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Abstract In this paper we consider time-dependent electromagnetic scattering prob-
lems from conducting objects. We discretize the time-domain electric field integral
equation using Runge–Kutta convolution quadrature in time and a Galerkin method
in space. We analyze the involved operators in the Laplace domain and obtain con-
vergence results for the fully discrete scheme. Numerical experiments indicate the
sharpness of the theoretical estimates.
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1 Introduction

Electromagnetic scattering problems in three dimensions have a wide range of
practical applications in physics and engineering, prominent examples being mag-
netic resonance imaging, remote sensing systems or global positioning systems. The
efficient and accurate numerical solution of such wave propagation phenomena in
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the time-domain has gained growing attention in the last years. Since such problems
are typically formulated in unbounded domains the method of integral equations is
an elegant tool to transform the underlying set of partial differential equations into
time-domain boundary integral equations (TDBIEs) on the bounded surface of the
scatterer.

Although the numerical solution of TDBIEs has been pursued since the 1960s (cf.
[18]), their use was unpopular for a long time due to the need to deal with distributional
fundamental solutions and due to stability problems of the resulting implementations.
More recent numerical methods have overcome these stability issues. Important dis-
cretization techniques include Galerkin methods based on space-time variational for-
mulations (cf. [1–3,19,33,37,40]) and methods based on bandlimited interpolation
and extrapolation (cf. [44–47]).

An alternative approach to solve TDBIEs numerically is based on convolution
quadrature. Developed more than 20 years ago (cf. [26,27]), convolution quadra-
ture based on linear multistep methods has been applied to numerous problems
(cf. [8,14,28,38,39,42,43]); fast numerical implementations were developed in
[20,21,23]. For a review on convolution quadrature and its applications we refer to
[9,29]. The advantages of this discretization scheme for TDBIEs include its excellent
stability properties and the fact that only the Laplace transform of the time-domain
fundamental solution is used and thus distributional kernels are avoided. An impor-
tant assumption for the stability of convolution quadrature is the A-stability of the
underlying time-discretization method. Since A-stable linear multistep methods can-
not exceed a convergence order of 2, convolution quadratures based on Runge–Kutta
methods have recently been considered and analyzed in order to obtain high order
schemes (cf. [4–6,30]). Most related to our work is [14] where multistep methods are
considered for the time discretization and an error analysis is presented. Some of the
stability estimates could be improved in our paper so that the regularity assumptions
with respect to time are relaxed.

In this paper we are interested in the propagation of time-dependent electromagnetic
fields in a homogeneous medium arising from the scattering of incoming waves at a
perfectly conducting obstacle. In order to solve the resulting time-domain electric field
integral equation (EFIE) numerically we use Runge–Kutta convolution quadrature for
the time discretization and a Galerkin method for the discretization in space. The aim
of this paper is, for the first time, to fully analyze this numerical method. We do this by
first analyzing the Laplace domain EFIE operator V to show that the inverse operator
can be polynomially bounded by

∥
∥
∥V−1 (s)

∥
∥
∥ ≤ C (σ0)

|s|
Re s

for Re s ≥ σ0 > 0 and some σ0 > 0. This allows us to use the analysis of Runge–Kutta
convolution quadrature in [6] to obtain convergence estimates for the semi-discrete
scheme. For the space discretization we use the classical Raviart–Thomas elements of
lowest order. Using the results of the semi-discrete case we finally obtain convergence
results for the fully discrete scheme. We perform numerical test with a spherical
scatterer. The results indicate the sharpness of the derived convergence estimates.
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Numerical solution of exterior Maxwell problems 645

2 Sobolev spaces and trace theorems

Let �− be an open bounded set in R
3 with Lipschitz boundary �, unitary outer normal

n, and complement �+ := R
3\�−. The inner product of two vectors a, b ∈ C

3 is
denoted by a.b, a × b is the usual vectorial product. Let � either be �− or �+. For
u ∈ L2(�) or v ∈ L2(�) := L2(�)3, let

‖u‖0,� =
⎛

⎝

∫

�

|u(x)|2 dx

⎞

⎠

1/2

resp. ‖v‖0,� =
(

3
∑

i=1

‖vi‖20,�

)1/2

be the norms of u, v in these spaces. We define the following Hilbert spaces with their
associated graph norms:

H(curl,�) := {

v ∈ L2(�), curl v ∈ L2(�)
}

,

‖v‖curl,� =
(

‖v‖20,� + ‖curl v‖20,�

)1/2

and in a similar manner

H(div,�) := {

v ∈ L2(�), div v ∈ L2(�)
}

,

‖v‖div,� =
(

‖v‖20,� + ‖div v‖20,�

)1/2
.

We will further require the L2(�) space of tangential fields,

L2
t (�) :=

{

v ∈ L2(�)|n.v = 0 on �
}

and the following trace operators �τ and γτ mapping D(�) = {φ|� | φ ∈ C∞comp(R
3)}

to L2
t (�)

�τ : u �→ n× (u× n)|� and γτ : u �→ u|� × n.

Adhering to [13], we define the following Hilbert spaces

V := H1/2(�), Vγ := γτ (V ), V� := �τ(V ),

with norms that assure the continuity of the trace operators

‖λ‖Vγ = inf
u∈V
{‖u‖V | γτ (u) = λ}

and

‖λ‖V� = inf
u∈V
{‖u‖V | �τ(u) = λ}.
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646 J. Ballani et al.

Further, we denote by V ′� and V ′γ the respective dual spaces with L2
t (�) as the pivot

space and their natural norms. We are now ready, see [13], to introduce the following
Hilbert spaces on �:

H−1/2(div�, �) :=
{

v ∈ V ′γ | div�v ∈ H−1/2(�)
}

,

H−1/2(curl�, �) :=
{

v ∈ V ′� | curl�v ∈ H−1/2(�)
}

with norms defined as

‖v‖−1/2,div�
:=

{

‖v‖2V ′γ + ‖div�v‖2H−1/2(�)

}1/2
,

‖v‖−1/2,curl� :=
{

‖v‖2V ′� + ‖curl�v‖2H−1/2(�)

}1/2
.

(1)

The unknown densities which arise in the boundary integral equations for the Maxwell
problem are traces of vector fields in H(curl,�+). The following theorem shows that
H−1/2(div�, �) and H−1/2(curl�, �) are the correct spaces for these densities.

Theorem 2.1 Let � ∈ {�−,�+}. The trace mappings

��
τ : H(curl,�) → H−1/2(curl�, �)

and

γ �
τ : H(curl,�) → H−1/2(div�, �)

are continuous and surjective. Moreover, there exist continuous liftings for these trace
operators in H(curl,�).

For a proof we refer to [13, Theorem 4.1]. As an important consequence of Theo-
rem 2.1 we get the following Green’s formula. For this, we put H−1/2(curl�, �) and
H−1/2(div�, �) in duality when L2

t (�) is used as pivot space (cf. [13, Section 5]).
More precisely, the usual L2

t (�) scalar product can be continuously extended to a
sesqui-linear duality pairing

(·, ·)� : H−1/2(div�, �)×H−1/2(curl�, �)→ C

by means of Green’s formula: For all u, v ∈ H(curl,�)

sign (�)

∫

�

(u. curl v − curl u. v) dx = (

γ �
τ u,��

τ v
)

�

with sign (�) :=
{−1, � = �+,

+1, � = �−.
(2)

Note that the complex conjugation in (·, ·)� is on the first argument. This will be of
importance in Sect. 4.4.
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Numerical solution of exterior Maxwell problems 647

For bounded, smooth domains, Green’s formula is proved in [31] and for Lipschitz
domains in [11,13]. For exterior domains �+, this follows by employing a cutoff
function and the dense embedding

{

u|�+ : u ∈ C∞comp(R
3)
}

↪→ H (curl,�)

and applying Green’s formula for bounded domains.
Finally, as another consequence of the duality of the two trace spaces H−1/2(div�, �)

and H−1/2(curl�, �) with L2
t (�) as the pivot space (see (36) in [13]) we have the iden-

tities

‖u‖−1/2,div = sup
ϕ∈H−1/2(curl�,�)

∣
∣(u,ϕ)�

∣
∣

‖ϕ‖−1/2,curl
(3a)

and

‖v‖−1/2,curl = sup
ϕ∈H−1/2(div�,�)

∣
∣(v,ϕ)�

∣
∣

‖ϕ‖−1/2,div
. (3b)

Remark 2.2 In the remainder of the paper we may, in order to enhance readability,
use both the classical notation n× (· × n) and · × n and the notation �τ and γτ , even
though strictly speaking only the latter should be used.

3 Integral formulation for exterior scattering problems

In the following we will be concerned with the propagation of time-dependent elec-
tromagnetic fields near a perfectly conducting body. We consider three-dimensional
exterior scattering problems in a homogeneous, isotropic medium with constant, posi-
tive electric permittivity ε and constant, positive magnetic permeabilityμ. Furthermore
we assume that there are no external sources.

Let �− be a three-dimensional perfectly conducting object with bounded Lipschitz
surface � and let (Einc, Hinc) be an incident electromagnetic field. The scattered field
(E, H) satisfies the time dependent Maxwell equations:

− ε
∂E
∂t
+ curl H = 0 in R+ ×�+, (4)

μ
∂H
∂t
+ curl E = 0 in R+ ×�+, (5)

div E = div H = 0 in R+ ×�+, (6)

with boundary conditions

(E+ Einc)× n = 0 on R+ × � (7)
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648 J. Ballani et al.

and initial conditions

E(t, x) = H(t, x) = 0 for t ≤ 0 and x ∈ �+.

Since our problem is formulated in unbounded domains we use the method of integral
equations to transform this set of partial differential equations to integral equations
on the bounded surface of the scatterer. These can be derived by inverse Laplace
transformation of the more widely known frequency domain integral representations,
see (5.6.4–6) in [31], as we explain next. The application of the Laplace transform,
i.e., Ê := L E = ∫ t

0 e−st E(·, t)dt , to equations (4) and (5) leads to

−εsÊ+ curl Ĥ = 0 in �+,

μsĤ+ curl Ê = 0 in �+,

with boundary condition

(Ê+ Êinc)× n = 0 on �.

The boundary integral representation for the solution of the above Laplace domain
boundary value problem is given by

Ê(y) = −sμ
∫

�

K (s, x − y)j(x)d�x + 1

ε
∇
∫

�

K (s, x − y)
1

s
div�j(x)d�x, (8)

Ĥ(y) = curl
∫

�

K (s, x − y)j(x)d�x, (9)

where the free space Green’s function for the Helmholtz operator is given by

K (s, z) := e−s
√

εμ‖z‖

4π‖z‖ . (10)

Taking the inverse Laplace transform of the above formulation gives the time-domain
electric field integral equation (EFIE):

E(t, y) = −μ

t∫

0

∫

�

k(t − τ, x − y) ∂t j(τ, x) d�x dτ

−1

ε
∇

t∫

0

∫

�

k(t − τ, x − y) q(τ, x) d�x dτ (11)

H(t, y) = curl

t∫

0

∫

�

k(t − τ, x − y) j(τ, x) d�x dτ
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Numerical solution of exterior Maxwell problems 649

for y ∈ �+\�, involving the electric surface current density j, the charge density q

q(t, x) = −
t∫

0

div�j(τ, x)dτ, (12)

and the time domain free space Green’s function

k(t, z) := L −1{K (·, z)}(t) = δ(t −√εμ‖z‖)
4π‖z‖ , (13)

where δ denotes the Dirac delta function. It can be easily checked that for any j and
q satisfying (12), E and H given by the representation formula (11) satisfy (4), (5),
and (6). The initial conditions are also satisfied since we assume that j(τ, y) = 0
and q(τ, y) = 0 for τ ≤ 0 and y ∈ �+\�. The unknown density functions are now
determined via the boundary condition (7). This requires the extension of E×n to the
boundary � which can be done continuously (cf. [31]). The resulting integral equation
we have to solve reads

−μ�τ

t∫

0

∫

�

k(t − τ, x − y)jt (τ, x) d�xdτ

−1

ε
∇�

t∫

0

∫

�

k(t−τ, x−y)q(τ, x) d�xdτ=n (y)× g (t, y) for (t, y) ∈ R× �,

(14)

with

g := −Einc × n, (15)

jt = ∂t j, and ∇� the surface gradient.
In order to eliminate the unknown q and for further reasons that will become

apparent in the next section, see Remark 4.3, we differentiate both sides of the above
equation with respect to time to obtain

−μ�τ

t∫

0

∫

�

k(t − τ, x − y)jt t (τ, x) d�xdτ

+1

ε
∇�

t∫

0

∫

�

k(t − τ, x − y)div�j(τ, x) d�xdτ = n (y)× gt (t, y) (16)

which we have to solve for all (t, y) ∈ R×�. Note that this integral equation contains
only the unknown electric surface current density j.
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650 J. Ballani et al.

4 Numerical discretization

4.1 Time discretization

For the time discretization we will make use of convolution quadrature based on
a Runge–Kutta method. An m-stage Runge–Kutta method in the standard Butcher
tableau notation can be described by the matrix A = (ai j )

m
i, j=1 ∈ R

m×m and the

vectors b = (b1, b2, . . . , bm)T ∈ R
m and c = (c1, c2, . . . , cm)T . The corresponding

Runge–Kutta discretization of the initial value problem y′ = f (t, y), y(0) = y0, is
then given by

Yni = yn +�t
m
∑

j=1

ai j f (tn + c j�t, Ynj ), i = 1, . . . , m,

yn+1 = yn +�t
m
∑

j=1

b j f (tn + c j�t, Ynj );

here �t > 0 is the time-step and t j = j�t . The values Yni and yn are approximations
to y(tn + ci�t) and y(tn), respectively. This Runge–Kutta method is said to be of
(classical) order p ≥ 1 and stage order q if for sufficiently smooth right-hand sides f ,

Y0i − y(ci�t) = O(�tq+1), for i = 1, . . . , m, and y1 − y(t1) = O(�t p+1),

(17)

as �t → 0. Using the notation

1 = (1, 1, . . . , 1)T ,

the Runge–Kutta method is said to be A-stable if I− zA is non-singular for Re z ≤ 0
and the stability function

R(z) = 1+ zbT (I− zA)−11 (18)

satisfies |R(z)| ≤ 1 for Re z ≤ 0. Note that if A−1 exists, then R(∞) = 1−bT A−11.
In order to use the convergence results proved in [6], we make the following assump-

tions on the Runge–Kutta methods.

Assumption 4.1 a. The Runge–Kutta method is A-stable with (classical) order
p ≥ 1 and stage order q ≤ p.

b. The stability function satisfies |R(iy)| < 1 for all real y �= 0.
c. R(∞) = 0.

d. The Runge–Kutta coefficient matrix A is invertible.

Radau IIA and Lobatto IIIC are examples of methods satisfying all of the above
assumptions with q = m and p = 2m − 1 for Radau IIA and q = m − 1 and p = 2m
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Numerical solution of exterior Maxwell problems 651

for Lobatto IIIC. For possible relaxation of these conditions and deeper meaning of
them see [6].

Convolution quadrature is a method for the discretization of continuous convolu-
tions

u(t) = K (∂t )g :=
t∫

0

k(t − τ)g(τ )dτ (19)

that uses only the Laplace transformed kernel K (s) = (L k) (s), the so-called transfer
function. The importance of the transfer function is highlighted by the operational
notation K (∂t )g.

The Runge–Kutta based convolution quadrature approximation to u(tn + c��t),
� = 1, . . . , m, is given by

⎛

⎜
⎝

un1
...

unm

⎞

⎟
⎠ = (

K (∂t
�t )g

)

n
:=

n
∑

j=0

W�t
n− j (K )

⎛

⎜
⎝

g(t j + c1�t)
...

g(t j + cm�t)

⎞

⎟
⎠ . (20)

Here, the matrix convolution weights W�t
j (K ) are defined implicitly through a gen-

erating function

K

(
χ (ζ )

�t

)

=
∞
∑

j=0

W�t
j (K )ζ j , (21)

with

χ (ζ ) = A−1 − ζA−11bT A−1. (22)

The approximation at tn+1 is given simply by un+1 = bT A−1(un�)
m
�=1, i.e.,

un+1 := bT A−1 (K (∂t
�t )g

)

n
. (23)

Note that for stiffly accurate Runge–Kutta methods like Radau IIA or Lobatto IIIC we
have bT A−1 = (0, 0, . . . , 0, 1)T and therefore (23) simplifies to un+1 = unm in this
case.

Applying this time-discretization to (16) we obtain the semi-discretized equations

−
n
∑

j=0

μ�τ

∫

�

W(2)
n− j (x − y)

⎛

⎜
⎝

j(t j + c1�t, x)
...

j(t j + cm�t, x)

⎞

⎟
⎠ d�x

+
n
∑

j=0

1

ε
∇�

∫

�

Wn− j (x − y)

⎛

⎜
⎝

div�j(t j + c1�t, x)
...

div�j(t j + cm�t, x)

⎞

⎟
⎠ d�x = (n × gt )n , (24)

123



652 J. Ballani et al.

with

(n × gt )n (y) :=
⎛

⎜
⎝

n (y)× gt (tn + c1�t, y)
...

n (y)× gt (tn + cm�t, y)

⎞

⎟
⎠

and the weights W j =
(

w j,k,�

)

1≤k,�≤m and W(2)
j =

(

w
(2)
j,k,�

)

1≤k,�≤m
defined by

K (χ (ζ ) /�t, z)=
∞
∑

j=0

W j (z)ζ j , (χ (ζ ) /�t)2 K (χ (ζ ) /�t, z)=
∞
∑

j=0

W(2)
j (z)ζ j ,

(25)

where K is again as in (10). The importance of using the differentiated formulation
(16) instead of (14) can be seen from the following proposition.

Proposition 4.2 Under the above assumptions on the Runge–Kutta method, there
exists a constant c > 0 such that for any ε > 0 and all z ∈ R

3 with ‖z‖ < R it holds

‖W j (z)‖ ≤ ε, for all j > max

(
cR

�t
, log

1

ε

)

and

‖W(2)
j (z)‖ ≤ ε, for all j > max

(
cR

�t
, log

1

ε
+ log

1

�t

)

.

Proof By Cauchy’s integral formula it holds

W j (z) = 1

4π ‖z‖
1

2π i

∮

C

e−χ(ζ )‖z‖/�tζ− j−1dζ

= 1

4π ‖z‖
∞
∑

�= j

(‖z‖ /�t)�

�!
1

2π i

∮

C

(−χ(ζ ))� ζ− j−1dζ.

For the contour C we may use the unit circle and obtain the bound

‖W j (z)‖ ≤ 1

4π ‖z‖
∞
∑

�= j

(a ‖z‖ /�t)�

�! , with a = max|ζ |=1
‖χ(ζ )‖.
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Numerical solution of exterior Maxwell problems 653

Using Stirling’s approximation finally we obtain a crude bound

‖W j (z)‖ ≤ 1

4π ‖z‖
∞
∑

�= j

(
ae ‖z‖
��t

)�

≤ 1

4π ‖z‖
(

ae ‖z‖
j�t

) j 1

1− (ae ‖z‖ /j�t)

= ae

4π j�t

(
ae ‖z‖

j�t

) j−1 1

1− (ae ‖z‖ /j�t)
.

Assuming for example that j > 2aeR/�t we obtain that

‖W j (z)‖ ≤ C
1

R
2− j

from which the first bound follows directly. Similar reasoning gives the result for W(2)
j .
�

Remark 4.3 The above proposition shows that for large enough j , the weights W j

and W(2)
j are exponentially close to zero. In order to eliminate q from (14) we could

have simply substituted for q the conservation law (12). This would, however, have
introduced the integration operator 1/s and since (χ (ζ ))−1 = A+ ζ

1−ζ
1bT it is not

difficult to see that weights for this operator do not converge to zero.
Standard algorithms for implementing convolution quadrature are listed in the

recent review [9]. In this work we make use of the easiest to implement algorithm
introduced in [8] and described in Section 3.3.1 of [9]. This approach does not require
the explicit computation of convolution weights and its stability has been investigated
theoretically and practically for acoustic problems in [8].

4.2 Convergence of the semi-discrete scheme

Let us define the Laplace domain EFIE operator on the boundaryV(s) : H−1/2(div�, �)

→ H−1/2(curl�, �) by

(

V(s)ĵ
)

(y) := − μ�τ

∫

�

s2 K (s, x − y) ĵ(x) d�x

+ 1

ε
∇�

∫

�

K (s, x − y) div� ĵ(x) d�x, y ∈ �. (26)
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654 J. Ballani et al.

Further denote by S(s) : H−1/2(div�, �)→ H(curl,�+) the operator

(

S(s)ĵ
)

(y) := −μ

∫

�

s K (s, x − y)ĵ(x) d�x

+1

ε
∇
∫

�

1

s
K (s, x − y) div� ĵ(x) d�x, y ∈ �+. (27)

Note that V(s) is the tangential trace of the differentiated domain operator S(s):

V(s) = s�τS(s).

Therefore, using the operational notation (19), the continuous system (16) can be
written in short-hand as: Find j such that

V(∂t )j = n× gt , (28)

and its Runge–Kutta discretization as: Find j�t such that

(

V(∂t
�t )j�t)

n
= (n × gt )n .

Using the composition rule

K2 K1(∂t
�t )g = K2(∂t

�t )K1(∂t
�t )g, (29)

see [5], we see that the unknown density is in fact given by

(j�t )n =
⎛

⎜
⎝

j�t
n1
...

j�t
nm

⎞

⎟
⎠ =

(

V−1(∂t
�t )n× gt

)

n

and

j�t
n+1 := bT A−1

(

V−1(∂t
�t )n × gt

)

n
.

Finally, using the definition of S(s) (recall that V(s) = s�τS(s)) we have that

E = SV−1(∂t ) n × gt

and the discrete approximation E�t
n+1 ≈ E (tn+1, ·) of the electric field is given by

E�t
n+1 = bT A−1

(

SV−1(∂t
�t )n× gt

)

n
.

It is consequently possible to deduce convergence results just from properties of
V−1(s) and S(s) in the Laplace domain.
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Numerical solution of exterior Maxwell problems 655

Theorem 4.4 There exists σ0 > 0 such that the following statements hold.

(a) The inverse operator V−1(s) : H−1/2(curl�, �)→ H−1/2(div�, �) is analytic for
Re s > 0 and bounded in the operator norm as

∥
∥
∥V−1 (s)

∥
∥
∥ ≤ C (σ0)

|s|
Re s

for Re s ≥ σ0 > 0. (30)

(b) An upper bound for the operator norm of V(s) :H−1/2(div�, �)→H−1/2(curl�, �)

is given by

‖V(s)‖ ≤ C (σ0)
|s|3
Re s

. (31)

(c) For any y ∈ �+, the field point evaluation δyS(s) : H−1/2(div�, �) → C
3 is

analytic for Re s > 0 and bounded as

‖δyS(s)‖ ≤ C(σ0, dist(y, �))e−Re s dist(y,�)|s|2 for Re s ≥ σ0 > 0.

Proof We follow the ideas of [3] and extend them from the acoustic case to the
present case of Maxwell operators. Similar arguments can be found in the master’s
thesis of one of the authors [41, Prop. 3.5], see also the PhD theses [32] and [40]. The
definitions of the single layer operators in these references differ slightly, for example
V (s) = s R (s), where R (s) is as in [41, (3.10)]. In our proof C will denote a generic
constant which is allowed to change from one line to the next.

For ϕ ∈ H−1/2(div�, �), we define ψ := V(s)ϕ. Let h ∈ H(curl,�) denote
a lifting of ψ ∈ H−1/2(curl�, �), i.e., ψ = �τ h; a proof of the existence of a
continuous lifting operator can be found in [31,40]. We relate this equation to the
following exterior and interior, time-harmonic Maxwell problem. Let � ∈ {�−,�+}.
Find (E�, H�) ∈ H(curl,�)×H(curl,�) such that

− sεE� + curl H� = 0 in �,

sμH� + curl E� = 0 in �, (32)

E� × n = 1

s
h× n on �.

This problem admits a unique solution for all Re s > 0 as proved, e.g., in [40] and
[41, Lemma 3.3].

In the following we will make use of the scaled norm

‖E�‖2curl,�,s :=
∫

�

|curl E�|2 +
∣
∣
√

μεsE�

∣
∣
2

dx.

Then, we have, see [31, Theorem 5.5.1],

�τ h = s��
τ E� and ϕ = γ

�−
τ H�− − γ

�+
τ H�+ . (33)
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Hence, by Green’s formula

Re (−sϕ,V(s)ϕ)� = Re (−sϕ,�τ h)� (34)

= Re
[(

−sγ �−
τ H�− , s��−

τ E�−
)

�

−
(

−sγ �+
τ H�+ , s��+

τ E�+
)

�

]

= −Re
∑

�∈{�−,�+}
|s|2

∫

�

(H�. curl E� − curl H�. E�) dx

=
∑

�∈{�−,�+}
Re

∫

�

s

μ
|curl E�|2 + s |s|2 ε |E�|2 dx

= Re s

μ
‖E‖2curl,�−∪�+,s . (35)

To estimate ϕ in terms of E we pick any ζ ∈ H−1/2(curl�, �) and denote by u�− ∈
H(curl,�−), resp. u�+ ∈ H(curl,�+) the interior and exterior lifting of ζ , i.e.,

ζ = �
�−
τ u�− = �

�+
τ u�+ . The continuity of the lifting operator implies

‖u�±‖curl,�± ≤ C‖ζ‖−1/2,curl.

We employ Green’s identity to obtain

∣
∣ (ϕ, ζ )�

∣
∣ =

∣
∣
∣

(

γ
�−
τ H�− ,�

�−
τ u�−

)

�
−
(

γ
�+
τ H�+ ,�

�+
τ u�+

)

�

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

�∈{�−,�+}

∫

�

(H�. curl u� − curl H�. u�) dx

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

�∈{�−,�+}

∫

�

(
1

s̄μ
curl E�. curlu� + s̄εE�. u�

)

dx

∣
∣
∣
∣
∣
∣

≤ 1

|s|μ ‖E‖curl,�−∪�+,s ‖u‖curl,�−∪�+,s

≤ 1

μ
max

(√
εμ,

1

Re s

)

‖E‖curl,�−∪�+,s ‖u‖curl,�−∪�+

≤ C

μ
max

(√
εμ,

1

Re s

)

‖E‖curl,�−∪�+,s ‖ζ‖−1/2,curl.

Hence, from (3a) we conclude that

‖ϕ‖−1/2,div ≤ C

μ
max

(√
με,

1

σ0

)

‖E‖curl,�−∪�+,s
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holds. The combination with (35) finally leads to

Re (−sϕ,V (s)ϕ)� ≥ C min

(
1

ε
, μσ 2

0

)

Re s ‖ϕ‖2−1/2,div . (36)

The Lax-Milgram lemma in the form [36, Lemma 2.1.51 with the definition of
ellipiticty as in (2.43)] gives

∥
∥
∥(sV (s))−1

∥
∥
∥ ≤ C max

(

ε,
1

μσ 2
0

)

1

Re s
.

Multiplying by |s| leads to the asserted bound of V−1 (s) in the operator norm.
Now, for any ψ ∈ H−1/2(curl�, �) we set ϕ := V−1 (s)ψ . Let (E�, H�) denote

the solution of (32) for this choice of ψ and corresponding lifting h. Note that the
relations (33) also hold for this case. Again by Green’s formula and the continuity of
the trace mapping ��

τ : H(curl,�) → H−1/2(curl�, �) we get the estimate

Re
(

−sV−1 (s)ψ,ψ
)

�
= Re s

μ
‖E‖2curl,�−∪�+,s

≥ C min

(
1

μ
, εσ 2

0

)

Re s ‖E‖2curl,�−∪�+

≥ C min

(
1

μ
, εσ 2

0

)

Re s ‖�τ E‖2−1/2,curl

= C min

(
1

μ
, εσ 2

0

)
Re s

|s|2 ‖ψ‖
2−1/2,curl. (37)

Similarly as for V−1(s), this now gives the required estimate for ‖V(s)‖.
To prove the third bound we can proceed as in the acoustic case discussed in

[6, Lemma 5.1]:

|S(s)v(y)| ≤ μ|s|
∥
∥
∥
∥

e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

H1/2(�)

‖v‖H−1/2(�)

+ 1

|s|ε
∥
∥
∥
∥
∇ e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

H1/2(�)

‖div�v‖H−1/2(�)

≤
(

μ2|s|2
∥
∥
∥
∥

e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

2

H1/2(�)

+ 1

|s|2ε2

∥
∥
∥
∥
∇ e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

2

H1/2(�)

)1/2

×‖v‖−1/2,div� .

It is not difficult to show that, see [6, Lemma 5.1],

∥
∥
∥
∥

e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

H1/2(�)

≤ C(σ0, dist(y, �))|s|e−Re s dist(y,�)
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and hence

∥
∥
∥
∥
∇ e−s‖·−y‖

4π‖ · −y‖
∥
∥
∥
∥

H1/2(�)

≤ C(σ0, dist(y, �))|s|2e−Re s dist(y,�).

Combining the three estimates gives the required result. �
In the following we will derive error estimates for the Runge–Kutta convolution

quadrature approximation of the computation of the electric surface current density

j = V−1(∂t ) (n × gt ) (38)

and the corresponding field point evaluation

E (y) = δySV−1(∂t )n × gt (39)

where g = −Einc×n. The transfer function for problem (38) is given (and estimated)
by

‖V−1(s)‖ ≤ C (σ0)
|s|

Re s
,

where for (39) it is

∥
∥
∥δyS (s)V−1(s)

∥
∥
∥ ≤ C(σ0, dist(y, �))e−Re s dist(y,�) |s|3

Res
.

In [6] it has been proved that the Runge–Kutta convolution quadrature for a transfer
function that is bounded by C |s|μ/ (Re s)ν for some real μ and ν ≥ 0 converges at
the rate O(�tq+1−μ+ν). Hence, these estimates imply the following result.

Definition 4.5 Let W r,1
0 (0, T ; X) denote the space of functions g on (0, T ) with

values in the Banach space X and the r -th weak derivative in L1 (0, T ) and with
g (0) = g′ (0) = · · · = g(r−1) (0) = 0 equipped with the norm

∥
∥
∥ g(r)

∥
∥
∥

L1(0,T )
=

T∫

0

‖g(r)(t)‖X dt.

Theorem 4.6 (a) Let r > p + 3 and g ∈ W r+1,1
0 ([0, T ];H−1/2(curl�, �)). Then,

under the above conditions on the Runge–Kutta method there exists t̄ ≥ 0 such
that for 0 < �t < t̄ and t ∈ [0, T ],

∥
∥j�t

n (·)− j(tn, ·)
∥
∥−1/2,div�

≤ C�tmin(p,q+1)

t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ.
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(b) Let r > p + 5 and assume further that g ∈ W r+1,1
0 ([0, T ];H−1/2(curl�, �)).

Then for any y ∈ �+

∥
∥E�t

n (y)− E(tn, y)
∥
∥ ≤ C�t p

t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ.

Remark 4.7 The statement of the theorem on convergence of Runge–Kutta based
convolution quadrature as given in [6], requires the data g to be in the space Cr ([0, T ])
of r -times continuously differentiable functions. The proof is, however, easily seen to
hold also for data g in spaces W r,1

0 ([0, T ]).

4.3 Spatial discretization

For the rest of the paper we we assume �− to be a bounded polyhedron. In this case the
spaces V� and Vγ can be explicitly characterized, see [11,12]. We equip the boundary
� of �− with a surface boundary element mesh Gh (in the sense of, e.g., [36]), where
h denotes the mesh width. We assume that the surface mesh is aligned with edges of
�, i.e. the edges of � are covered by a subset of triangle edges. Let

Gh := {τ�}M̃�=1

be such a triangulation with � =⋃M̃
�=1 τ�. The set of triangle edges is denoted by

Eh := {ei }Mi=1 .

The triangulation is assumed to be conforming i.e. two panels τ� and τk either coincide,
they share a common edge, a common vertex or they are disjoint. In order to discretize
our problem we have to define a suitable finite dimensional boundary element space

Vh ⊂ H−1/2(div�, �).

We use here the classical Raviart–Thomas elements of lowest order, which we denote
by RT 0(Gh), see [10,34,35].

Let a basis of RT 0(Gh) be given by {b1, b2, . . . , bM }. We define the block matrices
W

k
∈ C

m M×m M for 1 ≤ i, j ≤ m by

(

W
k

)

i, j
:=

⎛

⎝μ

∫

�

∫

�

(

W(2)
k (x − y)

)

i, j

(

be(x) , b f (y)
)

d�xd�y

+ 1

ε

∫

�

∫

�

(Wk(x−y))i, j div�be(x)div�b f (y)d�xd�y

⎞

⎠

M

e, f=1

∈C
M×M ,
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where (·, ·) refers to the standard inner product in C
3. For 1 ≤ i ≤ m, we define the

right-hand sides rk,i ∈ C
M by

rk,i :=
⎛

⎝

∫

�

(

b f , Einc
t (tk + ci�t, y)

)

d�y

⎞

⎠

M

f=1

and form the block vectors Rk :=
(

rk,i
)m

i=1 ∈ C
m M . Then, the Galerkin discretization

of (24) is given by seeking, for 0 ≤ k ≤ N , the block vectors Jk =
(

jk,i
)m

i=1 with

jk,i =
(

jk,i,e
)M

e=1 ∈ C
M such that

n
∑

j=0

W
n− j

J j = Rn ∀0 ≤ n ≤ N .

The temporal Runge–Kutta convolution quadrature, spatial Galerkin approximation
to the electric surface current densities j

k
(x) := (j (tk + ci�t, x))m

i=1 at time points
tk + ci�t, 1 ≤ i ≤ m, then is given by

j
k
(x) ≈ j�t,h

k
(x) :=

(
M
∑

e=1

jk,i,ebe(x)

)m

i=1

. (40)

In order to obtain approximations at tk+1 and not only at stage values, under the
assumption R(∞) = 0 on the Runge–Kutta method, note that

j (tk+1, x) ≈ j�t,h
k+1 (x) := bT A−1j�t,h

k
(x)

due to (23). For stiffly stable RK methods, such as the Radau IIA method, bT A−1 =
(0, 0, . . . , 0, 1)T and cm = 1, so that

j�t,h
k+1 = j�t,h

km .

4.4 Convergence of the fully discrete scheme

The Galerkin discretization of the variational problem (28) in the Laplace domain is
given by finding ĵh = ĵh (s) ∈ RT 0(Gh) such that

(

ζ ,V(s)ĵh
)

�
= (

ζ , s n × ĝ
)

�
∀ζ ∈ RT 0(Gh). (41)

Let P0,h : H−1/2(curl�, �)→ RT 0(Gh) be defined for all ψ ∈ H−1/2(curl�, �) by
the relation

(

P0,hψ,ϕ
)

L2
t (�)
= (ψ,ϕ)� ∀ϕ ∈ RT 0(Gh)
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and let P�
0,h : RT 0(Gh)→ H−1/2(div�, �) denote its adjoint. Furthermore we denote

by Pdiv,h : H−1/2(div�, �) → RT 0(Gh) the orthogonal projection. Then, the semi-
discrete Galerkin discretization in the time domain can be written as

Vh (∂t ) jh = P0,hn × gt ,

where

Vh (s) := P0,hV (s) P�
0,h : RT 0(Gh)→ RT 0(Gh).

The operator Vh (s) is invertible as we state in the next result.

Lemma 4.8 For s ∈ C with Re s ≥ σ0 > 0, the discrete Laplace domain Galerkin
variational problem (41) has a unique solution ĵh (s) ∈ RT 0(Gh) with the stability
estimate in the operator norm

∥
∥
∥V−1

h (s)
∥
∥
∥ ≤ C (σ0)

|s|
Re s

. (42)

Proof Since V(s) is coercive, (36), the same estimate holds for ‖V−1
h (s)‖ as for

‖V−1(s)‖. �
Hence,

Vh (∂t )
(

jh − Pdiv,hj
)

= P0,hV (∂t )
(

I − Pdiv,h
)

j

and the composition rule K2(∂t )K1(∂t )g = K2 K1(∂t )g gives us

jh − Pdiv,hj = V−1
h (∂t ) P0,hV (∂t )

(

I − Pdiv,h
)

j. (43)

The representation (43) along with the discrete stability estimate (42) allow to employ
Parseval’s formula in the following form.

Lemma 4.9 Let K (s) be analytic and bounded by |K (s)| ≤ M |s|μ for all s ∈ C

with Res ≥ σ0 > 0. Then, for r > μ the convolution operator K (∂t ) is a bounded
linear operator

K (∂t ) : W r,1
0 (0, T )→ W r−μ,1

0 (0, T ) .

Further for any r > μ+ 1

K (∂t ) : W r,1
0 (0, T )→ C ([0, T ])

is also a bounded operator.

Proof The first statement is a direct consequence of the definition of the spaces W r,1
0 ,

whereas the second statement is proved in [28, Lemma 2.2]. �
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In combination with both continuous stability estimates (30), (31), we obtain
for r > 5

∥
∥
∥jh (t)−Pdiv,hj (t)

∥
∥
∥−1/2,div�

≤C (σ0, T )
∥
∥
(

I−Pdiv,h
)

j
∥
∥

Wr,1
0 ([0,T ];H−1/2(div�,�))

,

(44)

i.e., quasi-optimality with respect to the space discretization.

Remark 4.10 Note that the regularity assumptions with respect to time are quite strong
and larger than the order of the operator intuitively would suggest. Similar requirements
are common in the literature (cf. [19,28]) of retarded boundary integral equations and
it is to the best of our knowledge an open problem whether this is a theoretical arte-
fact. Numerical experiments (cf. [37]) typically indicate that the theoretical regularity
assumptions are too strict.

Now, we can formulate the following theorem.

Theorem 4.11 Let a Runge–Kutta based convolution quadrature be applied in time
and a Galerkin method with lowest order Raviart–Thomas elements be applied in
space to the equation V(∂t )j = n × gt . Under the conditions on the Runge–Kutta
method stated in Assumption 4.1, the following hold:

(a) Let g ∈ W r,1
0 ((0, T );H−1/2(curl�)) with r > p + 4, where p is the (classical)

order of the Runge–Kutta method. Then, the fully discrete method converges with

∥
∥
∥j (tk)− j�t,h

k

∥
∥
∥−1/2,div

≤ C (�t)min{p,q+1}
t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ

+C (σ0, T )
∥
∥
(

I − Pdiv,h
)

j
∥
∥

Wr,1
0 ([0,T ];H−1/2(div�,�))

.

(b) Let g ∈ W r,1
0 ((0, T );H−1/2(curl�)) with r > p + 5, where p is the (classical)

order of the Runge–Kutta method. Further, let ŵS,i be the solution of the problem:
Find ŵS,i ∈ H−1/2(div�, �) such that

(

ŵS,i ,V(s)ζ
)

�
= �(ζ ) ∀ζ ∈ H−1/2(div�, �),

where �(·) is the linear functional defined by

�(ζ ) = δySi (s)(ζ ).

If for some −1/2 ≤ κ ≤ 1, ŵS,i ∈ Hκ(div�, �) and ‖ŵS,i‖κ,div� ≤ C |s|ακ for

Re s > σ0 and j ∈ W ακ+8,1
0 ([0, T ];H−1/2(div�, �)), then for any y ∈ �+ and
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i = 1, 2, 3, it holds

∣
∣
∣Ei (tk, y)− E�t,h

k,i (y)

∣
∣
∣ ≤ C�t p

t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ

+C (σ0, T )
∥
∥
(

I − Pdiv,h
)

j
∥
∥

Wακ+8,1
0 ([0,T ];H−1/2(div�,�))

×‖I − Pdiv,h‖Hκ (div�)←H−1/2(div�)

Proof Let us first remark that assumptions on g in both (a) and (b) together with
Lemma 4.9 imply j ∈ W r,1

0 ([0, T ];H−1/2(curl�, �)), where r > p + 4 ≥ 5 so that
(44) can be applied.

We employ a triangle inequality to obtain

∥
∥
∥j (tk)− j�t,h

k

∥
∥
∥−1/2,div�

≤
∥
∥
∥j (tk)− jh (tk)

∥
∥
∥−1/2,div�

+
∥
∥
∥jh (tk)− j�t,h

k

∥
∥
∥−1/2,div�

.

The first term can be estimated by a best-approximation estimate in space by using
(44):

∥
∥
∥j (tk)− jh (tk)

∥
∥
∥−1/2,div�

≤ ∥
∥j (tk)− Pdiv,hj (tk)

∥
∥−1/2,div�

+
∥
∥
∥ Pdiv,hj (tk)− jh (tk)

∥
∥
∥−1/2,div�

≤ (1+ C (σ0, T ))
∥
∥
(

I − Pdiv,h
)

j
∥
∥

Wr,1
0 ([0,T ];H−1/2(div�,�))

.

Note that

jh − j�t,h =
(

V−1
h (∂t )− V−1

h (∂t
�t )

)

P0,h
(

ny × ∂t g
)

.

Since V−1
h (s) has the same analyticity and growth behaviour as V−1 (s) with respect

to s ∈ C with Re s ≥ σ0 > 0 we can apply Theorem 4.6 verbatim for the operator
V−1

h (s) to obtain

∥
∥
∥jh (tk)− j�t,h

k

∥
∥
∥−1/2,div�

≤ C (�t)min{p,q+1}
t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ.

For the estimate in b) we start again with a triangle inequality and denote

∣
∣
∣Ei (tk, y)− E�t,h

k,i (y)

∣
∣
∣ ≤

∣
∣
∣Ei (tk, y)− Eh

i (tk, y)

∣
∣
∣+

∣
∣
∣Eh

i (tk, y)− E�t,h
k,i (y)

∣
∣
∣ . (45)

The second difference can be written as

Eh
i (tk, y)− E�t,h

k,i (y) =
(

δySiV−1
h (∂t )− δySiV−1

h

(

∂t
�t)

)

P0,h
(

ny × gt
)

.
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From Theorem 4.6 we deduce

∣
∣
∣Eh

i (tk, y)− E�t,h
k,i (y)

∣
∣
∣ ≤ C�t p

t∫

0

‖∂r+1
t g(τ, ·)‖−1/2,curl� dτ.

For the first term in the right-hand side of (45) we employ an Aubin-Nitsche type
argument as, e.g., described in [36, Theorem 4.2.14]. We consider δySi (s) as a linear
functional on H−1/2(div�, �). With the definition of ŵS,i ∈ H−1/2(div�, �) above
we have

δySi (s)
(

ĵ− ĵh
)

=
(

ŵS,i ,V(s)
(

ĵ− ĵh
))

�
.

By using Galerkin orthogonality and the assumptions ŵS,i ∈ Hκ(div�, �) and
‖ŵS,i‖κ,div� ≤ C |s|ακ we obtain

∣
∣
∣δySi (s)

(

ĵ− ĵh
)∣
∣
∣

=
∣
∣
∣

((

I − Pdiv,h
)

ŵS,i ,V(s)
(

ĵ− ĵh
))

�

∣
∣
∣

≤ C |s|ακ

∥
∥
∥V (s)

(

ĵ− ĵh
)∥
∥
∥−1/2,curl�

∥
∥I − Pdiv,h

∥
∥

Hκ (div�)←H−1/2(div�)

≤ C |s|ακ+3

∥
∥
∥̂j− ĵh

∥
∥
∥−1/2,div�

∥
∥I − Pdiv,h

∥
∥

Hκ (div�)←H−1/2(div�)
.

Taking into account that Ê (s, y) = δyS (s) ĵ holds, we obtain

∣
∣
∣Ei (tk, y)− Eh

i (tk, y)

∣
∣
∣ ≤ C (σ0, T )

∥
∥
∥j− jh

∥
∥
∥

Wακ+4,1
0 ([0,T ];H−1/2(div�,�))

×‖I − Pdiv,h‖Hκ (div�)←H−1/2(div�).

Finally

∥
∥
∥j− jh

∥
∥
∥

Wακ+4,1
0 ([0,T ];H−1/2(div�,�))

≤
∥
∥
∥jh − Pdiv,hj

∥
∥
∥

Wακ+4,1
0 ([0,T ];H−1/2(div�,�))

+ ∥∥(I − Pdiv,h)j
∥
∥

Wακ+4,1
0 ([0,T ];H−1/2(div�,�))

and using (43)

∥
∥
∥jh − Pdiv,hj

∥
∥
∥

Wακ+4,1
0 ([0,T ];H−1/2(div�,�))

≤ C
∥
∥(I − Pdiv,h)j

∥
∥

Wακ+8,1
0 ([0,T ];H−1/2(div�,�))

.

�
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Remark 4.12 In the case of full regularity, the term
∥
∥
(

I−Pdiv,h
)

j
∥
∥

Wr,1
0 ([0,T ];H−1/2(div�,�))

can be estimated by O
(

h3/2
)

. However, in the considered case of polyhedral surfaces,
the regularity of the solution is typically reduced (cf. [13,22]).

From Theorem 4.4, it follows that the assumption on the growth behaviour of ŵS,i

is satisfied with ακ = 3 for κ = −1/2. In [7, Th. 9] it was proved for smooth surfaces
that, for 1/2 ≤ κ ≤ 1, it holds ακ ≤ κ + 5/2.

5 Numerical experiments

In all of the numerical experiments, we will consider scattering by a perfect conductor
when the incident wave is given by

Einc(t, x) = p̂ cos
(

2π f0

[

t − x · k̂/c
])

exp

[

− (t − x · k̂/c − tp)
2

2σ 2

]

.

Here f0 is the center frequency, k̂ the direction of travel, p̂ polarization, σ =
6/(2π fbw), and tp = 6σ . In all of the examples the scatterer will be the unit sphere.
For a number of numerical experiments with the convolution quadrature applied to
EFIE and CFIE on different scatterers, we refer the reader to [43].

5.1 Scattering by a spherical conductor

In the first example, we consider a spherical scatterer of radius 1m and centered at
the origin. The center frequency is chosen as f0 = 200 MHz, bandwidth fbw = 150
MHz, polarization p̂ = (1, 0, 0), direction of travel k̂ = (0, 0, 1), and the length of
time computation T = 6 × 10−8s. Due to the spherical shape of the scatterer, the
problem can be approximated accurately and cheaply by Fourier transformation of
frequency domain solutions obtained by Mie series [17]. After truncation, this series
solution will play the role of the exact solution in the calculation of errors.

For the time discretization we have used the 3-stage Radau IIA convolution quadra-
ture. In space, the lowest order Raviart–Thomas elements were used. The computation
of the resulting matrices and their storage in H-matrix format were done using a mod-
ification of the HLIBpro library written by Ronald Kriemann; see [24,25] and the
website www.hlibpro.org. The spatial discretization was chosen sufficiently fine so
that no significant change in the error could be observed, the largest calculation had
M = 12288 spatial degrees of freedom. Since the operator V(s) satisfies the coercivity
result (cf. (36)), an equivalent norm to ‖ · ‖−1/2,div is given by

‖ϕ‖2−1/2,div ∼ (ϕ,−V(1)ϕ)L2(�) .

The latter can then be estimated via a Galerkin discretization of the operator V(1).
Finally, the error in time and space is computed as
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Table 1 Convergence of the 3-stage Radau IIA based convolution quadrature for the EFIE formulation of
scattering by a spherical conductor

N 5 10 20 30 40 50

eN ,� 9.9 1.4 1.4× 10−1 3.4× 10−2 1.2× 10−2 5.0× 10−3

Order – 2.8 3.4 3.4 3.7 3.8

eN ,� :=
⎛

⎝�t
N
∑

j=0

‖ϕe(·, t j )− ϕN (·, t j )‖2−1/2,div

⎞

⎠

1/2

,

where ϕe denotes the solution obtained by Mie series. The results thereby obtained
are given in Table 1.

The 3-stage Radau IIA method has stage order q = 3, therefore the theory stated
in preceding sections predicts the order of convergence to be O(�t4). The results
in Table 1 indeed suggest that this convergence order is obtained in the limit in this
example.

Finally, let us note that the parameters defining the incident wave have been chosen
so that interior resonances of the unit sphere can be excited, see [15]. Still, no adverse
effect could be seen in using the EFIE instead of the CFIE.

5.2 Scattering by a spherical conductor: low frequency instability

In the previous example, the incident wave has a small low frequency component,
in particular the Fourier transform of Einc at frequency zero is of size ∼ 10−22. In
order to investigate possible instability induced by low-frequency breakdown, for
the next computation we change the center frequency to f0 = 0 thereby increasing
the zero frequency component to magnitude ∼10−8. With a spatial discretization of
6,348 degrees of freedom, computational time interval increased to 1.8 × 10−7, and
400 times steps of the three stage Radau IIA convolution quadrature, the magnitude
of the current at a point on the sphere is shown in Fig. 2. For reference we also
show the current for the previous example in Fig. 1. In Fig. 1 we see that after t ≈
0.8 × 10−7 the current magnitude seems to stagnate. In reality the current should
go to zero, but when implementing convolution quadrature as described in [4,27],
there is a limit in the accuracy that can be obtained. Therefore we do not expect the
numerical current to go to zero, but in the second example the current increases. The
convergence analysis allows for such an increase to happen since all the constants
in the error estimates depend on the length of the computational time interval T ,
see [6]. Still, such increase has not been observed in the acoustic case, therefore we
expect that the infinite dimensional kernel of the curlcurl operator is guilty for this
instability.

The low frequency instability in time-domain calculations has been addressed in
[43] by the use of loop-tree decomposition techniques, where the basis functions are
split into solenoidal and non-solenoidal subspaces. Similar ideas are used in [16] for

123



Numerical solution of exterior Maxwell problems 667

Fig. 1 Magnitude of the current at a point on the perfectly conducting sphere induced by an incident wave
with center frequency f0 = 200 MHz

Fig. 2 Magnitude of the current at a point on the perfectly conducting sphere induced by an incident wave
with center frequency f0 = 0

static problems at low frequency. These ideas promise to bring improvements to the
results of our experiments as well, but at this stage we have not implemented them
yet.

6 Conclusion

We described and analysed a numerical method for solving time-domain boundary
integral equations arising in electromagnetic scattering which is based on Runge–
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Kutta convolution quadrature in time and Galerkin BEM for the spatial discretization.
We obtained error estimates for the semi-discrete scheme by exploiting that the trans-
fer function in the Laplace domain is bounded by C |s|/(Re s) and therefore the error
analysis in [6] can be applied. For the spatial discretization we used the classical
Raviart–Thomas elements of lowest order. Using the properties of the involved oper-
ators in the Laplace domain we derived convergence estimates for the fully discrete
scheme. We performed numerical experiments in the case of a perfectly conducting
spherical scatterer. The observed convergence behaviour of the method indicates that
the derived error estimates are sharp. The numerical results also showed a possible
instability developing if the incident wave excites low frequency modes. The current
analysis does not fully describe this phenomenon.

Acknowledgments The second author gratefully acknowledges the helpful discussions he had with Qiang
Chen while visiting University of Delaware. The fourth author gratefully acknowledges the support given
by SNF, No. PDFMP2_127437/1.
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