n)
processors. Let X be a connected component found. Mark each edge which belongs to
the cut of (X, I/ - X), which can be done by assigning a processor to each edge, and
thus which takes O(1) time using O(n) processors.

Therefore, our parallel algorithm for finding a minil~um range cut takes 0(log’ n)
time using O(n’) processors on an arbitrary CRCW PRAM model.

The modification of this algorithm to deal with the minimum range s-t cut problem
can be done in a straightforward manner. For this, we shall cite the following fact
[23]: Let E[w(e), pi] be an upper-critical cut with respect to e E T,i”. Then the
minimum range s-t cut is the one with minimum range among all upper-critical cuts
that separate s and t. Using this fact, we only need to add the routine in Step (3) to test
whether s and t belong to different connected components associated with each
upper-critical cut. This does not affect the overall time complexity.

Theorem 3. We cu?z.~~~ a rniiz~rnu~z range cut and a rn~ni~~~rn raffle s-t cut in 0(log2 n)
time using O(n*) processors on an arbitrary CRCW PRAM model.

5. Conclusion

We proposed a unifying heuristic method for approximately solving the minimum
(s-t minimum) cut problem by using a fast minimum range cut (s-t cut) algorithm.
This heuristic method is based on the observation that a minimum range cut with
uniform random edge weights in [0, 11 can be a good estimator of a minimum cut.

According to our experiments, our method found exact minimum cuts with high
success ratio (480 cases out of 610) much faster than the NI-algorithm. For the s-2
minimum cut problem, our method exhibited even better performance on relative
errors with larger cpu times for the NETGEN and RANDOM-CAPACITATED
families and with comparable cpu time for the TWO-CLUSTEKS family. However,

Y. Dai et al. I Discrete Applid Mathematics 65 (I 9%) 16 7 190 1x7

as discussed in Section 3, if we are interested in finding multiple (or all) pairs of sit

minimum cuts, our heuristic method runs faster than applying the GT-algorithm to

each pair from scratch (or Gomory-Hu cut tree algorithm).

From these results, we see that our methods are quite promising for practical

purposes. In particular, as far as the ratio that our methods find exact solutions is

concerned, our methods for both of minimum cut and s-t minimum cut problems are

the most successful for graphs of small size or low density. For graphs of large size

and/or high density, our method for minimum cut problems produces solutions close

to the optimal by spending cpu time significantly less than the NI-algorithm. Thus. for

minimum cut problems, if taking cpu times into account, our method is effective for

graphs of large size and/or high density. However, for s-t minimum cut problems. our

method seems to be less effective since the GT-algorithm runs faster in general than

our method.

The future research includes the further extensive experiments verifying the current

results and the refinement of the current methods such as new heuristic which makes

use of the information obtained from previous iterations for the next iteration.

In summary, our methods have been developed based on the following key observa-

tions:

(1) In general, minimum range problems can be solved more efficiently than the

corresponding minimum-sum problems.

(2) When we assign each edge a uniform random weight in [0, l] the edge set

C with the smallest range may be expected to have a small number of edges in C.

These observations are very general. and hence can be further applied to other

problems. In fact, we have already developed heuristic algorithms for two related but

much more difficult (i.e., NP-complete) problems [779, 301; the k-multi~~~~ split

prnh[mz [171 and the balanced cut problem (also called the graph partitioning problem)

[24]. They are obtained by newly devising a O(m + nlogn) time algorithm for the

minimum range k-multiway split problem [S] and an O(m + rz2.‘) time minimum

range balanced cut algorithm [7, 301. Preliminary computational experiments have

also been reported [S, 301, and our recent paper [9] shows that for small k such as

k = 3,4, and 6 our heuristic algorithm for the k-multiway split problem produces

acceptable solutions for graphs generated by random graph generators similar to

those used in our experiments. The idea can also be applied to obtain a heuristic

algorithm for the k-ma&way cut problem [S, 61.

E‘inally, it should be noted that the most challenging problem is how to theoret-

ically estimate the closeness of our heuristic solution. Recently, Karger and Stein

devised an O(n2 log3 n) time randomized minimum cut algorithm based on contrac-

tion operations like ours 121, 221. As Karger discussed in [21], when we randomly

rank edges, construct a minimum spanning tree, and then remove the heaviest edge

from the minimum spanning tree, we have two components. Then, it was shown that

the cut defined by these components is in fact a particular minimum cut with R(n ‘)

probability. Notice that as discussed in [23] and in Section 4, our minimum range cut

algorithm repeatedly finds (n - 1) upper-critical cuts, each of which has one edge from

188 Y. Dai et al. J Discrete Applied Mathematics 65 (1996) 167- 190

a maximum spanning tree and one of which can be associated with the cut described

above by Karger. Thus, at each run of a minimum range cut algorithm, we can find

a cut corresponding to a cut obtained by a single iteration of Karger’s algorithm.

Moreover, a minimum range cut algorithm reports (n - 1) critical cuts at each

execution, which may increase the probability of finding a particular minimum cut.

However, the difficulty of probabilistic analysis arises in that these critical cuts are

interrelated each other in the following sense. That is, when starting with random edge

weights, (n - 1) critical cuts can be obtained successively by cyclic shifts of the initial

edge weights. Thus, we can not extend Karger’s analysis technique directly. Another

difficulty arises in estimating the probability of that a minimum cut has a smaller

range than other cuts since there are exponentially many other cuts, although given

two particular cuts we can estimate the probability of that a smaller cut has a smaller

range.

From Karger and Stein’s results [21, 221 and the above observation, it is guaran-

teed that applying our heuristic algorithm O(n*log n) iterations produces a minimum

cut with high probability, while our experimental results demonstrate that our

heuristic method produces solutions very close to optimal within only J% iterations.

Thus, there is a big gap between theoretical and experimental results. Closing this gap

theoretically would be indeed a challenging open problem. One possible direction of

future research along this line is to carry out precise probabilistic analysis of our

heuristic algorithm so as to establish a theoretically significant distinction between

two probabilities that Karger’s approach [21] and our heuristics find a particular

minimum cut. Another direction is to present a bound stronger than Q(n-*) on the

probability that Karger’s approach [21] finds a particular minimum cut for random

graphs.

Acknowledgements

The authors would like to express their gratitude to anonymous referees for

carefully reading the previous version of the paper and giving useful comments and

suggestions which greatly helped to improve the quality of the paper.

References

[l] R.K. Ahuja., T.L. Magnanti and J.B. Odin, Network Flows: Theory, Algorithms, and Applications
(Prentice Hall, Englewood Cliffs, NJ, 1992).

[Z] B. Awerbuch and Y. Siloach, New connectivity and MSF algorithm for ultra-computer and PRAM,

IEEE Trans. Comput. 36 (1987) 1258-1263.

[3] F.Y. Chin, J. Lam and I. Chen, Efficient parallel algorithms for some graph problems, Comm. ACM

25 (1982) 659-665.
[4] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988) 770-785.

[S] W.H. Cunningham, The optimal multiterminal cut problem, in: DlMACS Series in Discrete Mathe-

matics and Theoretical Computer Science 5 (American Mathematical Society, Providence, RI, 1991)

105-120.

Y. Dai et al. ! Discrete Applid Mathematir.s 65 (I YO6) I67 I YCI 1x9

[6] E. Dahlhaus. D.S. Johnson. C.H. Papadimitriou. P.D. Seymour and M. Yannakakis, The complexity
of multiway cuts. in: Proceedings of the Twenty Fourth Annual ACM Symposium on the Theory of

Computing (1992) 241-251.

c71

181

L91

IlO1

[ill

[l21

[l31

Cl41

[15]

[l61

1171

Cl81

[l91
1201

C2ll

1221

[23]

1241

1251

1261

[271

12X1

1291

[iO]

. -
Y. Dai. H. Imai, K. Iwano and N. Katoh. How to treat delete requests in semi-online problems. in:

Proceedings of Fourth Annual International Symposium on Algorithms and Computation. Lecture

Notes in Computer Science (Springer, Berlin. 1993) 4X-59.

Y. Dai. H. Imai. K. Iwano, N. Katoh, K. Ohtsuka and N. Yoshimura. A new unified approximate

approach to the minimum cut problem and its variants using minimum range cut algorithms. IBhl

Research Report. RT0082 (1992).

Y. Dai, K. lwano and N. Katoh, A new approximate algorithm for the minimum k-cut problem by

using mimmum range k-cut algorithm. Publ. Electron. Inform. System Sot. Japan (‘-134 (1993)

438 -443 (in Japanese).

M.E. Dyer and A.M. Frieze. The solution of some random NP-hard problems in polynomial ewpcctctl

time. J. Algorithms 10 (1989) 451-489.

S. Even and R.E. Tarjan. Network Row and testing graph connectivity. SIAM J. Comput 3 t 10751
507 Sl8.

H.N. Gabow. A matroid approach to finding edge connectivity and packing arbore\cence\. in:

Proceedings of the Twenty Third Annual ACM Symposium on the Theory of Computing (1991)

117~122.

H.N. Gabow. Applications of a poset representation to edge connectivity and graph rigidity. in

Proceedmgs of 32nd Annual Symposium on Foundations of Computer Science (199 1 I X I2 X.! I.
M.R. Carey and D.S. Johnson, Computers and Intractability A Guide to the Theory of \I’-

Completeness (Freeman, New York, 1979).

A.V. Goldberg and R.E. Tarjan, A new’ approach to the maximum flow problem. J. .A<‘M 35 I I9XX)
921 940.

L.M. Goldschlager. R.A. Shaw and J. Staples. The maximum flow problem is logspace complete fat- I’.

Theoret. Comput. Sci. 21 (1982) 105-l 11.

0. Goldschmidt and D.S. Hochbaum. Polynomial algorithm for the k-cut problem. in: Proceeding\ of

29nd Annual Symposium on Foundations of Computer Science (198X) 444 45 1.

J. Hao and J.B. Orlin, A faster algorithm for finding the minimum cut in a graph. in: Pi-acceding\ 01

the Third Annual ACMSIAM Symposium on Discrete Algorithms (1992) I65 174.

J. JBJh. An Introduction to Parallel Algorithms (Addison-Wesley. Reading. MA. 1992~.

D.S. Johnson and C.C. McGeoch. eds.. Network Flows and Matching. First DIMACS Implemcnta-

tion Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 12

(American Mathematical Society. Providence, RI. 1993).

D.R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. in:
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (1993) 21 30.

D.R. Karger and C. Stein, An a(,~~) algorithm for minimum cuts. in: Proceedings of the Twenty

lourth Annual ACM Symposium on the Theory of Computing (1993) 757--765.

N. Katoh and K. Iwano. Efficient algorithms for minimum range cut problems. IBM Research

Report. in: Proceedings of the Second Workshop on Algorithms and Data Structures. l.ecture Note:\

in Computer Science. 519 (Springer. Berlin. 1991) 80-91.

B.W. Kernighan and S. Lin. An effective heuristic procedure for partitiomng graphs. BSTJ 49 (19701

29 I 307.
V. King. S. Rao and R.E. Tarjan. A faster deterministic maximum Row algortthm. in: Proceeding\ 01

the Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992) 157 164.

D. Klingman. A. Napier and J. Stutz. NETGEN: A program for generating large scale capacitated

assignment. transportation, and minimum cost flow network problems. Management Sci 20 (197-t)

x14- 821.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout (Wiley, West Sussex. 1990).

D.W. Matula. Determining edge connectivity in O(nm). in: Proceedings of 28th .Annual Sympoium
on Foundations of Computer Science (19X7) 24925 1.

H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multiple and capacitated graphs.

SIAM J. Discrete Math. 5 (1992) 54 ~66.
K. Ohtsuka, Y. Dai. N. Katoh and K. luano, 4 new randomized algorithm for the minimum cut

problems and its performance evaluation. IPSJ Technical Report. Algorithms, Y22AIL26 -3 119921.

190 Y. Dai et al. /Discrete Applied Mathematics 65 (1996) 167-190

[31] J.C. Picard and M. Queyranne, Selected applications of minimum cuts in networks, INFOR 20 (1982)

394-422.

[32] C. Savage and J. JaJa, Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput.

10 (1981) 682-691.

[33] Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithm, J. Algorithms 3 (1982) 57-67.

[34] D.D. Sleator and R.E. Tarjan, A data structure for dynamic trees, .I. Comput. Sci. 26 (1983) 362-391.

[35] H.S. Stone, Multiprocessor scheduling with the aid of network flow algorithms, IEEE Trans. Software

Engrg. 3 (1977) 85593.

