10 research outputs found

    Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge-Kutta convolution quadrature

    Get PDF
    In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge-Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimate

    Stable and convergent fully discrete interior-exterior coupling of Maxwell’s equations

    Get PDF
    Maxwell\u27s equations are considered with transparent boundary conditions, with initial conditions and inhomogeneity having support in a bounded, not necessarily convex three-dimensional domain or in a collection of such domains. The proposed computational scheme only involves the interior domain and its boundary. The transparent boundary conditions are imposed via a time-dependent boundary integral operator that is shown to satisfy a coercivity property. The stability of the numerical method relies on this coercivity. The method proposed here uses a discontinuous Galerkin method and the leapfrog scheme in the interior and is coupled to boundary elements and convolution quadrature on the boundary. The method is explicit in the interior and implicit on the boundary. Stability and convergence of the spatial semidiscretization are proven, and with a computationally simple stabilization term, this is also shown for the full discretization

    Overresolving in the Laplace domain for convolution quadrature methods

    Get PDF
    Convolution quadrature (CQ) methods have enjoyed tremendous interest in recent years as an efficient tool for solving time-domain wave problems in unbounded domains via boundary integral equation techniques. In this paper we consider CQ type formulations for the parallel space-time evaluation of multistep or stiffly accurate Runge--Kutta rules for the wave equation. In particular, we decouple the number of Laplace domain solves from the number of time steps. This allows us to overresolve in the Laplace domain by computing more Laplace domain solutions than there are time steps. We use techniques from complex approximation theory to analyze the error of the CQ approximation of the underlying time-stepping rule when overresolving in the Laplace domain and show that the performance is intimately linked to the location of the poles of the solution operator. Several examples using boundary integral equation formulations in the Laplace domain are presented to illustrate the main results. Read More: http://epubs.siam.org/doi/10.1137/16M106474

    Numerical Solution of Exterior Maxwell Problems by Galerkin BEM and Runge-Kutta Convolution Quadrature

    No full text
    In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using Runge-Kutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the sharpness of the theoretical estimates

    Time-dependent electromagnetic scattering from thin layers

    Get PDF
    The scattering of electromagnetic waves from obstacles with wave-material interaction in thin layers on the surface is described by generalized impedance boundary conditions, which provide effective approximate models. In particular, this includes a thin coating around a perfect conductor and the skin effect of a highly conducting material. The approach taken in this work is to derive, analyse and discretize a system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. In a second step the fields are evaluated in the exterior domain by a representation formula, which uses the time-dependent potential operators of Maxwell’s equations. A key role in the well-posedness of the time-dependent boundary integral equations and the stability of the numerical discretization is taken by the coercivity of the Calderón operator for the time-harmonic Maxwell’s equations with frequencies in a complex half-plane. This entails the coercivity of the full boundary operator that includes the impedance operator. The system of time-dependent boundary integral equations is discretized with Runge–Kutta based convolution quadrature in time and Raviart–Thomas boundary elements in space. The full discretization is proved to be stable and convergent, with explicitly given rates in the case of sufficient regularity. The theoretical results are illustrated by numerical experiments

    Fast, Parallel Techniques for Time-Domain Boundary Integral Equations

    Get PDF
    This work addresses the question of the efficient numerical solution of time-domain boundary integral equations with retarded potentials arising in the problems of acoustic and electromagnetic scattering. The convolutional form of the time-domain boundary operators allows to discretize them with the help of Runge-Kutta convolution quadrature. This method combines Laplace-transform and time-stepping approaches and requires the explicit form of the fundamental solution only in the Laplace domain to be known. Recent numerical and analytical studies revealed excellent properties of Runge-Kutta convolution quadrature, e.g. high convergence order, stability, low dissipation and dispersion. As a model problem, we consider the wave scattering in three dimensions. The convolution quadrature discretization of the indirect formulation for the three-dimensional wave equation leads to the lower triangular Toeplitz system of equations. Each entry of this system is a boundary integral operator with a kernel defined by convolution quadrature. In this work we develop an efficient method of almost linear complexity for the solution of this system based on the existing recursive algorithm. The latter requires the construction of many discretizations of the Helmholtz boundary single layer operator for a wide range of complex wavenumbers. This leads to two main problems: the need to construct many dense matrices and to evaluate many singular and near-singular integrals. The first problem is overcome by the use of data-sparse techniques, namely, the high-frequency fast multipole method (HF FMM) and H-matrices. The applicability of both techniques for the discretization of the Helmholtz boundary single-layer operators with complex wavenumbers is analyzed. It is shown that the presence of decay can favorably affect the length of the fast multipole expansions and thus reduce the matrix-vector multiplication times. The performance of H-matrices and the HF FMM is compared for a range of complex wavenumbers, and the strategy to choose between two techniques is suggested. The second problem, namely, the assembly of many singular and nearly-singular integrals, is solved by the use of the Huygens principle. In this work we prove that kernels of the boundary integral operators wnh(d)w_n^h(d) (hh is the time step and tn=nht_n=nh is the time) exhibit exponential decay outside of the neighborhood of d=nhd=nh (this is the consequence of the Huygens principle). The size of the support of these kernels for fixed hh increases with nn as na,a<1n^a,a<1, where aa depends on the order of the Runge-Kutta method and is (typically) smaller for Runge-Kutta methods of higher order. Numerical experiments demonstrate that theoretically predicted values of aa are quite close to optimal. In the work it is shown how this property can be used in the recursive algorithm to construct only a few matrices with the near-field, while for the rest of the matrices the far-field only is assembled. The resulting method allows to solve the three-dimensional wave scattering problem with asymptotically almost linear complexity. The efficiency of the approach is confirmed by extensive numerical experiments
    corecore