
Fast, Parallel Techniques for Time-Domain Boundary Integral
Equations

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr.rer.nat.)

im Fachgebiet

Mathematik

vorgelegt

von M.Sc. Maryna Kachanovska
geboren am 21.02.1987 in Borowa, Ukraine

Die Annahme der Dissertation wurde empfohlen von:

1. Professor Dr. Dr. h.c. Wolfgang Hackbusch (Leipzig)

2. Professor Dr. Achim Schädle (Düsseldorf)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 15.01.2014 mit dem Gesamtprädikat summa cum laude

Bibliographische Daten

Fast, Parallel Techniques for Time-Domain Boundary Integral Equations
(Schnelle, parallele Methoden für Randintegralgleichungen im Zeitbereich)
Kachanovska, Maryna
Universität Leipzig, Dissertation, 2013
164 Seiten, 24 Abbildungen, 191 Referenzen

Acknowledgements

First of all, I would like to express my deepest gratitude to my PhD advisor, Dr. Lehel
Banjai, for his guidance, support and patience. I am indebted to him for excellent scientific
advice, constructive criticism, as well as a great deal of time he dedicated for correcting my
scientific writing and presentation.

It is my pleasure to thank Prof. Dr. Dr. h.c. Wolfgang Hackbusch for providing me
with an opportunity to work at the Max Planck Institute, as well as the International Max
Planck Research School for the financial support.

I am grateful to the staff of the Max Planck Institute for ensuring fantastic working
conditions. My special thanks goes to Mrs. Hünniger, Mrs. Herrmann, Mr. Achilles, Mrs.
Petsch, library and computer groups, and, of course, to Mrs. Rackwitz, who was able to
deal with all the difficult visa issues with almost no involvement from my side.

I am very thankful to Dr. Ronald Kriemann for patiently answering my numerous
questions on HLibPro library.

My time at the Max Planck Institute wouldn’t be that pleasant without an informal
support of my friends, in particular Liliya Avdiyenko and Mahboubeh Nadaf. It was nice to
have discussions with Stefan Handschuh, Philipp Wähnert, Peter Meszmer, Jonas Ballani,
Volker Gruhne and Ya Zhang.

My sincere thanks goes to the scientific and teaching staff of the Institute of Physics
and Technology of Kyiv Polytechnic Institute, who, during my studies there, created an
atmosphere of curiosity and enthusiasm for science.

Finally, I wish to thank my family and Filippo for their love and constant support
without which this work wouldn’t be possible.

Abstract

This work addresses the question of the efficient numerical solution of time-domain boundary
integral equations with retarded potentials arising in the problems of acoustic and electro-
magnetic scattering. The convolutional form of the time-domain boundary operators allows
to discretize them with the help of Runge-Kutta convolution quadrature. This method
combines Laplace-transform and time-stepping approaches and requires the explicit form of
the fundamental solution only in the Laplace domain to be known. Recent numerical and
analytical studies revealed excellent properties of Runge-Kutta convolution quadrature, e.g.
high convergence order, stability, low dissipation and dispersion.

As a model problem, we consider the wave scattering in three dimensions. The convo-
lution quadrature discretization of the indirect formulation for the three-dimensional wave
equation leads to the lower triangular Toeplitz system of equations. Each entry of this
system is a boundary integral operator with a kernel defined by convolution quadrature.
In this work we develop an efficient method of almost linear complexity for the solution of
this system based on the existing recursive algorithm. The latter requires the construction
of many discretizations of the Helmholtz boundary single layer operator for a wide range
of complex wavenumbers. This leads to two main problems: the need to construct many
dense matrices and to evaluate many singular and near-singular integrals.

The first problem is overcome by the use of data-sparse techniques, namely, the high-
frequency fast multipole method (HF FMM) and H-matrices. The applicability of both
techniques for the discretization of the Helmholtz boundary single-layer operators with
complex wavenumbers is analyzed. It is shown that the presence of decay can favorably
affect the length of the fast multipole expansions and thus reduce the matrix-vector multi-
plication times. The performance of H-matrices and the HF FMM is compared for a range
of complex wavenumbers, and the strategy to choose between two techniques is suggested.

The second problem, namely, the assembly of many singular and nearly-singular inte-
grals, is solved by the use of the Huygens principle. In this work we prove that kernels of
the boundary integral operators whn(d) (h is the time step and tn = nh is the time) exhibit
exponential decay outside of the neighborhood of d ≈ nh (this is the consequence of the
Huygens principle). The size of the support of these kernels for fixed h increases with n as
nα, α < 1, where α depends on the order of the Runge-Kutta method and is (typically)
smaller for Runge-Kutta methods of higher order. Numerical experiments demonstrate that
theoretically predicted values of α are quite close to optimal.

In the work it is shown how this property can be used in the recursive algorithm to
construct only a few matrices with the near-field, while for the rest of the matrices the
far-field only is assembled. The resulting method allows to solve the three-dimensional
wave scattering problem with asymptotically almost linear complexity. The efficiency of
the approach is confirmed by extensive numerical experiments.

I

Contents

Introduction 1

1 TDBIE for the Wave Equation in 3D 5
1.1 Introduction into the Theory of TDBIE . 5
1.2 Fast Methods of Solution of TDBIE . 11

1.2.1 Marching-on-in-Time . 12
1.2.2 Back Substitution . 14
1.2.3 Recursive Algorithm . 14
1.2.4 Plane-Wave Time-Domain Algorithm 17
1.2.5 Time-Domain Adaptive Integral Method 18
1.2.6 Multilevel (Cartesian) Non-Uniform Grid Time-Domain Algorithm . 19
1.2.7 Fast Galerkin Methods . 20
1.2.8 Convolution Quadrature . 22
1.2.9 Sparse Multistep Convolution Quadrature 30
1.2.10 Fast Multipole BEM in Time-Domain 31
1.2.11 Recursive Convolution Quadrature 31
1.2.12 Decoupled CQ and Directional FMM 36

2 Data-Sparse Techniques for −∆ + s2 37
2.1 H- and H2-matrices . 37

2.1.1 Asymptotically Smooth Functions 37
2.1.2 Cluster Trees and Block Cluster Trees 39
2.1.3 H-matrices . 40
2.1.4 H-matrices for Helmholtz Boundary Integral Operators 42
2.1.5 H2-Matrices . 44

2.2 High-Frequency Fast Multipole Method . 46
2.2.1 Special Functions . 47
2.2.2 High-Frequency Fast Multipole Algorithm 51
2.2.3 Error Control of the High-Frequency FMM 58

2.3 Comparison of H-matrices and HF FMM 83
2.3.1 Real Wavenumber . 83
2.3.2 Complex Wavenumber . 85

3 Fast Runge-Kutta CQ 89
3.1 Sparsity of RK CQ Weights . 90

3.1.1 Decay of Convolution Weights . 90
3.1.2 Efficient Evaluation of Convolution Weights 103

II

3.1.3 Bounds for Non-Scaled Convolution Weights 105
3.2 Applicability of Sparse CQ to RK CQ . 111
3.3 Fast Runge-Kutta CQ Algorithm . 116

3.3.1 Motivation . 116
3.3.2 Near-Field Reuse . 118
3.3.3 Remarks on the Application of Data-Sparse Techniques and Parallel-

lization . 126
3.3.4 Fast CQ Algorithm and Its Complexity 127

4 Numerical Experiments 130
4.1 Experiments with a Sphere . 131

4.1.1 Correctness of the Approach . 131
4.1.2 Scattering of a Wide-Band Signal . 133

4.2 Experiments with an Elongated Domain . 135
4.3 Experiments with a Trapping Domain . 138
4.4 Solution Obtained with a Higher Accuracy 141
4.5 Convergence . 141

4.5.1 Convergence in Time . 141
4.5.2 Convergence in Space . 142

Conclusions and Future Work 144

Appendices 146

A The Error of the Fast Multipole Algorithm 147

B Proof of Lemma 3.1.2 150

C Singular Value Decomposition 153

III

Introduction

Many physical and engineering applications require the solution of initial boundary value
problems posed outside of a bounded obstacle. A non-exhaustive list of those includes
scattering (both direct and inverse) problems for the wave and Maxwell equations, the wave
propagation in poroelastic half-space, heat transfer and some problems of fluid dynamics.
The main challenge of the design of efficient numerical methods for such problems lies in the
unboundedness of the domain. Several methods were developed in the last three decades
to overcome such difficulties. Such approaches can be divided into several types.

Absorbing boundary conditions (ABCs) and perfectly matched layer (PML) techniques
allow to solve the problem inside an artificially bounded domain. For an overview of these
methods see [96]. Absorbing boundary conditions method [31,62,80,106] introduces an arti-
ficial boundary that encloses the bounded domain and auxiliary relations on this boundary.
These relations are chosen to damp the amplitudes of the reflected waves. The result-
ing formulations are typically solved with the help of the finite element method (FEM)
in spatial variables and finite differences in time (or via the transition to the frequency
domain). However, high-order absorbing boundary conditions often require approximating
of derivatives of high order and special treatment at the corners, which complicates their
implementation. For the review of ABCs see works [95, 119, 181] and references therein.
The perfectly matched layer method was developed by J.-P. Berenger [39, 40] and can be
viewed as a generalization of absorbing boundary conditions. Similarly, the problem is
solved inside an artificially bounded domain. However, instead of the artificial boundary,
an absorbing (perfectly matched) layer is introduced. Inside this layer the wave equation is
modified so that the wave decays exponentially and no reflection occurs at the boundary of
the artificial domain. Again, in spatial variables the problem is typically discretized with
the help of FEM, while in time finite difference schemes are employed. The PML techniques
are easy to implement, however, their analysis and development are often non-trivial and
are a subject of the past and present research [37,38,59,63,76,92,127]. The comparison of
PML and ABCs can be found in works [96,134,151].

Another class of methods is based on the infinite element formulations [10], which allow
to solve the problem posed in the infinite domain with the help of the finite element method,
using a finite element space supplemented with infinite elements. A detailed introduction
to this approach can be found in [11] and references therein.

The main idea of the method we consider in the thesis, namely time-domain boundary
integral equations (TDBIE), is to express the solution of the initial boundary problem in
terms of time-dependent boundary integrals. Important features of this approach include:

1. Reduction of the problem posed originally in d-dimensional unbounded domain to
a problem posed on (d − 1)-dimensional manifold (the boundary of this domain).
The resulting integral equations are typically discretized in space with the help of

1

Introduction

the boundary element method. The implication of the dimensionality reduction is
that instead of O(nd) degrees of freedom needed to discretize the initial boundary
value problem in space with the FEM, only O(nd−1) boundary elements are required.
However, the resulting matrices are often densely populated (though in the case when
the strong Huygens principle holds they can exhibit sparsity). Another computational
difficulty intrinsic to the boundary element method (BEM) is the necessity to evaluate
many weakly-singular and nearly singular integrals, see also [118,168,169].

2. The method is applicable only to the problems for which the fundamental solution
(or its Laplace transform) is known. This excludes equations with non-constant coef-
ficients and some non-linear problems.

In this work we develop the TDBIE-based method for the solution of problems for which
the strong Huygens principle (or its analogue) holds, e.g. acoustic and electromagnetic
scattering in three dimensions, see also [30]. As a model problem we consider the wave
scattering in R3.

TDBIE are a ubiquitous tool for solving problems of acoustics and electromagnetics.
Much effort is presently dedicated to the design of new methods of the discretization of
TDBIE [74, 166] and efficient algorithms for the solution of the discretized problems [143],
as well as the concise analysis of the well-posedness of discretized and continuous integral
formulations [133]. A comprehensive at the time of publishing review of the methods of the
discretization of the TDBIE in time can be found in [65]. Whilst the Galerkin boundary
element method is commonly used for treating the dependence on spatial variables, methods
employed for the time discretization are far more diverse.

The simplest and probably the earliest approach is the transition to the frequency
(Laplace) domain (see [66,67] for the elastodynamics). The Laplace transform of hyperbolic
problems leads to elliptic boundary value problems, and the fast methods for the solution of
the latter are very well developed (for a review see [177]; a non-exhaustive list includes the
use of wavelet basis functions, H-matrices, H2-matrices, fast multipole methods). However,
such approach is advantageous only if the solution is localized in the frequency domain.
Moreover, the space-time locality due to the Huygens principle is lost during the transition
to the Laplace domain, and its application to this method remains nontrivial.

Another method is collocation in time [72, 73, 141] used extensively by the engineering
community. There exists a wide range of fast algorithms for the solution of such settings.
We dedicate the second part of Chapter 1 to the review of these methods. The major
disadvantage of collocation in time is its instability over long times, which was recently
solved by the use of special spatial quadrature [174].

Galerkin formulations were developed and analyzed in [18, 19, 109]. They are used in
the commercial code SONATE [2]. However, the application of the Galerkin method in
time requires very precise spatial quadratures, see [166, 178] and references therein. This
difficulty was recently overcome by the use of specially designed basis functions [166]. We
discuss some of the features of Galerkin methods in more detail in Chapter 1.

The convolution quadrature (CQ) method was developed by Ch. Lubich in [136, 137]
for the solution of Volterra integral equations. Initially, it was based on multistep methods
for the discretization of ordinary differential equations. In [139] Runge-Kutta convolution
quadrature was introduced for the solution of abstract parabolic equations. Multistep CQ
was first employed to discretize a time-domain boundary integral formulation of the wave
equation in [138]. Further developments include the design of fast convolution quadrature

2

Introduction

for parabolic problems [171] and application of convolution quadrature to boundary integral
equations stemming from the poro- and viscoelasticity theory [172, 173]. The interest in
the application of convolution quadrature to the transient wave scattering was revived by
works [115,116,131], where the authors considered the BDF2-based convolution quadrature
discretization. It was demonstrated how the use of the Huygens principle combined with
data-sparse techniques can improve the complexity of this algorithm. In [29] the authors
propose a fast method for the solution of the wave equation in the unbounded domain
and present a concise stability and convergence analysis. One of the techniques developed
in [29], decoupled convolution quadrature, serves as a basis for the fast Runge-Kutta CQ
method of [144]. The recent work [54] is dedicated to the analysis of multistep convolution
quadrature combined with the Galerkin discretization for the scattering by a sound-hard
obstacle, while in [55] a procedure for the reduced convolution weight computation was
suggested. In [17] the convolution quadrature formulation for Maxwell equations was studied
analytically and numerically.

The analysis supported by numerical experiments in [21] demonstrates advantages of
convolution quadrature compared to other methods of the discretization of TDBIE. A non-
exhaustive list of these includes:

• excellent stability, see [21];

• the use of Runge-Kutta CQ allows to achieve arbitrary high convergence rates, see
[27,28];

• the method does not require sophisticated spatial quadratures, and hence can be
straightforwardly applied when boundary elements are curvilinear;

• only the fundamental solution in the Laplace domain needs to be known. This is of
particular importance for problems in the visco- and elastodynamics, see [129,172,173].

Additionally, Runge-Kutta CQ has low dissipation and dispersion [22]. Particularly, for
the acoustic scattering, this is true as well for multistep convolution quadrature applied to
the discretization of the direct boundary integral formulation on convex domains. In case
when the domain is not convex, or the indirect boundary formulation is used, Runge-Kutta
convolution quadrature is likely to outperform multistep CQ, see the related experiments
in [21].

Despite these attractive features of convolution quadrature, the field of fast CQ based
methods for the transient acoustic scattering is still in the stage of infancy. To our knowl-
edge, there exist very few fast convolution quadrature methods. Particularly, the method
of [115,116,131] though offering a great improvement both in the asymptotic complexity and
in constants in complexity estimates, does not allow to compute the solution in linear time.
We analyze the applicability of the related ideas to Runge-Kutta CQ in Chapter 3.2. An-
other fast algorithm, directional FMM-accelerated convolution quadrature of [144], requires
solution of many Helmholtz integral formulations with wavenumbers that have large real
and small imaginary part, see also [21]. Currently there exist, to our knowledge, no efficient
preconditioners for this kind of problems. In [159] the authors developed a multistep CQ
method based on the fast multipole accelerated BEM of [84,191]. Though this algorithm is
of better complexity compared to conventional convolution quadrature methods, the total
solution time still does not scale linearly. Hence we address this method only very briefly.

The present work is dedicated to the development of an efficient Runge-Kutta convo-
lution quadrature algorithm of almost linear complexity. This approach is based on the

3

Introduction

recursive algorithm of [121], which is of almost linear complexity in time. Adapted to
Runge-Kutta convolution quadrature, it requires the construction of discretized Helmholtz
boundary potentials for a wide range of complex frequencies. We solve this problem by
the use of data-sparse techniques, namely the high-frequency fast multipole method (HF
FMM) of [57, 155] and H-matrices. This allows to create an algorithm of almost linear
complexity both in time and space. Though such approach is indeed more efficient than
the conventional Runge-Kutta CQ algorithm, it suffers from a serious drawback, namely
the need to evaluate many singular and weakly singular integrals (the near-field). In this
work we prove a sparsity property of convolution weights of Runge-Kutta CQ that allows
to avoid the evaluation of the expensive near-field part for all the discretizations but a few.
Based on this property, we design an algorithm of almost linear complexity whose efficiency
is supported by numerical experiments.

This work can be subdivided into the following parts.
Chapter 1 is dedicated to a review of the theory of integral equations with retarded

potentials, as well as the existing methods for their solution. There we also describe con-
ventional Runge-Kutta convolution quadrature algorithms.

In Chapter 2 we review data-sparse approximations, namely H-matrices and fast mul-
tipole methods. We describe the HF FMM in the framework of H2-matrices. In the end of
the section we analyze the error of the fast multipole method applied to the approximation
of the boundary potentials of the Helmholtz equation with decay.

Chapter 3 can be divided into three main parts. In the first part we show that Runge-
Kutta convolution weights whn(d) decay exponentially away from d ≈ nh. Our estimates
reflect the dependence of the speed of decay on the order of a Runge-Kutta method. In the
second part of the section we discuss the applicability of main ideas of sparse convolution
quadrature [115,116,131] to Runge-Kutta based CQ, as well as demonstrate principal diffi-
culties associated with the use of sparse Runge-Kutta CQ. In the third part of this section
we present a recursive convolution quadrature algorithm that allows to construct only a
small number of matrices with the near-field.

Finally, Chapter 4 is devoted to numerical experiments, which highlight the efficiency
of the suggested technique.

4

Chapter 1

Time-Domain Boundary Integral
Formulations for the Wave
Equation in Three Dimensions

This chapter is dedicated to the review of the questions of existence and uniqueness of the
solutions of time-domain boundary integral equations (TDBIE), as well as summary of the
existing fast methods for numerical solution of the TDBIE. As a model problem, we consider
wave scattering in three dimensions.

1.1 Introduction into the Theory of Time-Domain Boundary
Integral Equations

The theory of time-domain boundary integral equations for boundary value problems for
the wave equation was first developed in [18,19]. It is heavily based on the apparatus of the
Laplace transform and existence and uniqueness results for integral formulations of the wave
equation in the Laplace domain (i.e. the Helmholtz equation with a complex wavenumber).
Recently, improved continuity estimates on the underlying integral operators were derived
solely in the time domain [77]. A detailed introduction into the theory of retarded potentials
can be found in [170]. The works [64,142,177] are dedicated to the exposition of the theory
of boundary integral equations.

As a model problem, we consider wave scattering by a sound-soft obstacle. Let Ω ⊂ R3

be a bounded Lipschitz domain and let Γ be its boundary.
An incident wave uinc satisfies the wave equation in the free space:

∂2uinc

∂t2
(t, x)−∆uinc = f(t, x), (t, x) ∈ [0, T]× R3,

uinc(0, x) = u0(x), x ∈ R3,

∂uinc(t, x)

∂t

∣∣∣∣
t=0

= u1(x), x ∈ R3.

5

Chapter 1. TDBIE for the Wave Equation in 3D

The source term and initial conditions satisfy

supp f(t, x) b Ωc, t ≥ 0,

suppu0(x) b Ωc,

suppu1(x) b Ωc,

f ∈ C(R≥0, L
2(R3)),

u0 ∈ H1
0

(
R3
)
,

u1 ∈ L2

(
R3
)
.

Then the total field utot solves the wave equation in the exterior of the domain Ω:

∂2utot

∂t2
(t, x)−∆utot(t, x) = f(t, x), (t, x) ∈ [0, T]× Ωc,

utot(t, x) = 0, (t, x) ∈ [0, T]× Γ,

utot(0, x) = u0(x), x ∈ Ωc,

∂utot(t, x)

∂t

∣∣∣∣
t=0

= u1(x), x ∈ Ωc.

Defining the scattered field as

u(t, x) = utot(t, x)− uinc(t, x),

we obtain the following boundary-value problem:

∂2u

∂t2
(t, x)−∆u(t, x) = 0, (t, x) ∈ [0, T]× Ωc,

u(t, x) = g(t, x) ≡ −uinc(t, x), (t, x) ∈ [0, T]× Γ,

u(0, x) =
∂u(t, x)

∂t

∣∣∣∣
t=0

= 0, x ∈ Ωc.

(1.1)

The well-posedness of this boundary-value problem has been proved in [18].
The solution to the scattering problem can be represented as the single-layer potential

of an unknown density λ (this is an indirect formulation):

u(t, x) = (Sλ) (t, x) =

∫
Γ

λ(t− ‖x− y‖, y)

4π‖x− y‖
dΓydτ

=

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓydτ, (t, x) ∈ [0, T]× Ωc

(1.2)

where δ(t) is the Dirac delta function. It is possible to show that the single layer potential
is continuous across Γ, hence, letting x→ Γ,

g(t, x) = (V λ) (t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓydτ, (t, x) ∈ [0, T]× Γ. (1.3)

6

Chapter 1. TDBIE for the Wave Equation in 3D

To justify the well-posedness of (1.3), we perform the transition to the Laplace domain.
Let us denote the Laplace transform of u(t, x), g(t, x) by U(x), G(x):

U(x) =

+∞∫
0

e−stu(t, x)dt,

G(x) =

+∞∫
0

e−stu(t, x)dt, Re s > 0.

Note that U(x), G(x) depend on s ∈ C, though this dependence is not stated explicitly
here.

In the Laplace domain the initial boundary-value problem (1.1) becomes the Dirichlet
problem for the Helmholtz equation with the complex wavenumber:

−∆U + s2U = 0, x ∈ Ωc,

U(x) = G(x), x ∈ Γ.
(1.4)

The solution to the above problem can be written as a single layer potential of the unknown
density Λ (which implicitly depends on s ∈ C, too):

U(x) = (S(s)Λ) (x) =
1

4π

∫
Γ

e−s‖x−y‖

‖x− y‖
Λ(y)dΓy, x ∈ Ωc.

Let γ denote the boundary trace operator. The continuity of the single layer potential
through Γ implies

G(x) = (V(s)Λ) (x) := γ (S(s)Λ) (x) =
1

4π

∫
Γ

e−s‖x−y‖

‖x− y‖
Λ(y)dΓy, x ∈ Γ. (1.5)

The following arguments from [138] show how the transition back to the time domain
can be made. Let

Σσ = {s ∈ C : Re s > σ} .

Let X,Y be two Hilbert spaces and let σ0 ∈ R. By L(X,Y) the space of bounded linear
operators from X to Y is denoted. Let K(s) : Σσ0 → L(X,Y) be an analytic function of s
bounded as

‖K(s)‖X→Y ≤M |s|µ, µ ∈ R, Re s > σ0. (1.6)

Then, for Km(s) = s−mK(s), m > µ + 1, we can define the inverse Laplace transform as
the m-th derivative (in the sense of distributions) of the causal operator-valued function

km(t) =
1

2πi

σ+i∞∫
σ−i∞

estKm(s)ds, t ∈ R, σ > σ0. (1.7)

We define the convolution operator as

(K(∂t)g) (t) =

(
d

dt

)m t∫
−∞

km(t− τ)g(τ)dτ.

7

Chapter 1. TDBIE for the Wave Equation in 3D

Before continuing, we will need some auxiliary definitions due to [138] and [18].
Given a Hilbert space X, let g(t) be a smooth mapping R → X. Denoting the Fourier

transform of g(t) by Fg, we can define for r ∈ R the following spaces

Hr(R;X) =

g :

+∞∫
−∞

(1 + |ξ|)2r‖ (Fg) (ξ)‖2X < +∞

 ,

Hr
0(0, T ;X) =

{
g|(0,T) : g ∈ Hr(R;X), g(t) = 0, t < 0

}
.

The space Hr
0(0, T ;X) contains causal functions g whose first r − 1 derivatives are zero at

t = 0, i.e.

g′(0) = . . . = g(r−1)(0) = 0.

The distributional derivative g(r) is square-integrable on (0, T).
The following lemma was proved in [138].

Lemma 1.1.1. If K(s) satisfies (1.6), K(∂t) can be extended by density to a bounded linear
operator

K(∂t) : Hr+µ
0 (0, T ;X)→ Hr

0(0, T ;Y), r ∈ R.

Now we would like to apply these results to (1.3). Note that this equation can be
formally written as the following convolution:

V(∂t)λ = g, (1.8)

where

V(s)Λ =

∫
Γ

e−s‖x−y‖

4π‖x− y‖
Λ(y)dΓy.

To justify (1.8) we have to show that (1.6) holds for K(s) = V(s). The following
proposition from [18] provides us with the required bounds.

We denote by 〈., .〉 the sesquilinear duality pairing that extends the inner product on Γ,
i.e.

〈φ, ψ〉 =

∫
Γ

φ(x)ψ(x)dΓx.

Proposition 1.1.2. For Re s > 0, the boundary single layer operator V(s) is an isomor-
phism

V(s) : H−
1
2 (Γ)→ H

1
2 (Γ).

If Re s > σ0, for some σ0 > 0, then

‖V(s)‖
H−

1
2 (Γ)→H

1
2 (Γ)
≤ C1

σ0
max

(
1

σ2
0

, 1

)
|s|,

‖V−1(s)‖
H

1
2 (Γ)→H−

1
2 (Γ)
≤ C2

σ0
max

(
1

σ0
, 1

)
|s|2,

8

Chapter 1. TDBIE for the Wave Equation in 3D

for some C1, C2 > 0 that depend on Γ only. For all φ ∈ H−
1
2 (Γ), the following coercivity

estimate holds:

Re〈φ, sV(s)φ〉 ≥ C3 min(σ0, 1)|s|−1‖φ‖2
H−

1
2 (Γ)

,

where C3 > 0 and does not depend on s, φ.

Then, using Lemma 1.1.1 we can derive the following proposition (see [138] and [18]).

Proposition 1.1.3. The boundary single layer operator V(∂t) maps

V(∂t) : Hr
0(0, T ;H−

1
2 (Γ))→ Hr−1

0 (0, T ;H
1
2 (Γ)), r ∈ R,

and its (convolutional) inverse (in a sense that V−1(s)V(s) = I):

V−1(∂t) : Hr
0(0, T ;H

1
2 (Γ))→ Hr−2

0 (0, T ;H−
1
2 (Γ)), r ∈ R.

These results show the well-posedness of the problem (1.8). To obtain the solution to
the scattering problem u(t, x), x ∈ Ωc, we can use

u(t, x) = S(∂t)V−1(∂t)g(t, x).

Bounds on the norm of the operator S(∂t)V−1(∂t) in the Laplace domain are given by the
following lemma [18] (see also [170, Chapter 3.3]).

Lemma 1.1.4. Given s ∈ C : Re s > σ0, for some σ0 > 0,

‖S(s)V−1(s)‖
H

1
2 (Γ)→H1(Ωc)

≤ C

σ0
max

 1

σ
3
2
0

, 1

 |s| 32 .
We have demonstrated that the indirect boundary integral formulation (1.3) for the

scattering problem is well-posed. The solution of this boundary integral equation, namely
λ(t, x), is a non-physical quantity:

λ(t, x) = ∂−ν u(t, x)− ∂+
ν u(t, x),

where ∂−ν , ∂
+
ν are the interior and exterior normal derivatives on the boundary (see [169]).

The function u(t, x) solves the scattering problem (1.1) and satisfies the Dirichlet problem
for the wave equation with the same Dirichlet data g(t, x) inside the domain:

∂2u

∂t2
(t, x)−∆u(t, x) = 0, (t, x) ∈ [0, T]× Ω,

u(t, x) = g(t, x), (t, x) ∈ [0, T]× Γ,

u(0, x) =
∂u(t, x)

∂t

∣∣∣∣
t=0

= 0, x ∈ Ω.

Therefore, the indirect formulation (1.3) allows to obtain the solution to both scattering
and the above problem (or the transmission problem, see [170]).

Another option to solve the scattering problem is to employ the direct formulation based
on the Kirchoff formula:

u = D(∂t)g − S(∂t)φ, x ∈ Ωc (1.9)

9

Chapter 1. TDBIE for the Wave Equation in 3D

where S(∂t) is the single-layer potential, see (1.2), φ is an unknown density and D(∂t) is
the double-layer potential. Given the normal vector νy, y ∈ Γ, pointing outwards of the
domain Ω, the double-layer potential is defined as:

(D(∂t)g)(t, x) =

∫
Γ

∂g

∂t
(t− ‖x− y‖, y)

(x− y, νy)
4π‖x− y‖2

dΓy

+

∫
Γ

g(t− ‖x− y‖, y)
(x− y, νy)
4π‖x− y‖3

dΓy, x ∈ Ωc.

The unknown φ(t, x) in (1.9) is the exterior normal derivative of u(t, x):

φ(t, x) = ∂+
ν u(t, x).

Importantly, the evaluation of (1.9) inside the domain Ω gives

D(∂t)g(t, x)− S(∂t)φ(t, x) = 0, x ∈ Ω.

To obtain the corresponding boundary integral equation, we introduce

K =
γ+ + γ−

2
D,

where γ+, γ− are the exterior and interior trace operators. Using the jump properties of
the γ+D, γ−D (see, e.g. [142]), we arrive at the direct boundary integral formulation:

V(∂t)φ = −g
2

+K(∂t)g. (1.10)

As before, to show the well-posedness of the direct formulation, we need the bounds on
the operators D, K in the Laplace domain. The double layer potential for the Helmholtz
equation with decay (1.4) as an operator

D(s) : H
1
2 (Γ)→ H1 (Ωc) ,

D(s)Φ =

∫
Γ

d

dνy

(
e−s‖x−y‖

4π‖x− y‖

)
Φ(y)dΓy, x ∈ Ω+.

The corresponding double layer boundary integral operator is defined as:

K(s) : H
1
2 (Γ)→ H

1
2 (Γ) ,

K(s) =
γ+ + γ−

2
D(s),

The following lemma can be found in [19] and [133].

Lemma 1.1.5. For all s : Re s > 0, the operator

D(s) : H
1
2 (Γ)→ H1 (Ωc)

is bounded. For Re s > σ0 > 0, it satisfies:

‖D(s)‖
H

1
2 (Γ)→H1(Ωc)

≤ C |s|
3
2

σ0
max

1,
1

σ
3
2
0

 .

10

Chapter 1. TDBIE for the Wave Equation in 3D

Similarly, for all s : Re s > 0, the operator

K(s) : H
1
2 (Γ)→ H

1
2 (Γ)

is bounded. For Re s > σ0 > 0,

‖K(s)‖
H

1
2 (Γ)→H

1
2 (Γ)
≤ C̃ |s|

3
2

σ0
max

1,
1

σ
3
2
0

 .

The constants C, C̃ depend on Γ only.

The direct boundary integral formulation for the exterior problem for the Helmholtz
equation with decay (1.4) can be then defined as follows. Find Φ ∈ H−

1
2 (Γ) satisfying

V(s)Φ = −G
2

+K(s)G. (1.11)

The operator DtN+(s) = V−1(s)
(
− I

2 +K(s)
)

is the exterior Dirichlet-to-Neumann map.
The well-posedness of the formulation (1.11) can be seen from the following lemma (see
[18,19] and [133]).

Lemma 1.1.6. For Re s > σ0 > 0, the operator

DtN+(s) : H
1
2 (Γ)→ H−

1
2 (Γ)

is bounded and satisfies:

‖DtN+(s)‖
H

1
2 (Γ)→H−

1
2 (Γ)
≤ C1

1

σ0
max

(
1,

1

σ0

)
|s|2,

−Re〈DtN+(s)φ, sφ〉 ≥ C2σ0 min
(
1, σ2

0

)
‖φ‖

H
1
2 (Γ)

,

where C1, C2 > 0 are independent of s and φ.

In most cases for the numerical solution of the TDBIE the indirect formulation is em-
ployed. In the present work we use this formulation as well, since, as explained in [21], for
most interesting cases, i.e. trapping obstacles, the convolution quadrature discretizations
of the direct and the indirect formulations behave similarly. For convex and star-shaped
obstacles the application of convolution quadrature to the direct formulation allows to solve
the wave scattering problem with less computation effort, see [21], as well as the related
discussion in Section 1.2.11.3. For the comparison of direct and indirect boundary integral
formulations for time-independent problems see [169].

1.2 Fast Methods of the Solution of Time-Domain Boundary
Integral Equations

In this section we concentrate on the numerical solution of the indirect formulation

g(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓy, (t, x) ∈ [0, T]× Γ, (1.12)

11

Chapter 1. TDBIE for the Wave Equation in 3D

though methods presented here can be extended to (1.10). A detailed survey of methods
for the discretization of this equation can be found in [65].

In the first part of this section we review existing methods for the solution of the time-
domain integral equation (1.12), including the conventional marching-on-in-time method,
the plane-wave time-domain algorithm, the time-domain adaptive integral method as well
as the non-uniform Cartesian grid time-domain algorithm. These methods were originally
developed for collocation in time but can be easily applied to speed up Galerkin-based
algorithms. We also briefly mention fast Galerkin methods.

The second part of this section is dedicated to convolution quadrature and existing
improvements of this method, namely, sparse multistep convolution quadrature, decoupled
convolution quadrature, multipole accelerated convolution quadrature of [159] and recursive
CQ algorithm.

Sparse multistep convolution quadrature was developed in a series of works [115,116,131]
to speed up back substitution. In this section we sketch main ideas of this algorithm,
postponing the discussion of its applicability to Runge-Kutta CQ to Section 3.2. Next, we
briefly review convolution quadrature of [159] which is also based on back substitution.

Unlike back substitution, the conventional recursive convolution quadrature algorithm is
of almost linear complexity in the number of time steps. One of its components, decoupled
convolution quadrature, serves as a basis for another fast CQ, namely decoupled convolution
improved by the use of the directional fast multipole method, see [144]. We finish the
overview of existing fast TDBIE methods with a brief description of this algorithm.

1.2.1 Marching-on-in-Time

The conventional marching-on-in-time (MOT) method is based on temporal collocation
and spatial Galerkin discretizations. Let the time interval [0, T] be subdivided into N
subintervals of size h. The set of the basis functions in time (Tn(t))Nn=0 is chosen so that

Tj(t) = T (t− tj), tj = jh, (1.13)

where T : R → R is compactly supported. For example, one can use hat functions [153],
namely,

T (t) =

{
1− |t|h , −h ≤ t ≤ h,
0, else,

(1.14)

or continuous piecewise quadratic functions [140]. For simplicity we assume in this section
that T (t) is chosen as in (1.14).

Let (φj(x))Mj=1 be a set of both trial and test basis functions. These functions are
assumed to be locally supported, so that diam(suppφj) = Cjh, where 0 < c < Cj < C,
j = 1, . . . ,M . If g(t, x) is temporally bandlimited to ωm, the number of basis functions is
chosen as M ≈ Csω

2
m (or O(ω2

m)) and N ≈ Ctωm (i.e. O(ωm)), where Cs, Ct > 0 do not
depend on ωm, see [85].

We look for λ(t, x) in the form

λ(t, x) ≈
N∑
n=0

M∑
m=1

λmn Tn(t)φm(x). (1.15)

12

Chapter 1. TDBIE for the Wave Equation in 3D

Substituting the expression (1.15) into (1.12) and testing it at t = tj with each of the
spatial basis functions, we obtain the system of equations with respect to the vector of
coefficients Λ = (λmn), m = 1 . . .M, n = 0 . . . N :

∫
Γ

g(tj , x)φl(x)dΓx =

N∑
n=0

M∑
m=1

λmn

∫
Γ

∫
Γ

tj∫
0

δ(tj − τ − ‖x− y‖)
4π‖x− y‖

× φm(y)φl(x)Tn(τ)dτdΓydΓx, (1.16)

l = 1, . . . ,M, j = 0, . . . , N.

Our goal is to demonstrate that the system of equations (1.16) can be written as a lower
triangular Toeplitz system. First, we define

Z̃n,j :=

tj∫
0

δ(tj − τ − ‖x− y‖)
4π‖x− y‖

Tn(τ)dτ

=

tj∫
0

δ(tj − τ − ‖x− y‖)
4π‖x− y‖

T (τ − tn)dτ,

where the last expression follows from (1.13). Next, let us show that

Z̃n,j = Zn−j .

From (1.14) it follows that Z̃n,j = 0 for n > j. For n ≤ j, with the help of a change of
variables, and using (1.14), we obtain the following expression:

Z̃n,j =

tj−n∫
−h

δ(tj−n − τ − ‖x− y‖)
4π‖x− y‖

T (τ)dτ

=

tj−n+1∫
0

δ(tj−n+1 − τ − ‖x− y‖)
4π‖x− y‖

T1(τ)dτ. (1.17)

For j, n = 0, . . . , N

Λj :=
[
λ1
j , . . . , λ

M
j

]T
,

Gj :=
[
g1
j , . . . , g

M
j

]T
,

and

(Zn)lm =

∫∫
Γ×Γ

φl(x)φm(y)

tn+1∫
0

δ(tn+1 − τ − ‖x− y‖)
4π‖x− y‖

T1(τ)dτdΓxdΓy,

l,m = 1, . . . ,M.

Then, with the help of (1.17), the system of equations (1.16) can be rewritten as

j∑
n=0

ZnΛj−n = Gj .

13

Chapter 1. TDBIE for the Wave Equation in 3D

Hence, to find the solution on the time interval [0, T], we need to solve the lower-triangular
system of equations 

Z0 0 0 . . . 0
Z1 Z0 0 . . . 0
...
ZN ZN−1 ZN−2 . . . Z0




Λ0

Λ1
...

ΛN

 =


G0

G1
...
GN

 . (1.18)

In the next two sections we introduce two algorithms for the solution of the system
(1.18) that serve as a basis for some of the fast techniques for the solution of time-domain
integral equations.

1.2.2 Back Substitution

One of the methods for solving (1.18) is back substitution, see [153]. At each step j,
j = 1, . . . , N , one solves the equation

Z0Λj = Gj −
j∑

n=1

ZnΛj−n. (1.19)

Only the inversion of the matrix Z0 is required. This matrix contains only O(M) non-zero
elements, and iterative methods for the solution of this system are known to converge in a
few iterations [14]. It can be shown, with the methods similar to that in [116], that under
the assumptions on N and M made in Section 1.2.1, each of the matrices Zn, n = 1, . . . , N ,
has O(nM) non-zero entries. This results in the O(M2N) complexity of the solution of the
system (1.19), see [58]. The dominant costs of the algorithm are in the evaluation of the
summation on the right hand side.

1.2.3 Recursive Algorithm

Here we describe the recursive algorithm for the solution of the lower triangular Toeplitz
system (1.18) according to [121], where it was derived to solve Volterra convolution equa-
tions.

The structure of the matrix in (1.18) is shown in Figure 1.1. Identical subblocks are
marked with the same letters. The main idea of the algorithm is to substitute the solution
of the full system by solving many small triangular systems with the matrix T0 and the
computation of the matrix-vector product with matrices T1, T2. The small triangular system
can be solved, for example, by back substitution.

T0

T1 T0

T0

T1

T2

T0

Figure 1.1: Structure of the matrix in the system (1.18).

14

Chapter 1. TDBIE for the Wave Equation in 3D

Remark 1.2.1. The levels of the recursive algorithm are enumerated starting from the base
case. Namely, matrix-vector products with matrices T1 are computed on the first stage or
level of the algorithm and matrix-vector products with T2 on the second level.

Let us introduce several basic procedures of the algorithm.
Solve (n0, n1, G, Λ) - solves recursively the system of equations

Z0 0 · · · 0
Z1 Z0 · · · 0
...
Zn1 Zn1−1 · · · Z0




Λn0

Λn0+1
...

Λn0+n1

 =


Gn0

Gn0+1
...

Gn0+n1

 .

Multiply (m, n, p, l, Λ, H) - performs the matrix-vector multiplication
H l

H l+1
...

H l+n−m

 =


Zm Zm−1 · · · Z1

Zm+1 Zm · · · Z2
...
Zn Zn−1 · · · Zn−m+1




Λp

Λp+1
...

Λp+m−1

 . (1.20)

SolveTri (n0, n1, G, Λ) - solves the (small) triangular system of equations directly
Z0 0 · · · 0
Z1 Z0 · · · 0
...

Zn1−n0 Zn1−n0−1 · · · Z0




Λn0

Λn0+1
...

Λn1

 =


Gn0

Gn0+1
...
Gn1

 .

Let us fix J > 0: every system of size smaller or equal to J + 1 is to be solved directly.
By procedure Solve, larger systems will be split in two and solved recursively, until their
size reaches J + 1, when they are solved by SolveTri. A pseudocode of this procedure is
given below.

function Solve (n0, n1, G, Λ)
if (n1 − n0 ≤ J) then
SolveTri(n0, n1, G, Λ);

else
n 1

2
=
⌊
n0+n1

2

⌋
;

Solve(n0, n 1
2
, G, Λ);

Multiply (n 1
2
− n0 + 1, n1 − n0, n0, n 1

2
+ 1, Λ, H);

G|n 1
2

+1,...,n1
= G|n 1

2
+1,...,n1

− H|n 1
2

+1,...,n1
;

Solve(n 1
2

+ 1, n1, G, Λ);

end if
endFunction

The matrix in (1.20) is Toeplitz, and the fast matrix-vector multiplication can be done by
embedding this matrix into a twice larger circulant matrix that in turn can be diagonalized
with FFT. Let us describe this procedure in more detail.

15

Chapter 1. TDBIE for the Wave Equation in 3D

1.2.3.1 Fast Matrix-Vector Multiplication

Let us consider the procedure for the fast computation of the matrix-vector product (1.20),
namely 

Hm

Hm+1
...
Hn

 =


Zm Zm−1 · · · Z1

Zm+1 Zm · · · Z2
...
Zn Zn−1 · · · Zn−m+1




Λ0

Λ1
...

Λm

 .

We define

Λ̃ := [Λ0, . . . , Λm]T ,

H̃ := [Hm, . . . , Hn]T .

First, the vector Λ̃ is extended with n −m zeros at the end and the vector H̃ with extra
m elements at the beginning. Then the product (1.20) can be rewritten as:

H0

H1
...

Hm−1

Hm

Hm+1
...
Hn


=



Z0 Zn · · · Z1

Z1 Z0 · · · Z2
...

Zm−1 Zm−2 · · · Zm
Zm Zm−1 · · · Zm+1

Zm+1 Zm · · · Zm+2
...
Zn Zn−1 · · · Z0





Λ0

Λ1
...

Λm

0
...
0


.

Setting

H = [H0, . . . , Hn]T ,

Λ = [Λ0, . . . ,Λm, 0, . . . , 0]T

and using the fact that the circulant matrix can be diagonalized by the discrete Fourier
transform, we can rewrite the above matrix-vector product as

H = F−1
n+1Dn+1Fn+1Λ. (1.21)

Here Fn+1 is the discrete Fourier matrix of size (n + 1) × (n + 1) and Dn+1 is a diagonal
matrix whose elements djj are matrices

djj =

n∑
k=0

Zke
−i 2π

n+1
kj , j = 0, . . . , n. (1.22)

Note that matrices djj are no longer sparse, therefore the matrix-vector multiplication with
each of these matrices requires O(M2) steps. Excluding the time needed to construct djj ,
such matrix-vector multiplication can be done in O(n log nM + nM2) steps with the help
of the FFT.

The complexity of the full algorithm scales as O(N log2NM +N logNM2), or

O(N logNM2),

which is slightly worse than the complexity of back substitution. However, as will be shown
later, an efficient approach can be designed based on this algorithm.

16

Chapter 1. TDBIE for the Wave Equation in 3D

1.2.4 Plane-Wave Time-Domain Algorithm

As it was remarked before, the bottleneck of the conventional MOT method is the compu-
tation of the sum in (1.19). The plane-wave time-domain (PWTD) algorithm was devel-
oped to speed-up the evaluation of such sums exploiting separability properties of transient
fields [12, 58, 85, 86]. The complexity of the PWTD algorithm varies from O(NM

3
2 logM)

for the one-level scheme to O(NM log2M) for the multi-level scheme.
Here we will only show the expansion the PWTD algorithm is based on. The method

resembles closely the structure of fast multipole methods [103, 154, 155], aiming at a fast
evaluation of the (discretized) expression:

f(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

q(τ, y)dΓydτ (1.23)

=

∫
Γ

q(t− ‖x− y‖, y)

4π‖x− y‖
dΓy,

where q(τ, y) is a given density.
The following lemma serves as a basis for the derivation of one of the separable expan-

sions for the kernel of the integral operator (1.23), see [85] and references therein.

Lemma 1.2.2. Let x, y ∈ Γ. Then,

Q(t, x, y) =
q(t− ‖x− y‖, y)

4π‖x− y‖
(1.24)

can be decomposed into the sum:

Q(t, x, y) = Qpw(t, x, y) +Qg(t, x, y), (1.25)

where

Qpw(t, x, y) = − 1

8π2

∂

∂t

∫
S2

q (t− ŝ· (x− y), y) dŝ, (1.26)

Qg(t, x, y) =
q(t+ ‖x− y‖, y)

4π‖x− y‖
. (1.27)

Proof. Consider the expression for Qpw and rewrite the integral over the sphere in spherical
coordinates. Without loss of generality, we assume that x− y = (0, 0, ‖x− y‖):

Qpw(t, x, y) = − 1

8π2

∂

∂t

2π∫
0

π∫
0

q(t− ‖x− y‖ cos θ, y) sin θdθdφ

= − 1

4π

∂

∂t

1∫
−1

q(t− ‖x− y‖ξ, y)dξ

=
q(t− ‖x− y‖, y)

4π‖x− y‖
− q(t+ ‖x− y‖, y)

4π‖x− y‖
.

17

Chapter 1. TDBIE for the Wave Equation in 3D

In the frequency domain Qpw(t, x, y) can be represented in a plane-wave basis. To deal
with the term Qg(t, x, y) (’ghost signal’), the signal Q(t, x, y) is split into a sum of compactly
supported and approximately temporally bandlimited functions Q`(t, x, y), ` = 1, . . . L.
This should be done so that for each ` = 1, . . . , L the ’ghost signal’ Qg` (t, x, y), defined as
in (1.27), vanishes in a sufficiently large subdomain D` of Γ× Γ.

Let σx, σy ⊂ Γ be sufficiently distant domains with σx × σy ∈ D`. Let points x0 ∈ σx,
y0 ∈ σy be fixed. Then, for all x ∈ σx, y ∈ σy, the following formally holds [85]:

Qpw` (t, x, y) =

∫
S2

t−ŝ·(x−x0)∫
0

δ(t− t1 − ŝ · (x− x0))V`(t1, x0, y, ŝ)dt1dŝ,

where

V`(t1, x0, y, ŝ) =

t1−ŝ·(x0−y0)∫
0

T (t1 − t2 − ŝ · (x0 − y0))P`(t2, y, ŝ)dt2,

T (t) = − 1

8π2

∂

∂t
δ(t)

and

P`(t2, y, ŝ) =

t2+ŝ·(y−y0)∫
0

δ(t2 − τ + ŝ· (y − y0))Q`(τ, y)dτ, ` = 1, . . . , L.

This expression serves as a basis for derivation of the plane-wave time-domain multipole
expansions.

The algorithm in [85] is based on Whittacket-type plane-wave representation of tran-
sient fields. It is also possible to use other plane-wave representations [86], though the
corresponding methods can appear to be more difficult to implement, see also [135].

In spite of being asymptotically of almost optimal complexity, the PWTD algorithm
is known to outperform other fast solvers, e.g. time-domain adaptive integral method
(TDAIM), only for problems characterized by not less than tenths of thousands spatial
unknowns, and in practice can appear to be less efficient than TDAIM for quasiplanar
structures [14]. We briefly describe the latter method in the next section.

1.2.5 Time-Domain Adaptive Integral Method

The TDAIM is based on the recursive algorithm of Section 1.2.3. The key observation is
that for rectangular domains the matrix-vector products with matrices (1.22) are essentially
convolutions in space and can be evaluated with the help of further FFTs [189]. Hence,
4D-FFT can be employed for efficient computation of (1.20).

The algorithm works for an arbitrary domain, however, to make use of the FFT-
accelerated spatial convolutions on uniform meshes, it employs the ideas from [42]. The
method described in this work, frequency-domain adaptive integral method, deals with the
fast evaluation of the Galerkin matrix-vector product

bα =

M∑
β=1

∫∫
Γ×Γ

eiκ‖x−y‖

4π‖x− y‖
aβφβ(x)φα(y)dΓxdΓy, α = 1, . . . ,M, κ ∈ R.

18

Chapter 1. TDBIE for the Wave Equation in 3D

The main idea of this algorithm is to substitute the integral over Γ × Γ by the integral
of a modified integrand over B × B, where B is a three-dimensional box enclosing the
domain. The kernel function remains unaffected, while the Galerkin basis functions have
to be changed. The resulting integral can be efficiently evaluated with the help of FFT
techniques. The time-domain adaptive integral method adapts this idea to compute matrix-
vector products (1.22).

The complexity of the approach scales as

O(NM
3
2 log2M)

for 3D surfaces and
O(NM log2M)

for quasi-planar surfaces (e.g. surfaces of very small height). The required memory scales

as O(M2) for 3D surfaces and O(M
3
2) for quasi-planar surfaces. For more details on the

complexity analysis see [14]. This algorithm relies on the FFT solely and does not require
the use of non-standard techniques, while being easily parallelizable. However, its memory
requirements are not improved compared to conventional MOT solvers.

In the next section we describe one of the latest, to our knowledge, algorithms for the
efficient evaluation of (1.23).

1.2.6 Multilevel (Cartesian) Non-Uniform Grid Time-Domain Algorithm

This method was developed to overcome the main difficulties associated with the fast meth-
ods described previously. Namely, the PWTD algorithm is difficult to implement and adapt
to the mixed frequency regime (i.e. when the spectrum of the incident wave has both high
and low frequencies), while the TDAIM is not applicable in the mixed frequency regime at
all, according to [143].

The detailed description of the algorithm can be found in [43, 143]. The method aims
at the fast evaluation of

f(t, x) =

∫
Γ

q(t− ‖x− y‖, y)

4π‖x− y‖
dΓy, (1.28)

where q(t, x) is a bandlimited (with the bandlimit ω) causal function.
Let us describe a two-level version of this algorithm, due to [43]. The surface of the

scatterer is subdivided into P non-overlapping domains

Γ =
P⋃
p=1

Γp

of approximately equal size. The center of the smallest sphere surrounding the domain Γp
we denote by xp and its radius by rp. Then,

f(t, x) =

∫
Γ

q(t− ‖x− y‖, y)

4π‖x− y‖
dΓy =

P∑
p=1

fp(t, x),

fp(t, x) =

∫
Γp

q(t− ‖x− y‖, y)

4π‖x− y‖
dΓy, p = 1, . . . , P. (1.29)

19

Chapter 1. TDBIE for the Wave Equation in 3D

For each of the domains Γp one can define the near-field zone ΓNp (points x ∈ Γ lying close

to or inside this domain) and the far-field zone ΓFp = Γ\ΓNp . The evaluation (1.29) for each

p = 1, . . . , P is done directly if x ∈ ΓNp . For x in the far-field zone, one defines an auxiliary
quantity (’compensated field’)

f̃p(τ, x) = ‖x− xp‖
∫
Γp

q(τ + x̃p(x)− ‖x− y‖, y)

4π‖x− y‖
dΓy, (1.30)

where x̃p =

√
‖x− xp‖2 +

r2
p

2 and τ = t− x̃p(x). Then the actual field is

fp(t, x) =
1

‖x− xp‖
f̃p(t− x̃p, x). (1.31)

Importantly, f̃p(t, x) and fp(t, x) for fixed t are smooth in x ∈ ΓFp . Introducing a grid (e.g.

Cartesian) surrounding the far-field zone of Γp, f̃p(τ, x) is evaluated using (1.30) in points of

this grid (xk)
Kp
k=1. The choice of Kp depends on the size of Γp, the bandwidth of the function

q and the desired accuracy. Typically, given a function q(t, x) (approximately) temporally
bandlimited to maximum frequency ω, it is chosen as Kp = O(ω2r2

p) + O(1). Next, f̃p is
interpolated to the surface, namely

f̃(τ, x) =
∑

k:xk∈σ(x)

wpk(x)f̃p(τ, xk),

where σ(x) is a neighborhood of x and wpk are interpolation weights. Finally, fp(t, x) is
restored using (1.31). Such procedure is shown to be significantly more efficient than the
direct computation of (1.29).

The multilevel version of this algorithm has a butterfly-like structure, see [148]. The
complexity of the evaluation (1.28) in the discretized problem using the multilevel algorithm
is as low as O(NtNs logαNs), with α = 1, 2, where Ns is size of the spatial discretization
and Nt is the number of the time steps.

1.2.7 Fast Galerkin Methods

The use of MOT methods may present two difficulties: instabilities on long times and insta-
bilities for non-convex obstacles [156]. These problems can be successfully overcome with
the use of specially suited temporal basis functions, see e.g. [185], and averaging/filtering
techniques [158]. Recently, in [174] the authors introduced a new spatial quadrature that
allows the stable and accurate implementation of MOT based methods.

Another way to deal with this kind of issues is to employ instead of the collocation in
time the Galerkin discretization method, as it was originally done in the seminal works
[18, 19]. The theory of Galerkin methods for time-domain boundary integral equations is
well-developed, see [108]. Unlike the MOT method, the Galerkin method is based on the
integral formulation

T∫
0

∫
Γ

∫
Γ

λ̇(t− ‖x− y‖, y)

4π‖x− y‖
ξ(t, x)dΓxdΓydt =

T∫
0

∫
Γ

ġ(t, x)ξ(t, x)dΓxdt, (1.32)

20

Chapter 1. TDBIE for the Wave Equation in 3D

for all functions ξ. Here, T is the length of the time interval. Some justification of the
well-posedness of this formulation is given in [108]. Let us remark that in [18] the coercivity
and the stability of a slightly different variational formulation was rigorously proved.

Given the boundary element basis{
φi(x)ψj(t), i = 1, . . . ,M, j = 1, . . . , N

}
,

the solution of (1.32) is represented in the form

λ(t, x) =

M∑
i=1

N∑
j=1

λijφi(x)ψj(t),

λij =

T∫
0

∫
Γ

λ(t, x)φi(x)ψj(t)dΓxdt.

This leads to the system of equations

M∑
m=1

N∑
n=1

λmn

T∫
0

∫∫
Γ×Γ

ψ̇n(t)

4π‖x− y‖
φm(x)φi(y)ψk(t)dΓydΓxdt =

T∫
0

∫
Γ

ġ(t, x)φi(y)ψk(t)dΓydt,

i = 1, . . . ,M, k = 1, . . . , N.

Typically one chooses hat functions as a temporal basis, see [18, 109]. In the same works
the authors describe how to deal with rather difficult spatial quadratures inherent to this
kind of basis sets. Such choice has other major advantages, namely, the system of equations
is lower triangular Toeplitz and matrix blocks

Anm =
(
anmij

)M
i,j=1

,

anmij =

T∫
0

∫∫
Γ×Γ

ψ̇n(t)ψm(t)

4π‖x− y‖
φi(y)φj(x)dΓydΓxdt

(1.33)

are sparse, similarly to that of collocation (MOT) methods. As we already mentioned,
many fast methods developed initially for marching-on-in-time, are applicable to Galerkin
methods of this class. The commercial code SONATE, see [2], is based on the Galerkin
time-domain method.

Recently, in [128,165,166] a new Galerkin method was developed. It employs infinitely
smooth basis functions (based on the PUM (partition of unity method) of [13]) in time. This
allows to overcome difficulties connected to the spatial integration and preserves sparsity
of the matrix blocks (1.33). Efficient evaluation of elements of the system matrix can be
done using tensor decomposition techniques, see [128]. However, the system in this case is
no longer lower triangular Toeplitz.

There exist other variational formulations, e.g. energetic boundary integral formulation
[5,6]. Recently, it was applied to the Neumann exterior problem in three dimensions in [4];
in the same reference computational aspects of this method are discussed in detail.

21

Chapter 1. TDBIE for the Wave Equation in 3D

1.2.8 Convolution Quadrature

The convolution quadrature (CQ) algorithm dates back to 1988 [136, 137], where it was
applied to approximate numerically convolution integrals

g(t) =

t∫
0

k(t− τ)v(τ)dτ. (1.34)

This method requires only the Laplace transform of k(t) to be known and was originally
based on the use of multistep methods. In 1993, convolution quadrature was re-formulated
for Runge-Kutta methods and successfully applied to semilinear parabolic evolution equa-
tions [139]. Though there exist several approaches to introduce convolution quadrature,
we choose the one from these seminal works. Before introducing Runge-Kutta convolu-
tion quadrature, we need a few basic definitions from the theory of numerical solutions of
ordinary differential equations.

1.2.8.1 Preliminaries: Runge-Kutta Methods

The material of this section is well-known and can be found in classical monographes [49,
122,123].

We consider the initial-value problem on [0, T]

y′ = f(t, y),

y(0) = y0.
(1.35)

Let f be Lipschitz continuous in y and continuous in t, so that by Picard-Lindelöf theorem
the problem (1.35) has a unique solution. The interval [0, T] is subdivided into N + 1
subintervals of size h = T

N . We denote by

yn ≈ y(nh)

a Runge-Kutta approximation to y(t) at time tn = nh.
Let an m-stage Runge-Kutta method be given by the Butcher tableau

c A

bT
, (1.36)

where b, c ∈ Rm, A ∈ Rm×m.
The Runge-Kutta approximation of (1.35) is given by

Ynj = yn + h

m∑
i=1

ajif(tn + cih, Yni), j = 1, . . . ,m,

yn+1 = yn + h

m∑
j=1

bjYnj ,

y0 = y(0), n = 0, . . . , N − 1.

(1.37)

The values Ynj in (1.37) can be viewed as an approximation to y(t) at time steps tnj =
nh+ cjh (’internal stages’).

22

Chapter 1. TDBIE for the Wave Equation in 3D

Definition 1.2.3. A Runge-Kutta method has order p if for a sufficiently smooth problem
(1.35)

‖y(h)− y1‖ ≤ Khp+1, K > 0.

Definition 1.2.4. The stage order of a Runge-Kutta method equals to q if for a sufficiently
smooth problem (1.35) for all 1 ≤ j ≤ m,

‖Ynj − yn‖ ≤ Chq+1, C > 0.

Another important property of a Runge-Kutta method is its stability.
A Runge-Kutta method (1.36) is called A-stable if the numerical solution yn of the

Dahlquist equation

y′ = λy, Reλ < 0,

y(0) = 1,
(1.38)

remains bounded for an arbitrary fixed timestep h > 0 and as n→ +∞.
The numerical solution of the Dahlquist equation (1.38) can be alternatively written as:

yn = R(hλ)n,

where R(z) = 1 + zbT (I −Az)−11.

Definition 1.2.5. The function R(z) = 1 + zbT (I −Az)−11, 1 = [1, . . . , 1]T , is called the
stability function of the Runge-Kutta method (1.36).

Definition 1.2.6. The set S = {z ∈ C : |R(z)| ≤ 1} is called the stability domain of the
Runge-Kutta method (1.36).

Definition 1.2.7. A Runge-Kutta method is A-stable if

C− = {z ∈ C : Re z ≤ 0} ⊂ S.

The following theorem is a direct consequence of definitions of the stability function and
order of a Runge-Kutta method and can be found in [122, Theorem 2.2].

Theorem 1.2.8. The stability function of a Runge-Kutta method of order p is a rational
approximation to the exponential of order p:

R(z) = ez + Czp+1 +O(zp+2), C 6= 0, z → 0. (1.39)

Rational functions that, for a given degree of the numerator and denominator, have the
highest order of approximation are called Padé approximations. The following theorem can
be found in [122, Theorem 3.11].

Theorem 1.2.9. The (k, j)-Padé approximation to ez given by

Rkj(z) =
Nkj(z)

Qkj(z)
,

where Nkj(z) is a polynomial of order k and Qkj(z) is a polynomial of order j, is the unique
rational approximation to ez of the order j + k s.t. the degrees of the numerator and the
denominator are k and j, respectively.

23

Chapter 1. TDBIE for the Wave Equation in 3D

In view of Theorem 1.2.8, Ehle suggested [78] that A-stable Runge-Kutta methods can
be constructed employing Padé approximations to the exponential as R(z) . In [79] stability
properties of such approximations were discussed. The following result was conjectured and
partially proved in the same reference, while the rest of the proof was done in the seminal
paper [183].

Theorem 1.2.10 (Ehle’s Conjecture). Any Padé approximation R(z) = P (z)
Q(z) , degP = k,

degQ = n is A-stable iff n− 2 ≤ k ≤ n.

The next result will be of use later and can be found in [79].

Theorem 1.2.11. All zeros of Padé approximants satisfying conditions of Theorem 1.2.10
lie in the open left-half plane.

Another important concept is L-stability.

Definition 1.2.12. A Runge-Kutta method with the stability function R(z) is called L-
stable if it is A-stable and additionally

R(∞) = 0.

We will assume that the matrix A is nonsingular.

Definition 1.2.13. The Runge-Kutta method with the nonsingular matrix A is called stiffly
accurate if cm = 1 and

amj = bj , j = 1, . . . ,m.

For stiffly accurate Runge-Kutta methods,

bTA−1 = [0, . . . , 1] . (1.40)

It is well known that the stability function for a stiffly accurate Runge-Kutta method
can be written in a simpler form:

R(z) = 1 + zbT (I −Az)−1
1 = bTA−1(I −Az)(I −Az)−1

1+ zbT (I −Az)−1
1

= bT (A−1 − z + z)(I −Az)−1
1 = bTA−1(I −Az)−1

1. (1.41)

The next proposition [122, Proposition 3.8] connects A-stability, L-stability and stiff
accuracy.

Proposition 1.2.14. Stiffly accurate A-stable methods are L-stable.

1.2.8.2 Derivation of Runge-Kutta Convolution Quadrature

Let us consider the convolution equation

g(t) = K(∂t)λ(t) =

t∫
0

k(t− τ)λ(τ)dτ, 0 < t <∞,

where K(∂t) is defined in Section 1. Additionally, we assume that µ < 0 in (1.6). The
results can be extended to the case µ ≥ 0 using (1.7). As before, λ and g are causal.

24

Chapter 1. TDBIE for the Wave Equation in 3D

We can rewrite the above equation substituting k(t) by the Bromwich integral of its
Laplace transform K(s), Re s > 0:

g(t) =
1

2πi

∫
σ+iR

K(s)

t∫
0

es(t−τ)λ(τ)dτds, (1.42)

where σ > σ0, see Section 1. The integral v(t) =
t∫

0

es(t−τ)λ(τ)dτ solves the following ODE:

v′(τ) = sv(τ) + λ(τ), (1.43)

v(0) = 0.

Therefore, we can substitute v(t) with the numerical approximation of this ODE obtained
with the help of a linear multistep or Runge-Kutta method. The latter will be used in the
current work.

The time interval [0, T] is subdivided into N equal time steps of size h. By gn and gn
we denote:

gn = g(nh), gn =

 g(nh+ c1h)
...

g(nh+ cmh)

 .

Similarly vn, vn, λn, λn are defined. We will use Runge-Kutta methods with the nonsingular
matrix A that satisfy the following assumptions.

Assumption 1.2.15. (a) A-stability;

(b) stiff accuracy;

(c) for all y 6= 0, |R(iy)| < 1.

These assumptions originate from the theory of Runge-Kutta convolution quadrature,
see [28]. It is possible to weaken them, see [139] for the Runge-Kutta convolution quadrature
derivation for parabolic problems, or [21] for the use of trapezoidal rule for the scattering
problem.

The Runge-Kutta discretization of (1.43) is then given by

vn = vn1+ hA (svn + λn) ,

vn+1 = vn + hbT (svn + λn) , (1.44)

v0 = 0.

For v(ξ) =
∞∑
n=0

vnξ
n, λ(ξ) =

∞∑
n=0

λnξ
n, |ξ| < 1, (1.44) gives

v(ξ) =

(
∆(ξ)

h
− s
)−1

λ(ξ), (1.45)

where the matrix-valued function ∆(ξ) for Runge-Kutta methods under consideration is
defined as (see [21,139])

∆(ξ) =

(
A+

ξ

1− ξ
1bT

)−1

= A−1 − ξA−1
1bTA−1, |ξ| < 1. (1.46)

25

Chapter 1. TDBIE for the Wave Equation in 3D

Substituting v(t) =
t∫

0

es(t−τ)λ(τ)dτ in (1.42) with its numerical approximation (1.45) allows

to obtain the following semi-discretized equation:

g(ξ) :=
∞∑
n=0

gn(x)ξn =
1

2πi

∫
σ+iR

K(s)λ(ξ)

(
∆(ξ)

h
− s
)−1

ds

= K

(
∆(ξ)

h

)
λ(ξ), |ξ| < 1, (1.47)

where the last formula was obtained from the application of Cauchy’s integral theorem,

using the bound (1.6) with µ < 0 for K(s). Next, the convolution kernel K
(
δ(ξ)
h

)
is

expanded into a series in ξ:

K(ξ) =
∞∑
n=0

W h
n (K)ξn, |ξ| < 1. (1.48)

The coefficients of this expansion, W h
n (K), are called convolution weights. Inserting (1.48)

into (1.47) and matching the powers of ξ in the obtained expression gives the following
equation for gn:

gn =

n∑
k=0

W h
n−k(K)λk, n = 0, . . . , N. (1.49)

When an m-stage Runge-Kutta method is used, the convolution weights W h
j (K), j =

0, . . . , N, are matrices of size m×m.
Now we apply the Runge-Kutta convolution quadrature discretization to (1.12):

g(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓydτ. (1.50)

In our case K(s) is the boundary Helmholtz single-layer operator

(V(s)φ) (x) =

∫
Γ

e−Re s‖x−y‖

4π‖x− y‖
φ(y)dΓy, x ∈ Γ.

Hence, convolution weights W h
n are boundary integral operators

(W h
n (V)λ)(x) =

∫
Γ

whn(‖x− y‖)λ(y)dΓy, x ∈ Γ, (1.51)

whose kernels whn(‖x− y‖) are coefficients of the expansion of Kd(ξ) =
exp

(
−∆(ξ)

h
d
)

4πd into the
Taylor series in ξ, i.e.

Kd(ξ) =
exp

(
−∆(ξ)

h d
)

4πd
=

∞∑
n=0

whn (d) ξn. (1.52)

26

Chapter 1. TDBIE for the Wave Equation in 3D

If for the discretization an m-stage Runge-Kutta method is used, the convolution weights
are continuous operators

W h
j :
(
H−

1
2 (Γ)

)m
→
(
H

1
2 (Γ)

)m
,

where by Xm we denote the space of m-dimensional vectors of elements of X, namely

Xm =
{
f = [f1, . . . , fm]T , fj ∈ X, j = 1, . . .m

}
,

‖f‖2Xm =

m∑
j=1

‖fj‖2X .

Remark 1.2.16. In the convolution quadrature theory both operators W h
j and their kernels

whj (d) are called convolution weights. In the course of the work we try to make sure that it

is always clear which convolution weights, W h
j or whj (d), are in question.

The Runge-Kutta convolution quadrature discretization of (1.50) is written as

gn(x) =

n∑
i=0

(
W h
n−i (V)λi

)
(x),

gn+1(x) = bTA−1
n∑
i=0

(
W h
n−i (V)λi

)
(x),

(1.53)

where the last expression was obtained from Definition 1.2.13 and (1.40).
Equations (1.53) for m = 0, . . . , N form the lower triangular block Toeplitz system

W h
0 0 · · · 0

W h
1 W h

0 · · · 0
· · ·
W h
N W h

N−1 · · · W h
0



λ0

λ1
...
λN

 =


g0

g1
...
gN

 . (1.54)

1.2.8.3 Convolution Weights

Let K(s) satisfy the assumptions of Section 1.1. Namely, given σ0 ∈ R, K(s) is an analytic
mapping from {s ∈ C : Re s > σ0} to the space L(X,Y) of continuous operators from X
to Y . Additionally, it is bounded by (see (1.6)):

‖K(s)‖X→Y < M |s|µ, µ ∈ R. (1.55)

W.l.o.g. we assume σ0 > 0.
Weights W h

n of convolution quadrature based on Runge-Kutta methods satisfying As-
sumption 1.2.15 are well-defined [28]. Lemma 3.1.7 shows that the eigenvalues of the matrix
∆(ξ), |ξ| < 1, lie on the right half of the complex plane, and hence, for sufficiently small

h > 0, the map ξ → K
(

∆(ξ)
h

)
is analytic. Our goal is to find bounds on norms of convolu-

tion weights W h
n in terms of h.

The following lemma is due to [27]. It shows that the norm
∥∥∥K (∆(ξ)

h

)∥∥∥
Xm→Ym

can be

bounded by O(h−µ).

27

Chapter 1. TDBIE for the Wave Equation in 3D

Lemma 1.2.17. Let µ ≥ 0 in (1.55). Let an m-stage Runge-Kutta method satisfy Assump-
tion 1.2.15. Then for every σ̃0 > σ0 there exists h0, s.t. for all h < h0 the eigenvalues of
∆(ξ) for |ξ| ≤ e−hσ̃0 lie in the half-plane Re z ≥ hσ0 and

sup
|ξ|≤e−hσ̃0

∥∥∥∥K (∆(ξ)

h

)∥∥∥∥
Xm→Ym

≤ CMh−µ,

where C > 0 depends only on the Runge-Kutta method.

The following lemma is a corollary of the above statement.

Lemma 1.2.18. Let µ ≥ 0 in (1.55). Let an m-stage Runge-Kutta method satisfy As-
sumption 1.2.15. For all σ̃0 > σ0 there exists h̄ > 0, s.t. for all 0 < h < h̄ and
n ∈ N0 : 0 ≤ n ≤ 1

hσ̃0
, ∥∥∥W h

n (K)
∥∥∥
Xm→Ym

≤ CMh−µ,

where C depends on the Runge-Kutta method only.

Proof. The Cauchy’s integral theorem gives an explicit expression for the convolution weight,
see (1.48),

W h
n (K) =

1

2πi

∮
C

K
(

∆(ζ)
h

)
ζn+1

dζ,

where C is a contour lying within the domain of analyticity of K
(

∆(ζ)
h

)
and enclosing 0.

Let us fix σ̃0 > σ0. The previous lemma shows that there exists h0, s.t. for all 0 < h < h0

this contour can be chosen as the circle |ζ| = e−hσ̃0 . Therefore,∥∥∥W h
n

∥∥∥
Xm→Ym

≤ 1

2π

∮
|ζ|=1

∥∥∥∥K (∆(ζ)

h

)∥∥∥∥
Xm→Ym

enhσ̃0 |dζ|

≤ CMenhσ̃0h−µ,

for some C > 0 depending on the Runge-Kutta method only. For n ≤ 1
hσ̃0

enhσ̃0 ≤ e,

from which the statement of the lemma follows.

This lemma can be applied to bound the convolution weights of the boundary single-
layer operator and its inverse for the wave equation on the finite interval [0, T], T > 0.
The proof of the following corollary is similar to the proof of Lemma 5.3 in [29].

Corollary 1.2.19. Let an m-stage Runge-Kutta method satisfy Assumption 1.2.15. Then

the convolution weights W h
n (V) and W h

n

(
V−1

)
are bounded linear operators from

(
H−

1
2 (Γ)

)m
to
(
H

1
2 (Γ)

)m
and from

(
H

1
2 (Γ)

)m
to
(
H−

1
2 (Γ)

)m
correspondingly.

28

Chapter 1. TDBIE for the Wave Equation in 3D

Let T > 0. Then there exists h̄, s.t. for all 0 < h < h̄ and N ∈ N0 : 0 ≤ N ≤ T
h , the

norms of convolution weights can be bounded as follows:

‖W h
n (V) ‖(

H−
1
2 (Γ)

)m
→
(
H

1
2 (Γ)

)m ≤ c1 max(T 3, T)h−1,

‖W h
n

(
V−1

)
‖(
H

1
2 (Γ)

)m
→
(
H−

1
2 (Γ)

)m ≤ c2 max
(
T 2, T

)
h−2,

for some c1, c2 > 0 that do not depend on h, n, T .

Proof. According to Proposition 1.1.2, for all σ0 > 0 and s ∈ C : Re s > σ0,

‖V(s)‖
H−

1
2 (Γ)→H

1
2 (Γ)
≤ C1

σ0
max

(
1

σ2
0

, 1

)
|s|,

‖V−1(s)‖
H

1
2 (Γ)→H−

1
2 (Γ)
≤ C2

σ0
max

(
1

σ0
, 1

)
|s|2.

Let us first derive the bound for W h
n (V), n ≥ 0. Since the choice of σ0 > 0 in the above

bounds can be done arbitrarily, we can set σ0 = 1
T , T > 0. Then, for all s : Re s > σ0,

‖V(s)‖
H−

1
2 (Γ)→H

1
2 (Γ)
≤ C1T max(T 2, 1)|s|.

This, combined with the statement of the previous lemma gives the desired bounds. Simi-
larly, the bounds for convolution weights W h

n

(
V−1

)
can be derived.

1.2.8.4 Convergence of Runge-Kutta Convolution Quadrature

The questions of convergence of Runge-Kutta convolution quadrature were studied in [21,
27,28].

The following theorem provides sharp bounds on the order of convergence of Runge-
Kutta convolution quadrature for (1.50). As before, p denotes the classical order of Runge-
Kutta methods, and q is the stage order.

Theorem 1.2.20. [28, Theorem 5] Let ` > q + 3. If g(0) = . . . = ∂`−1
t g(0) = 0, there

exists h̄ s.t. for all 0 < h < h̄ and tn = nh, 0 < n ≤ N =
⌈
T
h

⌉
, it holds:

‖λn(.)− λ(tn, .)‖
H−

1
2 (Γ)
≤ Chq

‖∂`tg(0, .)‖
H

1
2 (Γ)

+

tn∫
0

‖∂`+1
t g(τ, .)‖

H
1
2 (Γ)

dτ

 ,

where C depends on h̄ and T .

This theorem shows that the Runge-Kutta convolution quadrature semidiscretization of
(1.50) converges with the reduced order q rather than the classical order p. In the same
work [28] it was shown that this is not the case if the solution is computed away from the
boundary: the order of convergence of Runge-Kutta convolution quadrature coincides with
the classical order of the Runge-Kutta method.

Theorem 1.2.21. Let u = S (∂t)V−1 (∂t) g. Then the Runge-Kutta convolution quadrature
discretization of this equation is identical to the Runge-Kutta semi-discretization of the
scattering problem (1.1). If, additionally, for some ` > p+ 4,

g(0) = . . . = ∂`−1
t g(0) = 0,

29

Chapter 1. TDBIE for the Wave Equation in 3D

then there exists h̄, s.t. for all 0 < h < h̄ and x ∈ Ωc : dist(x,Γ) ≥ δ > 0, tn = nh,
0 < n ≤ N =

⌈
T
h

⌉
, it holds:

|u(nh, x)− un(x)| ≤ Cδhp
‖∂`tg(0, .)‖

H
1
2 (Γ)

+

tn∫
0

‖∂`+1
t g(τ, .)‖

H
1
2 (Γ)

dτ

 ,

with Cδ depending on h̄, T and δ.

1.2.9 Sparse Multistep Convolution Quadrature

One of the ways to deal with (1.54) is to employ the back substitution algorithm, construct-
ing the discretizations of integral operators W h

n . This was done in [115, 116, 131] for the
BDF2 (backward differentiation formula of the second order) method. In this case kernels
of integral operators W h

n are known explicitly:

whn(d) =
1

n!

1

4πd

(
d

2h

)n
2

e−
3
2
d
hHn

(√
2d

h

)
,

where Hn are Hermite polynomials. The approach is heavily based on the following property
of the BDF2 convolution weights.

Lemma 1.2.22. Let n ≥ 1 and chn,ε = 3h
√
n log 1

ε . For d ∈ Ihn,ε =
[
nh− chn,ε, nh+ chn,ε

]
, it

holds

|whn(d)| ≤ ε

4πd
.

The use of this lemma allows to skip evaluating some of the entries of Galerkin discretiza-
tions of boundary integral operators W h

n . The resulting matrices, besides being sparse, are
also blockwise low-rank, see [116, 131], hence H- and H2-matrix techniques or the panel
clustering method can be successfully employed.

Unlike the BDF2 case, the kernels of operators W h
n of Runge-Kutta convolution quadra-

ture do not possess a simple structure. The following lemma provides a way to evaluate
them. Let us consider the modified kernels

ωhn(d) = 4πdwhn(d).

Lemma 1.2.23. [124, 137] Given ε > 0, for all n > 0, the choice ρ = (
√
ε)

1
n+1 ensures,

for all k ≤ n, h, d > 0,∣∣∣∣∣ωhk (d)− ρ−m

n+ 1

n∑
`=0

e
−∆

(
ρe
i` 2π
n+1

)
d
h
e−i

2π
n+1

`k

∣∣∣∣∣ < C
√
ε, (1.56)

where C is a constant that can be bounded independently of n, k, ε, d.

As explained in Section 3.1.2, this method allows to compute convolution weights up to
the accuracy

√
εm, where εm is the machine precision. There we show that for a range of d

it is possible to achieve the accuracy εm.
The construction of the Galerkin discretization of a convolution weight W h

k for a fixed
k requires the evaluation of the kernel whk(d) at some d ≥ 0. Lemma 1.2.23 can be applied

30

Chapter 1. TDBIE for the Wave Equation in 3D

in two ways. First, it provides means to evaluate whk(d) with the complexity O(k), if the
sum in (1.56) is computed directly. For large k this approach is likely to be inefficient. On
the other hand, if the sum in (1.56) is computed with the help of the FFT, one obtains
the values whk(d), k = 0, . . . , n simultaneously in O(n log n) steps. To make use of this
advantage, however, we need to construct several Galerkin discretizations of convolution
weights W h

k , k = 0, . . . , n, also simultaneously. The efficient assembly of such matrices does
not seem to be easily implementable.

We postpone the further discussion of the applicability of some of the ideas of this
method to Runge-Kutta convolution quadrature to Section 3.2.

1.2.10 Fast Multipole BEM in Time-Domain

Similarly to sparse multistep convolution quadrature, the algorithm suggested in [159–161],
or fast multipole BEM in time-domain, improves convolution quadrature based on back
substitution. This method was implemented both for 2- and 3-dimensional problems. Here
we just demonstrate how it can be used to solve the equation (1.12).

The application of back substitution to convolution quadrature requires the solution of
O(N) equations

W h
0 λn = gn −

n−1∑
k=0

Wn−kλk, n = 0, . . . , N. (1.57)

To evaluate the sums on the right-hand side of the above expression, the authors of [159–161]
make use of (1.56), namely

W h
k u ≈

ρ−m

L+ 1

L∑
`=0

∫
Γ

e
−∆

(
ρe
i` 2π
L+1

)
‖x−y‖
h

4π‖x− y‖
e−i

2π
L+1

`ku(y)dΓy, k = 0, . . . , L,

where L ≥ N . The substitution of the above into the sum on the right-hand side of (1.57)
makes it possible to evaluate each of O(N) such sums with the help of the FFT of size N
and O(N) matrix-vector multiplications with discretized Helmholtz boundary single layer
operators. Such matrix-vector products are accelerated with the help of the fast multipole
method. In [159] the FMM of [107,191] is employed.

Totally, this algorithm requires O(N2) matrix-vector multiplications to be computed.
Under the assumption that the number of boundary elements M = O(N2) and the size of
a boundary element

ch ≤ ∆x ≤ C ′h, C ′, c > 0,

see the related discussion in Section 1.2.11.3, the complexity of the FMM accelerated matrix-
vector product is not better than O(M

3
2) (this is due to the use of the fast multipole method

of [107,191]). This implies that the complexity of fast multipole BEM in time domain scales

not better than O
(
N2M

3
2

)
.

1.2.11 Recursive Convolution Quadrature

The matrix of the system (1.54) is lower triangular Toeplitz. Hence, the recursive FFT-
based algorithm described in detail in Section 1.2.3 can be applied to solve the above system
of equations. It is based on two main procedures, SolveBasic and Multiply. Hence, we

31

Chapter 1. TDBIE for the Wave Equation in 3D

only need to show how they can be performed efficiently in the context of convolution
quadrature. In our description of these procedures we closely follow [29,30,121].

1.2.11.1 Matrix-Vector Multiplication

We first describe the algorithm for the fast matrix-vector multiplication
r0

r1
...

rn−`

 =


W h
` W h

`−1 · · · W h
1

W h
`+1 W h

` · · · W h
2

...
W h
n W h

n−1 · · · W h
n−`+1



λ0

λ1
...
λ`

 (1.58)

in accordance to [30, 124, 137]. Here we present a rather informal description of this algo-
rithm.

The vector λ = [λ0, . . . ,λ`]
T is extended with n − ` zeros at the end, and the vector

r = [r0, . . . , rn−`]
T with extra ` elements at the beginning. Let

h := [h0, . . . ,hn]T , hk = rk−`, k = `, . . . , n.

Then, for some 0 < ρ ≤ 1 (the need of which will be substantiated further) the matrix-vector
product (1.58) can be rewritten in the form:

h0

h1ρ
...

h`−1ρ
`−1

h`ρ
`

h`+1ρ
`+1

...
hnρ

n


=



W h
0 W h

n ρ
n ... W h

1 ρ
W h

1 ρ W h
0 ... W h

2 ρ
2

...
W h
`−1ρ

`−1 W h
`−2ρ

`−2 ... W h
` ρ

`

W h
` ρ

` W h
`−1ρ

`−1 ... W h
`+1ρ

`+1

W h
`+1ρ

`+1 W h
` ρ

` ... W h
`+2ρ

`+2

...
W h
n ρ

n W h
n−1ρ

n−1 ... W h
0





λ0

λ1ρ
...

λ`ρ
`

0
...
0


. (1.59)

We denote

hρ =
[
h0, h1ρ, . . . , h`−1ρ

`−1, h`ρ
`, h`+1ρ

`+1, . . . , hnρ
n
]T
,

pρ =
[
λ0, λ1ρ, . . . , λ`ρ

`, 0, . . . , 0
]T
.

The above matrix is circulant and can be diagonalized with the help of the Fourier
transform Fn+1 of size n+ 1:

hρ = F−1
n+1Dn+1,ρFn+1pρ. (1.60)

Elements d̂jj of the diagonal matrix Dn+1,ρ are given by the following expression:

d̂jj =
n∑
k=0

W h
k ρ

ke−i
2π
n+1

kj , j = 0, . . . , n.

With the help of (1.48), the above expression can be rewritten, for all j = 0, . . . , n,

d̂jj = V

(
−∆(ρe−i

2π
n+1

j)

h

)
−

∞∑
k=n+1

W h
k ρ

ke−i
2π
n+1

kj (1.61)

32

Chapter 1. TDBIE for the Wave Equation in 3D

Our task now is to show that it is possible to choose a parameter ρ so that instead of a
diagonal matrix Dn+1,ρ we can use a diagonal matrix Dn+1,ρ with elements djj given by:

djj = V

(
−∆(ρe−i

2π
n+1

j)

h

)
, j = 0, . . . , n.

Let us define h′ρ, h
′ as

h′ρ = F−1
n+1Dn+1,ρFn+1pρ, (1.62)

h′j = ρ−j
(
h′ρ
)
j
, j = 0, . . . , n, (1.63)

and examine the difference h′ − h:

h′j − hj = − ρ−j

n+ 1

n∑
r=0

ei
2π
n+1

jr
∞∑

k=n+1

W h
k ρ

ke−i
2π
n+1

kr
∑̀
q=0

ρqλqe
−i 2π

n+1
rq =

=
∞∑

k=n+1

W h
k

∑̀
q=0

λqρ
k+q−jδ(k+q−j) mod (n+1),0, j = 0, . . . , n,

where δk,q is Kronecker delta. Convolution weights W h
k are bounded operators

W h
k :

(
H−

1
2 (Γ)

)m
→
(
H

1
2 (Γ)

)m
.

This implies that there exists C ′ > 0 (that depends on the time step h), s.t.:

‖h′j − hj‖(H 1
2 (Γ)

)m ≤ C ′ρn+1
∑̀
k=0

‖λk‖(
H−

1
2 (Γ)

)m , j = 0, . . . , n. (1.64)

Choosing ρ small enough one can ensure that (1.60) is well approximated by (1.62).
However, the numerical evaluation of (1.63) can be done only up to a certain accuracy

(limited by the machine precision). Let numerically computed
(
F−1
n+1Dn+1,ρFn+1pρ

)
be

denoted by v. Let the error of the evaluation of
(
F−1
n+1Dn+1,ρFn+1pρ

)
be equal to ε0, i.e.

∥∥∥(F−1
n+1Dn+1,ρFn+1pρ

)
k
− vk

∥∥∥(
H

1
2 (Γ)

)m ≤ ε0
n∑
j=0

‖
(
pρ
)
j
‖(
H−

1
2 (Γ)

)m , k = 0, . . . , n.

Indeed, for ρ < 1,

∥∥∥(F−1
n+1Dn+1,ρFn+1pρ

)
k
− vk

∥∥∥(
H

1
2 (Γ)

)m ≤ ε0∑̀
j=0

‖λj‖(
H−

1
2 (Γ)

)m , k = 0, . . . , n.

Then (1.63) is computed with the precision ρ−jε0, j = 0, ... , n.
Hence there exists C > 0 (depending on the time step h), s.t.∥∥∥hj − ρ−j (F−1

n+1Dn+1,ρFn+1pρ
)
j

∥∥∥(
H

1
2 (Γ)

)m ≤ CEj(ρ)
∑̀
k=0

‖λk‖(
H−

1
2 (Γ)

)m ,
Ej(ρ) = ρn+1 + ρ−jε0, j = 0 ... n.

33

Chapter 1. TDBIE for the Wave Equation in 3D

The above expression attains its maximum for j = n; the minimum of En(ρ), ρ < 1, is

achieved when ρ = ε
1

2n+1

0 and equals to

√
ε
1+ 1

2n+1

0 . Thus, we can compute the matrix-vector
product (1.58) with the precision

√
ε0 in O(n log n) steps.

A more rigorous error analysis can be done as described in [29].

Remark 1.2.24. The actual construction of the Galerkin discretization of the operator

V
(

∆(z)
h

)
, |z| ≤ 1, has to be done in two steps:

1. diagonalize the matrix ∆(z) by the eigenvalue decomposition:

∆(z) = Qdiag[λ1, . . . , λm]Q−1, Q ∈ Cm×m, λj ∈ C, j = 1, . . . ,m.

In [21] it was demonstrated that for 2- and 3-stage Radau IIA methods there exists
only a few values of z : |z| ≤ 1 s.t. ∆(z) is not diagonalizable (see also Figure 3.1).
However, they are highly unlikely to be hit during the computation, see also Section
3.1. If nevertheless |z| = ρ appears to be close to one of such values, one can slightly
perturb the parameter ρ.

For |z| = 1 and 2- and 3-stage Radau IIA methods the matrix ∆(z) is diagonalizable,
see Remark 3.1.8.

2. compute the Galerkin discretization of V
(
λj
h

)
, j = 1, . . . ,m.

Remark 1.2.25. Since in the time domain all the values are real, after the discrete Fourier
transform because of symmetry only a half of matrix-vector multiplications need to be per-
formed, the other half are obtained by complex conjugation. Therefore, it is sufficient

to construct discretizations of the boundary integral operators V
(

∆(ρe
−i 2π
n+1 j)
h

)
for j =

0, . . . , bn+1
2 c and compute matrix-vector products only with these matrices.

1.2.11.2 Solution of a Small System

A method for the solution of the small system
W h

0 0 · · · 0
W h

1 W h
0 · · · 0

...
W h
J W h

J−1 · · · W h
0



λ0

λ1
...
λJ

 =


g0

g1
...
gJ

 . (1.65)

presented below is due to [29] and bears similarities with [137], as well as with the method
described in the previous section. Note that

gn =

n∑
j=0

W h
n−j(V)λj ⇒ λn =

n∑
j=0

W h
n−j(V−1)gi.

Hence, with the help of the scaled Fourier transform approach described in the previous
section, we can rewrite (1.65):

λj ≈ ρ−j
(
F−1
m+1Dm+1

(
V−1

)
Fm+1gρ

)
j
, j = 0, . . . , J,

gρ =
[
g0, g1ρ, . . . , gJρ

J
]T
.

34

Chapter 1. TDBIE for the Wave Equation in 3D

Again, given ε0 as in the previous section, we choose ρ = ε
1

2(J+1)

0 to ensure the optimal
accuracy. A concise analysis of the accuracy of this procedure can be found in [29].

Note that in practice we do not construct the discretizations of V−1 but rather assemble
Galerkin discretizations of the boundary operators V (we denote them by V), and then
solve the corresponding systems of equations. In [21] it was shown that if the size of the
small system remains constant, the range of frequencies sk for which we need to construct
V (sk) obey ∣∣∣∣Re sk

Im sk

∣∣∣∣ < const,

and hence the H-matrix approximation is of almost linear complexity in this case. The
condition number of matrices V (s) increases as the boundary element meshwidth ∆x de-
creases,

cond(V (s)) ≤ C(∆x)−1,

see e.g. the proof of Lemma 4.5.1 in [169]. To solve this problem, we employ an H-matrix
based LU-preconditioner of almost linear complexity (O(M log2M)) suggested in [33].

1.2.11.3 Complexity of the Approach

Let N be the number of time steps and M be the size of the spatial discretization. Alto-
gether, O(N) Galerkin discretizations of single layer operators need to be constructed.
This implies that total matrix assembly and storage costs scale as O(NC(M)), where
C(M) is the complexity of the assembly/storage of a single matrix. In the course of
the algorithm O(N logN) matrix-vector multiplications need to be done, thus resulting in
O(N logNT (M)) complexity, where T (M) is the complexity of a single matrix-vector prod-
uct. The solution of a small lower triangular system can be done in O(T (M)) time. Applica-
tion of all FFTs requires O(N log2NM) operations. Hence, the complexity of the solution
of the system (1.54) after all matrices have been constructed scales as O(N logNT (M) +
N log2NM).

Let us assume that the incident wave uinc is temporally and spatially (approximately)
bandlimited to a frequency fm. For many applications the case of a large bandwidth fm � 1
is of importance. Then the values of N , M have to be chosen so that M = O(N2), see
also Section 1.2.1. The primary reason for such a choice is the sampling condition: the
meshwidth has to satisfy ∆x ≈ C1f

−1
m and the time step h ≈ C2f

−1
m , for some constants

C1, C2 > 0. Additionally, we assume that M = O
(

1
∆x2

)
.

In [22,56] the authors analyzed dissipation and dispersion errors associated with the time
discretization, for both multistep and Runge-Kutta convolution quadrature. The results of
these studies can be summarized as follows:

1. if the direct integral formulation is used, and the domain is convex or star-shaped,
the time step has to be chosen as h ≈ C2f

−1
m ;

2. otherwise h ≈ C2f
−1− 1

p
m , where p is the classical order of the Runge-Kutta method

(or the order of the multistep method).

The errors due to the spatial discretization (also for Maxwell equations) were analyzed
in [17, 26, 29, 138]. In the thesis we assume ∆x ≈ h, similarly to MOT methods. We
did not encounter significant pollution effects with such a choice, at least for the range of
discretizations of interest.

35

Chapter 1. TDBIE for the Wave Equation in 3D

1.2.12 Decoupled Convolution and Directional Fast Multipole Method

The algorithm used in [144] is based on the method described in Section 1.2.11.2 applied
to the full system of equations. In this work the mixed initial boundary-value problem was
solved using the Calderón projector. We describe the main idea of this algorithm applied
to the acoustic scattering. There are two main difficulties associated with the original
algorithm of Section 1.2.11.2:

• it is necessary O(N) discretizations of boundary integral operators V (s) for a range
of frequencies s ∈ C;

• O(N) systems of equations that involve these boundary integral operators need to be
solved.

The algorithm aims at overcoming the first difficulty by the use of the directional fast mul-
tipole method, see [81,83,145]. However, it still requires to invert the Helmholtz boundary
single layer operator for many frequencies, that, for small time steps, lie close to the imag-
inary axis, as we will demonstrate in further sections. To our knowledge, this problem for
non-convex domains is difficult to be overcome by the use of other integral formulations, as
analysis in [41] recently revealed.

36

Chapter 2

Data-Sparse Techniques for the
Helmholtz Equation with Decay

This section is dedicated to the analysis of H- and H2-matrix techniques applied to the
Galerkin discretization of the single-layer boundary integral operator for −∆ + s2, s ∈ C,
Re s ≥ 0,

V ij =

∫∫
Γ×Γ

e−s‖x−y‖

4π‖x− y‖
φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M. (2.1)

Here we assumed that (φi)
M
i=1 are both test and trial basis functions. For simplicity, through-

out this section we use piecewise constant basis functions. All the arguments can be ex-
tended to a more general case under the assumption that the test and trial functions are
compactly supported (more precisely, supported on a constant number of mesh elements).

2.1 H- and H2-matrices

The notion ofH-matrices was introduced in [110]. The questions of the efficient construction
of H-matrices and the complexity of algebraic operations are addressed in [100]. Recent
monographs [34, 111] are dedicated to H-matrix theory and provide both theoretical and
numerical evidence of the efficiency of H-matrix techniques. The non-exhaustive list of
applications include the approximation of boundary integral operators [114], of the inverse
of FEM matrices [36], and efficient LU-preconditioners in BEM and FEM [33,101].

In this section we review the main notions of the theory of H-matrices, following [111].

2.1.1 Asymptotically Smooth Functions

Definition 2.1.1. Given X,Y ⊂ Rd, a function k : X × Y → C is called separable if it
can be written in the following form:

k(x, y) =

r∑
ν=1

aν(x)bν(y), (x, y) ∈ X × Y.

The right hand side of

k(x, y) =

r∑
ν=1

a(r)
ν (x)b(r)ν (y) +Rr(x, y), (x, y) ∈ X × Y.

37

Chapter 2. Data-Sparse Techniques for −∆ + s2

is called an r-term separable expansion of k(x, y) with the remainder Rr.

One of the methods to obtain a separable expansion is polynomial interpolation. Namely,
let X be a box

X = [a1, b1]× . . . [ad, bd]. (2.2)

Let a set of interpolation points (x
(j)
k)Nkj=1 be defined on intervals [ak, bk], k = 1, . . . , d. Let

Lk,ν(x) =
∏

µ=1...Nk, µ 6=ν

x− x(µ)
k

x
(ν)
k − x

(µ)
k

denote the νth Lagrange polynomial. Given x = (x1, . . . , xd),

k(r)(x, y) =

N1∑
ν1=1

L1,ν1(x1)

N2∑
ν2=1

L2,ν2(x2) . . .

Nd∑
νd=1

L1,νd(xd)k
((
x

(ν1)
1 , . . . x

(νd)
d

)
, y
)

(2.3)

constitutes an r = N1N2 . . . Nd-term separable expansion of k(x, y). Let us for simplicity
assume that N1 = N2 = . . . Nd = m. By Λi we denote the Lebesgue constant for the set of
interpolation points on [ai, bi]; if the interpolation points are chosen as Chebyshev nodes

Λi = Λ < 1 +
2

π
log(m+ 1).

The interpolation error, i.e. the remainder Rr, can be bounded by, see [111, Lemma B.3.4],

|k(x, y)− k(r)(x, y)| ≤ 1

m!
Λd−1

d∑
i=1

‖ωi‖∞‖∂mxik(·, y)‖∞,X ,

where ωi = ωi(xi) =
m∏
j=1

(xi − x(i)
j). If all the partial derivatives of k(x, y) do not grow too

fast, his error can be easily controlled. This motivates the introduction of another important
concept, namely asymptotic smoothness.

Definition 2.1.2. Let X,Y ⊆ Rd and let k : {(x, y) ∈ X × Y, x 6= y} → C be smooth.
Then k is called asymptotically smooth if there exist C, κ, γ, s, s.t.

|∂αx ∂βy k(x, y)| ≤ C(α+ β)!|α+ β|κγ|α+β|‖x− y‖−|α|−|β|−s, (2.4)

for all x ∈ X, y ∈ Y , x 6= y, α, β ∈ Nd0, α+ β 6= 0.

The following lemma shows that under additional geometrical assumptions on the do-
mains X, Y , tensor-product interpolation (2.3) of the asymptotically smooth k(x, y) con-
verges to k(x, y) exponentially.

Lemma 2.1.3. [111, Proposition 4.2.13, p.69] Let k(x, y) be asymptotically smooth in
X × Y ⊂ Rd × Rd. Let additionally (2.2) hold. Let the number of interpolation points in
each of the directions equal m − 1 and the Lebesgue constant Λj = O(cm), for some c > 1

38

Chapter 2. Data-Sparse Techniques for −∆ + s2

and for all j = 1, . . . , d. Given m + s ≥ 0 (where s is defined by (2.4)), tensor-product
interpolation (2.3) approximates k(x, y) with the error

‖k(., y)− k(r)(., y)‖∞,X ≤ c1

(
c2 diam∞(X)

dist(y,X)

)m
, y ∈ Y \X, (2.5)

where c1, c2 do not depend on m and

diam∞(X) = max{bi − ai : 1 ≤ i ≤ d}.

Hence there exists a separable expansion for an asymptotically smooth k(x, y) in X,Y
if

η diam∞(X) < dist(Y,X),

for some η > 1.

2.1.2 Cluster Trees and Block Cluster Trees

Let the boundary Γ be subdivided into M panels πi, and let the corresponding index set be
defined as I = {1, . . . ,M}. Note that when piecewise-constant basis functions are employed,
suppφi = πi, i = 1, . . . ,M .

Definition 2.1.4. Given a constant C, a tree TI is called a cluster tree corresponding to
an index set I if TI is a binary labeled tree with the following properties:

• the label τ̂ of a vertex τ of TI is a subset of I;

• the label of the root of the tree is I;

• the label of a vertex τ is a disjoint union of labels of its sons;

• for every leaf τ , #τ̂ ≤ C.

The leaves of the cluster tree TI are denoted by L(TI). All the vertices located at the
level ` of the cluster tree TI are denoted by T `I ; the root is located at the level ` = 0.

The structure of the cluster tree introduces a hierarchical subdivision of Γ into sets of
panels. A set of panels corresponding to a cluster τ is denoted by Ωτ :

Ωτ =
⋃
i∈τ̂

πi.

The bounding box of a cluster τ is the (axis-parallel) box containing the set Ωτ ; the
center of the box we denote by cτ and its diameter by dτ . The next definition can be found
in [44, Def. 3.16].

Definition 2.1.5. A predicate A: TI × TI → {true, false} is an admissibility condition for
TI × TTI , if A(τ, υ) = true implies that for all τ ′ ∈ sons(τ), A(τ ′, υ) = true and for all
υ′ ∈ sons(υ), A(τ, υ′) = true.

Now we have all the ingredients to introduce the concept of the admissible block-cluster
tree. We adopt here a slightly modified definition, similar to the one used in the high-
frequency fast multipole method [57]. In the H-matrix theory it corresponds to the level-
consistent admissible block-cluster tree.

39

Chapter 2. Data-Sparse Techniques for −∆ + s2

Definition 2.1.6. Let TI be a cluster tree. We will call an admissible block-cluster tree
TI×I a subtree of a labeled tree TI × TI that satisfies the following conditions:

1. The root of the tree is (root(TI), root(TI)).

2. The son clusters of each block-cluster b = (τ, σ) are defined by

sons(b) =

{
{(τ ′, σ′), τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} , sons(τ) 6= ∅, sons(σ) 6= ∅,
∅, sons(τ) = ∅ or sons(σ) = ∅;

3. A block-cluster (τ, σ) is a leaf if and only if one of the following holds true:

(a) (τ, σ) is admissible;

(b) (τ, σ) is not admissible, and τ ∈ L(TI) or σ ∈ L(TI);

Let us note that the actual choice of the admissibility condition depends on the integra-
tion kernel. For asymptotically smooth kernels the natural choice is, see (2.5),

η dist(τ, σ) ≥ max{dτ , dσ}, (2.6)

for some η > 0.
In the literature on the fast multipole methods it is quite common to use an admissibility

condition of the form (2.6), or a similar one: only the neighboring clusters are not admissible.
We use a slightly different admissibility condition, see also [162].

Definition 2.1.7. We will call a pair of clusters (τ, σ) admissible if for some fixed η > 1
the following holds true:

‖cτ − cσ‖ ≥
η

2
(dτ + dσ).

Thus, all the leaves of the admissible block-cluster tree can be split into two sets, namely
L+(TI×I) of admissible block-clusters and L−(TI×I) of non-admissible block-clusters. The
first set is called the far-field, while the second one is referred to as the near-field.

2.1.3 H-matrices

We wish to approximate a Galerkin matrix of a (boundary) integral operator

(M)ij =

∫
Γ×Γ

k(x, y)φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M, (2.7)

in theH-matrix format. The main idea that lies behindH-matrix techniques is the following.
Let us assume that the kernel of the integral operator k(x, y) is an asymptotically smooth

function. The admissibility condition has to be chosen so that k(x, y) has a separable
expansion inside all the admissible clusters, see Section 2.1.1. Given (τ, υ) ∈ L+(TI×I), for
all i ∈ τ̂ , j ∈ υ̂, it should hold that

∫∫
Ωτ×Ωυ

k(x, y)φi(x)φj(y)dΓxdΓy ≈
r∑

k=1

 ∫
Ωτ

a
(r)
k (x)φi(x)dΓx

 ∫
Ωυ

b
(r)
k (y)φj(y)dΓy

 .(2.8)

40

Chapter 2. Data-Sparse Techniques for −∆ + s2

Let #τ̂ = n, #υ̂ = m. We denote by M|τ̂×υ̂ the following matrix block:

(M|τ̂×υ̂)ki`j =Mij , ki ∈ {1, . . . , n} , `j ∈ {1, . . . ,m} ,

i ∈ τ̂ , j ∈ υ̂.

The expansion (2.8) shows that the matrix blockM|τ̂×υ̂ can be approximated by a rank
r-matrix. Hence instead of storing all matrix entries it is possible to keep in the memory
only r n-dimensional vectors A(α), α = 1, . . . r,

A
(α)
ki

=

∫
Ωτ

a(r)
α (x)φi(x)dΓx, i ∈ τ̂ ,

and r m-dimensional vectors B(k), α = 1, . . . r,

B
(α)
`j

=

∫
Ωυ

b(r)α (x)φj(x)dΓx, j ∈ υ̂.

This allows to reduce both storage costs and improve the time of the matrix-vector multi-
plication from O(nm) to O(r(n+m)).

Definition 2.1.8. Let I be an index set and TI×I be an admissible block-cluster tree. Let
also k : L+(TI×I) → N+. A matrix M ∈ CI×I is called an H-matrix (or hierarchical
matrix) if for each b = (τ, σ) ∈ L+(TI×I) the matrix M |b is a k(b)-rank matrix, i.e.

rankM |b ≤ k(b)

and is represented in the form

M |b = AbB
T
b ,

where Ab ∈ Rτ×{1,...,k(b)}, Bb ∈ Rσ×{1,...,k(b)}.

An important notion for analyzing the complexity of H-matrix arithmetic is the sparsity
constant. We provide here a definition adapted to our needs; for more general definitions
see [111].

Definition 2.1.9. The sparsity constant for L0 ⊂ L(TI×I) is defined as

Csp (L0) = max

{
max
τ∈TI
{#σ ∈ TI : (τ, σ) ∈ L0}, max

σ∈TI
{#τ ∈ TI : (τ, σ) ∈ L0}

}
.

In [117] it was demonstrated that under some mild assumptions on Γ, the sparsity
constant can be bounded by a constant that depends on the admissibility condition and the
space dimension.

The following lemma can be found in [100, Lemma 2.5] and [111, Lemma 6.3.6].

Lemma 2.1.10. Let TI×I be a given admissible block-cluster tree with the sparsity constant
C+
sp for L+(TI×I) and C−sp for L−(TI×I). Let M be an H-matrix, and k > 0 be s.t. for all

b ∈ L+(TI×I)
rank(M |b) ≤ k.

Additionally, let nmin ∈ N+ be s.t. for all (τ, σ) ∈ L−(TI×I):

#τ ≤ nmin and #σ ≤ nmin.

Then the following complexity estimates hold:

41

Chapter 2. Data-Sparse Techniques for −∆ + s2

1. The storage costs scale as

SH ≤ 2C+
sp max(nmin, k)(depth(TI) + 1)#I.

2. The complexity of the matrix vector product can be bounded by

M ≤ 2SH.

From now we assume that Csp does not depend on size of the discretization. The cluster
tree is constructed so that depth(TI) = O(log #I). Under these suppositions the storage
costs, as well as the complexity of the matrix-vector product scale almost linearly, i.e.
O(M logM), with respect to the size of the index set I, and hence the number of Galerkin
basis functions.

In practice the construction of H-matrices is usually done using techniques based on the
ideas from [98], e.g. ACA [32], ACA+ [99] or HCA [45] (although formula (2.5) is available).
Such methods, besides being computationally efficient, possess major advantages over the
polynomial expansion (2.5):

• no a priori information on ranks is needed, only evaluations of the integral kernel are
used;

• low-rank approximations constructed with the help of such techniques can be close
(and in practice are close) to optimal [35,98].

The optimal low-rank approximation can be constructed with the help of the singular
value decomposition, see Appendix C. Due to high computation costs, the SVD is employed
in the H-matrix theory only rarely (e.g. for coarsening, see [99]).

2.1.4 H-matrices for Helmholtz Boundary Integral Operators

Questions of the applicability of H-matrices to the Helmholtz equation have been studied
in various works [21,23,97], see also [34] and references therein. Let us address the simplest
case, namely, the use of H-matrices for the approximation of the Galerkin discretization of
the boundary integral operator

V(s) : H−
1
2 (Γ)→ H

1
2 (Γ),

(V(s)φ) (x) =

∫
Γ

e−s‖x−y‖

4π‖x− y‖
φ(y)dΓy, s ∈ C,

namely

(M)ij =

∫
Γ×Γ

e−s‖x−y‖

4π‖x− y‖
φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M,

where (φi(x))Mi=1 are piecewise-constant test (and trial) basis functions.
In a nutshell, the results of these studies are the following.

42

Chapter 2. Data-Sparse Techniques for −∆ + s2

1. If s = iκ, κ ∈ R, the complexity (storage and matrix-vector multiplication) is bounded
by O(M |κ| logM); the hidden constant depends on the accuracy. A typical assump-
tion on the number of Galerkin basis functions is

M = O(|κ|2), as |κ| → +∞.

Consequently, the complexity scales as

O(M
3
2 logM).

2. For complex s : Re s > 0, in [21] it was shown that if | Im s|
|Re s| < c, for some c > 0,

the Helmholtz kernel is asymptotically smooth and the complexity of the H-matrix
approximation is almost linear. Based on the results of [47], in [34, p.114, Theorem
3.18, p.157] it was demonstrated that the matrix-vector multiplication and storage
costs depend on M as

O

(
M

(
C +

∣∣∣∣ Im s

Re s

∣∣∣∣) logM

)
,

for some C > 0. Under the assumption M = O(|s|2), the H-matrix approximation is
of almost linear complexity, namely O(M logM).

In general, the H-matrix assembly complexity includes additional logarithmic factors
related to the evaluation of the 4-dimensional BEM integrals with the accuracy sufficient
to preserve the stability of the Galerkin method, see [87, 118, 167–169]. Particularly, due
to the use of tensor-Gauss quadratures with coordinate transformations (see the above
references), the asymptotic complexity of the matrix construction is larger than the storage
and matrix-vector multiplication complexity by the factor up to O

(
logkM

)
, k ≤ 4.

2.1.4.1 Efficient Construction of H-Matrices for the Boundary Single Layer
Operator of the Helmholtz Equation with Decay

In [91] the error of the fast multipole method for the Helmholtz equation with decay has
been studied. It was suggested that the relative error in the case Re s > 0 does not serve
any more as a good error estimator. Clearly, the elements of the Galerkin matrix of the
Helmholtz boundary single layer operator satisfy the inequality∣∣∣∣∣∣∣
∫
πi

∫
πj

e−s‖x−y‖

4π‖x− y‖
φi(x)φj(y)dΓxdΓy

∣∣∣∣∣∣∣ ≤ e−Re sdist(πi,πj)

∫
πi

∫
πj

1

4π‖x− y‖
φi(x)φj(y)dΓxdΓy,

and hence become exponentially small when dist(πi, πj) gets larger. Therefore, the contri-
bution of the blocks corresponding to the parts of the boundary Γ that are distant from
each other, can be neglected up to a certain tolerance when computing the matrix-vector
product.

Accordingly, it is possible to skip constructing some blocks in the H-matrix approxi-
mation. Let (τ, σ) denote an admissible block-cluster, and let the distance between the
bounding boxes of the clusters τ and σ equal d > 0. If

exp(−dRe s)

4πd
< ε, (2.9)

43

Chapter 2. Data-Sparse Techniques for −∆ + s2

for a fixed accuracy ε > 0, the corresponding block can be approximated by a zero matrix.
The actual choice of ε has to be made based on extensive numerical experiments.

The accuracy of the approximation of other blocks within the ACA+ algorithm may
be reduced as well. Since in the ACA/ACA+ algorithm it is easier to control the relative
accuracy, we proceed as follows. If the distance between two admissible clusters is d, the
relative accuracy of the approximation may be scaled by eRe sd, what we also do. This is in
correspondence with the definition of the scaled error in [91].

2.1.5 H2-Matrices

The notion of H2-matrices was introduced in [113]. In [46] the authors developed a black-
box algorithm that compresses a given matrix in the H2-matrix format. For the cases
when the construction of a dense matrix is too expensive (e.g. discretizations of integral
operators), an efficient method of the construction of H2-matrix based approximations was
suggested in [112].

Another way to assemble an H2-matrix is based on the use of known explicitly separable
expansions of an integral kernel, e.g. those coming from fast multipole methods. This was
done for the discretization of the boundary single-layer operator for the Helmholtz equation
in two dimensions in [23], as well as implicitly in [8].

In this section we review the main definitions of the H2-matrix theory based on recent
monographs [44,111] and lecture notes [157].

Let us fix a cluster tree TI and an admissible block-cluster tree TI×I .

Definition 2.1.11. A family of matrices
(
V t
)
t∈TI

, s.t. for all t ∈ TI the matrix V t ∈ Ct̂×Kt
for some finite index set Kt, is called a cluster basis.

Definition 2.1.12. (Uniform H-matrix) Let
(
V t
)
t∈TI

,
(
W t
)
t∈TI

. A matrix M ∈ CI×I is

called a uniform H-matrix if for all admissible (t, s) ∈ L (TI×I) there exists St,s ∈ CKt×Ks

s.t.
M |t̂×ŝ = V tSt,s (W s)T .

Matrices St,s are called coupling matrices.

A uniform H-matrix is an H-matrix, since the ranks of all its subblocks corresponding
to admissible clusters are bounded:

rank
(
V tSt,s (W s)T

)
≤ rankSt,s ≤ min

(
#Kt,#Ks

)
.

Definition 2.1.13. A cluster basis
(
V t
)
t∈TI

is called nested if for every non-leaf cluster t

and for all t′ ∈ sons(t) there exists a matrix T t
′ ∈ CKt′×Kt

(’transfer matrix’), such that

V t = V t′T t
′
.

Definition 2.1.14. A uniform H-matrix whose column and row cluster bases are nested is
called an H2-matrix.

The use of H2-matrices is motivated by a possible reduction of storage and computation
costs when dealing with the nested cluster basis compared to the cluster basis. Namely,
if V t are dense matrices, storing them for all t ∈ TI may be costly. In the case when the
nested cluster basis is used, one only needs to store the cluster basis for leaves and (possibly)

44

Chapter 2. Data-Sparse Techniques for −∆ + s2

transfer matrices. If these are of a special structure (e.g. are sparse), storage costs and time
for the computation of the matrix-vector product may be reduced significantly.

The algorithm for the efficient matrix-vector multiplication

y = Mx,

with M being an H2-matrix, is performed in three stages.

1. Forward transformation. During the forward transformation vectors xs, for all s ∈ TI ,
are computed:

xs = (W s)T x|ŝ . (2.10)

If the cluster basis is nested, this computation can be performed recursively:

xs =

 (W s)T x|ŝ , if s ∈ LTI ,∑
t∈sons(s)

(
T tW
)T
xt, otherwise, (2.11)

where T sW are the transfer matrices of the cluster basis (W s)s∈TI .

2. Multiplication. Let Rt = {s ∈ TI : (t, s) ∈ L+ (TI×I)}, t ∈ TI . The result of the
multiplication is

yt =
∑
s∈Rt

St,sxs, (2.12)

for all clusters t ∈ TI .

3. Backward transformation. The result of the backward transformation is the vector
(yj)j∈I , given by

yj =
∑

t∈TI : j∈t̂

(
V tyt

)
j
.

If the cluster basis is nested, this computation is performed recursively, similarly to
the forward transformation. For s ∈ TI we first recursively compute:

y |ŝ = ys + T sV y
t, s ∈ sons(t), (2.13)

where T sV are the transfer matrices of the cluster basis (V s)s∈TI .

Next, for all i ∈ I

yi =
(
V syŝ

)
i
, s ∈ TI , i ∈ ŝ. (2.14)

4. The non-admissible blocks are treated as in the case of H-matrices.

Remark 2.1.15. If, for a given ` > 1, there are no admissible clusters at the levels k :
1 ≤ k < ` of the block-cluster tree, there is no need to perform the forward and backward
transformation for the levels k < `: for all such clusters t, Rt = ∅, hence they do not
contribute to the whole matrix-vector product.

45

Chapter 2. Data-Sparse Techniques for −∆ + s2

2.2 High-Frequency Fast Multipole Method

The history of fast multipole methods starts with the seminal works [103, 154], where an
algorithm for the fast evaluation of the sums

fj =
N∑
n=1

qn
1

‖xn − xj‖
, xj ∈ Rd, j, . . . , N, d = 2, 3

was developed. The one-level fast multipole method for the Helmholtz potential had been
introduced in [155]. An excellent algorithm-oriented description of this method can be found
in [61]. A wide range of works is dedicated to the various improvements and the efficient
implementation of the high-frequency fast multipole algorithm: see [53,58,70,107,164,175,
176, 179] and references therein. In [68] the author developed the fast multipole algorithm
coupled with the microlocal discretization, particularly efficient for high frequencies. A
stable for all frequencies fast multipole method for Maxwell equations was introduced in [71].

The Helmholtz equation with decay had been considered, to our knowledge, only in
several works. Namely, in [57] the authors mentioned that the choice of the lengths of
the underlying expansions can be performed ignoring the complex part of the wavenumber,
though for large decays more savings are possible. The fast multipole method for the
Yukawa potential e−λr

r , λ > 0, was developed in [104]. In [93, 102] it was shown that to
achieve a fixed relative accuracy, the length of the fast multipole expansion in the presence
of decay has to be chosen slightly larger than the length of the expansion in the no-decay
case. In [102] the authors suggested a close to optimal empirical formula to determine the
length of the multipole expansion. The work [188] is dedicated to the numerical studies
of the applicability of the high-frequency fast multipole method to the Helmholtz equation
with decay; the authors demonstrated that if the decay is sufficiently large, cancellation
errors can occur, and proposed a strategy to avoid these errors. The same kind of issue was
studied in [20].

In [91] a numerical study of the error of the truncation of the multipole expansion
for complex wavenumbers has been performed, as well as the notion of the scaled error,
see Section 2.1.4.1, was introduced. In the same work the authors numerically examined
the effect of decay on the length of the fast multipole expansion and suggested empirical
formulas well-suited for the scaled error control.

We refer to [91] for the review of other works on the fast multipole method for the
Helmholtz equation with a complex wavenumber, as well as the list of possible applications.

Let us also mention that recently several novel fast multipole schemes have been de-
veloped; a non-exhaustive list of those includes the black-box fast multipole method for
non-oscillatory kernels [190], the family of directional fast multipole algorithms for oscilla-
tory kernels [81–83] and the fast butterfly algorithm [50,148,150].

This section is organized as follows. We start with the review of definitions and proper-
ties of special functions. Then, we describe the high-frequency fast multipole method (HF
FMM) of [57, 155] in the framework of H2-matrices concentrating on technical and algo-
rithmic questions. Finally, we analyze the error of the fast multipole method for a general
complex wavenumber.

46

Chapter 2. Data-Sparse Techniques for −∆ + s2

2.2.1 Special Functions

The Legendre polynomials are defined as

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n.

They are orthogonal with respect to the L2-product on [−1, 1]:

1∫
−1

Pn(x)Pm(x)dx =
2

2n+ 1
δnm,

where δnm is the Kronecker delta. The following classical theorem (see [75]) describes the
convergence rate of the Legendre approximation to analytic functions.

Theorem 2.2.1. Let f(z) be analytic in the interior of a Bernstein ellipse

Eρ =

{
ρeiφ + ρ−1e−iφ

2
, φ ∈ [0, 2π)

}
for some ρ > 1, but not in the interior of any Eρ′, with ρ′ > ρ. Then

f(z) =

∞∑
n=0

anPn(z)

with

an =
2n+ 1

2

1∫
−1

f(x)Pn(x)dx.

The series converges absolutely and uniformly on any closed set in the interior of Eρ and
diverges in the exterior of Eρ. Moreover,

lim sup
n→∞

|an|
1
n =

1

ρ
.

The associated Legendre functions are defined with the help of the Legendre polynomials:

Pmn (x) = (−1)m(1− x2)
m
2
dm

dxm
Pn(x), 0 ≤ m ≤ n,

P−mn (x) ≡ (−1)m
(n−m)!

(n+m)!
Pmn (x),

P 0
n(x) ≡ Pn(x),

Pmn (x) ≡ 0, |m| > n.

The normalized associated Legendre functions

P̄mn =

√(
n+

1

2

)
(n−m)!

(n+m)!
(1− x2)

m
2
dm

dxm
Pn(x),

P̄mn ≡ P̄−mn , m < 0.

(2.15)

47

Chapter 2. Data-Sparse Techniques for −∆ + s2

By r̂, ŝ, ... we denote unit vectors in R3, namely, given a vector x ∈ R3,

x̂ =
x

‖x‖
.

The spherical coordinates of a vector in R3 are given by (ρ, φ, θ), with φ being the azimuth
and θ the inclination. Then the Cartesian coordinates of a vector ŝ on the unit sphere are
read as

ŝ = (cosφ sin θ, sinφ sin θ, cos θ), φ ∈ [0, 2π] , θ ∈ [0, π] . (2.16)

A spherical harmonic of degree n and order m is a function

Y m
n : S2 → C,

Y m
n (ŝ) ≡ Y m

n (θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
eimφPmn (cos θ), |m| ≤ n,

Y m∗
n (ŝ) ≡ (−1)mY −mn (ŝ).

(2.17)

These functions constitute an orthonormal basis of L2(S2) and∫
S2

Y m
n (ŝ)Y l∗

p (ŝ)dŝ = δnpδml. (2.18)

They are connected to the Legendre polynomials via the addition theorem. Given two unit
vectors x̂, ŷ,

Pn(x̂ · ŷ) =
4π

2n+ 1

n∑
m=−n

Y m
n (x̂)Y m∗

n (ŷ). (2.19)

Spherical Bessel functions of the first kind jn(x) and spherical Bessel functions of the

third kind h
(1)
n (x), h

(2)
n (x) are defined as in [3, (10.1.1)]. We denote

hn(x) ≡ h(1)
n (x).

The analytic expressions for these functions are given by Rayleigh’s formulas:

jn(z) = zn
(
−1

z

d

dz

)n sin z

z
, (2.20)

hn(z) = jn(z)− izn
(
−1

z

d

dz

)n cos z

z
. (2.21)

Spherical Bessel functions are the coefficients of the expansion of the plane-wave function
in the Legendre polynomial basis [3, (10.1.47)]:

eiz cos θ =
∞∑
n=0

(2n+ 1)injn(z)Pn(cos θ). (2.22)

Remark 2.2.2. Theorem 2.2.1 allows to conclude that the series (2.22) converges super-
geometrically, since the function eizt is entire in t.

48

Chapter 2. Data-Sparse Techniques for −∆ + s2

The following is a particular case of the Funk-Hecke theorem [105, Theorem 3.4.1].

Theorem 2.2.3 (Funk-Hecke theorem). Let f be a bounded integrable function on [−1, 1].
Then fα̂(ŝ) = f(α̂ · ŝ), α̂ ∈ S2, is integrable on S2 and, for all n ∈ N,∫

S2

f(α̂ · ŝ)Pn(q̂ · ŝ)dŝ = an(f)Pn (q̂ · α̂) ,

where

an(f) = 2π

1∫
−1

f(t)Pn(t)dt.

The next identity can be immediately derived from the above theorem combined with
(2.22) and Theorem 2.2.1:∫

S2

eiλŷ·ŝPk(ŝ· x̂)dŝ = 4πikjk(λ)Pk(ŷ· x̂), k ∈ N, λ ∈ C. (2.23)

The following expression serves as the basis for the fast multipole method and is known
under the name ’addition theorem’ (or ’Gegenbauer’s addition theorem’), see [3, (10.1.45),
(10.1.46)]:

h0(κ‖x− y‖) =

∞∑
n=0

(2n+ 1)hn(κ‖x‖)jn(κ‖y‖)Pn(x̂· ŷ), (2.24)

x, y ∈ R3 : ‖x‖ > ‖y‖.

Another component of the fast multipole method is numerical integration over the unit
sphere. In the fast multipole method literature it is often performed with the help of the
quadrature rule introduced in the following lemma from [155].

Lemma 2.2.4. Let f be a spherical harmonic of degree n1, and g be a spherical harmonic
of degree n2, f = f(ŝ), g = g(ŝ), where ŝ is given by (2.16). For any nθ ≥

⌈
n1+n2+1

2

⌉
,

nφ ≥ n1 + n2 + 1 the quadrature rule on the unit sphere given by the nodes and weights

(φk, θj) =

(
(k − 1)

2π

nφ
, arccosxj

)
,

wkj =
2π

nφ
ωj , k = 1, .., nφ, j = 1, .., nθ,

(2.25)

with (xj)
nθ
j=1, (ωj)

nφ
j=1 being Gaussian quadrature nodes and weights on the interval [−1, 1],

integrates the product of f and g exactly.

Proof. Integration of the product of f and g requires the evaluation of the integrals of the
type, see (2.17),

2π∫
0

eimφeim
′φdφ

1∫
−1

Pmn1
(x)Pm

′
n2

(x)dx,

49

Chapter 2. Data-Sparse Techniques for −∆ + s2

where m,m′ ∈ Z, |m| ≤ n1, |m′| ≤ n2. The first integral can be evaluated exactly with
the help of the trapezoidal rule with at least n = n1 + n2 + 2 points, more precisely, the
quadrature with nodes φ̃k and weights ω̃k, k = 1, . . . , n:

φ̃k =
2π

n− 1
(k − 1),

ω̃1 = ω̃n =
2π

2(n− 1)
, ω̃j =

2π

n− 1
, 2 ≤ j ≤ n− 1.

The integrand of

1∫
−1

Pmn1
(x)P−mn2

(x)dx

is a polynomial of the degree not larger than n1 + n2, hence this integral can be integrated
exactly with any Gaussian quadrature rule with

⌈
n1+n2+1

2

⌉
points.

Here we employ the Gauss-Legendre quadrature. The abscissas of the quadrature of the
order n are given by the zeros of the Legendre polynomial Pn, and the weights by

w` =
2

(1− x`)2 (P ′n(x`))
2 , ` = 1, . . . , n.

Remark 2.2.5. In what follows we use the quadrature rule with nθ =
⌈
n1+n2+1

2

⌉
and

nφ = 2nθ.

Remark 2.2.6. We adopt a short notation for the quadrature rule defined in Lemma
(2.2.4):

(w`, ŝ`)
L
`=1, (w`, r̂`)

L
`=1, . . . (2.26)

stands for a quadrature rule with L = 2n2
θ, and ŝ` (r̂`, . . .) is a vector (2.16) with φ, θ given

by (2.25).

Remark 2.2.7. We will denote the integral
∫
S2

f(ŝ)dŝ computed with the help of the quadra-

ture (w`, ŝ`)
L
`=1 by QL [f(ŝ)]. When necessary, the variable of the integration is stated ex-

plicitly in the upper index: ∫
S2

f(ŝ · r̂)dŝ ≈ QŝL [f(ŝ · r̂)] . (2.27)

Additionally, we will use the following lemma which is a straightforward corollary of
Lemma 2.2.4 and (2.19).

Lemma 2.2.8. Given M ∈ N+ and m,n ∈ N0 :
⌈
m+n+1

2

⌉
≤M ,

QŝM [Pm (q̂ · ŝ)Pn (r̂ · ŝ)] =

{
4π

2n+1Pn (q̂ · r̂) , if n = m,

0, otherwise.

for all q̂, r̂ ∈ S2.

50

Chapter 2. Data-Sparse Techniques for −∆ + s2

Proof. We use the addition theorem (2.19) for Legendre functions to rewrite

QŝM [Pm (q̂ · ŝ)Pn (r̂ · ŝ)] =
4π

2m+ 1

4π

2n+ 1

m∑
`=−m

Y `
m(q̂)

n∑
k=−n

Y k∗
n (r̂)QŝM

[
Y `∗
m (ŝ)Y k

n (ŝ)
]
.

The quadrature rule of order M as in the statement of the lemma integrates the product of
these spherical harmonics exactly. Hence for m 6= n the result follows from orthogonality
of spherical harmonics, see (2.18). For m = n, we again employ (2.18) to get

QŝM [Pm (q̂ · ŝ)Pn (r̂ · ŝ)] =

(
4π

2n+ 1

)2 m∑
`=−m

Y `
m(q̂)Y `∗

m (r̂)

=
4π

2n+ 1
Pn (q̂ · r̂) .

2.2.2 High-Frequency Fast Multipole Algorithm

The high-frequency fast multipole method is based on the expansion (2.24). Namely, given
s ∈ C, x, y, xβ, yα ∈ R3, it holds:

e−s‖x−y‖

4π‖x− y‖
= − s

4π

∞∑
n=0

(2n+ 1)hn(is‖cαβ‖)jn(is‖y − x+ cαβ‖)Pn(ĉαβ· r̂αβ),

for ‖cαβ‖ > ‖rαβ‖,

where cαβ = yα − xβ and rαβ = x− y + cαβ.
Truncating the above series at N + 1 terms, employing (2.23) and interchanging the

limits of integration, gives

e−s‖x−y‖

4π‖x− y‖
= − s

16π2

N∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)
∫
S2

e−s(rαβ ,r̂)

× Pn(ĉαβ· r̂)dr̂ + Etr(N),

(2.28)

where Etr(N) is the truncation error.
The next step is the discretization. The addition theorem (2.19) combined with (2.22)

shows that the integrand of (2.28) is a sum of products of spherical harmonics, hence the
quadrature rule of Lemma 2.2.4 can be employed. In [69] it was suggested that L should be
chosen so that L ≥ 2(N+1)2. This gives the following separable expansion of the Helmholtz
kernel:

e−s‖x−y‖

4π‖x− y‖
=

L∑
k=0

wke
s(y−yα,r̂k)

(
− s

(4π)2

N∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)Pn(ĉαβ· r̂k)

)
× e−s(x−xβ ,r̂k) + Etr(N) + EI(L,N),

where EI is the integration error.
Another way to discretize (2.28) based on the modification of the integrand and the use

of the trapezoidal quadrature rule was recently suggested in [53,164].

51

Chapter 2. Data-Sparse Techniques for −∆ + s2

The fast multipole method can be cast into the framework of H2-matrices. Before, this
was done in [8,23]. Namely, the matrix-vector multiplication described in Section 2.1.5 can
be viewed as a generalized description of the fast multipole algorithm, with properly defined
cluster basis, transfer and coupling matrices.

Let us consider the Galerkin discretization of the Helmholtz boundary single layer op-
erator

(V (s))ij =

∫∫
Γ×Γ

φi(x)φj(y)
e−s‖x−y‖

4π‖x− y‖
dΓxdΓy, i, j = 1, . . . ,M.

In this section we show how this matrix can be approximated with the help of the fast
multipole method. We will comment on the choice of the parameters and the error control
in the further sections.

We fix the block-cluster tree TI×I . We use the uniform partition of the domain, i.e. all
the bounding boxes of the clusters located at the same level of the block-cluster tree are of
the same size.

With each level ` of the cluster tree we associate a set of quadrature nodes on the unit
sphere

(wn, r̂n)L`n=1, L` ∈ N, (2.29)

defined as in Lemma 2.2.4.
The version of the algorithm described here is the high-frequency FMM of [57] with

minor modifications.

2.2.2.1 Cluster Basis

Given a cluster τα located at the level ` of the cluster tree and cα being the center of its
bounding box, we define the column cluster basis as a matrix

(W τα)kjn (s) =

∫
τα

e−s(x−cα,r̂n)φj(x)dΓx, (2.30)

kj ∈ {1, . . . ,#τ̂α} , j ∈ τ̂α, n = 1, · · · , L`.

The row cluster basis for the cluster τα has a different form:

(V τα)kjn (s) = wn

∫
τα

es(x−cα,r̂n)φj(x)dΓx, kj ∈ {1, . . . ,#τ̂α} , j ∈ τ̂α, n = 1, . . . , L`.

Efficient Computation and Storage of the Cluster Basis It is sufficient to compute
the column cluster basis only, whereas the row cluster basis can be constructed based on
the symmetry of the quadrature points (2.25) on the unit sphere. Let p := x − cα =
(p1, p2, p3) ∈ R3. For quadrature nodes r̂ = (cosφk sin θj , sinφk sin θj , cos θj)

T , it holds
that

es(x−cα,r̂) = es(p1 cosφk sin θj+p2 sinφk sin θj+p3 cos θj) = e−s(p,q̂kj),

q̂kj = (cos(π + φk) sin(π − θj), sin(π + φk) sin(π − θj), cos(π − θj)) .

52

Chapter 2. Data-Sparse Techniques for −∆ + s2

Let L` = 2n2
θ, nθ ∈ N, see Remark 2.2.5. Since the nodes of the Gauss-Legendre quadrature

are symmetric about 0,

π − θj = θnθ−j+1,

and also

π + φk = π +
π

nθ
k =

2π

2nθ
((nθ + 1)k mod 2nθ) ,

the vector q̂kj indeed belongs to the set (r̂n)L`n=1. Hence, only the column leaf cluster basis
need to be computed and stored.

For some applications it is necessary to compute the cluster basis for many values of
s ∈ C. In this case storing all of the dense matrices (2.30) may be expensive. Alternatively,
the function fα(x, r̂) = e−s(x−cα,r̂) can be interpolated in x with the help of multivariate
interpolation (as done when evaluating the boundary integrals with the help of a quadrature
rule). Then the entries of the column leaf cluster basis are

(W τα)jn (s) =

∫
τα

e−s(x−cα,r̂n)φj(x)dΓx

≈
K∑
k=1

e−s(xk,α−cα,r̂n)ωαj,k,

(2.31)

where xk,α ∈ τα are quadrature nodes and ωαj,k, k = 1, . . . ,K are weights. Hence for all
s ∈ C we can store only the weights ωαj,k, the interpolation points xk,α and the centers of
the clusters cα, and then compute W τα on the fly when reading the data from the memory
to perform the matrix-vector multiplication.

2.2.2.2 Transfer Matrices

In the fast multipole method transfer matrices are represented by translation operators.
Namely, for the column cluster basis transfer matrices correspond to the multipole-to-
multipole (M2M) translations, and for the row cluster basis they are equivalent to local-to-
local (L2L) translations.

Before defining transfer matrices, let us provide some information on one of the ingredi-
ents of these operators, namely the fast spherical harmonic transform as described in detail
in [126].

Fast Spherical Harmonic Transform Let

f : S2 → C.

Let us set ŝ(θ, φ) = (cosφ sin θ, sinφ sin θ, cos θ). We assume that for some K ∈ N,

f(ŝ(θ, φ)) =

K∑
k=0

k∑
m=−k

fmk Y
m
k (θ, φ). (2.32)

Given the values of the function f on the grid (φ`, θn)
nφ,nθ
`,n=1 defined by (2.25)

f`,n = f(ŝ(θn, φ`)), ` = 1, . . . , nφ, n = 1, . . . , nθ,

53

Chapter 2. Data-Sparse Techniques for −∆ + s2

we need to compute the values of the function

F (ŝ(θ, φ)) =
N∑
k=0

k∑
m=−k

fmk Y
m
k (θ, φ), (2.33)

on the grid of different size, namely (φ`, θn)
n′φ,n

′
θ

`,n=1 defined by (2.25). We assume nφ = 2nθ
and n′φ = 2n′θ, set

L = 2n2
θ, L′ = 2(n′θ)

2,

and define RL
′,L as an operator

F`,n =
(
RL
′,Lf

)
`,n

= F
((

cosφ′` sin θ′n, sinφ′` sin θ′n, cos θ′n
))
,

` = 1, . . . , n′φ, n = 1, . . . , n′θ.

To perform the truncation exactly, nφ has to be chosen so that

nφ ≥ K +N + 1. (2.34)

A trivial algorithm for the spherical harmonic transform can be described in two steps.

1. Evaluate fnm using the quadrature rule from Lemma 2.2.4:

fmn =

∫
S2

f(ŝ)Y −mn (ŝ)dŝ =

nφ∑
`=1

nθ∑
k=1

f`,kwk,l. (2.35)

2. Define F as in (2.33) and evaluate F on the corresponding grid:

F`,n =

N∑
k=0

k∑
m=−k

fmk Y
k
m(θ′n, φ

′
`), ` = 1, . . . , n′φ, n = 1, . . . , n′θ. (2.36)

The fast spherical harmonic transform makes use of the structure of the sums (2.35,2.36)
exploiting the fast Fourier and Legendre transforms. This algorithm proceeds as follows.

1. For every n = 1, . . . , nθ, compute

f̂mn =
2π

nφ

nφ∑
`=1

f`,ne
i 2π
nφ

(`−1)m
, m = −nθ + 1, . . . , nθ − 1.

with the help of the inverse fast Fourier transform. Particularly, for m < 0

f̂mn = f̂
(m+nφ) mod nφ
n .

This operation is of the complexity O(nθnφ log nφ).

2. For every m = −N, . . . , N , k = 1, . . . , n′θ, evaluate

F̂mk = εmN+1

nθ∑
n=1

f̂mn w̃n
P̄mN+1(cos θ′k)P̄

m
N (cos θn)− P̄mN (cos θ′k)P̄

m
N+1(cos θn)

cos θ′k − cos θn
,

54

Chapter 2. Data-Sparse Techniques for −∆ + s2

where P̄mn are the normalized associated Legendre functions, see (2.15), w̃n are the
weights of the Gauss-Legendre quadrature of the order nθ and

εmn =

√
n2 −m2

4n2 − 1
.

If cos θn = cos θ′n, the quotient can be evaluated using l’Hôpital’s rule. For m =
−N, . . . , N the matrices

(Pm1)kn =
P̄mN+1(cos θ′k)P̄

m
N (cos θn)

cos θ′k − cos θn
,

(Pm2)kn =
P̄mN (cos θ′k)P̄

m
N+1(cos θn)

cos θ′k − cos θn
, k = 1, . . . , n′θ, n = 1, . . . , nθ,

can be efficiently represented in the H-matrix format (as Nyström discretizations of
the asymptotically smooth kernels, see Section 2.1.3) or with the help of the one-
dimensional fast multipole method, see [187].

This operation can be performed with the asymptotic complexity O(Nn′θ log n′θ).

3. Compute the quantities

Fm,n =
N∑

`=−N
F̂ `ne

−i 2π
n′
φ
`(m−1)

, m = 1, . . . n′φ, n = 1, . . . , n′θ,

with the help of the fast Fourier transform.

Note that from the description of the spherical harmonics transform it follows that, for
all N ∈ N+,

RN,N = Id .

Remark 2.2.9. In our implementation of the fast multipole algorithm, we use

nθ = K + 1, nφ = 2nθ,

n′θ = N + 1, n′φ = 2n′θ.

In the course of the fast multipole algorithm it is also necessary to evaluate the function

given on the ’new’ grid
(
θ′j , φ

′
k

)
, j = 1, . . . , n′θ, k = 1, . . . , n′φ on the ’old’ grid (θj , φk) , j =

1, . . . , nθ, k = 1, . . . , nφ. The algorithm proceeds as in 1-3, interchanging in the description
nφ and n′φ and nθ and n′θ. The matrix-vector multiplication in Step 2 has to be substituted

by the matrix-vector multiplication with transposed matrices (Pm1)T , (Pm2)T .

The transpose of the spherical harmonics transform is(
RN,M

)T
= RM,N .

55

Chapter 2. Data-Sparse Techniques for −∆ + s2

Transfer Matrices (M2M and L2L Translation Operators) Let clusters τα /∈ LTI
and τβ ∈ sons(τα) be located correspondingly at the levels k and k + 1 of the cluster tree.
Let the centers of their bounding boxes be cα, cβ. Then the translation operators for the
column cluster basis are defined as:

T
τβ
c (s) = RLk+1,LkDτα,τβ (−s),

where RLk+1,Lk is the fast spherical harmonics transform and Dτα,τβ (s) is a diagonal trans-
lation operator. Its entries are explicitly given by

D
τα,τβ
`` (s) = exp (s(cβ − cα, r̂`)) , ` = 1, . . . , Lk, (2.37)

where (r̂`)
Lk
`=1 are as in (2.29).

The translation operators for the row cluster basis are defined similarly:

T
τβ
r (s) = RLk+1,LkDτα,τβ (s). (2.38)

Efficient Computation and Storage of Translation Operators Let us consider a
cluster τβ with the bounding box centered at cβ and its parent cluster τα (whose bounding
box is centered at cα). The cluster τβ is located at the level ` of the cluster tree, and the
cluster τα at the level ` − 1. Then the multipole-to-multipole (local-to-local) translation
operator T

τβ
c depend only on the cluster basis rank L` on the level `, cluster basis rank L`−1

on the level `− 1 and on the cαβ = cβ − cα. If the uniform partition of the domain is used,
there exists only a fixed number of different cαβ per level, see Figure 2.1. Hence only a few
translation operators need to be constructed and stored (and this is the reason to use the
uniform partition of the domain).

cα c̃α

cβc′β c̃′β c̃β

Figure 2.1: Bounding boxes on two levels of a uniform binary cluster tree. In this case only two
translation matrices per level are needed.

2.2.2.3 Multipole-to-Local Operators, or Coupling Matrices

Given an admissible block-cluster b = (τα, τβ) located at the level ` of the block-cluster tree,
the corresponding multipole-to-local translation operator is defined as, see [48,70],

Sb = Db, (2.39)

where Db is a diagonal matrix with elements

Db
kk = − s

16π2

nb−1∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)Pn(ĉαβ· r̂k), k = 1, . . . , L`, (2.40)

56

Chapter 2. Data-Sparse Techniques for −∆ + s2

where cαβ = cα−cβ. Recall that (r̂k)
L`
k=1 are the nodes of the quadrature on the unit sphere,

see also (2.29).

Remark 2.2.10. In the work [57], the multipole-to-local operator is defined slightly differ-
ently, namely,

Sb = RL`,N`D̃bRN`,L` , (2.41)

where D̃b is a diagonal matrix

D̃b
kk = − s

16π2

nb−1∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)Pn(ĉαβ· ŝk), k = 1, . . . , N`. (2.42)

Here (ŝk)
N`
k=1 is the set of quadrature points on the unit sphere, see Lemma 2.2.4. Given

L` = 2n2
` , an accurate choice of N` is

N` = 2n2
max, nmax ≥

⌈
2n` + nb + 1

2

⌉
, (2.43)

for all admissible b located at the level `, see also (2.34) and [57]. However, in practice,
a slightly more efficient N` = 2 max

b∈L`+
n2
b does not deteriorate the accuracy (this value also

coincides with the heuristic suggested in [57] for the non-decay case).
In the present work we use the coupling matrices defined by (2.39), rather than (2.41):

our numerical experiments did not encounter a significant deterioration of accuracy when
a simpler and more efficient (2.39) is used.

Efficient Construction and Storage of Multipole-to-Local Operators A straight-
forward computation of the diagonal translation matrix (2.40) would require O(nbL`) op-
erations, which, for s = −iκ, κ ∈ R, scales as O(κ3), see Section 2.2.3.2. Although this
operation, as we show in the second part of this section, is repeated only a constant num-
ber of times per level, it can potentially destroy asymptotic complexity estimates of the
fast multipole algorithm (see also [57]). There are several ways to deal with this problem,
namely, the use of the Clenshaw summation algorithm [60] or the local interpolation ap-
proach, briefly described in [57]. We used the method that bears similarities with the latter
one. More specifically, the function (see the expression (2.40))

f(t) = − s

(4π)2

nb−1∑
n=0

(2n+ 1)inhn(is‖cαβ‖)Pn(t),

is a polynomial in t ∈ [−1, 1] of degree nb − 1, hence can be represented by its values in nb
Chebyshev points {tj}nbj=1 of the second kind. The evaluation at any other point p ∈ [−1, 1]
can be done with the help of the barycentric Lagrange interpolation [163]:

f(p) =


nb∑
j=1

′ (−1)j
f(tj)

p−tj
nb∑
j=1

′ (−1)j

p−tj

, p 6= tj ,

f(tj), p = tj ,

(2.44)

57

Chapter 2. Data-Sparse Techniques for −∆ + s2

where the prime indicates that the terms j = 1 and j = nb are multiplied by 1
2 . Our task

is to evaluate this fraction for O(k2) points p = p1, . . . , pL` . Clearly, summations in the
numerator and the denominator can be viewed as the multiplication of the matrix

Mij =

{
1

pi−tj , pi 6= tj ,

0, else ,

i = 1, . . . , Lb,

by the corresponding vectors. This matrix, in turn, for large nb, L` can be efficiently
approximated with the help of H-matrix techniques, and the evaluation of (2.44) for Lb
points will require at most O(L` logL`) operations. The cases pj = ti should be treated
explicitly. The disadvantage of this method is that it needs the H-matrix approximation to
be quite accurate and hence is efficient only for rather big values of nb, L`.

As before, the symmetry of the quadrature on the unit sphere, as well as the uniformity
of the block-cluster tree allow us to construct and store per level only a small number of
multipole-to-local translations (see also [48]). This is due to the fact that the elements of
the matrix Db

Db
kk = − s

16π2

nb−1∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)Pn(ĉαβ· r̂k), k = 1, . . . , N`,

depend only on the direction ĉαβ and on the distance db = ‖cαβ‖. The value nb, as we show
later, depends only on db and the size of a cluster at the level `. Hence the elements of the
matrix Db can be obtained by permuting the diagonal entries of the matrix

D̃b
kk = − s

16π2

nb−1∑
n=0

(2n+ 1)(−i)nhn(is‖cαβ‖)Pn(λ̂· r̂k), k = 1, . . . , N`,

where λ̂ = [ηĉαβ,1, µĉαβ,2, νĉαβ,3], with η, µ, ν ∈ {−1,+1}.
A more efficient realization of (2.41) in (2.12) reads as

yt = RL`,N`
∑
v∈Rt

DbRL`,N`xv.

Remark 2.2.11. Although sections on efficient construction and storage of the cluster
basis and translation matrices may seem to provide unnecessary technical details, they are
crucial for the implementation of the fast multipole algorithm. An algorithm implemented
without them appears to be unpractical even for quite large problems (about 105 unknowns).

2.2.3 Error Control of the High-Frequency FMM

The question of the proper choice of the lengths of expansions in the fast multipole method
had been intensively studied in [51,52,61,69,70,130,152]. Since Bessel functions are rather
difficult to analyze, in most cases the error analysis is based on asymptotic expansions or
explicit bounds on these functions; a very precise, near-optimal error analysis was recently
made in [51,52]. To our knowledge, these works use the fact that the wavenumber is purely
real, and hence cannot be in a straightforward way adapted to the complex wavenumber
case. In the recent works [91, 102] the authors numerically investigate the error of the

58

Chapter 2. Data-Sparse Techniques for −∆ + s2

truncation of the Gegenbauer’s series in the case when the wavenumber has a decaying
part, as well as provide empirical formulas for the choice of the length of the expansion. In
this section we study analytically the error of the truncation of the Gegenbauer’s series for
the complex wavenumber, as well as analyze other sources of errors of the fast multipole
method.

2.2.3.1 Behavior of Spherical Bessel and Hankel Functions

First we examine the behavior of spherical Bessel and Hankel functions of a complex argu-
ment. There exists a wide range of literature on these functions, see e.g. classical mono-
graphs [149,184], and their asymptotic behavior is to a large extent known. We summarize
these results here. First we consider spherical Bessel functions jn(z), arg z ∈ (0, π) in
different regimes.

1. Fixed order n, small argument z. As z → 0 [3, (9.1.7)]:

jn(z)→
√
πzn

2n+1

1

Γ(n+ 3
2)
.

.

2. Order n : n < |z|, |z| → +∞. We are interested in the range arg z ∈ (0, π). The
expression [3, (10.1.14)]

jn(z) =
1

2
(−i)n

1∫
−1

eiztPn(t)dt (2.45)

shows that

|jn(−z̄)| = |jn(z)| .

For z ∈
(
0, π2

)
, the following asymptotic expansion holds for jn(z), see expressions

(10.17.13, 10.17.14, 10.17.15) combined with (10.4.4) in [1]:

jn(z) =
1

2z

(
(−i)n+1eiz + in+1e−iz − bn

(−i)n+2eiz

z

−bn
in+2e−iz

z
+ (−i)n+1eizR+

n (z) + in+1e−izR−n (z)

)
,

where

bn =
(2n+ 1)2 − 1

8
,

and

|R+
n | ≤ 2

((2n+ 1)2 − 1)((2n+ 1)2 − 32)

2 · 82

e
n2+n

|z|2

|z|2
,

|R−n | ≤ 4
((2n+ 1)2 − 1)((2n+ 1)2 − 32)

2 · 82

e
2n

2+n

|z|2

|z|2
.

59

Chapter 2. Data-Sparse Techniques for −∆ + s2

0 20 40
10−9

102

1013

n
0 20 40

10−15

10−5

105

n

α = 0 α = π
8

α = π
4 α = 3π

8
α = π

2

Figure 2.2: In the left plot |jn(reiα)| for different values of α and fixed r = 30 is depicted. The
magnitude |hn(reiα)| for the same values of α and r is plotted on the right.

From the above we can see that

|jn(z)| ∼ eIm z

2|z|

∣∣∣∣(1− ibn
z

)
+ (−1)n+1e2iz

(
1 + i

bn
z

)
+ f(z, n)

∣∣∣∣ ,
where f(z, n) = O

(
n4

|z|2

)
. Alternatively,

|jn(z)| ∼ eIm z

2|z|
∣∣(1 + (−1)n+1e2iz

)
+ δ(z, n)

∣∣ , (2.46)

where δ(z, n) = O
(
n2

|z| + n4

|z|2

)
.

3. Regime n ≈ |z|, n → +∞. Let z = (n + 1
2)t. We are interested in the case

arg t ∈ (0, π).

The asymptotic expansion for this regime can be found in [3, 9.3.35,10.4.59]:

jn

((
n+

1

2

)
t

)
∼ 1

(2n+ 1)
√
t

e(n+ 1
2

)η(t)

(1− t2)
1
4

(2.47)

where η(t) =
√

1− t2 − log
(

1+
√

1−t2
t

)
.

In the case t ∈ R, spherical Bessel functions jn(t(n + 1
2)) oscillate, however, remain

bounded as n→ +∞.

4. The order is much larger than the argument n� |z|, n→ +∞.

In this regime jn(z) decays super-exponentially, see [3, (9.3.1)]:

jn(z) ∼
√

e

2

(ez)n

(2n+ 1)n+1
. (2.48)

Another bound on spherical Bessel functions of complex argument valid for all n ∈ N is
given by [3, 9.1.62]

|jn(z)| ≤ |z|n

(2n+ 1)!!
eIm z =

|z|n(2n)!

2nn!
eIm z (2.49)

60

Chapter 2. Data-Sparse Techniques for −∆ + s2

Using Stirling’s approximation

1 ≤ n!√
2πn

(
n
e

)n ≤ e√
2π
,

this can be rewritten as

|jn(z)| ≤ eIm z e

2|z|
√
π

(
|z|e

2(n+ 1)

)n+1

. (2.50)

The behavior of spherical Hankel functions hn(z) is in some sense opposite to that of
spherical Bessel functions: they decay exponentially with Re z in the regime n < |z|, see
Figure 2.2.

1. Fixed order n, small argument z. The behavior of the function hn(z), z → 0, is
given by [3, 9.1.9]:

hn(z)→ −i
Γ(n+ 1

2)
√
π

2n

zn+1
(2.51)

as z → 0.

2. Order n < |z|.
According to [1, 10.17.13,10.17.14,10.17.15],

|hn(z)| = e− Im z

|z|

∣∣∣∣1 + i
bn
z

+R1(z)

∣∣∣∣ ,
where bn = (2n+1)2−1

8 and, for arg z ∈ [0, π] (which is the case of interest for us),

|R1(z)| ≤
(
(2n+ 1)2 − 1

) (
(2n+ 1)2 − 32

)
2 · 82|z|2

e
n2+n

|z|2 .

This implies that in the regime n < |z|

|hn(z)| ∼ (1 + γ (|z|, n))
e− Im z

|z|
, (2.52)

where γ(|z|, n) = O
(
n2

|z| + n4

|z|2

)
.

3. Regime n ≈ |z|, n → +∞. Let z = (n + 1
2)t. We are interested in the case

arg t ∈ (0, π).

The behavior of the spherical Hankel function hn(z) is defined by the asymptotic
expansion given in [3, 9.3.37, 10.4.59]:

hn

((
n+

1

2

)
t

)
∼ − 2i

(2n+ 1)
√
t(1− t2)

1
4

e−(n+ 1
2

)η(t), (2.53)

where η(t) =
√

1− t2 − log
(

1+
√

1−t2
t

)
. In our case arg t ∈ (0, π).

If t is purely real, the function oscillates but remains bounded with n→ +∞.

61

Chapter 2. Data-Sparse Techniques for −∆ + s2

4. The order is much larger than the argument n� |z|, n→ +∞. In this regime
hn(z) experiences superexponential growth, see [3, 9.3.1]:

hn(z) ∼ − i
z

√
2

e

(
2n+ 1

ez

)n
. (2.54)

Additionally, magnitudes of spherical Hankel functions are strictly monotonically in-
creasing in their order, see [1, 10.37.1]:

|hn(z)| < |hm(z)|, m > n, (2.55)

when Re z ≥ 0. The proof of this result can be found in [88].

2.2.3.2 Truncation of the Fast Multipole Expansion

In this section we study the dependence of the truncation parameter N in (2.28) on the
complex wavenumber s ∈ C, Re s > 0.

Let ‖x‖ and ‖y‖ be fixed, and let also ‖x‖ > ‖y‖. We are looking for N s.t.∣∣∣∣∣h0(is‖x− y‖)−
N−1∑
`=0

(2`+ 1)h`(is‖x‖)j`(is‖y‖)P` (x̂· ŷ)

∣∣∣∣∣ < ε, (2.56)

for a fixed ε > 0. Crucially, to truncate the Gegenbauer’s series we use the criteria based
on the absolute error rather than the relative one, similarly to [57,91].

Let t = x̂ · ŷ, t ∈ [−1, 1]. Then the addition theorem for the spherical Bessel functions
(2.24) is the Legendre polynomial expansion of the function

f(t) = h0

(
is
(
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖t

) 1
2

)
= − e−s(‖x‖

2+‖y‖2−2‖x‖‖y‖t)
1
2

s (‖x‖2 + ‖y‖2 − 2‖x‖‖y‖t)
1
2

in t. For Re t < tmax = ‖x‖2+‖y‖2
2‖x‖‖y‖ the function f(t) is analytic, hence Theorem 2.2.1 can be

applied. The parameter ρ for the corresponding Bernstein ellipse is defined as

ρ = tmax +
√
t2max − 1 =

‖x‖
‖y‖

.

This rate of convergence coincides with the one deduced in [152,155].

Remark 2.2.12. If Re s = 0 (no-decay case), the length of the Gegenbauer’s series (2.56)
can be estimated by a semi-empirical formula, see [61],

N = |s|‖y‖+ C log(π + |s|‖y‖),

where C is the constant that depends on accuracy. The convergence of the Gegenbauer’s
series for large |s|‖y‖ starts when jn(is‖y‖) starts decaying superexponentially [69, 70], see
(2.48).

Let us first summarize the results of this section. The criteria based on (2.56) is often
used to choose the length of the multipole expansion, see [57,70]. Under the condition∣∣∣∣ Im s

Re s

∣∣∣∣ < C, Re s > σ > 0, (2.57)

62

Chapter 2. Data-Sparse Techniques for −∆ + s2

for some C, σ > 0, the length of the fast multipole expansion can be bounded by a constant
independent of Im s (that depends though on C, σ, ε, ρ). This behavior is similar to that
of H-matrices, see Section 2.1.4. The result can be seen by noticing that there exists r ∈ R,
r > σ, s.t. for all s ∈ C with |s| > r:

|h0(is‖x− y‖)| =

∣∣∣∣∣e−Re s‖x−y‖

|s|‖x− y‖

∣∣∣∣∣ < ε.

Hence the length of the expansion is bounded by the maximal of the lengths of the expan-
sions over all s ∈ C satisfying (2.57) and |s| < r. This justifies the use of the empirical
formulas for the length of the expansion derived in [91]: it indeed can be bounded by a
constant when decay is significantly large. Another implication of this is the complexity of
the fast multipole approximation to the Galerkin discretization of the Helmholtz single layer
boundary operator: for multilevel fast multipole methods based on the expansion (2.56),
for s satisfying (2.57) and M = O(|s|2), it scales as O(M).

For s = |s|eiα with |α| close to π
2 this constant bound is far from optimal. This can be

seen in Figure 2.3 (‖y‖ = 2, ‖x‖ = 4, x̂·ŷ = 1): the length of the expansion needed to achieve
a given accuracy increases with increasing |s| on the whole interval under consideration.
Notably, for |α| ≤ π

4 , the length of the expansion does not seem to increase with |s|. Our
goal is to provide some theoretical justification for this phenomenon. Here we present more
refined bounds on (2.56), motivating as well the error analysis in the subsequent sections.

0 10 20 30 40 50
0

50

100

150

|s|

L

α = 0.4π
2

α = 0.5π
2

α = 0.6π
2

α = 0.7π
2

α = 0.85π
2

α = 0.9π
2

α = 0.95π
2

α = 0.98π
2

α = π
2

0 10 20 30 40 50
0

20

40

60

80

100

120

|s|

α = 0.5π
2

α = 0.6π
2

α = 0.9π
2

α = 0.95π
2

α = 0.98π
2

α = π
2

Figure 2.3: Dependence of the length of the truncated expansion for accuracies ε = 10−12 (the left
plot) and ε = 10−4 (the right plot) on |s|, for s = |s|eiα and different values of α.

The following result is due to [182].

Theorem 2.2.13. Let the function f be analytic inside and on a Bernstein ellipse Eρ,
ρ > 1. Let {an} be the coefficients of the Legendre series expansion of f . Then the following
bound holds true for all n ≥ 0:

|an| ≤ (2n+ 1)ρ−n−1Mπ−1l(Eρ)(1− ρ−2)−1,

where M = max
z∈Eρ

|f(z)| and l(Eρ) is the circumference of the ellipse Eρ.

63

Chapter 2. Data-Sparse Techniques for −∆ + s2

The next lemma bounds the values of the function f(t) on the Bernstein ellipse.

Lemma 2.2.14. Given s = |s|eiα, α ∈
[
−π

2 ,
π
2

]
, the function

f(t) = h0

(
is
(
x2 + y2 − 2‖x‖‖y‖t

) 1
2

)
,

inside the Bernstein ellipse Eξ, ξ < ρ = ‖x‖
‖y‖ , is bounded by

|f(t)| ≤ max
(

1, e‖y‖|s|(| sinα|−cosα)λ(ρ)
)(
|s|‖y‖√ρ

√
ρ− ξ +

1

ρ
− 1

ξ

)−1

,

where

λ(ρ) =
1

2

(
ρ− 1

ρ

)
. (2.58)

Proof. Let us bound the numerator and the denominator of

f(t) = −
exp

(
−s
(
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖t

) 1
2

)
s (‖x‖2 + ‖y‖2 − 2‖x‖‖y‖t)

1
2

on the boundary of the Bernstein ellipse

Eξ =

{
z : z =

ξeiφ + ξ−1e−iφ

2
, φ ∈ [0, 2π)

}
, ξ < ρ =

‖x‖
‖y‖

.

The absolute value of the denominator

d(φ) : =

∣∣∣∣‖x‖2 + ‖y‖2 − 2‖x‖‖y‖(ξeiφ + ξ−1e−iφ)

2

∣∣∣∣
1
2

=
√
‖x‖‖y‖

∣∣∣ρ+ ρ−1 − ξeiφ − ξ−1e−iφ
∣∣∣ 1

2
.

The minimum of this expression is achieved when φ = 0:

d(φ) ≥ √ρ‖y‖
√
ρ− ξ +

1

ρ
− 1

ξ
.

Let, for a given ξ < ρ,

G(t) := exp
(
−s
(
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖t

) 1
2

)
, t ∈ Eξ.

From the maximum principle it follows that for all t in the interior of the Bernstein ellipse
Eρ (and hence Eξ, 1 < ξ < ρ),

|G(t)| ≤ max
t′∈Eρ

|G(t′)|.

Hence, we are looking for max
t′∈Eρ

|G(t′)|. Given s = |s|eiα, for all t ∈ Eρ,

|G(t)| ≤

∣∣∣∣∣exp

(
−s(2‖x‖‖y‖)1/2

√
ρ+ ρ−1

2
− ρeiφ + ρ−1e−iφ

2

)∣∣∣∣∣
= exp

(
−(2‖x‖‖y‖)1/2|s|

√
|z| cos

(
α+

β

2

))
, (2.59)

64

Chapter 2. Data-Sparse Techniques for −∆ + s2

where

z =
ρ+ ρ−1

2
− ρeiφ + ρ−1e−iφ

2
, β = arg z. (2.60)

We find |z| = Z(β) using the geometric meaning of (2.60).

|z|r

F1 F2 σ

γ v

β

Figure 2.4: Bernstein ellipse

The foci of the Bernstein ellipse lie in the points

F1 = (−1, 0), F2 = (1, 0).

From the properties of the Bernstein ellipse, using Figure 2.4,

γ =
ρ+ ρ−1

2
+ 1, σ =

ρ+ ρ−1

2
− 1, (2.61)

r + v = γ + σ = ρ+ ρ−1, (2.62)

r2 = |z|2 + γ2 − 2|z|γ cosβ, (2.63)

v2 = |z|2 + σ2 − 2|z|σ cosβ, (2.64)

where
β ∈

(
−π

2
,
π

2

)
.

From equations (2.62) and (2.64), we obtain the following expression for r, |z|:

|z|2 + σ2 − 2|z|σ cosβ = (γ + σ − r)2

(2.63)
= γ2 + σ2 + (|z|2 + γ2 − 2|z|γ cosβ) + 2γσ − 2(γ + σ)r.

Then r can be written as a function of |z|:

r = γ − |z|γ − σ
γ + σ

cosβ
(2.61)

= γ − 2|z| cosβ

γ + σ
.

Hence,

r2 =

(
γ − 2|z| cosβ

γ + σ

)2

(2.63)
= |z|2 + γ2 − 2|z|γ cosβ.

From this we obtain the following expression for |z|:

|z|2
(

1− 4 cos2 β

(γ + σ)2

)
= 2|z|γ cosβ

(
1− 2

γ + σ

)
.

65

Chapter 2. Data-Sparse Techniques for −∆ + s2

From this follows that |z| = 0 or

|z| = 2γ cosβ

(
1− 2

σ + γ

)(
1− 4 cos2 β

(σ + γ)2

)−1

, β ∈
(
−π

2
,
π

2

)
. (2.65)

Note that for |β| = π
2 the above expression gives |z| = 0.

Hence, inserting (2.65) into (2.59), we obtain:

max
t∈Eρ

G(t) = max
β∈[−π2 ,

π
2]
g(β),

where

g(β) = exp

(
−2

(
‖x‖‖y‖γ

(
1− 2

σ + γ

))1/2

|s| (2.66)

×
√

cosβ

(
1− 4 cos2 β

(σ + γ)2

)−1/2

cos

(
α+

β

2

))
.

This expression has to be maximized in β. Let µ := 2
σ+γ and

R(β) := −
√

cosβ cos

(
α+

β

2

)(
1− µ2 cos2 β

)− 1
2 .

We consider two cases corresponding to α ≥ 0. The bounds for α ≤ 0 can be found from
similar considerations.

1. α ∈
[
0, π4

]
. In this case, for all β ∈

(
−π

2 ,
π
2

)
,

− cos

(
α+

β

2

)
≥ 0

and hence

R(β) ≤ 0.

2. α ∈
(
π
4 ,

π
2

]
. The maximum of R(β) is achieved in some β = β∗ ∈

[
−π

2 ,
π
2

]
, s.t.

cos

(
α+

β∗
2

)
≤ 0,

which shows that

β∗ ∈
[
π − 2α,

π

2

]
.

Setting p := cosβ, with β lying inside the above interval:

R(β) = −√p(1− µ2p2)−
1
2

(
cosα

√
1 + p

2
− sinα

√
1− p

2

)

≤ √p(1− µ2p2)−
1
2

(
sinα

√
1− p

2
− cosα

√
1 + p

2

)

≤
√
p(1− p)

2

(
1− µ2p2

)− 1
2 (sinα− cosα) .

66

Chapter 2. Data-Sparse Techniques for −∆ + s2

Next we find the maximum of the function f(p) =
√

p(1−p)
2(1−µ2p2)

on [0, 1]. It is achieved
at

p∗ =
1−

√
1− µ2

µ2

and equals

f(p∗) =

√
1−

√
1− µ2

2µ
.

Hence,

R(β) ≤

√
1−

√
1− µ2

2µ
(sinα− cosα).

The bound in the statement of the lemma can be deduced noting that

ρ−1 =
1−

√
1− µ2

µ
, (2.67)

ρ =
1 +

√
1− µ2

µ
(2.68)

and γ = 1
µ+1. More precisely, the coefficient in the exponent near |s|‖y‖(sinα−cosα)

in (2.66) is

λ(ρ) = 2
√
ργ(1− µ)

√
1−

√
1− µ2

2µ

=
√
ρ
√
γ(1− µ)

√
ρ−1

√
µ
,

where we applied (2.67). Inserting the explicit expression of γ in terms of µ, we obtain

λ(ρ) =

√
1− µ2

µ
,

which, using (2.67) and (2.68), gives the explicit expression for λ(ρ).

Theorem 2.2.13 and Lemma 2.2.14 allow us to formulate the following bound.

Corollary 2.2.15. Let ‖x‖ > ‖y‖ > 0 and 1 < ξ < ρ = ‖x‖
‖y‖ . Then for s = |s|eiα s.t.

α ∈ [−π
2 ,

π
2] the following bound holds true:

|hn(is‖x‖)jn(is‖y‖)| ≤ 2ξ−n−1
√
ξ2 + ξ−2 max

(
1, e‖y‖|s|(| sinα|−cosα)λ(ρ)

)
×
(
|s|‖y‖√ρ(1− ξ−2)

√
ρ− ξ +

1

ρ
− 1

ξ

)−1

,
(2.69)

where λ(ρ) is given by (2.58).

67

Chapter 2. Data-Sparse Techniques for −∆ + s2

Proof. To apply Theorem 2.2.13, we need to bound the perimeter of the ellipse (analytically,
it is expressed via the complete elliptic integral of the second kind):

l(Eξ) < 2π

√
a2 + b2

2
,

where a, b are correspondingly the lengths of the semi-major and semi-minor axes of the
ellipse Eξ. Hence

l(Eξ) < 2π

√
ξ2 +

1

ξ2
.

For s = |s|eiα, |α| ≤ π
4 , the length of the expansion (2.56) can be bounded by a constant

that is independent of |s|, α for the range of |s| > σ > 0 for a fixed σ > 0. This is not the
case for π

4 < |α| ≤
π
2 : Corollary 2.2.15 shows that

N = O (|s|‖y‖ (| sinα| − cosα)) ,

which is tight for smaller values of |s| and α close to π
2 , however is pessimistic as |s| → +∞,

as Figure 2.5 shows.

0 50 100 150
0

100

200

300

|s|

α = π
2

α = 0.95π
2

α = 0.9π
2

α = 0.8π
2

0 10 20 30 40 50
0

20

40

60

80

|s|

α = 0.7π
2

α = 0.5π
2

α = 0.4π
2

α = 0.3π
2

α = 0.2π
2

α = 0.1π
2

α = 0π
2

Figure 2.5: In both plots the dependence of the length of the expansion (2.56) on |s| (s = |s|eiα) for
ε = 10−12 and various α is shown.

Remark 2.2.16. Our numerical experiments show that the length of the expansion for
Re s > 0, moderate values of ρ (ρ ≥ 1.5) and moderate values of |s| satisfies:

N � |s|‖x‖. (2.70)

The reason for this is that in the presence of decay, i.e. when Re s > 0, the length of the
expansion is not larger the length of the expansion in the no-decay case (keeping Im s fixed),
see also Figure 2.6 and Remark 2.2.12. For the latter there exist tight formulas showing
(2.70), see e.g. [52].

68

Chapter 2. Data-Sparse Techniques for −∆ + s2

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Re s

Im s = 0.1, ε = 1e− 6 Im s = 0.1, ε = 1e− 10 Im s = 5, ε = 1e− 6

Im s = 5, ε = 1e− 10 Im s = 20, ε = 1e− 6 Im s = 20, ε = 1e− 10

Im s = 50, ε = 1e− 6 Im s = 50, ε = 1e− 10

Figure 2.6: The length of the expansion for s = sr + isi, as defined in (2.56), with varying sr and
fixed si; ‖x‖ = 3, ‖y‖ = 2.

Recall that the criteria based on (2.56) is typically used to choose the length of the
multipole expansion, see [57, 70]. Numerical experiments, see Figure 2.5, show that the
length of the expansion for larger values of |s|‖y‖ can be smaller than for smaller |s|‖y‖.
In the fast multipole algorithm, ‖y‖ stands for the diameter of a cluster, and ‖x‖ for the
distance between the centers of the admissible clusters, see also Section 2.2.2. Assuming
that ρ = ‖x‖

‖y‖ is fixed, we can conclude that for larger clusters one may need the expansion
of the smaller length than for smaller ones. It is not obvious if such choice of the length of
the expansion leads to the deterioration of the accuracy when doing multipole-to-multipole
and local-to-local transforms. This motivates the need for the analysis of the error of the
multilevel fast multipole method for a complex wavenumber case.

2.2.3.3 Multilevel FMM Error Control

Give the block-cluster tree TI×I , let τα and τβ be two admissible clusters (the block cluster
(τα, τβ) belongs to the set of admissible leaves of the block-cluster tree). In this section we
consider the error of the approximation of h0(is‖x − y‖) by h̃0 computed in the course of
the fast multipole algorithm:

E = |h0(is‖x− y‖)− h̃0|, s ∈ C, (2.71)

where x ∈ τα, y ∈ τβ. .
There exist several empirical formulas [52, 61, 91, 102] that provide tight estimates for

the length of expansions in the fast multipole algorithm. In works [57, 70] authors suggest
that it can be chosen analyzing the convergence of the Gegenbauer’s series (2.56). We adopt
this approach.

In [130] the authors analyzed the full error of the fast multipole algorithm in the case
is ∈ R. Their error analysis uses superexponential decay of spherical Bessel functions
jn(is‖y‖) in the regime n� |s|‖y‖ and the geometric convergence of the quadrature on the
unit sphere for interpolating of multipole expansions in the course fast multipole method.

69

Chapter 2. Data-Sparse Techniques for −∆ + s2

A straightforward application of this error analysis to the case of the complex wavenumber
may result in pessimistic error bounds, since it wouldn’t take into account the decay of
spherical Hankel functions.

In this section we derive an explicit expression for the error of the multilevel fast multi-
pole method for the case of general s ∈ C and comment on the choice of lengths of multipole
expansions.

We study the following simple case.

Assumption 2.2.17. Let the clusters τα and τα′ ∈ sons(τα), τβ and τβ′ ∈ sons(τβ) be
given. The points x ∈ τβ′, y ∈ τα′. Additionally, τα, τβ are admissible, in the sense of
Definition 2.1.7. The points x, y are chosen so that ‖x − y‖ = dist(τα, τβ) (typically, it is
assumed that the error of the approximation provided by the fast multipole method is larger
in close points of the admissible clusters). We assume that τα′ is a leaf, and so is τβ′. By
yα, xβ, yα′ , xβ′ we denote the centers of the bounding boxes of the clusters τα, τβ, τα′, τβ′.

We assume that all spherical harmonic transforms are done exactly, see Section 2.2.2.2.
Recall that with each level of the cluster tree we associate a set of quadrature points on the
unit sphere given by (2.25), i.e.

(ŝk)
2n2
θ

k=1. (2.72)

We set nθ = N at the level where the children clusters are located and nθ = M at the level
of parent clusters. Let us also define

N∗ = min(N,M).

The fast multipole algorithm proceeds in the following stages.

1. Evaluation of the multipole expansion for the cluster τβ′ . The function f(ŝ) =

e−s(ŝ,x−xβ′) is sampled on the grid (2.72) of size N × 2N , see Remark 2.2.5.

2. Evaluation of the multipole expansion for the cluster τβ. This is done in two stages.
First, the multipole expansion for the cluster τβ′ is re-sampled on the grid of size
M × 2M with the help of the spherical harmonic transform operator (and possibly
the spherical harmonic expansion of f(ŝ) is truncated to min(N,M) = N∗ summands,
see Section 2.2.2.2 and Remark 2.2.9). The result of this operation is the vector of
values of the function

b(ŝ) =

N∗−1∑
n=0

n∑
m=−n

βmn Y
m
n (ŝ),

βmn = QN

[
e−s(q̂,x−xβ′)Y m∗

n (q̂)
]

in the points of the grid (2.72) of size M × 2M . The expression for βmn is obtained
using Lemma 2.2.4. An alternative expression for b(ŝ) can be obtained using (2.19):

b(ŝ) =

N∗−1∑
n=0

2n+ 1

4π
QN

[
e−s(q̂,x−xβ′)Pn(ŝ · q̂)

]
.

Next,

B(ŝ) = e−s(xβ′−xβ ,ŝ)b(ŝ)

is evaluated at the points of the grid (2.72) of size M × 2M .

70

Chapter 2. Data-Sparse Techniques for −∆ + s2

3. Multipole-to-local translation. At each point of the grid ŝk, k = 1, . . . , 2M2, B(ŝk) is
multiplied by

Mα,β(ŝk) =
1

4π

L−1∑
`=0

(2`+ 1)(−i)`h`(is‖yα − xβ‖)P`
(

yα − xβ
‖yα − xβ‖

· ŝk
)
, (2.73)

where L ∈ N. The result of this operation is the vector of values of the function

F (ŝ) = Mα,β(ŝ)B(ŝ) (2.74)

in the points of the grid (2.72) of size M × 2M .

4. Local-to-local translation. First, at each point of the grid F (ŝ) is multiplied by
e−s(yα−yα′ ,ŝ) evaluated at this point. The result of this operation is the vector of
values of

A(ŝ) = e−s(yα−yα′ ,ŝ)F (ŝ)

in the points of the grid (2.72) of size M×2M . Next, the (adjoint) spherical harmonic
transform operator is applied to A(ŝ), possibly truncating its spherical harmonic ex-
pansion and re-sampling it on the grid (2.25) of size N × 2N . The result of this
operation is the vector of values of the function

a(ŝ) =

N∗−1∑
n=0

n∑
m=−n

αmn Y
m
n (ŝ),

αmn = QM [A(q̂)Y m∗
n (q̂)] ,

in the points of the grid (2.72) of size N × 2N . The explicit expression for the
coefficients αmn is:

αmn = QM

[
e−s(yα−yα′ ,q̂)Mα,β(q̂)e−s(xβ′−xβ ,ŝ)b(q̂)Y m∗

n (q̂)
]
.

Using the addition theorem for Legendre functions (2.19),

a(ŝ) =

N∗−1∑
n=0

2n+ 1

4π
QM [A(q̂)Pn(q̂ · ŝ)] .

Finally, the result is evaluated at the point y, giving the approximation

h̃0 = QN

[
e−s(yα′−y,ŝ)a(ŝ)

]
.

Making use of the linearity of the quadrature rule, we end up with the following approx-
imation to h0(is‖x− y‖):

h̃0 = QŝM

[
N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
es(y−yα′ ,q̂)Pk(q̂ · ŝ)

]
× e−s(yα−yα′ ,ŝ)Mα,β(ŝ)e−s(xβ′−xβ ,ŝ)

N∗−1∑
n=0

2n+ 1

4π
Qr̂N

[
e−s(x−xβ′ ,r̂)Pn(r̂ · ŝ)

]]
.

71

Chapter 2. Data-Sparse Techniques for −∆ + s2

Our goal is to rewrite this approximation in a more convenient form. For the sake of
brevity of presentation we made all computations in Appendix A. We will need the following
auxiliary quantities:

U(ŝ) = es(y−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ),

V (ŝ) = es(yα′−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ),

rK(x, ŝ) =

+∞∑
n=K

(2n+ 1)injn(is‖x‖)Pn(x̂ · ŝ).

As demonstrated in Appendix A, the error of the fast multipole method can be written
as a sum of terms of the type:

E1 = QŝM

[
es(y−yα,ŝ)Mα,β(ŝ)es(xβ−x,ŝ)

]
− h0(is‖x− y‖), (2.75)

and

E2 = −QŝM
[
U(ŝ)rN∗(x− xβ′ , ŝ)

]
,

E3 = QŝM

[
U(ŝ)

N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
r2N−N∗+1(x− xβ′ , q̂)Pk(q̂ · ŝ)

]]
,

E4 = QŝM
[
V (ŝ)rN∗(yα′ − y, ŝ)rN∗(x− xβ′ , ŝ)

]
,

E5 = −QŝM

[
V (ŝ)rN∗(x− xβ′ , ŝ)

N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]
,

E6 = QŝM

[
V (ŝ)

N∗−1∑
m=0

2m+ 1

4π
Qr̂N

[
r2N−N∗+1(x− xβ′ , r̂)Pm(r̂ · ŝ)

]
×

N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]
.

(2.76)

Our goal is to show how L in (2.73), N and M have to be chosen to control each of the
terms Ej , j = 1, . . . , 6. We will make use of the trivial bound, see also Lemma 2.2.4:

|QM [f(q̂)]| =

∣∣∣∣∣∣
2M2∑
k=1

wkf(q̂k)

∣∣∣∣∣∣ ≤ sup
q̂∈S2

|f(q̂)|
2M2∑
k=1

wk = 4π sup
q̂∈S2

|f(q̂)|. (2.77)

The sum of the quadrature weights wk = 4π, because
2M2∑
k=1

wk equals the quadrature rule

of Lemma 2.2.4 applied to evaluate the integral
∫
S2

dŝ = 4π, which in turn is computed by

this quadrature rule exactly (as an integral over the product of two spherical harmonics
Y 0

0 (ŝ) ≡ 1), see Lemma 2.2.4.
Recall that

|Pn(t)| ≤ 1, t ∈ [−1, 1] . (2.78)

72

Chapter 2. Data-Sparse Techniques for −∆ + s2

We will make use of (2.22):

eiz cos θ =

∞∑
n=0

(2n+ 1)injn(z)Pn(cos θ). (2.79)

For the sake of brevity, from now on

cαβ := yα − xβ.

First, let us assume that M ≥ L, where L is as in (2.73). Due to the monotonicity result
(2.55) and the bound (2.78),

|Mα,β(ŝ)| = 1

4π

∣∣∣∣∣
L−1∑
`=0

(2`+ 1)(−i)`h`(is‖cαβ‖)P` (ĉαβ· ŝ)

∣∣∣∣∣
≤ 1

4π

L−1∑
`=0

(2`+ 1)|h`(is‖cαβ‖)|

≤ 1

4π
|hL−1(is‖cαβ‖)|

L−1∑
`=0

(2`+ 1)

≤ L2

4π
|hL−1(is‖cαβ‖)|. (2.80)

The following lemma shows that the error E1 is not related to multipole-to-multipole
(local-to-local) translations and equals the error of the one-level fast multipole method.
Similar statements (though formulated slightly differently) have been proved in [130,152].

Lemma 2.2.18. Let ε > 0 be fixed. Let L in (2.73) be s.t.

∞∑
m=L

(2m+ 1)|jm(is‖cαβ + x− y‖)hm(is‖cαβ‖)| ≤
(
1 + L2

)−1
ε,

and M ≥ L. Then the following bound holds for E1 = E1(M,L) defined by (2.75):

|E1| < ε.

Before proving this lemma we would like to remark that such L exists, since the series
∞∑
m=0

(2m+ 1)|jm(is‖cαβ + x− y‖)hm(is‖cαβ‖)| converges geometrically, see Section 2.2.3.2.

Proof of Lemma 2.2.18. Let

H := QŝM

[
es(y−yα,ŝ)Mα,β(ŝ)es(xβ−x,ŝ)

]
.

Setting v := yα − y − xβ + x, we obtain:

H := QŝM

[
e−s(v,ŝ)Mα,β(ŝ)

]
(2.79,2.73)

=
1

4π

∞∑
k=0

(2k + 1)ikjk(is‖v‖)
L−1∑
`=0

(2`+ 1)(−i)`h`(is‖cαβ‖)QŝM [P` (ĉαβ· ŝ)Pk(v̂ · ŝ)] .

73

Chapter 2. Data-Sparse Techniques for −∆ + s2

We split

H =
1

4π

2M−L∑
k=0

(2k + 1)ikjk(is‖v‖)
L−1∑
`=0

(2`+ 1)(−i)`h`(is‖cαβ‖)QŝM [P` (ĉαβ· ŝ)Pk(v̂ · ŝ)]

+
1

4π

+∞∑
k=2M−L+1

(2k + 1)ikjk(is‖v‖)
L−1∑
`=0

(2`+ 1)(−i)`h`(is‖cαβ‖)QŝM [P` (ĉαβ· ŝ)Pk(v̂ · ŝ)] .

Applying Lemma 2.2.8 to the above and using M ≥ L, we obtain:

H =

L−1∑
k=0

(2k + 1)jk(is‖v‖)hk(is‖cαβ‖)Pk (ĉαβ · v̂)

+
+∞∑

k=2M−L+1

(2k + 1)ikjk(is‖v‖)QŝM [Mα,β (ŝ)Pk (ŝ · v̂)]

(2.24)
= h0(is‖x− y‖)−

+∞∑
k=L

(2k + 1)jk(is‖v‖)hk(is‖cαβ‖)Pk (ĉαβ · v̂)

+
+∞∑

k=2M−L+1

(2k + 1)ikjk(is‖v‖)QŝM [Mα,β (ŝ)Pk (ŝ · v̂)] .

Inequalities (2.77,2.78,2.80) let us bound

|E1| ≤
+∞∑
k=L

(2k + 1) |jk(is‖v‖)hk(is‖cαβ‖)|+ L2
∞∑
k=L

(2k + 1) |jk(is‖v‖)hL−1(is‖cαβ‖)| .

From the monotonicity of spherical Hankel functions (2.55), it follows:

|E1| ≤
+∞∑
k=L

(2k + 1) |jk(is‖v‖)hk(is‖cαβ‖)|+ L2
∞∑
k=L

(2k + 1)|jk(is‖v‖)hk(is‖cαβ‖)|

≤
(
1 + L2

) ∞∑
k=L

(2k + 1)|jk(is‖v‖)hk(is‖cαβ‖)| ≤ ε.

The errors Ej , j = 2, . . . , 6, occur due to the multipole-to-multipole and local-to-local
transforms. To show how these errors can be controlled, we will need the following auxiliary
quantities. Let us set

RK(d) =
+∞∑
m=K

(2m+ 1)|jm(d)|.

Clearly |rK(x − xβ′ , ŝ)| < RK(‖x − xβ′‖) for arbitrary ŝ ∈ S2. Moreover, since the series
(2.79) converges supergeometrically (Remark 2.2.2), RK(d) decays rapidly as K → +∞.

74

Chapter 2. Data-Sparse Techniques for −∆ + s2

Given dα, dβ, dα′ , dβ′ being the diameters of bounding boxes of clusters τα, τβ, τα′ , τβ′ ,
let us introduce auxiliary quantities:

rp =
1

2
max(dα, dβ),

rc =
1

2
max(dα′ , dβ′),

rd = max
(
‖yα − yα′‖, ‖xβ − xβ′‖

)
.

The following simple lemma demonstrates how the errors Ej , j = 2, . . . , 6, can be made
small.

Lemma 2.2.19. Given ε > 0, L as in (2.73), let N, M be chosen so that N∗ = min(N,M)
satisfies:

E(1) = L2N2
∗ eRe s(rp+rd) |hL−1(is‖cαβ‖)|RN∗(rc) ≤ ε, (2.81)

E(2) = L2N4
∗ e2 Re srd |hL−1(is‖cαβ‖)|R2

N∗(rc) ≤ ε. (2.82)

Then the following bound holds for Ej = Ej(L,M,N), j = 2, . . . , 6, defined by (2.76):

|Ej | < ε, j = 2, . . . , 6.

Proof. We bound each of the errors Ej , j = 2, . . . , 6:

|E2| =
∣∣∣QŝM [es(y−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)rN∗(x− xβ′ , ŝ)

]∣∣∣
(2.77,2.80)

≤ eRe s(rp+rd)L2 |hL−1(is‖cαβ‖)|RN∗(rc) ≤
ε

N2
∗
,

where the last bound follows from (2.81).

|E3| =

∣∣∣∣∣QŝM
[

es(y−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)

N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
r2N−N∗+1(x− xβ′ , q̂)Pk(q̂ · ŝ)

]]∣∣∣∣∣
(2.77,2.78,2.80)

≤ L2N2
∗ eRe s(rp+rd) |hL−1(is‖cαβ‖)|R2N−N∗+1(rc)

≤ L2N2
∗ eRe s(rp+rd) |hL−1(is‖cαβ‖)|RN∗(rc),

where we used N ≥ N∗. The bound (2.81) gives E3 < ε. Similarly, we bound

|E4| =
∣∣∣QŝM [es(yα′−yα+xβ−xβ′ ,ŝ)rN∗(yα′ − y, ŝ)Mα,β(ŝ)rN∗(x− xβ′ , ŝ)

]∣∣∣
(2.77,2.80)

≤ L2e2 Re srdR2
N∗(rc)|hL−1(is‖cαβ‖)| ≤

ε

N4
∗
,

where the last bound was obtained using (2.82).

|E5| =
∣∣∣QŝM [es(yα′−yα+xβ−xβ′ ,ŝ)rN∗(x− xβ′ , ŝ)Mα,β(ŝ)

×
N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]∣∣∣∣∣
(2.77,2.80)

≤ e2 Re srdN2
∗RN∗(rc)L

2|hL−1(is‖cαβ‖)|R2N−N∗+1(rc)

≤ L2N2
∗R

2
N∗(rc)|hL−1(is‖cαβ‖)| ≤

ε

N2
∗
,

75

Chapter 2. Data-Sparse Techniques for −∆ + s2

where N∗ ≤ N and (2.82) were used. Finally, the error

|E6| =
∣∣∣QŝM [es(yα′−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)

×
N∗−1∑
m=0

2m+ 1

4π
Qr̂N

[
r2N−N∗+1(x− xβ′ , r̂)Pm(r̂ · ŝ)

]
×
N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]∣∣∣∣∣
(2.77),(2.80)

≤ e2 Re srdN4
∗L

2|hL−1(is‖cαβ‖)R2
2N−N∗+1(rc)| ≤ ε.

Remark 2.2.20. The bounds provided in Lemma 2.2.19 are not fully optimal, due to the
use of (2.77, 2.80). We would like to show that values E(1), E(2) decay with Re s > 0,
independently of the choice N, M (however, with L satisfying Lemma 2.2.18).

Let the admissibility condition be fixed (assuming that the diameters dα, dβ of the bound-
ing boxes of clusters τα and τβ are equal):

‖cαβ‖ ≥
3

4
(dα + dβ) = 3rp. (2.83)

We will need two ingredients.

1. Exponentially fast decay of spherical Hankel functions as Re s→ +∞. As |s| diam τα �
1, see Remark 2.2.16,

L� |s|‖cαβ‖.

Hence, the spherical Hankel function hL−1(is‖cα,β‖) is in the asymptotic regime (2.52),
namely

|hL−1(is‖yα − xβ‖)| ∼ (1 + γ(|s|‖cαβ‖))
e−Re s‖cαβ‖

|s|‖cαβ‖
, (2.84)

where γ(|s|‖cαβ‖, L) = O
(

L2

|s|‖cαβ‖ + L4

|s|2‖cαβ‖2

)
.

2. Exponentially fast (but with a relatively small rate) growth of |RN∗(rc)|. Let us show
that

RN∗(rc) ≤ C1|s|2r2
ce

Re src , C1 > 0. (2.85)

The expression (2.45) allows to derive a trivial bound:

|jn(isrc)| =

∣∣∣∣∣∣12(−i)n
1∫
−1

e−srcPn(t)dt

∣∣∣∣∣∣
(2.78)

≤ 1

2
eRe src . (2.86)

Recall that spherical Bessel functions satisfy the bound (2.50):

|jn(z)| ≤ eIm z e

2|z|
√
π

(
|z|e

2(n+ 1)

)n+1

.

76

Chapter 2. Data-Sparse Techniques for −∆ + s2

Let N ′ ∈ N, N ′ ≥ |z|e. Then for all n ≥ N ′, it holds that

|jn(z)| ≤ eIm z e

2|z|
√
π

(
|z|e

2(n+ 1)

)n+1

≤ eIm z e

2|z|
√
π

(
1

2

)n+1

. (2.87)

Then

RN∗(rc) ≤ R0(rc) =
∞∑
n=0

(2n+ 1)|jn(isrc)|

=
N ′−1∑
n=0

(2n+ 1)|jn(isrc)|+
+∞∑
n=N ′

(2n+ 1)|jn(isrc)|.

The first term can be bounded using (2.86) by

1

2
N ′2eRe src < C|s|2r2

ce
Re src ,

for a constant C that does not depend on s and rc. The second term can be bounded
with the help of (2.87)

+∞∑
n=N ′

(2n+ 1)|jn(isrc)| ≤ C ′eRe src ,

for some C ′ > 0. This lets obtaining (2.85).

Now let us consider the errors E(1) and E(2). We insert (2.84,2.85) into the expression
for E(1) to obtain

E(1) ∼ C1L
2N2
∗ (1 + γ (|s|‖cαβ‖, L)) |s|2r2

c

eRe s(rp+rd+rc−‖cαβ‖)

|s|‖cαβ‖
.

Clearly, rd < rp, rc < rp, hence, using (2.83),

rp + rd + rc − ‖cαβ‖ < 0,

which shows the exponential decay of E(1) with Re s. Similarly, we can substitute RN∗(rc)
and hL−1(is‖cαβ‖) in (2.82) by their estimates (2.85, 2.84) to obtain:

E(2) = L2N4
∗ e2 Re srd |hL−1(is‖cαβ‖)|R2

N∗(rc)

∼ L2N4
∗C

2
1 |s|4r4

c (1 + γ(|s|‖cαβ‖))
eRe s(2rd+2rc−‖cαβ‖)

|s|‖cαβ‖
.

We consider two cases, the first one when an octree based partitioning of the domain is
used, and another one when the binary partitioning is employed (see [48]). We assume that
bounding boxes of clusters τα, τβ are cuboids with sides a, b, c. Then rp = 1

2

√
a2 + b2 + c2.

1. if an octree partitioning is used, rc = 1
2rp = rd, hence, using the admissibility condition

(2.83), we obtain:

E(2) ∼ L2N4
∗C

2
1 |s|3r4

c (1 + γ(|s|‖cαβ‖))
e−Re srp

‖cαβ‖
.

77

Chapter 2. Data-Sparse Techniques for −∆ + s2

2. if the binary tree partitioning is employed, the parent cluster is split into two children

clusters. We assume w.l.o.g. rd = a
4 and rc = 1

2

√
a2

4 + b2 + c2. Hence, using (2.83),

we obtain:

E(2) ∼ L2N4
∗C

2
1 |s|3r4

c (1 + γ(|s|‖cαβ‖))
eRe s(a

2
+

√
a2

4
+b2+c2− 3

2

√
a2+b2+c2)

‖cαβ‖
,

which decays exponentially with Re s→ +∞.

2.2.3.4 Numerical Stability and Control of Roundoff Errors

There are two sources of round-off errors when the high-frequency fast multipole method is
applied to Helmholtz problems with complex wavenumbers. The first one is connected to
exponential growth of spherical Hankel functions hn(z) when n � |z| and is also inherent
to the HF FMM applied to the problems with purely real wavenumber, see e.g. [152]. The
second one is intrinsic to the HF FMM applied to the Helmholtz equation with large decay
and was studied in [188]. Importantly, these errors occur in different situations: the first
one appears only when small clusters are considered, while the second one is likely to appear
when applying the high-frequency fast multipole method to distant (and hence, due to the
definition of the admissibility condition, large) clusters. In the following section we study
the effect of these errors on the high-frequency FMM.

The low-frequency breakdown of the fast multipole method occurs when performing the
multipole-to-local transform between small admissible clusters. One of the ways to control
this error was suggested in [57]: there numerically determined bounds on size of clusters
were used (e.g. to achieve an accuracy 10−3, the authors recommend to use HF FMM only
for clusters whose size exceeds 1

4 of a wavelength). Indeed, such strategy has to be adapted
to different admissibility conditions, as well as to the presence of decay, which can (though
not always) decrease the magnitude of rounding errors.

Our strategy of the roundoff error control is based on the following observation. In the
simplest case of the one-level fast multipole method h0(is‖x − y‖) is approximated by the
scalar product

h0(is‖x− y‖) ≈
2M2∑
`=1

w`e
−s(x−xβ ,ŝ`)Mα,β(ŝ`)e

s(y−yα,ŝ`) = ATB, (2.88)

A =
[
w1e−s(x−xβ ,ŝ1), . . . , w2M2e−s(x−xβ ,ŝ2M2)

]T
,

B =
[
Mα,β(ŝ1)es(y−yα,ŝ1) . . . ,Mα,β(ŝ2M2)es(y−yα,ŝ2M2)

]T
.

The following lemma from [125, Section 3.1] bounds the error of the evaluation of the
scalar product in the finite precision arithmetic.

Lemma 2.2.21. Given x, y ∈ Rn, let sn = xT y and ŝn = fl(xT y) be the inner product xT y
computed with no overflow or underflow in the finite precision arithmetic compliant with
the standard model, i.e. for all floating point numbers a, b

fl(a ◦ b) = a ◦ b(1 + δ), |δ| < εm; ◦ = +,−, ∗, \, (2.89)

78

Chapter 2. Data-Sparse Techniques for −∆ + s2

where εm is a machine accuracy. Then,

|ŝn − sn| ≤ γn
n∑
i=1

|xiyi|,

γn =
nεm

1− nεm
. (2.90)

Questions of the accuracy of the complex floating point arithmetic are considered in [125,
Lemma 3.5]. In a nutshell, it is possible to implement the basic arithmetic operations so
that

fl(a ◦ b) = a ◦ b(1 + δ), |δ| < εm, ; ◦ = +,−,
f l(ab) = ab(1 + δ), |δ| <

√
2γ2,

f l
(a
b

)
=
a

b
(1 + δ), |δ| <

√
2γ4,

where γn is given by (2.90).
Hence, for complex s, the roundoff error of the evaluation (2.88) can be bounded by

εroundoff ≤ γM
2M2∑
`=1

|A`||B`|

≤ 2CM2γMeRe sd max
ŝ∈S2
|Mα,β(ŝ)|, (2.91)

where C is a constant coming from the use of the complex arithmetic and d = max(‖x −
xβ‖, ‖y − yα‖). The low-frequency (occurring when |s|d is smaller than a fixed value)
roundoff error can be controlled by checking if

(L− 1) |hL−1(is‖cα − cβ‖)| εm (2.92)

is smaller than given ε′ > 0.
In the case of high decay, the cancellation errors can occur when performing multipole-

to-multipole (local-to-local) transforms. First, recall that the cluster basis of the high-
frequency fast multipole method is the matrix of the form

Vkj =

∫
τα

e−Re sk(y−yα,ŝk)φj(y)dΓy, ŝk ∈ S2.

This implies that the entries of the cluster basis for large Re s can vary greatly in mag-
nitude. When performing multipole-to-multipole transform one needs to do the spherical
harmonic transform that includes many additions and subtractions of these numbers. This
can potentially lead to cancellation errors. Hence, for clusters of diameter d we check if

eRe s d
2 εm > ε, (2.93)

where ε is a desired precision. In practice, however, such high-decay roundoff errors are
not likely to cause problems, at least for moderate accuracies, due to reasons explained

next. Briefly, if Re sd2 is big enough for the term eRe s d
2 εm to cause difficulties, then all

the admissible blocks at the level where the clusters with diameter d are located can be

79

Chapter 2. Data-Sparse Techniques for −∆ + s2

approximated by zero matrices (as well as the blocks corresponding to admissible block-
clusters on the higher levels of the block-cluster tree), see (2.9). Therefore, they will not
contribute to the final result, and there is no need for performing multipole-to-multipole
(local-to-local) translations at these levels. Next we support this argument with more detail.

The round-off error during the multipole-to-multipole (or local-to-local) translation may
exceed the desired precision ε only when

Re s
d

2
> log

ε

εm
. (2.94)

The multipole-to-multipole (local-to-local) translation has to be performed only in the
following cases.

1. When the cluster τ with the bounding box of the diameter d has at least one admissible
neighbor, i.e. there exists an admissible block-cluster (τ, σ);

2. When there exists a cluster τ ′ s.t. level(τ ′) < level(τ), τ is one of the descendants of
τ ′ and τ ′ has at least one admissible neighbor.

Otherwise there is no need to translate an expansion, see Remark 2.1.15.
Let us consider the first case, i.e. let the cluster τ have at least one admissible neighbor σ,

and show that the corresponding block can be approximated by a zero matrix. The same
arguments will apply in the second case as well. The diameter of the bounding box of the
cluster σ we denote by d and assume that it equals the diameter of the bounding box of
the cluster τ .

From the definition of admissible clusters (2.1.7) it follows that the distance between
τ , σ can be bounded from below in terms of the sizes of these clusters. Let us denote the
centers of the bounding box of the clusters τ, σ by cτ , cσ. Then:

‖cσ − cτ‖ ≥ ηd.

From the triangle inequality and the above equation it follows that

dist(τ, σ) ≥ ‖cσ − cτ‖ − 2
d

2
,

dist(τ, σ) ≥ (η − 1)d.

Using (2.94) we obtain a lower bound on the distance between the clusters τ , σ:

dist(τ, σ) ≥ 2(η − 1)

Re s
log

ε

εm
. (2.95)

Now let us show that the distance between clusters τ , σ is large enough to efficiently
approximate the corresponding block by a zero matrix, see (2.9). This will imply that at
this level all admissible blocks can be approximated by zero matrices, and therefore there
is no need in performing multipole-to-multipole (local-to-local) translations. The zero-rank
approximation applies, see (2.9), when∣∣∣∣∣ e−s‖x−y‖

4π‖x− y‖

∣∣∣∣∣ < ε,

80

Chapter 2. Data-Sparse Techniques for −∆ + s2

for all x ∈ Ωτ , y ∈ Ωσ. Equivalently,

e−dist(τ,σ) Re s

4πdist(τ, σ)
< ε.

For this condition to hold true, it is sufficient that, see (2.95),

exp
(
−2(η − 1) log ε

εm

)
4πdist(τ, σ)

≤ ε,

or

1

4πdist(τ, σ)

(εm
ε

)2(η−1)
< ε.

Since also dist(τ, σ) ≥ (η−1)d, the block-cluster is to be approximated by a zero matrix
when

d >
ε2η−2
m

ε2η−14π(η − 1)
.

For moderate accuracies, ε ≤ 10−6, and η = 1.5,

d ≥ 4 · 10−5.

This is a reasonable condition that allows to deal with problems having about O(1
d2) =

108 − 109 spatial unknowns. For higher accuracies or smaller values of d, there exist two
(in practice similar) strategies to avoid problems associated with the cancellation:

• increase η (e.g. η = 2 ensures that no cancellation errors occur for ε ≥ 10−8 and
d ≥ 4 · 10−9); this may result in the increase of the near-field;

• split each of the admissible block-clusters located at the level where the high-decay
breakdown occurs into several smaller admissible block-clusters (that will be located
at the next level of the block-cluster tree) and construct the multipole-to-local ap-
proximation for them separately. This allows to avoid performing the multipole-to-
multipole and local-to-local translation operators.

We used the first strategy, due to the ease of the implementation.

2.2.3.5 Choice of the Parameters of the Fast Multipole Method: Summary

The complexity of the high-frequency fast multipole method depends on the choice of the
cluster tree and lengths of multipole and local expansions.

The cluster tree has to be constructed so that the diameter of the bounding boxes of

leaf clusters is O
(

1
|s|

)
. Typically, an octree is used, see [57]. In this work we employ the

binary cluster tree, similarly to [48, 89, 90]. In [48] it was suggested to make a cluster a
leaf if the number of degrees of freedom inside this cluster does not exceed some fixed n0.
We use such strategy as well (with n0 = 20), however, with an additional correction: leaf
clusters can be located only at the levels ` ≥ `0, where `0 is given a priori and increases

81

Chapter 2. Data-Sparse Techniques for −∆ + s2

logarithmically with M . The reason for the latter requirement is that in some cases it may
happen that some of clusters with a few boundary elements occur at very coarse levels of
the cluster tree. The size of bounding boxes of clusters located at one level of the cluster
tree is the same (see Remark 2.2.11), and hence if such clusters were leaves, they would
have large inadmissible neighbors. This strategy is in agreement with [57].

To choose the length of multipole and local expansions, we suggest the following scheme.
Let r` be the half-diameter of the bounding box of a cluster at the level `.

First, let us consider the multipole-to-local operator. Let an admissible block-cluster
b = (τα, τβ) be located at the level ` > 0 of the block-cluster tree. Let the bounding box of
the cluster τα be centered at yα and the bounding box of the cluster τβ be centered at xβ.
Additionally, cαβ = yα−xβ. The choice of the length nb of the truncated expansion for the
corresponding multipole-to-local translation operator, see also (2.40), can be determined by
checking (c.f. Lemma 2.2.18)∣∣∣∣∣h0(is‖‖cαβ‖ − 2r`‖)−

nb−1∑
m=0

(2m+ 1)jm(2isr`)hm(is‖cαβ‖)

∣∣∣∣∣ ≤ ε. (2.96)

If the low-frequency breakdown happens, see (2.92), we set formally nb = 0. Such cluster
is to be approximated with the help of H-matrix techniques.

The value nb depends on r` and ‖cαβ‖ only. Since there is a fixed number of different
‖cαβ‖ per level, the check (2.96) can be performed once for each different ‖cαβ‖. The
complexity of this operation is obviously sublinear.

Now we have all ingredients to determine the length of multipole expansions. Denoting
the set of admissible clusters located at the level ` by L`+, let us introduce two auxiliary
quantities:

n` = max
b∈L`+

nb, (2.97)

H` = sup
b∈L`+

|hnb−1(is‖cαβ‖)| . (2.98)

In principle, for most practical situations setting the length of the multipole expansion
at the level ` to 2n2

` is sufficient to achieve the desired accuracy. Such strategy was suggested
in [57,70] for the case of the real wavenumber. It is, however, not obvious (though feasible,
due to the rapid decay of spherical Bessel functions) whether setting N = n` guarantees
that conditions of Lemma 2.2.19 hold for general complex s ∈ C.

The analysis in the previous section shows that to control the multipole-to-multipole
(local-to-local) errors, the length of the expansion has to satisfy conditions of Lemmas
2.2.18 and 2.2.19. Through the multipole-to-multipole (local-to-local) translation the error
propagates to the coarser (finer) cluster tree levels. Though we do not present the analysis
of the error after several multipole-to-multipole (local-to-local) translations, we suggest
performing the following checks.

Given a cluster τα,` located at the level `, let τα,`−1, τα,`−2, . . . , τα,k be s.t.

τα,j ∈ sons(τα,j−1), k < j ≤ `. (2.99)

Here k is the smallest level at which there is at least one admissible block cluster. Let rj,`,αd

be the distance between the centers of the bounding boxes of clusters τα,j and τα,`. Given

82

Chapter 2. Data-Sparse Techniques for −∆ + s2

levels `, j, the maximum of rj,`,αd over the pairs of clusters τα,`, τα,j subject to (2.99) we
denote by

r̃j,`d = max
(τα,`,τα,j)

rj,`,αd .

This quantity can be computed in time not worse than linear (or even O(log2M)), due to
the uniform partition of the domain, and hence it does not affect the complexity of the
algorithm. Alternatively, it also can be estimated by

r̃j,`d ≤ rj .

In practice, instead of checking (2.81, 2.82), we look for N`, such that for all k ≤ j < `
(i.e. for all highest levels with respect to the current level),

N`nj |jN`(isr`)|Hje
Re s(rj+r̃

j,`
d) < ε,

N`nj |jN`(isr`)|
2Hje

2 Re sr̃j,`d < ε.
(2.100)

Lemma 2.2.19 shows that the length of the expansion of the level ` has to be chosen not
smaller than 2N2

j , j > `. Let N` = max(max
q≥`

Nq, n`) (c.f. Lemma 2.2.19, Lemma 2.2.18).

Then we choose the length of the expansion at the level ` to be equal to 2N 2
` .

Although the conditions of Lemma 2.2.19 may seem quite restrictive, in practice max
q≥`

Nq

is rarely larger than n`.
All these checks are of the complexity not larger than linear, and hence do not affect

the asymptotic complexity of the fast multipole algorithm.

2.3 Numerical Comparison of H-Matrix Techniques and the
High-Frequency Fast Multipole Method for the Helmholtz
Equation with Decay

In this section we compare the performance of H-matrices and the fast multipole method for
the Helmholtz equation with decay. We present results of numerical experiments for H- and
H2-matrices (constructed with the help of the expansions coming from the fast multipole
method) approximating the Helmholtz boundary single-layer operator on the unit sphere,
both for complex and real wavenumbers. In the end of this section we propose a heuristic
that allows to make the choice whether an H− or an H2−matrix should be constructed in
a specific situation.

All experiments in this section were done on the cluster of the Max Planck Institute for
Mathematics in the Sciences, on a single processor Intel Xeon X5650 with 2.67 GHz. For
the computation we used HLIBpro library, see [132]. Spherical Bessel and Hankel functions
were computed with the help of the Amos library [9].

2.3.1 Real Wavenumber

In this section we present results of numerical experiments for the Helmholtz equation
without decay. Our goal is to validate correctness of the fast multipole implementation as
well as to compare efficiency of the FMM with H-matrices for this simple case. Similar
experiments have been already performed in [48].

83

Chapter 2. Data-Sparse Techniques for −∆ + s2

The experiments are done with two accuracies: ε = 10−6 and ε = 10−9. The relative
accuracy for H-matrices is set to 10−5 and 10−8 in both of the experiments (such choice is
based on the observation that setting the ACA+ accuracy to some value often guarantees
an accuracy several magnitudes higher).

The results are presented in Tables 2.1, 2.2 and 2.3. Matrix-vector multiplication errors
are measured as

εr = max
v

‖Mv −Dv‖2
‖Dv‖2

,

based on results of 100 matrix-vector multiplications with random complex vectors whose
entries lie in [−1, 1]. Here M is an H−matrix or an H2−matrix constructed with the
help of the high-frequency fast multipole expansions. The matrix M is assembled with a
given accuracy ε. The matrix D is a dense matrix (or a highly accurate H-matrix) . The
matrix construction time for H2-matrices includes time needed to construct the H-matrix
part, transfer matrices, multipole-to-local operators as well as the leaf cluster basis. Let
us also remark that the time for the construction of the leaf basis is the time to evaluate
the integrals (2.31) using the precomputed quadrature points, weights and cluster centers
(see the end of Section 2.2.2.1), and the precomputation itself is included into the matrix
construction time as well.

M s Tc(H) Tc(H2) Tmv(H) Tmv(H2) εr(H) εr(H2)

2048 -8i 22.7 15 (1.5) 0.02 0.6 6e-6 1.5e-6

4232 -11.3i 62.4 35 (3.5) 0.05 1.2 3.4e-6 1.5e-6

8192 -16i 152 63 (7.9) 0.11 2.3 4.3e-6 1.3e-6

16200 -22.6i 334 122 (13.6) 0.28 4.5 4.9e-6 1.4e-6

32768 -32i 877 257 (35.3) 0.7 8.6 6e-6 1.7e-6

65448 -45.3i 7756 514 (62) 1.8 19.5 1.7e-5 2.4e-5

129970 -64.0i - 1023 (139) - 42.2 - -

Table 2.1: Construction times Tc, matrix-vector multiplication times Tmv and computed relative
errors for the accuracy setup ε = 10−6. The times are given in seconds. In brackets the time to

construct the leaf cluster basis is shown. The deterioration of the accuracy for large matrices is due
to insufficient accuracy of quadrature.

The results in Table 2.2 demonstrate that the high-frequency fast multipole method is
of almost linear complexity, while the complexity of H-matrices scales somewhat worse,
though better than predicted theoretically. This is connected to the fact that low-rank
approximations constructed using H-matrix techniques are close to optimal and take into
account the geometry of the problem.

Results of numerical experiments in Table 2.3 show that matrix-vector multiplication
times of H2-matrices constructed with a high accuracy can be slightly smaller compared to
that of H2-matrices constructed with a lower accuracy. This happens because the increase
of the accuracy requires more matrix blocks to be approximated with the help of H-matrix
techniques (due to the low-frequency breakdown), and, as it can be seen from the numerical
results, the matrix-vector multiplication times of H-matrices are in practice much smaller
compared to that of H2-matrices.

Our numerical experiments support the results presented in [48]: if many matrix-vector
multiplications are needed, H-matrices are advantageous over H2-matrices. However, in
terms of the matrix construction times H2-matrices perform practically always better.

84

Chapter 2. Data-Sparse Techniques for −∆ + s2

Nn sn log2
Tnc
Tn−1
c

(H) log2
Tnmv
Tn−1
mv

(H) log2
Tnc
Tn−1
c

(H2) log2
Tnmv
Tn−1
mv

(H2)

4232 -11.3i 1.5 1.3 1.2 (1.2) 1

8192 -16i 1.3 1.14 0.9 (1.2) 0.9

16200 -22.6i 1.1 1.3 1 (0.8) 1

32768 -32i 1.4 1.3 1.1 (1.4) 0.9

65448 -45.3i 3.1 1.4 1 (0.8) 1.2

129970 -64.0i - - 1 (1.2) 1.1

Table 2.2: The rate of the times for the matrix assembly and the times for the matrix-vector
multiplication for the current discretization and the twice coarser one for different techniques with

the accuracy setup ε = 10−6.

M s Tc(H) Tc(H2) Tmv(H) Tmv(H2) εr(H) εr(H2)

2048 -8i 77.6 82.6 (1.6) 0.017 0.4 1e-8 3.1e-9

4232 -11.3i 215.1 190.4 (2.6) 0.05 1 9.2e-9 3.7e-9

8192 -16i 561.6 384.9 (5.9) 0.16 1.8 7e-9 4e-9

16200 -22.6i 1488.4 693 (11.5) 0.4 5 6e-9 3.3e-9

32768 -32i 3704.8 1323.3 (22.2) 1 11 7e-9 4e-9

65448 -45.3i - 2735.4 (55.4) - 25.4 - -

129970 -64.0i - 5138 (97.7) - 54.5 - -

Table 2.3: Construction times Tc, matrix-vector multiplication times Tmv and computed relative
errors for the accuracy setup ε = 10−9. The times are given in seconds. In brackets the time to
construct the leaf cluster basis is shown. For the last two experiments we did not construct an
H-matrix approximation: for the given accuracy setting, it appears to be too expensive.

2.3.2 Complex Wavenumber

In this section we present results of numerical experiments for the Helmholtz equation with
decay. First, we fix M = 16200 and |s| = 22.6 and study how the complexity of H- and
H2-matrix approximations changes with the argument of s = |s|eiα, α ∈

[
−π

2 , 0
]
. We set

the desired accuracy of H2-matrix approximation to ε = 10−6 and the relative accuracy of
the H-matrix approximation to 10−5. The results of this experiment are presented in Table
2.4.

Let us remark that in the Runge-Kutta convolution quadrature algorithm we construct
the leaf cluster basis on the fly: we need only a few matrix-vector multiplications, hence
there is no need to store it. This allows to reduce storage costs significantly. Let Tc be
the matrix construction time (including the time for assembling the leaf cluster basis),
Tcb be the leaf cluster basis construction time and Tmv be the time for the matrix-vector
multiplication. Then in our algorithm the time to construct the H2-matrix equals Tc − Tcb
and the time to perform matrix-vector multiplication is Tmv + Tcb.

Results in Table 2.4 show the following effects of the presence of decay. First, the con-
struction time of matrix approximations increases significantly. This is due to the fact that

the evaluation of the Helmholtz kernel with decay e−s‖x−y‖

4π‖x−y‖ , s ∈ C, is more computationally

expensive compared to the evaluation eiκ‖x−y‖

4π‖x−y‖ , κ ∈ R. This remains valid for the high-
frequency fast multipole method, since the evaluation of the integral kernel is required for
the near-field. Similar arguments apply to the leaf cluster basis.

85

Chapter 2. Data-Sparse Techniques for −∆ + s2

φ Tc(H) Tc(H2) Tmv(H) Tmv(H2) Nmv

−π
2 334 122 (13.6) 0.28 4.5 12

−6π
14 427 183 (29.7) 0.17 4.3 9

−5π
14 324 175 (27.4) 0.09 4.3 7

−4π
14 260 166 (25.5) 0.07 4.1 5

−3π
14 231 149 (26.9) 0.06 4.6 4

−2π
14 213 158 (26.5) 0.06 3.8 3

− π
14 209 156 (26.2) 0.05 3.6 3

0 170 128 (21) 0.05 3.5 3

Table 2.4: Construction times Tc, matrix-vector multiplication times Tmv and computed relative
errors for the accuracy setup ε = 10−6, M = 16200, |s| = 22.6. The times are given in seconds. In

brackets the time to construct the leaf cluster basis is shown. Nmv stands for the number of the
matrix-vector multiplications needed for the H-matrix approximation to outperform the

H2-approximation (where the time for the matrix-vector multiplication includes the construction of
the leaf cluster basis). In all the experiments the relative error of the H- and H2-approximations

did not exceed 1.6 · 10−6.

We have to remark that this is not always the case: the presence of sufficiently large
decay (c.f. Tables 2.1 and 2.5) can also reduce the time of the H-matrix construction (due
to the drastic decrease of ranks of H-matrix blocks).

The results in 2.4, 2.5 and 2.1 show that the matrix-vector multiplication times of the
HF FMM in the presence of decay are smaller than in the case of no-decay. This can be
also explained by the reduction of the length of the multipole expansions. Similarly, the
matrix-vector multiplication costs for H-matrices are reduced compared to the no-decay
case.

Next, we can see that if more than 4 matrix-vector multiplications is needed, for a given
accuracy ε = 10−6 H-matrices outperform H2-matrices as soon as |α| ≤ π

4 in s = |s|eiα. We
check this result for larger and smaller matrices in Table 2.5.

M s Tc(H) Tc(H2) Tmv(H) Tmv(H2) Nmv

2048 8-8i 24.4 17.5 (3.2) 0.007 0.75 3

4232 11.3-11.3i 60.1 41.7 (8.3) 0.015 0.9 3

8192 16-16i 106.6 84.5 (18.5) 0.03 2.05 2

16200 22.6-22.6i 204.3 159 (32) 0.05 3.2 3

32768 32-32i 427 374 (77) 0.1 6.5 2

65448 45.3-45.3i 878.2 758 (137) 0.2 10.4 2

129970 64-64.0i 1798.5 1548 (309) 0.44 22.2 2

Table 2.5: Construction times Tc, matrix-vector multiplication times Tmv and computed relative
errors for the accuracy setup ε = 10−6. The times are given in seconds. In brackets the time to

construct the leaf cluster basis is shown. Nmv stands for the number of the matrix-vector
multiplications needed for the H-matrix approximation to outperform the H2-approximation (where
the time for the matrix-vector multiplication includes the construction of the leaf cluster basis). In

all experiments the relative error of the matrix-vector product did not exceed 2.4 · 10−6.

Numerical results in Table 2.5 suggest that, similarly to the case of the Helmholtz
equation with decay, the assembly time of H-matrices is larger than that of H2-matrices.
However, if in the case of purely real wavenumber for the matrices of size 104 − 105 the

86

Chapter 2. Data-Sparse Techniques for −∆ + s2

difference varies from 2 to 15 times, in the case of the prevailing decay (i.e. for s = |s|eiα,
α ∈

[
−π

4 , 0
]
) the difference is not that significant. In our experiments it never exceeded 2

times for matrices of size 104 − 105. This shows that H-matrix approximations in this case
are more efficient, even if a small number of matrix-vector multiplications is needed.

This is not the case when a higher accuracy is required (see Table 2.6): the H-matrices
outperform H2-matrices for larger problems only when more than 8 matrix-vector multipli-
cations is needed.

M s Tc(H) Tc(H2) Tmv(H) Tmv(H2) Nmv

2048 8-8i 87 82.2 (3.8) 0.01 0.8 2

4232 11.3-11.3i 219 171.2 (7.2) 0.03 1.8 7

8192 16-16i 484 301 (19) 0.05 3.2 10

16200 22.6-22.6i 925 544.4 (34.4) 0.1 6.8 11

32768 32-32i 1709 1103 (83.4) 0.2 12.2 8

65448 45.3-45.3i 3396 2220 (157.3) 0.37 22.4 8

129970 64-64.0i 6924.3 4238.4 (353.4) 0.7 46.2 8

Table 2.6: Times of the matrix construction and matrix-vector multiplication for the accuracy
setup ε = 10−9. The times are given in seconds. In brackets the time to construct the leaf cluster

basis is shown. Nmv stands for the number of the matrix-vector multiplications needed for the
H-matrix approximation to outperform the H2-approximation (where the time for the matrix-vector

multiplication includes the construction of the leaf cluster basis). The H2-matrix relative error
never exceeded 10−8. For H-matrices it deteriorated to 2 · 10−7 for the two largest problems, which

is likely to be connected to the insufficiently high Galerkin quadrature order.

An actual choice whether H-matrices or H2-matrices have to be employed is rather dif-
ficult. For the case of moderate accuracies (10−6−10−7) we suggest the following heuristic.
H2-matrices should be constructed in all the cases except:

• in the case of prevailing decay: s = |s|eiα, |α| ≤ π
4 (and more than two matrix-vector

multiplications are needed);

• when at the first few levels of the admissible block-cluster tree there are admissible
block-clusters that cannot be approximated by FMM expansions because of the low-
frequency breakdown.

This heuristic is not difficult to adapt to higher accuracies. As the results in Tables 2.7,
2.6 show, for ε = 10−9 H2-matrices outperform H-matrices for |α| < π

4 if more than 8-12
matrix-vector multiplications are needed. Hence, if high accuracies are needed, we suggest
using H2-matrices in all the cases but when the frequencies are low enough, see also the
above heuristic.

87

Chapter 2. Data-Sparse Techniques for −∆ + s2

φ Tc(H) Tc(H2) Tmv(H) Tmv(H2) Nmv

−π
2 1488 693 (11.5) 0.4 5 51

−6π
14 1868 558 (31) 0.3 4.9 38

−5π
14 1450 546 (28.8) 0.2 5.2 28

−4π
14 1141 493 (28.8) 0.13 5.2 20

−3π
14 966 483 (28.6) 0.12 5 16

−2π
14 874 477 (26.6) 0.11 4.3 14

− π
14 818 459 (30) 0.1 4.3 12

0 656 373 (21.2) 0.1 4.7 12

Table 2.7: Construction times Tc, matrix-vector multiplication times Tmv and computed relative
errors for the accuracy setup ε = 10−9, M = 16200, |s| = 22.6. The times are given in seconds. In

brackets the time to construct the leaf cluster basis is shown. Nmv stands for the number of the
matrix-vector multiplications needed for the H-matrix approximation to outperform the

H2-approximation (where the time for the matrix-vector multiplication includes the construction of
the leaf cluster basis). In all the experiments the relative error of the H-matrix approximations did
not exceed 7.1e− 9 and of the H2-approximations 3.3e− 9 (and for the case with non-zero decay

1.1e− 9).

88

Chapter 3

Fast Runge-Kutta Convolution
Quadrature Algorithm

In this section we present the fast convolution quadrature algorithm based on two main
ideas:

• the reuse of the near-field;

• the application of data-sparse techniques for the approximation of the far-field.

In the first part of this section we study Runge-Kutta convolution weights. Namely, we
prove that convolution kernels whn(d) defined as coefficients of the expansion, see (1.52),

e−∆(ξ) d
h

4πd
=

∞∑
k=0

whk(d)ξk,

∆(ξ) =

(
A+

ξ

1− ξ
A−1

1bTA−1

)−1

,

decay exponentially fast outside of d ≈ nh. We demonstrate as well the dependence of
the speed of decay on the order of the underlying Runge-Kutta method. Based on these
results, the article [25] has been submitted. Similar properties are known to hold for the
BDF2 method and were used in works [115, 116, 131] to improve the complexity of the
BDF2 convolution quadrature algorithm. We study numerically the applicability of the
ideas of the aforementioned works to Runge-Kutta convolution quadrature and analyze the
associated difficulties.

Our approach is conceptually different from the one used in [115,116,131]. We construct
the new method based on the algorithm of linear complexity, rather than back substitution
of quadratic complexity (see [116]). This approach allows us to avoid the actual evaluation
of the convolution weights, thus enabling the use of fast techniques based on analytic ex-
pansions. Computational and storage costs of the improved algorithm scale linearly, up to
logarithmic factors.

We dedicate the rest of the section to the description of fast Runge-Kutta convolution
quadrature, see also the submitted paper [24].

89

Chapter 3. Fast Runge-Kutta CQ

3.1 Sparsity of Runge-Kutta Convolution Weights and its
Use

It is well-known that the strong Huygens principle holds for the wave equation in odd
dimensions. As a consequence, the full discretization of the related TDBIE (using MOT
or Galerkin methods with, for example, hat basis functions, see Section 1.2.1) leads to
sparse matrices, see also Section 1.2.2. It is however a priori not clear if similar properties
are exhibited by convolution quadrature. The positive answer had been given in [131] for
BDF2 convolution quadrature, and the negative one in [21] for CQ based on the trapezoidal
rule. In the same work it was numerically demonstrated that an analogue of Huygens
principle can hold for the Runge-Kutta CQ discretized wave equation (depending on the
underlying Runge-Kutta method).

In this section we prove a property of Runge-Kutta convolution weights that can be
viewed as a counterpart of the strong Huygens principle. We show that under some (mild)
assumptions on the Runge-Kutta method, convolution weights whn(d) decay away from d ≈
nh. Additionally, we analyze the dependence of the speed of decay on the order of the
Runge-Kutta method and demonstrate that the obtained bounds are close to optimal.

We show how these properties can be used to evaluate convolution weights whn(d) for
some range of d with a machine accuracy. These results will be of use for the fast Runge-
Kutta convolution quadrature algorithm.

3.1.1 Decay of Convolution Weights

Let us introduce scaled convolution weights wn(d) := 4πdwhn(hd). Functions wn(d) are
coefficients of the following expansion (see (1.52)):

exp (−∆(ξ)d) =

∞∑
n=0

wn (d) ξn. (3.1)

Our task in this section is to find the estimates for scaled convolution weights wn(d) and
next use these results to show that similar bounds hold also for whn(d).

All over this section we assume that the Runge-Kutta method satisfies Assumption
1.2.15.

A scaled convolution weight wn(d) for d > 0, n ≥ 1, can also be expressed as

wn(d) =
1

2πi

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1e−zddz, (3.2)

see [139]. Here, γ represents a contour that encloses all the eigenvalues of A−1 (which are
also singularities of R(z), see Section 1.2.8.1).

To prove the main estimates, we will need to choose the contour γ carefully.
First, we consider an open set Υr, r > 0:

Υr = {z ∈ C : |R(z)| > r} .

The contour γr is defined as the boundary of this set, i.e., γr := ∂Υr. Hence, |R(z)| = r
holds for all z ∈ γr. Next, we prove some properties of sets Υr.

Let
A+ = {z ∈ C : |R(z)| > |ez|, Re z > 0}

90

Chapter 3. Fast Runge-Kutta CQ

denote the order star of R(z) restricted to the right-half complex plane, see [122]. In fact
A+ denotes just m bounded fingers containing m, counting multiplicities, singularities of
R. Since |R(iy)| < 1 for y 6= 0, the origin is the only point of the intersection of the closure
of the order star with the imaginary axis and hence

A+ ⊂ Υ1 ∪ {0}.

Prior to continuing, let us recall that the stability function of a Runge-Kutta method is
a rational function:

R(z) =
P (z)

Q(z)
, (3.3)

where P (z), Q(z) are polynomials with real coefficients. The degree of the polynomial Q(z)
defines the number of stages of the Runge-Kutta method. It is typically assumed that

P (0) = Q(0) = 1.

Additionally, we introduce an auxiliary polynomial, see [122, Chapter IV.3]:

E(y) = |Q(iy)|2 − |P (iy)|2 = e0y
2s +O(y2s+2). (3.4)

Proposition 3.4 in [122] shows that

E(y) = O(yp+1).

Remark 3.1.1. Note that for Runge-Kutta methods satisfying Assumption 1.2.15, the co-
efficient

e0 > 0. (3.5)

This follows from

|R(iy)|2 =
|P (iy)|2

|Q(iy)|2
= 1− E(y)

|Q(iy)|2
,

which, after expansion into the series in y (taking into account that Q(0) = 1), gives:

|R(iy)|2 =
|P (iy)|2

|Q(iy)|2
= 1− e0y

2s +O(y2s+2).

Since, by Assumption 1.2.15, for all y ∈ R \ {0}

|R(iy)| < 1,

the coefficient e0 satisfies (3.5).

We will need the following lemma. We believe this result to be known, however, we
were not able to find the precise statement in the literature. The proof of this result can
be found in Appendix B.

91

Chapter 3. Fast Runge-Kutta CQ

Lemma 3.1.2. There exist a, ν > 0, such that the domain

{(x, y) : |y| < νx
1
` , 0 < x < a}

belongs to Υ1 (and intersects all the order star fingers). Here

` =

{
p+ 1, if p is odd,
2s, if p is even,

where s is as in (3.4).

Lemma 3.1.3. Under Assumption 1.2.15, the set Υ1 is located in the open right-half plane
and is bounded and connected (possibly multiply).

Proof. The boundedness follows directly from the assumption of stiff accuracy R(∞) = 0.
A-stability and the bound |R(iy)| < 1, y ∈ R \ {0}, imply that Υ1 is located in the open
right-half plane.

Let Υ̃1 be a connected (possibly multiply) component of Υ1. Then, by the maximum
principle, Υ̃1 must contain a singularity of R(z) and the closure of the corresponding finger.
According to Lemma 3.1.2, the intersection of Υ̃1 with all the other fingers is nonempty.
Since Υ̃1 contains all the singularities of Υ1, by the maximum modulus principle applied to
R(z), it coincides with Υ1.

Remark 3.1.4. The domain Υ1 is not necessarily simply connected: it can have a hole;
for example, there can exist a bounded domain Υ′, s.t. R(z) vanishes in one of its interior
points, |R(z)| < 1 inside Υ′ and ∂Υ′ ⊂ ∂Υ1.

Remark 3.1.5. In a small enough vicinity of r = 1, Υr stays bounded and connected.
This follows from the fact that z ∈ ∂Υr is equivalent to (see (3.3))

P (z)−Q(z)reiφ = 0, φ ∈ [0, 2π) , Q(z) 6= 0.

The roots of the polynomial depend continuously on its coefficients, and hence there exists
δ∗ s.t.

the domain Υr is bounded and connected for |r − 1| < δ∗. (3.6)

Corollary 3.1.6. If the stability function of a Runge-Kutta method coincides with a Padé
approximant for the exponential, the domain Υ1 is simply connected.

Proof. For the proof we need two ingredients:

1. Ehle’s Conjecture [183, Theorem 7]. Any Padé approximation R(z) = P (z)
Q(z) , degP = k,

degQ = m is A-stable iff m− 2 ≤ k ≤ m.

2. All zeros of such Padé approximants lie in the open left-half plane, see [79].

The existence of a bounded domain Υ′, s.t. |R(z)| < 1 inside Υ′ and ∂Υ′ ⊂ ∂Υ1 (i.e. a hole
in Υ1), contradicts the maximum modulus principle applied to the analytic function 1

R(z) ,
z ∈ C, Re z > 0.

92

Chapter 3. Fast Runge-Kutta CQ

Curves γr = ∂Υr, r > 1, can be drawn by plotting the eigenvalues of ∆(ξ) for all
ξ ∈ C : |ξ| = 1/r, see [21]. We repeat the respective result with minor modifications to
cover the case r ≤ 1. Let us first make a remark on the domain of definition of ∆(ξ). From
formula (1.46), values of ξ for which ∆(ξ) = (A + ξ

1−ξ1b
T)−1 = A−1(I + ξ

1−ξA
−11bT)−1 is

not defined satisfy:

ξ − 1

ξ
is an eigenvalue of A−1

1bT .

The matrix Q = A−11bT is a rank one matrix, therefore all its eigenvalues but one are
equal to 0. It is not difficult to see that one of the left eigenvectors of Q is b (recall that
bTA−11 = 1 for stiffly accurate Runge-Kutta methods, see (1.40)) and the corresponding
eigenvalue equals 1. Now note that ξ−1

ξ 6= 1 for any ξ ∈ C. Hence the only value in which
∆(ξ) is not defined is ξ = 1. However ξ = 1 is a removable singularity, since, due to
Sherman-Morrison-Woodbury formula:

∆(ξ) = lim
ξ→1

(
A+

ξ

1− ξ
1bT

)−1

= A−1 − ξ

1− ξ
A−11bTA−1

1 + ξ
1−ξ b

TA−11

= A−1 − ξA−1
1bTA−1, for ξ : 1 +

ξ

1− ξ
bTA−1

1 6= 0,

lim
ξ→1

∆(ξ) = A−1 −A−1
1bTA−1.

The last expression thus defines ∆(ξ) for all ξ ∈ C.

Lemma 3.1.7. For Runge-Kutta methods satisfying Assumption 1.2.15 any eigenvalue µ
of ∆(ξ) = A−1 − ξA−11bTA−1, ξ ∈ C, is either an eigenvalue of A−1 or R(µ) = 1

ξ .

Proof. For |ξ| < 1 this result was proved in [21]; the proof can be trivially extended to the
case |ξ| ≥ 1 for Runge-Kutta methods satisfying Assumption 1.2.15. We repeat here this
proof to cover the case of general ξ. Assume v ∈ Cm, ∆(ξ)v = µv, where µ ∈ C is not an
eigenvalue of A−1. Additionally, let bTA−1v 6= 0. Then,

µAv = v − ξ1bTA−1v,

(I − µA)v = ξ1bTA−1v,

1

ξ
bTA−1v = bTA−1(I − µA)−1

1bTA−1v.

Dividing both sides by bTA−1v and using the expression (1.41), we obtain

R(µ) =
1

ξ
.

Now note that bTA−1v = 0 implies that µ is an eigenvalue of A−1 and v is the corresponding
eigenvector:

µv = ∆(ξ)v = A−1v − ξA−1
1bTA−1v = A−1v.

93

Chapter 3. Fast Runge-Kutta CQ

Remark 3.1.8. Lemma 3.1.7 provides us with an efficient way to plot curves γr.
In [21] the multiplicity of the eigenvalues of ∆(ξ) for the 2- and 3-stage Radau IIA

Runge-Kutta methods was discussed. In both cases ∆(ξ) has only simple eigenvalues for
|ξ| = 1. For the 2-stage version, eigenvalues of multiplicity greater than 1 occur only for
|ξ| = −5 ± 3

√
3. For the 3-stage version the critical values are |ξ| ≈ 0.069366077 and

|ξ| ≈ 15.7581353.
For a plot of the curves γr for the 3-stage Radau IIA at critical values r = 1

|ξ| and r = 1
see Figure 3.1.

Figure 3.1: Curves γr, for the 3-stage Radau IIA method, are plotted for r = 1 (middle curve in
blue) and the critical values r = r1 ≈ 1

0.069366077 (inner curve in red) and r = r2 ≈ 1
15.7581353 (outer

curve in green). For r > r1 the curve splits into three disjoint curves, and for r < r2 into two.

Let us fix r > 0 satisfying (3.6) and choose a positively oriented contour γ = γr. We will
assume that the domain Υ1 is simply connected (though all the arguments can be trivially
extended to the multiple connectedness case). By Remark 3.1.5, Υr, for sufficiently small
|r − 1|, is also simply connected.

Remark 3.1.9. Recall that m is the number of stages of a Runge-Kutta method, as well
as the degree of the polynomial Q(z) in R(z) = P (z)

Q(z) . Then the length of the curve γr is

bounded, see [7, Lemma 3], by:

|γr| ≤ 4md(γr),

where d(γr) is the diameter of the curve γr.

From (3.2) the following bound on the Euclidean norm of wn(d) follows:

‖wn(d)‖ ≤ 1

2π

∥∥∥∥∥∥
∫
γr

R(z)n−1e−zd(I −Az)−1
1bT (I −Az)−1dz

∥∥∥∥∥∥
≤ 1

2π
|γr|rn−1 max

z∈γr
‖e−zd(I −Az)−1

1bT (I −Az)−1‖.

Denoting by QA(z) = (I −Az)−1, one can deduce the bound

max
z∈γr
‖(I −Az)−1

1bT (I −Az)−1‖ ≤ max
z∈γr
‖QA(z)‖2‖1bT ‖

≤ max
z∈γr
‖QA(z)‖2‖b‖

√
m,

94

Chapter 3. Fast Runge-Kutta CQ

which implies that

‖wn(d)‖ ≤ 1

2π
rn−1|γr|‖b‖

√
mmax

z∈γr
|e−zd|max

z∈γr
‖QA(z)‖2. (3.7)

To understand the behavior of a scaled convolution weight wn(d) we need to find a bound
on max

z∈γr
|e−zd|. To do so, we use the fact that the stability function R(z) is an approximant

to ez, see (1.39), and thus max
z∈γr
|e−zd| can be expressed via the value of |R(z)| on γr.

For a Runge-Kutta method of order p we can write

R(z) = ez + f(z),

where f(z) = O(zp+1).
Let us consider z ∈ γr and d ∈ R>0. Multiplying the last equation by e−zR(z)−1, we

obtain:

g(z) := e−z = R(z)−1
(
1 + e−zf(z)

)
.

Our goal is to find a (tight) bound on |g(z)|d = |e−zd| for z ∈ γr. The maximum of |g(z)|
for z ∈ γr is achieved in z0 ∈ γr, such that

Re z′ ≥ Re z0, for all z′ ∈ γr. (3.8)

Such point is not necessarily unique. Let z0 = x0 + iy0. Then

max
z∈γr
|g(z)|d = e−x0d = |R(z0)|−d

∣∣1 + f(z0)e−z0
∣∣d

= r−d
∣∣1 + f(z0)e−z0

∣∣d. (3.9)

Hence, to bound g(z), z ∈ γr, it is required to understand how z0 behaves, at least for some
range of r.

Although a point z0 = x0 + iy0 as defined above is not necessarily unique, but, as we
argue later, as r → 1, all such points are located close to the origin, namely

|z0| ≤ C|r − 1|α,

for some C,α > 0. This question has been studied in detail in the work [120] examining the
behavior of R(z) in the order star [183]. This and the fact that f(z) = O(zp+1) will allow
us to obtain the required bounds on scaled convolution weights.

Remark 3.1.10. The points z0 lying on the contour |R(z)| = r that have the smallest real
part can be alternatively characterized by two properties:

1. For all z : Re z < Re z0, it holds that

|R(z0)| > |R(z)|. (3.10)

This is due to the analyticity of R(z), as well as the definition of the contour γr and
points z0.

95

Chapter 3. Fast Runge-Kutta CQ

2. Let us fix x0 = Re z0. Note that |R(x0 + iy)|, y ∈ R, is bounded. Then y0, see (3.8),
are the points in which |R(x0 + iy)| achieves its maximum. Let us show this. We
assume the contrary, namely, that there exists y′ ∈ R s.t.

|R(x0 + iy′)| > |R(x0 + iy0)|.

Since R(z) is analytic in z′ = x0 + iy′, there exists an ε-neighborhood of z′ s.t.

|R(z)| > |R(x0 + iy0)|, |z − z′| < ε.

Taking z = z′ − ε = (x0 − ε) + iy′, we arrive at the contradiction to (3.10).

Here we will employ some results from [120].

Definition 3.1.11. ([120]) Given a rational function R(z) we define the error growth
function as the real-valued function φ(x) := sup

Re z<x
|R(z)|.

Theorem 3.1.12. (Theorem 7 in [120]) Let R(z) = P (z)
Q(z) be an A-stable approximation to

ez of exact order p ≥ 1, namely:

R(z) =
P (z)

Q(z)
= ez + Cp+1z

p+1 +O(zp+2), for z → 0, Cp+1 6= 0. (3.11)

Furthermore, assume |R(iy)| < 1 for y 6= 0, and |R(∞)| < 1. Then we have for x→ 0:

• if p is odd,
φ(x) = ex +O(xp+1),

• if p is even and (−1)p/2Cp+1x < 0,

φ(x) = ex +O(xp+1).

• if p is even and (−1)p/2Cp+1x > 0,

φ(x) = ex +O(x1+p/(2s−p)),

where s is defined by (3.4).

Remark 3.1.13. ([120]) For x < Reλmin, with λmin being an eigenvalue of A−1 with the
smallest real part, φ(x) is a strictly monotonically increasing continuous function.

The following proposition shows that for r → 1 x0 = min
z∈γr

Re z is close to r − 1.

Proposition 3.1.14. Let R(z) be the stability function of the Runge-Kutta method satis-
fying Assumption 1.2.15, let (3.11) hold and let x0 = min

z∈γr
Re z. Then for r → 1:

• if p is odd,
x0 = r − 1 +O((r − 1)2).

• if p is even and (−1)p/2Cp+1x0 < 0,

x0 = r − 1 +O((r − 1)2).

96

Chapter 3. Fast Runge-Kutta CQ

• if p is even and (−1)p/2Cp+1x0 > 0,

x0 = r − 1 + o(|r − 1|).

Proof. On the contour γr,
|R(z)| = r.

Since the error growth function φ(x) is a strictly monotonically increasing continuous func-
tion, see Remark 3.1.13, φ(x0) = r. The statement of the proposition follows from the
application of the implicit function theorem to the 3 cases of Theorem 3.1.12 and the fact
that φ(0) = 1, dφ

dx (0) = 1.

The next proposition shows that when r ≈ 1, points z0 defined by (3.8) lie in a small
circle centered at the origin.

Proposition 3.1.15. Let R(z) be the stability function of the Runge-Kutta method satis-
fying Assumption 1.2.15 and (3.11). Then there exist δ0 > 0 and K > 0, s.t. for all r with
|r − 1| < δ0 the points z0 ∈ γr defined by (3.8) lie inside one of the circles specified below.

1. for p odd:

|z0| ≤ K|r − 1|.

2. for p even:

(a) if r > 1 and (−1)
p
2Cp+1 < 0 or r < 1 and (−1)

p
2Cp+1 > 0,

|z0| ≤ K|r − 1|.

(b) if r > 1 and (−1)
p
2Cp+1 > 0 or r < 1 and (−1)

p
2Cp+1 < 0,

|z0| ≤ K|r − 1|
1

2s−p ,

where s is defined by (3.4).

The constant K depends only on the Runge-Kutta method.

Proof. The proof of this statement closely follows the proof of Theorem 7 in [120]. Recall
that z0 is chosen so that

|R(z0)| = r,

and x0 = Re z0 < Re z, z ∈ γr. Then

φ(Re z0) = sup
Re z<x0

|R(z)| = r,

as shown in the proof of Proposition 3.1.14. Also,

max
y
|R(x0 + iy)| = r,

97

Chapter 3. Fast Runge-Kutta CQ

see Remark 3.1.10. Hence, to bound z0, we have to look for y0 at which an extremum is
achieved:

max
y∈R
|R(x0 + iy)| = |R(x0 + iy0)|.

As argued in the proof of Theorem 7 in [120], for x→ 0 the maximum max
y∈R
|R(x+ iy)|,

has to lie inside the order star close to the origin. Indeed, max
y∈R
|R(iy)| = 1 and is achieved

in y = 0; as z → +∞ |R(z)| < 1. Then, for small x, due to the smoothness of |R(x + iy)|
in x, y, the maximum max

y∈R
|R(x+ iy)| has to lie close to the origin.

Let us fix r : |r − 1| < ε, for some small ε > 0 (x0 = O(ε), as shown in the previous
proposition), and consider the following cases as ε→ 0.

1. p is odd.

As shown in the proof of Theorem 7 in [120], the local extrema of |R(x0 + iy)|, y ∈ R,
lie asymptotically on the lines yk = x0 tan ((k − 1)π/p), k = 1, 2, . . . , p. Since y0 is
equal to yk for some k = 1, 2, . . . , p, we can bound

|z0| =

(
x2

0 + x2
0 sup
k=1,2,...,p

tan2

(
(k − 1)

π

p

)) 1
2

≤ C|x0|,

where C > 0 depends only on the Runge-Kutta method.

Proposition 3.1.14 gives an explicit expression for x0:

x0 = r − 1 +O((r − 1)2).

Hence,

|z0| ≤ K|r − 1|,

for some K > 0.

2. p is even.

(a) As proved in Theorem 7 in [120], for (−1)p/2Cp+1x0 < 0 and x0 sufficiently small,
|z0| is asymptotically bounded:

|z0| ≤ C|x0|, C > 0.

The statement of the proposition is obtained with the help of the same arguments
as in the previous case and the fact that sgnx0 = sgn (r − 1).

(b) For the last case, namely (−1)p/2Cp+1x0 > 0, in the proof of Theorem 7 in [120]
it was shown that the maximum of |R(x0 + iy)| in y ∈ R is achieved near the
imaginary axis in the points

y2s−p = Dx0,

where D ∈ R is a constant (that depends on the Runge-Kutta method) and s is
defined by (3.4).

98

Chapter 3. Fast Runge-Kutta CQ

Then

|z0| =
(
x2

0 + |D|
2

2s−p |x0|
2

2s−p
) 1

2

= |x0|1/(2s−p)
(
|D|

2
2s−p + |x0|2−

2
2s−p

) 1
2
.

According to Proposition 3.4 in [122] 2s ≥ p+1, therefore, for even p, 2s ≥ p+2.
This implies that |x0|2−2/(2s−p) = o(1) and hence

|z0| ≤ K|r − 1|
1

2s−p ,

for some K > 0.

Now we have all the estimates necessary to prove the next proposition on the decay of
scaled convolution weights.

Proposition 3.1.16. Let wn(d), n ≥ 0, be scaled convolution weights for an m-stage
Runge-Kutta method of order p that satisfies Assumption 1.2.15 and (3.11).

Let s be defined by (3.4). Then there exist positive constants G, G′, C, C ′ and δ̄ ∈
(0, 1), such that for n ≥ 1 and 0 < δ < δ̄ the following estimates hold:

1. p is odd

‖wn(d)‖ ≤ G(1− δ)n−d(1 + Cδp+1)d for d ≤ n,
‖wn(d)‖ ≤ G′(1 + δ)n−d(1 + C ′δp+1)d for d > n;

(3.12)

2. p is even

(a) Cp+1(−1)
p
2 > 0

‖wn(d)‖ ≤ G(1− δ)n−d(1 + Cδp+1)d for d ≤ n,

‖wn(d)‖ ≤ G′(1 + δ)n−d(1 + C ′δ
p+1
2s−p)d for d > n;

(3.13)

(b) Cp+1(−1)
p
2 < 0

‖wn(d)‖ ≤ G(1− δ)n−d(1 + Cδ
p+1
2s−p)d for d ≤ n,

‖wn(d)‖ ≤ G′(1 + δ)n−d(1 + C ′δp+1)d for d > n.
(3.14)

The scaled convolution weight w0(d) satisfies:

‖w0(d)‖ ≤ exp(−µd), (3.15)

for some µ > 0.
Constants G, G′, C, C ′, δ̄, µ depend only on the Runge-Kutta method and do not depend

on n or d.

99

Chapter 3. Fast Runge-Kutta CQ

Proof. Let us start with the case w0(d). From the definition of scaled convolution weights

exp (−∆(ξ)d) =

∞∑
n=0

wn (d) ξn,

∆(ξ) = A−1 − ξA−1
1bTA−1,

it follows that w0(d) = exp(−A−1d). All the eigenvalues of A lie on the right from the
imaginary axis (due to A-stability of the Runge-Kutta method). Same holds for the eigen-
values of A−1. The bound on w0(d) can then be obtained from the definition of the matrix
exponential.

For a general case wn(d), n ≥ 1, we use the bounds derived before, inserting (3.9) into
(3.7):

‖wn(d)‖ ≤ 1

2π
rn−1‖b‖

√
m|γr|max

z∈γr
|e−zd|max

z∈γr
‖QA(z)‖2

=
1

2π
rn−d−1|γr|max

z∈γr
‖QA(z)‖2‖b‖

√
m|1 + f(z0)e−z0 |d, (3.16)

where z0 is such that for all z′ ∈ γr

Re z′ ≥ Re z0

and f(z) = R(z)− ez. Here r ∈ R>0 is fixed. Properly speaking, z0 depends on r.
Let us first derive the bound for |1 + f(z0)e−z0 |. For |z| < 1

λ0
, where λ0 is the spectral

radius of A, we can expand R(z) = 1 + zbT (I −Az)−11 with the help of Neumann series to
obtain an explicit expression for f(z):

f(z) = R(z)− ez = z

∞∑
`=p

bTA`1z` −
∞∑

`=p+1

z`

`!
.

For |z| < 1
‖A‖ , we can trivially bound

|1 + f(z)e−z|d ≤
(
1 + C|z|p+1

)d
, (3.17)

where C depends on the Runge-Kutta method, but does not depend on z or d.
Now let d ≤ n. We choose r < 1, r = 1 − δ, 0 < δ < δ∗, where δ∗ is a constant from

(3.6), which allows to choose the contour γr, s.t. |R(z)| = r for all z ∈ γr.
Then the bound (3.16), using (3.17), can be rewritten as:

‖wn(d)‖ ≤ 1

2π
(1− δ)n−d−1|γ1−δ| max

z∈γ1−δ
‖QA(z)‖2‖b‖

√
m
(
1 + C|z0|p+1

)d
,

where z0 is such that Re z0 < Re z for all z ∈ γ1−δ.
The length of the curve γ1−δ as well as max

z∈γ1−δ
‖QA(z)‖, for 0 < δ < δ∗, can be bounded

by constants that depend on the Runge-Kutta method only, see also Lemma 3.1.3 and
Remarks 3.1.5 and 3.1.9.

Now let us choose δ sufficiently small, so that Proposition 3.1.15 can be applied to

estimate
(
1 + C|z0|p+1

)d
. This allows us to obtain the required expressions for the case

n > d.
The bound for d > n can be obtained similarly setting r = 1+δ, with δ chosen sufficiently

small.

100

Chapter 3. Fast Runge-Kutta CQ

Remark 3.1.17. Note that for even p the above bounds imply that when 2s − p < p + 1
scaled convolution weights decay exponentially. However, 2s ≤ 2m (m is the number of

stages and the degree of the denominator in R(z) = P (z)
Q(z)), and thus for exponential decay

it suffices that p ≥ m.

We have shown that scaled convolution weights wn(d) exhibit exponential decay out-
side of a neighborhood of n ≈ d, which is an expression of the strong Huygens principle.
Additionally, the above estimates suggest that the size of the approximate support of a
convolution weight wn(d) increases with d, n. Let us examine this in more detail. We
define the approximate support wn(d), n > 0, as

suppε wn =
[
d

(n,ε)
1 , d

(n,ε)
2

]
, (3.18)

d
(n,ε)
1 = sup

{
d : ‖wn(d′)‖ < ε, for all 0 ≤ d′ < d

}
,

d
(n,ε)
2 = inf

{
d : ‖wn(d′)‖ < ε, for all d′ > d

}
.

The set {
d : ‖wn(d′)‖ < ε, d′ < d

}
is non-empty for n ≥ 1, since wn(0) = 0 (as we show in Lemma 3.1.21) and wn(d) is smooth
in d ≥ 0. We assume that the set{

d : ‖wn(d′)‖ < ε, d′ > d
}

is non-empty for all n ≥ 0. By Proposition 3.1.16, this holds for Runge-Kutta methods of
odd order, while for Runge-Kutta methods of even order we require that 2s − p < p + 1
(where p is the order and s is as in (3.4)), see also Remark 3.1.17.

Hence, the values d
(n,ε)
1 , d

(n,ε)
2 are defined for all n ≥ 1.

To find the estimates on d
(n,ε)
1 , d

(n,ε)
2 , n > 0, we make use of the bounds of Proposition

3.1.16 that can be written in a more general form:

‖wn(d)‖ ≤ G(1− δ)n−d(1 + Cδα)d for all d ≤ n,

‖wn(d)‖ ≤ G′(1 + δ)n−d(1 + C ′δα
′
)d for all d > n,

for all δ < δ̄, for constants C,C ′, G,G′, α, α′, δ̄ > 0 depending only on the Runge-Kutta

method. The estimates on values d
(n,ε)
1 , d

(n,ε)
2 can be found from

G(1− δ)n−d(1 + Cδα)d ≤ ε,

G′(1 + δ)n−d(1 + C ′δα
′
)d ≤ ε.

The solution to the first inequality is given by

d < n log
1

1− δ

(
log

1

1− δ
+ log(1 + Cδα)

)−1

− log
G

ε

(
log

1

1− δ
+ log(1 + Cδα)

)−1

= n−
(

log
1

1− δ
+ log(1 + Cδα)

)−1(
log

G

ε
+ n log(1 + Cδα)

)

101

Chapter 3. Fast Runge-Kutta CQ

For bounded δ, there exist constants c1, c2, C
′ > 0 s.t. (recall that α > 1):

d < n−
c1nδ

α−1 + c2δ
−1 log G

ε

1− C ′δ
. (3.19)

The choice δ = cn−
1
α log

1
α
G
ε , with c being a small constant, ensures that

dn,ε1 ≥ n− C1n
1
α log1− 1

α
G

ε
, (3.20)

for some C1 depending on the Runge-Kutta method. Similarly,

dn,ε2 ≤ n+ C ′1n
1
α′ log1− 1

α′
G′

ε
, (3.21)

for C ′1 > 0 that depends on the Runge-Kutta method. To check this estimate, we plot
the dependence of ∆n,ε

1 = n − dn,ε1 and ∆n,ε
2 = dn,ε2 − n on n in Figure 3.2 for different

Runge-Kutta methods, with dn,ε1 and dn,ε2 determined numerically.
Our estimates predict that for methods with p odd, namely BDF1 (p = 1), 2-stage Radau

IIA (p = 3) and 3-stage Radau IIA (p = 5), ∆n,ε
1 , ∆n,ε

2 have to increase as O
(
n

1
p+1

)
. This

is in quite close agreement with the results in Figure 3.2.
For Runge-Kutta methods of even orders obtained estimates predict that for larger n

and d the width of a convolution weight gets larger in a non-symmetric manner: ∆n,ε
1 can

get larger with increasing n faster than ∆n,ε
2 or vice versa. For larger n, d the nonsym-

metricity will become more and more visible. This can be illustrated through an example
of Lobatto IIIC method of 6th order. Numerical experiments indicate that with increasing
n the part of the approximate support of the convolution weight wn(d) of Lobatto IIIC
method corresponding to d < n increases slower than the part of the approximate support
related to d > n. This effect can be explained by estimates (3.13) as follows. The stability
function of the 4-stage Lobatto IIIC method is the (2, 4)-Padé approximation to ez. For
such approximants the sign of the error term Cp+1 is negative (see, for example, [122, The-

orem 3.11]); then the sign of Cp+1(−1)
p
2 is positive. According to the estimates (3.13),

∆n,ε
1 = O

(
n

1
p+1

)
, with p = 6, while ∆n,ε

2 = O
(
n

2s−p
p+1

)
, with s = 4 for Lobatto IIIC (this

value can be obtained examining |R(iy)|2− 1 = O(y2s) for small y ∈ R). Again, the results
in Figure 3.2 are in quite close agreement with these estimates.

Remark 3.1.18. From the proof it can be seen that the effect of the dispersion of convolution
weights is due to the term |1 + f(z0)e−z0 | which was bounded by a constant greater than 1.
We have not observed in the numerical experiments any case when this term is noticeably
smaller than 1, which would force convolution weights wn(d) to decay exponentially with
increasing n ≈ d.

102

Chapter 3. Fast Runge-Kutta CQ

101 102 103 104

101

101.5

n

∆n,10−4

1 for 2-stage Radau IIA

∆n,10−4

2 for 2-stage Radau IIA

n
1
4

101 102 103 104

101

n

∆n,10−4

1 for 3-stage Radau IIA

∆n,10−4

2 for 3-stage Radau IIA

n
1
6

101 102 103 104

101

102

n

∆n,10−4

1 for BDF1

∆n,10−4

2 for BDF1

n
1
2(
n

logn

) 1
2

102 103 104

101

101.5

n

∆n,10−4

1 for Lobatto IIIC

∆n,10−4

2 for Lobatto IIIC

n
1
7

n
2
7(
n

logn

) 2
7

Figure 3.2: Dependence of ∆n,10−4

1 , ∆n,10−4

2 on n for different Runge-Kutta methods.

3.1.2 Efficient Evaluation of Convolution Weights

This section is dedicated to the description of procedures for the efficient evaluation of
convolution weights whn(d). First we briefly recall the conventional algorithm to compute
convolution weights, see also Section 1.2.9, with the accuracy

√
εm, where εm is the machine

precision.
Let

Kd(ξ) =
exp

(
−∆(ξ) dh

)
4πd

.

The expansion (1.48) shows that whn(d) is the nth Taylor coefficient of Kd(ξ). Therefore,
Cauchy integral formula gives another representation of whn(d),

whn(d) =
1

2πi

∮
C
Kd(ξ)ξ−n−1dξ.

Let us choose the contour C as the circle of radius ρ < 1 centered at the origin. Discretizing

103

Chapter 3. Fast Runge-Kutta CQ

this integral with the composite trapezoid rule gives the approximation

whn(d) = ρ−n
N∑
j=0

Kd
(
ρe
ij

2π
N+1

)
e
−ijn 2π

N+1 +O(ρN+1), n = 0, 1, . . . , N. (3.22)

In practice, the parameter ρ > 0 cannot be chosen arbitrarily small in finite precision

arithmetic. The best accuracy that can be achieved is
√
εm with the choice ρ = ε

1
2N
m ,

see [124,137]. Using FFT, whn(d) can be computed in O(N logN) time for all n = 0, 1, . . . , N .
However, if d is restricted, it is possible to avoid the scaling parameter ρ as described in the
next proposition. Recall that

whn(d) =
wn

(
d
h

)
4πd

. (3.23)

Proposition 3.1.19. Let whn, n ≥ 0, be Runge-Kutta convolution weights (1.48), and let
the Runge-Kutta method satisfy Assumption 1.2.15 and (3.11). Additionally, if the order p
of the Runge-Kutta method is even and Cp+1(−1)

p
2 < 0, let

p+ 1

2s− p
< 1,

where s is defined by (3.4).
Let K,h > 0 be fixed and D = Kh. Then there exist µ1, µ2, µ3 > 0, s.t. for all ε > 0

and for all L ∈ N satisfying

L ≥ µ1 log
1

ε
+ µ2K + µ3,

the following holds true:

1. There exists an L-term approximation to the convolution kernel Kd(ξ) =
exp(−∆(ξ) d

h)
4πd :∣∣∣∣∣Kd(ξ)−

L−1∑
`=0

wh` (d)ξ`

∣∣∣∣∣ ≤ ε

4πd

for all ξ ∈ C : |ξ| ≤ 1 and 0 ≤ d ≤ D.

2. Convolution weights can be approximated with the accuracy ε by an L-term discrete
Fourier transform of the convolution kernel.∣∣∣∣∣whn(d)− 1

L

L−1∑
`=0

Kd(ei`
2π
L)e−i`n

2π
L

∣∣∣∣∣ ≤ ε

4πd

for all n < L and 0 ≤ d ≤ D.

Proof. Let us prove the first statement using the bounds on convolution weights derived
in Proposition 3.1.16. The second statement then straightforwardly follows from the first
statement by the application of the aliasing formula.

By definition, for all ξ : |ξ| < 1

Kd(ξ) =
∞∑
`=0

wh` (d)ξ` =
L−1∑
`=0

wh` (d)ξ` +
∞∑
`=L

wh` (d)ξ`.

104

Chapter 3. Fast Runge-Kutta CQ

Let us show that given ε > 0, there exists L s.t. (see also (3.23)):

EL(ξ) =

∥∥∥∥∥
∞∑
`=L

wh` ξ
`

∥∥∥∥∥ =

∥∥∥∥∥ 1

4πd

∞∑
`=L

w`

(
d

h

)
ξ`

∥∥∥∥∥ < ε

4πd
. (3.24)

First, let L > K. In a generalized form, the bounds on scaled convolution weights wn

(
d
h

)
for n ≥ L and d ≤ Kh < nh can be stated as∥∥∥∥wn

(
d

h

)∥∥∥∥ ≤ G (1− δ)n−
d
h (1 +Aδα)

d
h ,

for some 0 < δ < δ̄ and A,G, α, δ̄ > 0 being constants. Then, after inserting this bound
into the expression (3.24) for EL(ξ),

EL(ξ) =

∥∥∥∥∥ 1

4πd

∞∑
`=L

w`

(
d

h

)
ξ`

∥∥∥∥∥ ≤ 1

4πd

∞∑
`=L

∥∥∥∥w`

(
d

h

)∥∥∥∥
≤ G

4πd

(
1 +Aδα

1− δ

) d
h
∞∑
`=L

(1− δ)` (3.25)

≤ G

4πd

(
1 +Aδα

1− δ

) d
h

(1− δ)Lδ−1

≤ G

4πdδ

(
1 +Aδα

1− δ

)K
(1− δ)L,

where we used that d < D = Kh. From the above it can be seen that L has to be chosen
larger than K and so that

G

4πdδ

(
1 +Aδα

1− δ

)K
(1− δ)L < ε

4πd
.

Namely,

L ≥ K
(

log(1 +Aδα) log−1 1

1− δ
+ 1

)
+ log

1

ε
log−1 1

1− δ
+ log

G

δ
log−1 1

1− δ
.

This proves the statement of the proposition for |ξ| < 1. For |ξ| = 1 the correctness of the
statement can be seen from the bound (3.25) which is valid for |ξ| = 1.

3.1.3 Bounds for Non-Scaled Convolution Weights

For consistency, in this section we show how to deal with convolution weights whn(d) for
small d > 0.

The next proposition is a corollary of Proposition 3.1.16 and shows that (non-scaled)

convolution weights whn(d) =
wn(dh)

4πd also experience exponential decay away from d
h ≈ n.

Proposition 3.1.20. Let whn, n ≥ 0, be convolution weights for an m-stage Runge-Kutta
method of order p that satisfies Assumption 1.2.15 and (3.11).

Let s be defined by (3.4). Then there exist positive constants G, G′, C, C ′ and δ̄ ∈
(0, 1), such that for n ≥ 1 and 0 < δ < δ̄ the following estimates hold:

105

Chapter 3. Fast Runge-Kutta CQ

1. p is odd

‖whn(d)‖ ≤ G

h
(1− δ)n−

d
h (1 + Cδp+1)

d
h for

d

h
≤ n,

‖whn(d)‖ ≤ G′

d
(1 + δ)n−

d
h (1 + C ′δp+1)

d
h for

d

h
> n;

(3.26)

2. p is even

(a) Cp+1(−1)
p
2 > 0

‖whn(d)‖ ≤ G

h
(1− δ)n−

d
h (1 + Cδp+1)

d
h for

d

h
≤ n,

‖whn(d)‖ ≤ G′

d
(1 + δ)n−

d
h (1 + C ′δ

p+1
2s−p)

d
h for

d

h
> n;

(3.27)

(b) Cp+1(−1)
p
2 < 0

‖whn(d)‖ ≤ G

h
(1− δ)n−

d
h (1 + Cδ

p+1
2s−p)

d
h for

d

h
≤ n,

‖whn(d)‖ ≤ G′

d
(1 + δ)n−

d
h (1 + C ′δp+1)

d
h for

d

h
> n.

(3.28)

The convolution weight wh0 (d) satisfies:

‖wh0 (d)‖ ≤
exp(−µ dh)

4πd
,

for some µ > 0.
Constants G, G′, C, C ′, δ̄, µ depend only on the Runge-Kutta method and do not depend

on n, d and h.

To prove this result, we will need the following technical lemma.

Lemma 3.1.21. Given an m-stage Runge-Kutta method satisfying Assumption 1.2.15, the
following statements hold true.

1. For all n ≥ 1 a scaled convolution weight wn(d) has a zero of the multiplicity n at
d = 0.

2. For all n ≥ 2 a convolution weight whn(d) has a zero of the multiplicity n− 1 at d = 0.

3. Given the stability function of the Runge-Kutta method R(z) and a contour γ enclosing
all the singularities of R(z), for all n ≥ 1,∮

γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1dz = 0. (3.29)

Proof. Let us prove the statements successively.

106

Chapter 3. Fast Runge-Kutta CQ

1. The generating function of scaled convolution weights e−∆(ξ)d, see (3.1), can be ex-
panded into Taylor series in ξ and then into series in d:

exp (−∆(ξ)d) =

∞∑
n=0

wn(d)ξn,

exp (−∆(ξ)d) =
∞∑
n=0

(−∆(ξ))n

n!
dn.

For Runge-Kutta methods of interest

∆(ξ) = A−1 − ξA−1bT1A−1.

Matching the powers of ξ in both expansions we obtain the following expression for
wn(d), n ≥ 0:

wn(d) =
∞∑
m=n

dmfnm (A, b) ,

where fnm (A, b) , m ≥ n, n ≥ 0 are matrix-valued functions of A and b. From this
the first statement of the lemma follows.

2. The second statement immediately follows from the first one, using whn(d) =
wn(dh)

4πd .

3. The third statement is the corollary of the first one as well. The scaled convolution
weights can be written as the following integral (3.2):

wn(d) =
1

2πi

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1e−zddz, (3.30)

where γ is a contour that encloses all the eigenvalues of A−1 (singularities of R(z))
and n ≥ 1. Then

wn(0) =
1

2πi

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1dz = 0

for all n ≥ 1.

Now we have the required ingredients to prove Proposition 3.1.20.

Proof of Proposition 3.1.20. Let us start with the case wh0 (d). From the definition of scaled

convolution weights it follows that wh0 (d) =
w0(d

h
)

4πd , and the required bound can be obtained
from (3.15). Note, however, that the convolution weight wh0 (d) has a singularity at d = 0.

Bounds for the case d
h > n can be obtained straightforwardly from expressions (3.12,

3.13, 3.14) applied to whn(d) =
wn(d

h
)

4πd .

The case d
h ≤ n has to be treated separately: we cannot directly apply Proposition

3.1.16 for bounding whn(d) =
wn(d

h
)

4πd , since for small d this bound would be far from optimal.

107

Chapter 3. Fast Runge-Kutta CQ

Lemma 3.1.21 shows that convolution weights whn(d), n ≥ 1, have a zero at d = 0 of order
at least n− 1.

We will proceed as follows. First, we will derive a modified representation for convolution
weights using Lemma 3.1.21. Next, ideas from the proof of Proposition 3.1.16 will be used
to demonstrate that away from n convolution weights whn(d) decay exponentially; more
precisely, bounds, similar to that derived for scaled convolution weights, hold also for whn(d).

Let d 6= 0. We express e−z
d
h as an integral of a parameter 0 ≤ ρ ≤ 1:

e−z
d
h = 1− zd

h

1∫
0

e−z
d
h
ρdρ.

Then the definition (3.2) can be rewritten:

whn(d) =
wn

(
d
h

)
4πd

=
1

8π2id

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1e−z

d
hdz

=
1

8π2id

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1dz−

− 1

8π2ih

1∫
0

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1ze−z

d
h
ρdzdρ.

The first term in the above sum equals 0, due to (3.29). The absolute value of the second
term, namely,

1

8π2ih

1∫
0

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1ze−z

d
h
ρdzdρ,

can be estimated using the mean value theorem. We first bound the value of the integral

I(ρ, d) =
1

8π2ih

∮
γ

R(z)n−1(I −Az)−1
1bT (I −Az)−1ze−z

d
h
ρdz

repeating the arguments of the proof of Proposition 3.1.16. Note that two changes have
to be made. First, d has to be substituted with d

h . And second, instead of bounding
‖(I − Az)−11bT (I − Az)−1‖ we now bound ‖(I − Az)−11bT (I − Az)−1z‖, for z lying on a
contour γ = γr, by a constant that does not depend neither on d, nor on h or n, but only
on the Runge-Kutta method.

It is not difficult to see that there exist positive constants G, C, δ̄ ∈ (0, 1), q > 0 such
that for n ≥ 1 and 0 < δ < δ̄ the following estimate holds:

|I(ρ, d)| ≤ 1

h
G(1− δ)n−

d
h
ρ(1 + Cδq)

d
h
ρ,

for d
hρ ≤ n. In the above expression q is either p + 1 or p+1

2s−p , as in Proposition 3.1.16.

Clearly this estimate is valid for all d : d
h ≤ n and ρ ∈ [0, 1].

108

Chapter 3. Fast Runge-Kutta CQ

Next, we bound
1∫
0

I(ρ, d)dρ as:

∣∣∣∣∣∣
1∫

0

I(ρ, d)dρ

∣∣∣∣∣∣ ≤ max
ρ∈[0, 1]

|I(ρ, d)|

≤ 1

h
G(1− δ)n max

ρ∈[0, 1]

(
1 + Cδq

1− δ

) d
h
ρ

≤ 1

h
G(1− δ)n−

d
h (1 + Cδq)

d
h .

This finishes the proof of the statement.

To find the approximate support of convolution weights whn we can argue similarly as in
the case of scaled convolution weights wn. Let

suppεw
h
n =

[
d

(n,ε,h)
1 , d

(n,ε,h)
2

]
, (3.31)

d
(n,ε,h)
1 = sup

{
d : ‖whn(d′)‖ < ε, for all 0 ≤ d′ < d

}
,

d
(n,ε,h)
2 = inf

{
d : ‖whn(d′)‖ < ε, for all d′ > d

}
.

The value d
(n,ε,h)
1 is defined for n > 1 and d

(n,ε,h)
2 for all n ≥ 0 under the same assumptions

as in (3.18). From Proposition 3.1.20 it follows that

‖whn(d)‖ ≤ G

h
(1− δ)n−

d
h (1 + Cδα)

d
h for d ≤ nh, (3.32)

‖whn(d)‖ ≤ G′

d
(1 + δ)n−

d
h (1 + C ′δα

′
)
d
h for d > nh, (3.33)

for all 0 < δ < δ̄, for constants C,C ′, G,G′, α, α′, δ̄ > 0 depending only on the Runge-Kutta

method. As before, we assume that α, α′ > 1. The estimate on d
(n,ε,h)
1 can be found from

the first inequality (3.32). Namely, given ε > 0, ‖whn(d)‖ < ε for d satisfying, see (3.19),

d < nh− h
c1nδ

α−1 + c2δ
−1 log G

hε

1− C ′δ
,

for some small δ and constants C ′, c1, c2 > 0. The choice δ = c

(
log G

εh
n

) 1
α

, with a small

constant c, ensures that ‖whn(d)‖ < ε for all

d < nh− C2hn
1
α log

α−1
α

G

εh
,

for some constant C2 > 0. The right-hand side of the above expression serves as an estimate

for d
(n,ε,h)
1 . Similarly an estimate on d

(n,ε,h)
2 can be found. The inequality (3.33) holds

whenever

‖whn(d)‖ ≤ G′

nh
(1 + δ)n−

d
h (1 + C ′δα

′
)
d
h for all d > nh.

109

Chapter 3. Fast Runge-Kutta CQ

Let us assume that

G

εnh
> 1. (3.34)

Then, repeating the same steps as before, we obtain the following estimate on d for which
(3.33) holds:

d > nh+ C ′2n
1
α′ h log

α′−1
α′

G

εnh
,

with some C ′2 > 0. From this it follows that the approximate support of a convolution
weight whn(d), n > 1, lies within the interval

suppεw
h
n ⊆

[
max

(
0, nh− C2hn

1
α log

α−1
α

G

εh

)
, nh+ C ′2n

1
α′ h log

α′−1
α′

G′

εnh

]
, (3.35)

where α, α′ > 1.
An efficient evaluation of the convolution weights whn(d) for a restricted range of d

with the accuracy close to the machine accuracy can be done as described in the following
proposition.

Proposition 3.1.22. Let whn, n ≥ 0, be Runge-Kutta convolution weights (1.48), and let
the Runge-Kutta method satisfy Assumption 1.2.15 and (3.11). Additionally, if the order p
of the Runge-Kutta method is even and Cp+1(−1)

p
2 < 0, let

p+ 1

2s− p
< 1,

where s is defined by (3.4).
Let K,h > 0 be fixed and D = Kh. There exist µ1, µ2, µ3 > 0, s.t. for all ε > 0 and for

all L ∈ N satisfying

L ≥ µ1 log
1

εh
+ µ2K + µ3,

the following holds true:

1. There exists an L-term approximation to the convolution kernel Kd(ξ) =
exp(−∆(ξ) d

h)
4πd :∣∣∣∣∣Kd(ξ)−

L−1∑
`=0

wh` (d)ξ`

∣∣∣∣∣ ≤ ε
for all ξ ∈ C : |ξ| ≤ 1 and 0 < d ≤ D.

2. Convolution weights can be approximated with the accuracy ε by an L-term discrete
Fourier transform of the convolution kernel.∣∣∣∣∣whn(d)− 1

L

L−1∑
`=0

Kd(ei`
2π
L)e−i`n

2π
L

∣∣∣∣∣ ≤ ε
for all n < L and 0 < d ≤ D.

110

Chapter 3. Fast Runge-Kutta CQ

Proof. The proof mimics the proof of Proposition 3.1.19, but with the use of bounds of
Proposition 3.1.20 rather than of Proposition 3.1.16.

Remark 3.1.23. Note that in the above proposition the dependence of L = L(log 1
εh ,

D
h)

on log 1
h cannot be removed. To illustrate this fact in Figure 3.3 we plot N = inf{n ∈ N :∥∥whl (d)
∥∥ < ε, for all l ≥ n, d ≤ D} for different values of h and fixed D

h = 10 for 3-stage
Radau IIA method of the fifth order.

10−2 10−1 100 101 102 103 104 105
10

15

20

25

1
h

n

ε = 1e− 4
ε = 1e− 5

O
(
log 1

h

)

Figure 3.3: Dependence of N = N
(
log 1

εh ,
D
h

)
on 1

h , D
h = 10.

3.2 Applicability of Sparse Convolution Quadrature to Runge-
Kutta CQ

In [115,116,131] the authors developed an efficient algorithm that exploits fast decay of the
convolution weights for the multistep BDF2 method (see also Section 1.2.9). However, a
straightforward extension of these ideas to Runge-Kutta convolution quadrature presents
difficulties related to the assembly of Galerkin discretizations of operators(

W h
nφ
)

(x) =

∫
Γ

whn(‖x− y‖)φ(y)dΓy, n ≥ 1,

as well as to the use of back substitution. Let us list some of those:

1. For a Runge-Kutta method with the stage number m > 1 no closed form expression
is known for a convolution weight whn(d), n > 0;

2. Convolution weights whn(d), n ≥ 0, are real matrices of size m×m (the real-valuedness

can be seen noting that ∆(ξ) = ∆(ξ), ξ ∈ C), hence, given n > 0, the construction of
the Galerkin discretization of W h

n requires the assembly of m2 matrices (see Section
3.1.2); the evaluation of W h

nλk requires m2 Galerkin matrix-vector multiplications;

111

Chapter 3. Fast Runge-Kutta CQ

3. The solution of the lower-triangular Toeplitz system (1.54), namely,
W h

0 0 · · · 0
W h

1 W h
0 · · · 0

· · ·
W h
N W h

N−1 · · · W h
0



λ0

λ1
...
λN

 =


g0

g1
...
gN

 (3.36)

with the help of back substitution is of the complexity O(N2).

In Sections 1.2.9, 3.1.2 it is shown that the actual computation of convolution weights
whn(‖x − y‖) can be done using the fast Fourier transform, however, such procedure may
be rather difficult to implement efficiently. From the proof of Lemma 3.1.21 it can be seen
that whn(d), n ≥ 1, are analytic functions of d > 0, hence can be efficiently interpolated in
d by polynomials.

To check this, we perform the following numerical experiment.
Given ε > 0, we compute degrees of interpolation polynomials for convolution weights(

whn(d)
)

11
on the smallest interval

[
d

(n,h)
1 , d

(n,h)
2

]
s.t. |

(
whn(d)

)
11
| < ε, for all d < d

(n,h)
1

and d > d
(n,h)
2 . Polynomials are Chebyshev interpolants constructed with the help of

Chebfun [180], with the tolerance set to ε. Remarkably, if n, h change so that nh = const, the
degree of the corresponding interpolation polynomial remains almost constant, see Tables
3.1, 3.2.

n h BDF1 BDF2 Radau IIA 2-stage Radau IIA 3-stage

10 0.05 26 36 38 48

20 0.025 27 37 38 48

50 0.01 25 38 36 46

100 0.005 24 42 36 47

200 0.0025 25 44 36 47

500 0.001 24 50 34 45

Table 3.1: The degree of the interpolation polynomial for the convolution weight
(
whn(d)

)
11

on the

interval
[
d
(n,h)
1 , d

(n,h)
2

]
where |

(
whn(d)

)
11
| < ε, for all d < d

(n,h)
1 and d > d

(n,h)
2 , ε = 10−6. The

polynomial was constructed with a help of Chebfun [180], with the tolerance set to ε = 10−6. The
order of the polynomial is almost constant for nh = const.

The use of interpolation polynomials of as high degrees as shown in Tables 3.1 and

3.2 can appear inefficient. Hence intervals
[
d

(n,h)
1 , d

(n,h)
2

]
have to be split into smaller

subintervals, and the actual evaluation of convolution weights whn(d) has to be done based
on the interpolation on these subintervals.

Next, we would like to show how the ideas of sparse BDF2 multistep convolution quadra-
ture can be extended to construct the Galerkin discretizations of operators W h

n . We consider
the a priori cutoff strategy based on fast decay of the kernels of these operators (convolution
weights) used in [115,116,131].

112

Chapter 3. Fast Runge-Kutta CQ

n h BDF1 BDF2 Radau IIA 2-stage Radau IIA 3-stage

10 0.05 9 14 14 18

20 0.025 11 17 14 16

50 0.01 10 16 13 16

100 0.005 9 16 11 14

200 0.0025 9 17 10 14

500 0.001 7 17 12 14

Table 3.2: The degree of the interpolation polynomial for the convolution weight
(
whn(d)

)
11

on the

interval
[
d
(n,h)
1 , d

(n,h)
2

]
where |

(
whn(d)

)
11
| < ε, for all d < d

(n,h)
1 and d > d

(n,h)
2 , ε = 10−3. The

polynomial was constructed with a help of Chebfun [180], with the tolerance set to ε = 10−3. The
order of the polynomial remains almost constant for nh = const.

Let (φi)
M
i=1 be Galerkin test and trial basis functions; as previously, for simplicity, we

use piecewise-constant functions. Let(
Wh

n

)
ij

=

∫∫
Γ×Γ

whn(‖x− y‖)φi(x)φj(y)dΓydΓx,

(
Wh

n

)kl
ij

=

∫∫
Γ×Γ

(
whn(‖x− y‖)

)
kl
φi(x)φj(y)dΓydΓx,

i, j = 1, . . . ,M, k, l = 1, . . . ,m.

By ∆x we denote the meshwidth. The diameters dj of the supports of Galerkin basis
functions φj , j = 1, . . . ,M, satisfy

b∆x ≤ dj ≤ ∆x,

for some b > 0 independent of M, ∆x. Let the number of elements M = O
(

1
(∆x)2

)
. We

assume

∆x ≈ Chν (3.37)

for some C > 0, ν ≥ 1. This implies that with respect to the number of time steps N ,

M = O(N2ν).

The case ν = 1 is of particular interest for us, see the discussion in Section 1.2.11.3.
The estimates in Section 3.1.1 show that there exist C2, C

′
2, G,G

′ > 0 and 0 < α, β < 1,
s.t. for all ε, h > 0 ∥∥∥whn(d)

∥∥∥ < ε

4πd

as soon as, see (3.18, 3.20, 3.21),

d /∈ Ihn =

[
max

(
0, nh− C2n

αh log1−α G

ε

)
, nh+ C ′2n

βh log1−β G
′

ε

]
. (3.38)

113

Chapter 3. Fast Runge-Kutta CQ

There exists n0 = C log G
ε , where C = const > 0 that depends on the Runge-Kutta

method, such that for all n > n0 it holds

max

(
0, nh− C2n

αh log1−α G

ε

)
= nh− C2n

αh log1−α G

ε
. (3.39)

The main idea behind the a priori cutoff strategy is to avoid the evaluation of some of

the entries of sparse matrices
(
Wh

n

)kl
, k, l = 1, . . . ,m, n = 0, . . . , N, that are close to zero

because of (3.38).

Let us estimate the number of non-zero elements in
(
Wh

n

)kl
, k, l = 1, . . . ,m, 0 ≤ n ≤ N .

We follow the strategy suggested in [131, Section 5.3.3] (there the bound on the number of
panel clustering influence matrices is given; setting b = 0 in the equation (5.14) in [131] lets
obtaining the desired estimate on the number of non-zero elements in a sparse matrix).

Let

Ihn =
{

(x, y) ∈ Γ× Γ : ‖x− y‖ ∈ Ihn
}
, (3.40)

see (3.38).
In [116] it is shown (for the BDF2 method) that the stability and convergence of the

method with the cut-off strategy is ensured if ε is chosen s.t.

log
1

ε
= O(logM). (3.41)

We make use of this estimate as well. Due to rapid decay of convolution weights, taking a
slightly larger interval Ĩhn ⊃ Ihn instead of Ihn in (3.40) drastically reduces the cutoff error.

As h,∆x → 0 preserving (3.37), the diameter of the approximate support (3.38) of a
convolution weight wn

(
d
h

)
, n ≥ 1, exceeds ∆x. The number of non-zero elements in each

of the matrices
(
Wh

n

)kl
, k, l = 1, . . . ,m, n = 1, . . . , N, can be estimated by the formula:

Cn = O

(
µ
(
Ihn
)

µ0

)
, (3.42)

where, given a set A, µ(A) is its Lebesgue measure, and µ0 is the measure of the Cartesian
product of two supports of basis functions on Γ. In our case,

µ0 = µ(πi × πj) = O
(

(∆x)4
)
, i, j = 1, . . . ,M.

Let us consider separately the following cases: n = 0, 0 < n ≤ n0 and n0 < n ≤ N .
The convolution weight

‖wh0 (d)‖ < ε

4πd
for d ∈

[
0, C0h log

1

ε

]
, C0 > 0,

see (3.15).
To estimate the number of non-zero elements we make use of the formula (3.42). Sim-

ilarly to [131], the assumption on the geometric shape of the surface is the following (one
could think of the simplest case of a flat surface):

µ(Ih0) = O

(
h2 log2 1

ε

)
.

114

Chapter 3. Fast Runge-Kutta CQ

Inserting this into (3.42) gives

C0 = O

(
h2

(∆x)2
M log2 1

ε

)
= O

(
M2− 1

ν log2 1

ε

)
.

For ν = 1, with the use of (3.41),

C0 = O
(
M log2M

)
.

Next, let us consider the case 0 < n ≤ n0 = C logN , see (3.39). The approximate
support of whn lies within the interval, c.f. (3.38),(

0, nh+ C ′2n
βh log1−β G

′

ε

]
.

Adopting the assumption of [131] on the geometric shape of the surface:

µ
(
Ihn

)
= O

((
nh+ C ′2n

βh log1−β G
′

ε

)2
)
.

For large values of n (close to C logN), this, combined with (3.41), gives

µ
(
Ihn

)
= O

(
h2 log2M

)
.

Inserting this into (3.42) gives an upper bound on the number of elements in each of

the matrices
(
Wh

n

)kl
, k, l = 1, . . . ,m, 1 ≤ n ≤ n0:

Cn = O
(
M2− 1

ν log2M
)
.

For the case ν = 1, the storage costs scale not worse than

Cn = O
(
M log2M

)
.

Finally, let us consider the case n > n0 = C logN . Similarly to [131], the geometric
shape of the surface satisfies (one could again think of the simplest case of a flat surface):

µ
(
Ihn

)
= O

(
h2

(
n1+α log1−α G

ε
+ n1+β log1−β G

′

ε

))
. (3.43)

Then the total number of non-zero elements in a matrix
(
Wh

n

)kl
, k, l = 1, . . . ,m, n =

n0 + 1, . . . , N , scales as

Cn = O
(
M2− 1

ν

(
n1+α log1−αM + n1+β log1−βM

))
(3.44)

= O
(
M2− 1

ν n1+max(α,β) log1−max(α,β)M
)
. (3.45)

For large n = O(N) this gives

Cn = O
(
M2− 1

νN1+max(α,β) log1−max(α,β)M
)
.

115

Chapter 3. Fast Runge-Kutta CQ

For the 3-stage Radau IIA method α = β = 1
6 , see the discussion in Section 3.1. For

ν = 1 we need the storage of O
(
n1+ 1

6M log
5
6 M

)
for every of the matrices

(
Wh

n

)kl
, k, l =

1, . . . ,m, with n ≥ n0. For the rest of the matrices the storage costs scale as O(M log2M).
The total storage costs then are

O
(
N2+ 1

6M log
5
6 M

)
= O

(
M2+ 1

12 log
5
6 M

)
.

Hence, a straightforward application of sparsity does not allow to construct the algorithm
of a fully linear complexity. Nonetheless, the memory requirements are very close to those
of many MOT and Galerkin methods (O(M2)).

As a remedy, in [131] it was suggested to combine the a priori cutoff strategy with the
panel clustering. Although the extension of these ideas to Runge-Kutta CQ may lead to the
method with improved memory requirements, the total complexity of such algorithm does
not scale better than O(MN2), due to the use of back substitution. This, combined with
difficulties associated with the actual evaluation of convolution weights (see the beginning
of Section 3.2), is not likely to allow the construction of the efficient large scale Runge-Kutta
convolution quadrature algorithm based on the ideas from [115,116,131].

3.3 Fast Convolution Quadrature Algorithm

Let us come back to the recursive algorithm described in detail in Section 1.2.11. Recall
that for this algorithm O(N) Galerkin discretizations of boundary single-layer operators for
the Helmholtz equation with decay need to be constructed. A straightforward application of
the data-sparse techniques we considered in Section 2 (i.e. FMM and H-matrices) would on
its own lead to the algorithm of almost linear complexity. However, a significant drawback
of this approach is large constants involved in complexity estimates. Our goal is to design
a method that would reduce them.

The data-sparse techniques in question have two main bottlenecks:

• costly evaluation of singular and nearly singular integrals in the near-field;

• high matrix-vector multiplication costs of the high-frequency FMM.

We overcome the first problem by the use of fast decay of convolution weights whn(d)
away from the neighborhood of d ≈ nh. We show that within the whole recursive algorithm
only a few matrices (namely O(logN)) with the near-field need to be constructed, while for
the rest we can assemble the far-field only. To motivate this strategy, we briefly survey the
related works in Section 3.3.1.

In the end of this section we demonstrate that provided that for the approximation of
different matrices a choice betweenH-matrix techniques and the HF FMM is made properly,
the problem of high matrix-vector multiplication costs of the HF FMM ceases to exist.

3.3.1 Motivation

The evaluation of the near-field integrals is commonly done with the help of coordinate
transformation techniques, see [87, 118, 167–169]. Given the kernel k(x, y) of a boundary

116

Chapter 3. Fast Runge-Kutta CQ

single layer operator (that maps from H−
1
2 (Γ) to H

1
2 (Γ)), the evaluation of∫∫

πi×πj

k(x, y)φi(x)φj(y)dΓxdΓy, suppφi = πi, suppφj = πj ,

with the accuracy sufficient to preserve the stability and convergence of the Galerkin
method, requires that the quadrature order scales asO(log3M) if dist(πi, πj) = 0, O(log4M)
if dist(πi, πj) = O(∆x) (nearly singular integrals) and O(1) if dist(πi, πj) = 1. Thus the
computation of the near-field (singular and nearly singular integrals) of one matrix is of
O(M log4M) complexity. Within the recursive convolution quadrature algorithm O(N)
such matrices need to be assembled, hence resulting in the total complexity O

(
NM log4M

)
.

The question of the efficient evaluation of singular and nearly singular integrals was
addressed in recent works [16,146,147]. Particularly, in [16] such integrals were represented
as functions of multiple parameters and efficiently computed using interpolation and tensor
decomposition techniques. In [15] the effect of the application of such techniques on the full
H-matrix assembly time was numerically studied. For the Laplace boundary single layer
operator on various geometries it was demonstrated that the 50%-70% reduction of the
time required for the evaluation of the nearly singular and weakly singular integrals results
in the 10%-20% reduction of the total H-matrix assembly time. Given the bound on the
ranks of H-matrix r, the rest of the time is spent for the evaluation of O(rM logM) far-field
integrals within the ACA+ procedure of the H-matrix construction. If the evaluation of
the far-field is done in a more efficient manner, the gain can be significantly larger. And
this is the case for the fast multipole methods.

The precomputation time (i.e. time needed for the construction of the translation oper-
ators) for the HF FMM scales as O(M logM) (assuming M = O(|κ|2) for the wavenumber
κ = is) and the constants involved are significantly smaller than that for the H-matrix
assembly. This can be seen in the experiments of [48], where the HF FMM precomputation
times were reported to be in practice 9-20 times smaller than that for the H-matrix con-
struction. This can be also observed in the numerical experiments in Section 2.3. In [89, Ta-
bles 3.2-3.3] the time to compute the near-field for the HF FMM accelerated Burton-Miller
formulation is compared to the time needed to construct the corresponding HF FMM trans-
lation matrices. The results show that for BEM discretizations with 103 − 105 triangular
boundary elements the computation of the near-field is typically order of magnitude slower
than the assembly of translation matrices.

However the actual constants depend much on the implementation and the desired
accuracy. Nevertheless, for large problems we should be able to see the improvement if
we skip constructing the near-field. Asymptotic complexity estimates are improved as
well. Indeed, while the application of ACA/ACA+ based H-matrix techniques requires
the evaluation of 4-dimensional integrals, for the use of the HF FMM in the far-field only
the evaluation of two-dimensional integrals (for the cluster basis) is needed. We perform
this step not during the precomputation stage, but when compute matrix-vector products
(this allows to avoid storing the cluster basis for all matrices and thus improves memory
costs). Therefore the relative improvement in the precomputation time if the near-field is
not constructed is even more drastic.

Since in the course of the recursive algorithm described in Section 1.2.11 the matrix-
vector multiplication with the same matrix block is performed multiple times, it makes sense
to precompute the corresponding discretizations of boundary integral operators and keep
them in memory, rather than recompute them every time the matrix-vector multiplication is

117

Chapter 3. Fast Runge-Kutta CQ

needed. For the matrices that are approximated with the help of the fast multipole method
the near-field and translation operators can be stored. If only a small part of matrices
has the near-field, the storage costs needed for HF FMM approximated matrices can be
affected as well. Given the HF FMM approximation of V(s), the storage for its far-field
part (translation matrices of the FMM) scales as

Sff (s) = O(|s|2 logM) = O(M logM),

where we assumed M = O
(
|s|2
)
, while for the near-field

Snf (s) = O(M).

Hence, as M → +∞, Snf is smaller than Sff (though only by a logarithmic term). The
improvement in the storage costs can be achieved only in the case when the constants in
Sff are so small that even for rather large M , Snf > Sff . As our numerical experiments
in Section 4 show, in practice this is often the case.

The presence of decay, i.e. in the case when s = s1 +is2, s1 > 0, facilitates the reduction
of storage costs. If s1 is large enough, for such discretizations V(s) the far-field part

Sff ≈ 0,

see also Figure 3.4 and Section 2.1.4.1.

0 5 10

−5

0

5

Re s

Im
s

Figure 3.4: Frequencies s for which we need to construct discretizations of boundary single-layer
operators V (sh); they are computed as eigenvalues of ∆(ξ), |ξ| = 10−

6
105 . Here h = 1. While many

frequencies are located close to the imaginary axis, a significant part of frequencies has Re s� 1
(high-decay case). A large part of the far-field of the corresponding matrices V (sh) is negligibly

small and can be a priori ignored when constructing these matrices, as described in Section 2.1.4.1.

3.3.2 Near-Field Reuse

3.3.2.1 Auxiliary Relations on Leaves of a Block-Cluster Tree

Before describing our strategy for dealing with the near-field, we introduce two auxiliary
relations defined on leaves of a block-cluster tree, namely the near-field d-admissibility and
the far-field d-admissibility. Recall that given a cluster τ , the center of its bounding box we
denote by cτ and the diameter of the bounding box by dτ , see also Section 2.1.2.

Definition 3.3.1. Given d > 0, we will call a leaf (τ, σ) near-field d-admissible if ‖cτ−cσ‖ <
d− dτ

2 −
dσ
2 .

118

Chapter 3. Fast Runge-Kutta CQ

Definition 3.3.2. Given D > 0, a leaf (τ, σ) is far-field D-admissible if ‖cτ − cσ‖ <
D + dτ

2 + dσ
2 .

Remark 3.3.3. The following properties hold:

1. If (τ, σ) is near-field d-admissible then
(∀x ∈ Ωτ)(∀y ∈ Ωσ), ‖x− y‖ < d.

2. If (τ, σ) is not far-field D-admissible then
(∀x ∈ Ωτ)(∀y ∈ Ωσ), ‖x− y‖ > D.

We will denote the set of near-field d-admissible leaves of a block-cluster tree TI×I by
Ld(TI×I) and the set of far-field D-admissible leaves by L+

D(TI×I).

Remark 3.3.4. The following observation is crucial for our algorithm. Recall that L−(TI×I)
is defined as the set of all non-admissible block-clusters of the block-cluster tree TI×I . Then
it is possible to choose d s.t.

L−(TI×I) ⊂ Ld(TI×I). (3.46)

This follows from the definition of the admissibility condition (Definition 2.1.7). Namely,
given η > 1, non-admissible leaves (τ, σ) satisfy

‖cτ − cσ‖ <
η

2
(dτ + dσ),

where cτ , cσ are the centers of bounding boxes of τ, σ and dτ , dσ are their diameters. The
choice

d = γ sup
(τ,σ)∈L−

(dτ + dσ), γ ≥ η + 1

2
(3.47)

ensures that (3.46) holds true.

Now we have all the ingredients needed to describe fast Runge-Kutta convolution quadra-
ture.

3.3.2.2 Main Ideas and Algorithmic Realization

Consider the matrix-vector product (1.58), namely
h0

h1
...

hn−`

 =


W h
` W h

`−1 · · · W h
1

W h
`+1 W h

` · · · W h
2

...
W h
n W h

n−1 · · · W h
n−`+1



λ0

λ1
...

λ`−1

 . (3.48)

After the discretization in space with the help of the Galerkin method (with trial and
test basis functions (φj(x))Mj=1), the above system of equations can be rewritten as:

hj0
hj1
...

hjn−`

 =

∫∫
Γ×Γ

M∑
k=1

T `,n(‖x− y‖)


λk0
λk1
...

λk`−1

φk(y)φj(x)dΓxdΓy, j = 1, . . . ,M, (3.49)

119

Chapter 3. Fast Runge-Kutta CQ

where

hjk =

∫
Γ

hk(x)φj(x)dΓx, k = 0, . . . , n− `, j = 1, . . . ,M,

λjk =

∫
Γ

λk(x)φj(x)dΓx, k = 0, . . . , `− 1, j = 1, . . . ,M,

and T `,n is the kernel function

T `,n(‖x− y‖) =


wh` (‖x− y‖) · · · wh1 (‖x− y‖)
wh`+1(‖x− y‖) · · · wh2 (‖x− y‖)

...
whn(‖x− y‖) · · · whn−`+1(‖x− y‖)

 . (3.50)

Let d be chosen as in (3.47). The double integral in (3.49) can be split into a sum of two
double integrals: one over the leaves of the block-cluster tree belonging to the set Ld(TI×I)
and the other being the remainder. Namely,∫∫

Γ×Γ

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy = N jk + F jk, (3.51)

N jk =

∫∫
Ωσ×Ωτ , (σ,τ)∈Ld

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy, (3.52)

F jk =

∫∫
Ωσ×Ωτ , (σ,τ)∈LF

T `,n(‖x− y‖)φj(x)φk(y)dΓxdΓy,

j, k = 1, . . . ,M,

where Ld = Ld(TI×I), LF = L(TI×I) \ Ld(TI×I). In this case F = (F jk)
M
k,j=1 does not

contain the near-field, since all non-admissible block-clusters belong to N = (N jk)
M
k,j=1.

Since whj are matrix-valued functions, N jk and F jk are tensors.
First, we demonstrate why such splitting may improve storage and computational costs.

The bounds in Proposition 3.1.16 show that, for any given ε > 0, there exists L,∥∥∥whj (d̃)
∥∥∥ < ε

4πd̃
, for all j ≥ L and d̃ < d. (3.53)

Let
Ωd =

⋃
(σ,τ)∈Ld

Ωσ × Ωτ .

We assume w.l.o.g. that

L < min(`, n− `+ 1). (3.54)

Then some of the elements of the tensor N are approximately equal to zero. Let us show

120

Chapter 3. Fast Runge-Kutta CQ

this. For k ≥ L,∣∣∣∣∣∣∣
∫∫
Ωd

whk(‖x− y‖)φj(x)φi(y)dΓxdΓy

∣∣∣∣∣∣∣ < ε

∣∣∣∣∣∣∣
∫∫
Ωd

|φj(x)φi(y)|
4π‖x− y‖

dΓxdΓy

∣∣∣∣∣∣∣
≤ ε

∫∫
Γ×Γ

|φj(x)φi(y)|
4π‖x− y‖

dΓxdΓy, i, j = 1, . . .M.

Recall that the boundary single-layer operator for the Laplacian is continuous from L2 (Γ)→
L2 (Γ), see e.g. [29, 116,169]. Hence, for some C > 0 that depends only on Γ it holds:∣∣∣∣∣∣∣

∫∫
Ωd

whk(‖x− y‖)φj(x)φi(y)dΓxdΓy

∣∣∣∣∣∣∣ ≤ Cε‖φi‖L2(Γ)‖φj‖L2(Γ)

= Cεµiµj , i, j = 1, . . . ,M, (3.55)

where

µi = meas(supp(φi)), i, j = 1, . . .M.

Then ε can always be chosen so that up to a desired precision N can be rewritten as

N jk ≈
∫∫
Ωd

T `,nL (‖x− y‖)φk(y)φj(x)dΓxdΓy, k, j = 1, . . . ,M, (3.56)

where

T `,nL (‖x− y‖) =



0 · · · whL−1(‖x− y‖) · · · wh2 (‖x− y‖) wh1 (‖x− y‖)
0 · · · 0 · · · wh3 (‖x− y‖) wh2 (‖x− y‖)
...
0 · · · 0 · · · whL−1(‖x− y‖) whL−2(‖x− y‖)
0 · · · 0 · · · 0 whL−1(‖x− y‖)
...
0 · · · 0 · · · 0 0


. (3.57)

Hence, to approximate completely the near-field part of the matrix of the system (3.48),
only O(L) Galerkin matrices(

W̃ h
ν

)
kj

=

∫∫
Ωd

whν (‖x− y‖)φk(y)φj(x)dΓxdΓy, k, j = 1, . . . ,M, ν = 1, . . . , L− 1,

need to be constructed. In practice we do not assemble these matrices, but rather evaluate
the matrix-vector product with N with the help of either of two procedures we present
below. Before describing these procedures, we would like to show that

L = O

(
log

1

ε

)

121

Chapter 3. Fast Runge-Kutta CQ

and does not depend on the size of the system (3.48). Recall that the diameter of non-
admissible clusters

dτ = O (∆x) ,

where ∆x is the meshwidth (this is by construction of the admissible block-cluster tree, see
also Lemma 2.1.10). Hence, by (3.47), for some γ′ > 0,

d = γ′∆x.

Since ∆x ≈ Ch, for some C > 0, see Section 1.2.11.3,

d = γ̃h, γ̃ > 0.

Importantly, γ̃ is constant and does not depend on h and ∆x. The estimate on L can
be obtained from Proposition 3.1.16, choosing a priori L ≥ d

h = γ̃. Namely, there exist
constants δ,G,A, β > 0, s.t.∥∥∥whk(d′)

∥∥∥ ≤ G

d′
(1− δ)k−

d′
h (1 +Aδβ)

d′
h , for all d′ < d, and k ≥ d

h
.

Then L can be estimated from:

G

d
(1− δ)L−

d
h (1 +Aδβ)

d′
h <

ε

4πd
,

G(1− δ)L−γ̃(1 +Aδβ)γ̃ <
ε

4π
.

From this it follows that for a fixed accuracy ε

L = O

(
log

1

ε

)
,

where the hidden constant depends on γ̃.
Therefore, to approximate the full near-field of the system (3.48) only O(log 1

ε) matrices
need to be constructed, independently of the size of this system.

Remark 3.3.5. Increasing the value of d allows to reuse a part of the far-field as well.

Remark 3.3.6. We do not address here the question how ε > 0 has to be chosen to preserve
the stability and convergence of the method. A full analysis would require the combination
of the estimates of [29] and [116]. In particular, in [116] it is shown that the convergence of
the sparse BDF2 convolution quadrature is preserved if the convolution weights are cut off
with the accuracy ε satisfying log 1

ε = O (logM) = O (logN). We expect similar estimates
to hold for our case as well, since all the errors are linear, and bounds for the errors and
operator norms depend on h,∆x polynomially or as powers (positive or negative) of h,∆x,
c.f. [29] and Section 1.2.8.3.

Next the question of the efficient evaluation of a matrix vector product with the system
(3.56) is addressed. We suggest the use of either of two methods.

122

Chapter 3. Fast Runge-Kutta CQ

Near-Field Matrix-Vector Multiplication with Diagonalization The main idea of
this approach is that the matrix (3.57) in (3.56) can be represented in the form of Toeplitz
matrix, and hence easily diagonalized. Using (3.55), the matrix (3.56) can be rewritten in
a form

N jk ≈
∫∫
Ωd



0 · · · whL−1(‖x− y‖) · · · wh1 (‖x− y‖)
0 · · · whL(‖x− y‖) · · · wh2 (‖x− y‖)
...
0 · · · wh2L−3(‖x− y‖) · · · whL−1(‖x− y‖)
...
0 · · · 0 · · · 0


φk(y)φj(x)dΓxdΓy, (3.58)

for all k, j = 1, . . . ,M . This matrix has the same structure as (3.48). The algorithm for
the efficient evaluation of matrix-vector products involving such matrices is based on the
embedding the matrix into a circulant matrix, scaling it with a properly chosen parameter
ρ and diagonalizing the resulting matrix with the help of the discrete Fourier transform, see
Section 1.2.11.1.

In this particular case, however, ‖x− y‖ < d, for all (x, y) ∈ Ωd, see Remark 3.3.3. Let
us show that there is no need in the use of the scaling parameter ρ, see Section 1.2.11.1.
From Proposition 3.1.19 it follows that the matrix

whL−1(‖x− y‖) whL−2(‖x− y‖) · · · wh1 (‖x− y‖)
whL(‖x− y‖) whL−1(‖x− y‖) · · · wh2 (‖x− y‖)

...
wh2L−3(‖x− y‖) wh2L−4(‖x− y‖) · · · whL−1(‖x− y‖)


after the extension to a circulant matrix can be approximated for ‖x− y‖ < d by

wh0 (‖x− y‖) wh2L−3(‖x− y‖) · · · wh1 (‖x− y‖)
...

whL−1(‖x− y‖) whL−2(‖x− y‖) · · · whL(‖x− y‖)
...

wh2L−3(‖x− y‖) wh2L−4(‖x− y‖) · · · wh0 (‖x− y‖)

 ≈ F
−1
2L−2P2L−2F2L−2, (3.59)

where

P2L−2 =
1

4π‖x− y‖
diag

[
exp

(
−∆(1)

‖x− y‖
h

)
exp

(
−∆

(
e−

2πi
2L−2

) ‖x− y‖
h

)
. . .

exp

(
−∆

(
e−

2πi
2L−2

(2L−3)
) ‖x− y‖

h

)]
.

(3.60)

Remark 3.3.7. Such approximation can be done with arbitrary accuracy, by adjusting the
value of ε > 0 in (3.53).

For ‖x−y‖ < d, scaled convolution weights wn

(
‖x−y‖
h

)
decay exponentially with n ≥ L,

see Proposition 3.1.16. Therefore, choosing ε being equal to the desired accuracy allows to
approximate

exp
(
−∆(ξ)

h ‖x− y‖
)

4π‖x− y‖
=
∞∑
k=0

whk(‖x− y‖)ξk, |ξ| ≤ 1,

123

Chapter 3. Fast Runge-Kutta CQ

by L terms of the above series with an accuracy close to ε
4π‖x−y‖ . This shows some redun-

dancy of the representation (3.58).

Comparing (3.56) to (3.59, 3.60), one can see that the matrix vector multiplication with
N can be performed in O(L logL) steps. It requires assembling the Galerkin matrices Mk

defined as

Mk
ij =

∫∫
Ωd

exp
(
−∆

(
e−i

2π
2L−2

k
)
‖x−y‖
h

)
4π‖x− y‖

φi(x)φj(y)dΓxdΓy, (3.61)

i, j = 1 . . .M, k = 0, . . . , L− 1,

where we also used the fact that half of these matrices are complex conjugates of the rest,
see Remark 1.2.25. Importantly, these matrices need to be constructed once and can then
be reused for all the matrix-vector multiplications of type (3.48).

Direct Near-Field Matrix-Vector Multiplication Remark 3.3.7 shows that the rep-
resentation (3.58), though allows to evaluate the matrix-vector product with N efficiently,
may be redundant, in the sense that it requires constructing more matrices than needed. Al-
ternatively, one could perform a direct matrix-vector multiplication with the matrix (3.56)
of size L in quadratic time. Since L = O(logN) (see Remark 3.3.6), computing this matrix-
vector product with a complexity of O(L2) may increase the time of the solution of the
system of equations, but, as it is shown in this section, allows to decrease storage costs as
well as the time needed to construct the matrices.

The matrices Mk, k = 0, . . . , L− 1, in (3.61) contain only the near-field and (possibly)
a part of the far-field. Therefore, if they are approximated with the help of H-matrix
techniques, the time for the computation of corresponding matrix-vector products is linear
in their size and in practice is often insignificant.

Let 
vi0
vi1
...

vin−`

 =

M∑
j=1

N ij


λj0
λj1
...

λj`−1

 , i = 1, . . . ,M.

This matrix-vector multiplication can be alternatively written as, see (3.56),

vj =

L−1−j∑
k=1

∫∫
Ωd

whk+j(‖x− y‖)λ`−kdΓxdΓy, j = 0, . . . , L− 2,

vk = 0, k = L− 1, . . . , n− `.

Using Proposition 3.1.19,

vj ≈
1

L

L−1∑
`1=0

∫∫
Ωd

exp
(
−∆

(
e−i`1

2π
L

)
‖x−y‖
h

)
4π‖x− y‖

L−1−j∑
k=0

ei`1(k+j)u`−k, (3.62)

124

Chapter 3. Fast Runge-Kutta CQ

for all j = 0, . . . , L − 2. The error of such approximation of convolution weights whν (‖x −
y‖), ν = 1, . . . , L−1, is close to ε

4π‖x−y‖ , where ε is as in (3.53), see Remark 3.3.7. As before,
the L2-continuity of the single-layer boundary integral operator can be used, similarly to
(3.55), to show how the respective errors can be controlled by a proper choice of ε > 0, see
also Remark 3.3.6.

From the above expression it follows that to perform the matrix-vector multiplication

with N it is sufficient to construct the near-field matrices M̃
k
:

M̃
k

ij =

∫∫
Ωd

exp
(
−∆(e−i

2π
L
k)‖x−y‖h

)
4π‖x− y‖

φi(x)φj(y)dΓxdΓy, k = 0, . . . ,

⌊
L

2

⌋
.

Note that the number of matrices M̃
k
, k = 0, . . . ,

⌊
L
2

⌋
, is twice smaller than the number

of matrices Mk, k = 0, . . . , L− 1, see (3.61).
For most of the experiments we used the approach described in the current section, since

the time overhead due to additional matrix-vector multiplications (using the method of the
current section) was smaller than the time needed to construct additional matrices with
the near-field (using the method of Section 3.3.2). We explicitly remark when we use the
approach from the previous section. A heuristic to choose between both should be based on
the number of the matrices reused and the number of time steps. The larger the number of
matrices with the near-field is and the larger the number of time steps is, the likelier it is
that the algorithm with the diagonalization will perform better. The precise limiting size of
the time interval, as well as the critical number of matrices with the near-field that would
require the use of the algorithm with the diagonalization has to be determined based on
the extensive numerical experiments.

Matrix-Vector Multiplication with the Far-Field Matrices The matrix-vector mul-
tiplication, see (3.51),

M∑
k=1

F jk


λk0
λk1
· · ·
λk`−1

 , j = 1, . . . ,M, (3.63)

can be performed as described in Section 1.2.11.1, with the help of scaling and FFT. We
have to assemble the Galerkin matrices

Lkij =

∫∫
Ωσ × Ωτ ,

(σ, τ) ∈ L(TI×I) \ Ld(TI×I)

exp
(
−∆

(
ρe−i

2π
n+1

k
)
‖x−y‖
h

)
4π‖x− y‖

φi(x)φj(y)dΓxdΓy,

i, j = 1, . . . ,M, k = 0, . . . , bn+ 1

2
c,

where, given ε0 > 0, ρ = ε
1

2n+1

0 . Importantly, the near-field does not appear in this compu-
tation.

Some additional improvement in storage costs and computational complexity for these
matrices can be achieved if one notices that the matrix-vector multiplication (3.63) involves

125

Chapter 3. Fast Runge-Kutta CQ

only convolution weights with indices up to n. The bounds stated in Proposition 3.1.16
imply that for all ε > 0 there exists Dn > 0 such that for all m ≤ n and for all D > Dn∥∥∥whm(D)

∥∥∥ ≤ ε

4πD
.

That is why one can construct the matrices Lk, k = 0, . . . , bn+1
2 c only on the far-field Dn-

admissible block-clusters (σ, τ) ∈ L+
Dn,F

= L+
Dn

(TI×I) \ Ld(TI×I), see also Remark 3.3.3:

Lkij =

∫∫
Ωσ × Ωτ ,

(σ, τ) ∈ L+
Dn,F

exp
(
−∆(ρei

2π
n+1

k)‖x−y‖h

)
4π‖x− y‖

φi(x)φj(y)dΓxdΓy, i, j = 1, . . . ,M.

3.3.3 Remarks on the Application of Data-Sparse Techniques and Paral-
lellization

In this section we would like to address several questions on the application of data-sparse
techniques, H-matrices and the high-frequency fast multipole method, for approximating
Galerkin discretizations of boundary integral operators in the course of the recursive al-
gorithm. Recall that the setup time (i.e. the matrix assembly time) of H2-matrices that
use expansions coming from the HF FMM is much smaller than that of H-matrices. How-
ever, the corresponding HF FMM accelerated matrix-vector multiplications are significantly
slower than the matrix-vector multiplications with H-matrices, even for discretizations with
about 105 boundary elements (see Section 2.3).

The structure of the system of equations we need to solve is shown in Figure 3.5. The

T0

T1 T0

T0

T1

T2

T0

Figure 3.5: The structure of the matrix of the convolution quadrature system of equations.

solution of the small triangular system of size J (where the matrix T0 is involved) has
to be performed O

(
N
J

)
= O(N) times. Since this operation requires the construction

of only a few matrices and performing many matrix-vector multiplications with them, it
makes scene to approximate these matrices by H-matrix techniques, see Section 1.2.11.2.
Additionally, matrix-vector multiplications with matrix blocks at the lower levels of the
recursive algorithm (in the figure these blocks are marked by T1) need to be performed more
often than that with the matrix blocks located at the higher levels of the recursive algorithm
(T2). Hence, for large problems it is reasonable to employ pure H-matrix approximations
in this case. For the rest of the Toeplitz blocks the choice whether H- or H + H2-based
approximation is to be used is done as described in the end of Section 2.3.

The advantage of the recursive algorithm is its easy parallelizability. The precomputa-
tion of Galerkin discretizations of boundary integral operators can be done independently in

126

Chapter 3. Fast Runge-Kutta CQ

parallel. The same holds true for Galerkin matrix-vector multiplications needed to compute
block Toeplitz matrix-vector products. However, if an optimally load balanced paralleliza-
tion is needed, we suggest to parallelize two most time consuming operations, namely the
H-matrix assembly and the H2-matrix-vector multiplication.

3.3.4 Fast CQ Algorithm and Its Complexity

In this section the fast Runge-Kutta convolution quadrature algorithm is described. Com-
pared to the conventional recursive algorithm, see Section 1.2.11, the multiplication with
Toeplitz matrix blocks is replaced by the improved procedure of Section 3.3.2.2.

We substitute the procedure Multiply for the multiplication of the following matrix-
vector product 

h`
h`+1

...
h`+n−m

 =


W h
m W h

m−1 · · · W h
1

W h
m+1 W h

m · · · W h
2

...
W h
n W h

n−1 · · · W h
n−`+1




λp
λp+1

...
λp+m−1

 ,

see Section 1.2.11, by the two procedures.
MultiplyNF (m, n, p, `, λ, h̃) - performs the matrix-vector multiplication with the

near-field: 
h̃
j
`

h̃
j
`+1

...

h̃
j
`+n−m

 =

M∑
k=1

N jk


λkp
λkp+1

...

λkp+m−1

 , j = 1, . . . ,M.

MultiplyFF (m, n, p, `, λ, h̄) - performs the matrix-vector multiplication with the
far-field:

h̄
j
`

h̄
j
`+1

...

h̄
j
`+n−m

 =
M∑
k=1

∫∫
Ωσ × Ωτ ,

(σ, τ) ∈ L+
Dn,F


whm(‖x− y‖) ... wh1 (‖x− y‖)
whm+1(‖x− y‖) ... wh2 (‖x− y‖)

...
whn(‖x− y‖) ... whn−m+1(‖x− y‖)

×

×


λkp
λkp+1

...

λkp+m−1

φj(x)φk(y)dΓxdΓy,

j = 1, . . . ,M.

Let the parameter J be fixed: every system of size smaller than J is to be solved directly.

127

Chapter 3. Fast Runge-Kutta CQ

function Solve (n0, n1, λ, g)
if (n1 − n0 ≤ J) then

SolveBasic(n0, n1, λ, g);
else

n 1
2

=

⌈
n0+n 1

2
2

⌉
;

Solve(n0, n 1
2
, λ, g);

MultiplyNF (n 1
2
− n0 + 1, n1 − n0, n0, n 1

2
+ 1, λ, h1);

MultiplyFF (n 1
2
− n0 + 1, n1 − n0, n0, n 1

2
+ 1, λ, h2);

g|n 1
2

+1,...,n1
= g|n 1

2
+1,...,n1

− h1|n 1
2

+1,...,n1
− h2|n 1

2
+1,...,n1

;

Solve(n 1
2

+ 1, n1, λ, g);

end if
endFunction

Let us discuss the complexity of this algorithm based on the preliminary estimates in
Section 1.2.11.3. Compared to the conventional recursive algorithm, see Section 1.2.11,
the new algorithm performs an extra block matrix-vector multiplication with the near-field
matrices. The computational complexity of each of matrix-vector multiplication with the
near-field matrices is either O(L logLM) = O(logN log logNM) (if the near-field matrix-
vector multiplication with the diagonalization is used) or O(L2M) = O(log2NM), see
Remark 3.3.6. Totally, there are O(N) matrix blocks (3.49), hence the total complexity of
the near-field related matrix-vector multiplications is

O(N log2NM).

The number of matrix-vector multiplications with the far-field matrices is O(N logN), while
each of this matrix-vector multiplications requires about O(M logM) operations (here the
hidden constant depends on the accuracy of the approximation, see Remark 3.3.8). Hence,
the total complexity of the algorithm is

O(N logNM logM +N log2NM) = O(NM log2M).

The memory costs for the near-field matrices scale linearly, O(M logN), while for the
rest of the matrices as O(NM logM). As before, for the matrices with the far-field in
this complexity estimate there is a hidden constant that depends on the accuracy of the
approximation.

The construction times for H-matrices scale as O(NTqM logM), where Tq is the com-
plexity of the evaluation of the integrals in BEM, see also the discussion in Section 3.3.1.
Since we use the technique described in detail in [169], Tq scales not worse than O(logαM),
for α ≥ 0 (in our case Tq = O(log4M)). The construction times for H2-matrices scale as
O(NM logM). The hidden constants in these complexity estimates depend on the accuracy
of the matrix approximations.

Combined with the use of data-sparse techniques and the complexity estimates 1.2.11.3,
the computational complexity of the Solve procedure is not worse than O(NM log2M),
the time to construct the matrices O(NM logM logkM), for k > 1, and the storage costs
are O(NM logM).

128

Chapter 3. Fast Runge-Kutta CQ

Remark 3.3.8. In [29] a rather restrictive condition on the accuracy ε of the separable
expansions and H-matrix approximation was imposed, suggesting that it has to be propor-
tional to hα, α ≥ 1. However, as noted in the same work, this is not too prohibitive when
applied to the HF FMM for the Helmholtz kernel and leads to logarithmic (log2 1

h = log2M)
increase of the complexity. Same holds true for H-matrices. In our algorithm they are
applied to approximate the discretizations of V(s) with s either being small or

∣∣ Im s
Re s

∣∣ < C,
for some C > 0. In both cases the H-matrix complexity depends on the desired accuracy ε
as logk 1

ε , for k ≥ 1.

129

Chapter 4

Numerical Experiments

In this section we present the results of the numerical experiments for the solution of the
problem of wave scattering by a sound-soft obstacle. In particular, we solve the boundary
integral equation (1.3), namely

g(t, x) = −uinc(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓy, x ∈ Γ, (4.1)

on the interval [0, T] , T > 0. Knowing λ(t, y), we compute the scattered field (see (1.1))
outside of the domain Ω using the indirect boundary integral formulation:

u(t, x) =

t∫
0

∫
Γ

δ(t− τ − ‖x− y‖)
4π‖x− y‖

λ(τ, y)dΓy, x ∈ Ωc, t ∈ [0, T] .

First we consider several different domains, including a unit sphere, a thin domain
similar to the NASA almond, see [186], and a trapping domain. We demonstrate almost
linear complexity of fast Runge-Kutta convolution quadrature, as well as show that it indeed
outperforms conventional Runge-Kutta CQ, especially for large problems. At the end of
this section we present the numerical evidence that the suggested approach allows to achieve
higher accuracies, as well as that the matrix approximations can be done with the accuracy
sufficient not to affect the convergence of the algorithm, see [29] for the related discussion.

In all the computations of this section the Helmholtz boundary single layer operators are
discretized by the Galerkin method with piecewise constant test and trial basis functions.
The matrices are approximated with accuracy ε0 = 1e− 6, unless stated otherwise. For all
the experiments the 3-stage Radau IIA method of the 5th order is used.

To cut off the convolution weights, we fix L > 0 and choose the parameter d, see (3.53),
as

d = sup

{
d̃ :

∥∥∥∥wj

(
d′

h

)∥∥∥∥ < 5e− 4, for all j ≥ L, d′ ∈ [0, d̃]

}
. (4.2)

Here wj are scaled convolution weights, as defined in Section 3.1.1. We use this accuracy
setup for all the experiments.

For long-time computations we employ the procedure described in [21] that allows to
reduce the amount of matrices to be assembled. Let us briefly describe the main idea of

130

Chapter 4. Numerical Experiments

this method. Let the diameter of the domain be equal to D. Given ε > 0, there exists ND

s.t. for all n > ND and for all d̃ ≤ D ∥∥∥∥∥wn

(
d̃

h

)∥∥∥∥∥ < ε.

Then Toeplitz matrix blocks of size NT > ND, see (1.58), can be substituted by Toeplitz
blocks of size ND. This allows to significantly reduce the number of matrices that need to
be constructed. For our accuracy setting the choice ε = 5e− 4 was always sufficient.

All the experiments of this section were performed with the help of HLIBpro [132] on
three clusters of the Max Planck Institute, each having 8x Dual Core AMD Opteron 8220
CPUs with 2.8 GHz and 256 GB RAM. The computation time we show is the total CPU
time (excluding the time needed for the communications between CPUs), i.e. CPU time
needed to solve the scattering problem on one CPU. It includes the time of construction of
all the matrices for the recursive CQ algorithm and the time for the actual solution of the
lower triangular Toeplitz system.

As discussed before, we assemble the matrices once and store them on a disk. For
the discretizations that are approximated with the help of the fast multipole method
we keep all translation operators. We report storage costs, i.e. the disk space needed
to keep the precomputed matrices, as the output of the shell command du (rather than
du --apparent-size (though the difference in both never reached more than ±2%)).

Additionally, we introduce the following notation:

• H denotes the approach that uses H-matrices only and requires the construction of
the near-field for all the matrices (the conventional RK CQ algorithm);

• Hsp is the approach based on H-matrices with the near-field reuse;

• H2 is the algorithm that uses the fast multipole method but does not reuse the near-
field;

• H2,sp is fast Runge-Kutta convolution quadrature based on the near-field reuse and
the HF FMM.

4.1 Experiments with a Sphere

In this section we consider sound-soft scattering by the unit sphere. In the first part we
demonstrate that the approach with the near-field reuse allows to obtain the solution with
the accuracy not worse than the accuracy of the conventional Runge-Kutta convolution
quadrature method. In the second part we consider the scattering of wide-band incident
waves and demonstrate the efficiency of the new algorithm.

4.1.1 Correctness of the Approach

As the first example, we consider the scattering problem for the unit sphere on the time
interval [0, 25] for which the explicit solution is known. We choose the incident wave as

uinc(t, x) = uinc(t) = −e−
(t−3)2

0.42 cos 3t, t ≥ 0. (4.3)

131

Chapter 4. Numerical Experiments

Importantly, |uinc(0)| < 10−24. The solution to (4.1) with such incident wave does not
depend on spatial variables, see [165]:

λ(t) = −2

bT2 c∑
k=0

d

dτ
uinc(τ)

∣∣∣∣
τ=t−2k

.

We fix the time step h = 0.125 and choose the spatial discretization with M = 16200
triangles. The results of the computation with the conventional Runge-Kutta CQ based on
H-matrices (H) and with fast Runge-Kutta CQ (H2,sp) are shown in Figure 4.1.

0 2 4 6 8 10 12 14 16 18 20 22 24

−5

0

5

t

λ
(t

)

Exact H2,sp H

Figure 4.1: The solution to the problem (4.3) at one of the points on the sphere. We plot the
solution obtained at internal stages of Runge-Kutta convolution quadrature (see Section 1.2.8.1) as

well.

Let λ̃k(x), k = 0, . . . , N, be the boundary density at the time step t = kh obtained
numerically. We measure the relative error of the solution:

εrel =

(
h

N∑
k=0

‖λ̃k(x)− λ(kh, x)‖2
H−

1
2 (Γ)

) 1
2

(
h

N∑
k=0

‖λ(kh, x)‖2
H−

1
2 (Γ)

) 1
2

. (4.4)

To compute ‖.‖
H−

1
2 (Γ)

, we make use of the results of Proposition 1.1.2. For a given s ∈ C

and φ ∈ H−
1
2 (Γ), the equivalent norm in H−

1
2 (Γ) is given by

‖φ‖2 := 〈V(s)φ, φ〉. (4.5)

For the current experiment the estimate on the norm (4.5) was found using an H-matrix
approximation of V (s) for s = 20.

The relative error of the solution obtained with the help of fast Runge-Kutta CQ does not
exceed 5.31·10−4, and for the solution obtained with the help ofH-matrices εrel ≈ 5.24·10−4.
This shows that the error that stems from the near-field reuse is negligible compared to the
error coming from matrix approximations and the discretization.

132

Chapter 4. Numerical Experiments

4.1.2 Scattering of a Wide-Band Signal

Let us consider scattering of the following incident wave

uinc(t, x) = −0.33
3∑
i=1

e−
(t−αi·x−6σ−1)2

σ2 , (4.6)

with parameters α1 = (−1, 0, 0) , α2 = (0, −1, 0) , α3 = (0, 0, −1). The Dirichlet data
is given by g(t, x) = −uinc(t, x) and is almost zero in t = 0:

|g(0, x)| < 10−15, x ∈ Γ.

In order to resolve the solution for higher frequencies, time and spatial discretizations
have to be refined, preserving relations hω ≈ const, ∆x

h ≈ const.
At each step of the experiment k = 1, . . . , 8, σ = σk is reduced by a factor

√
2, and

the number of time steps Nk on the interval [0, 12.5] is increased by the same factor; for
the spatial discretization Mk ≈ 2Mk−1. To check the validity of the result obtained for a
certain value of σ, we perform the experiment on a finer mesh and compare the scattered
field outside of the domain computed on the coarse and fine meshes. The largest σmax = 0.8,
the smallest σmin = 0.07.

For larger problems (M ≥ 65448), it appears that the accuracy produced by the Galerkin
integration with the chosen quadrature order is not sufficient to construct some of the
matrices V (s) with chosen accuracy settings. Hence we have to increase the quadrature
order. The precise theoretical reasoning for this can be found in [169]. In a nutshell, the
numerical evaluation of ∫

τ

∫
σ

e−s‖x−y‖

4π‖x− y‖
dΓxdΓy,

with τ , σ being two panels of size O(∆x), requires O
(
log4 1

∆x

)
quadrature points if the

distance between the panels is O(∆x). Hence, if ∆x→ 0 and L, see (4.2), is fixed (as in our
case), the quadrature order indeed has to increase. In all the experiments in this section L
does not exceed 16.

For the first four experiments (discretizations with N ≤ 70 and M ≤ 8192) the use of the
fast Runge-Kutta convolution quadrature algorithm does not allow to obtain a significant
gain compared to the conventional Runge-Kutta algorithm. For the four largest problems,
as Tables 4.1 and 4.2 show, the new algorithm is up to 2.4 times faster than conventional H-
or H2-matrix based approaches. The storage costs are reduced more than 3 times compared
to the purely H-matrix based CQ algorithm.

The new algorithm requires more time to solve the system of equations after all the
matrices were constructed, which can be attributed to the use of the high-frequency fast
multipole method, see the related discussion in Section 3.3.3. However, it reduces the matrix
assembly time drastically compared to the H-matrix based approach.

Figure 4.2 demonstrates almost linear complexity of the fast Runge-Kutta convolution
quadrature algorithm. The time of the matrix construction and memory costs increase
sublinearly for the above range of problems. The reason for this is that the assembly (and
storage) costs of the full near-field of all the matrices are in this case significantly larger than
that required for the far-field. Hence, if only a small part of the near-field is constructed,
the total complexity is significantly improved.

133

Chapter 4. Numerical Experiments

σ 0.2 0.14 0.1 0.07

h 0.125 0.09 0.0625 0.045

M 16200 32768 65448 129970

N 100 139 200 278

L 14 15 16 16

H, Gb 33.2 118.6 - -

Hsp, Gb 22 78.9 - -

H2, Gb 19.7 57.6 117.3 -

H2,sp, Gb 12.5 34.7 56.8 145.1

Table 4.1: Storage costs for different discretizations and techniques stated in Gb for the problem
with the right-hand side defined by (4.6), time interval [0, 12.5]. Here L is the parameter from

(4.2).

σ 0.2 0.14 0.1 0.07

h 0.125 0.09 0.0625 0.045

M 16200 32768 65448 129970

N 100 139 200 278

L 14 15 16 16

H, hr 6.2 (0.6) 25.9 (1.6) - -

Hsp, hr 3.9 (0.9) 19.4 (4.2) - -

H2, hr 6.4 (2) 20.5 (5.9) 97.8 (30.7) -

H2,sp, hr 3.9 (1.5) 12.5 (4.2) 40.1 (16) 116.9 (48.6)

Table 4.2: CPU time (in hours) for the solution of the problem on different discretizations and
with different techniques, time interval [0, 12.5]. In parentheses we show the CPU time needed to

solve the system of equations after all the matrices were constructed.

103 104 105

10−3

10−2

10−1

100

M

T N

T Ts
M M
M logM logN

Figure 4.2: The dependence of the total CPU time per time step T , the CPU time without the time
needed for the matrix assembly per time step Ts and the memory per time step M on the spatial

discretization size M .

134

Chapter 4. Numerical Experiments

The solutions to the problem for different σ computed outside of the domain, at the
point (2.5, 0, 0), are depicted in Figures 4.3 and 4.4. Here we depict as well the solutions
obtained at internal stages of the Runge-Kutta method. Like in the previous section, the
near-field reuse allows to obtain the solution with the same accuracy as the conventional
H-matrix based Runge-Kutta CQ algorithm.

0 2 4 6 8 10 12

0

0.1

0.2

t

u2, sp
129970

u2, sp
65448

0 2 4 6 8 10 12

0

0.1

0.2

t

H
Hsp
H2

Hsp2

Figure 4.3: In the left picture we depict solutions obtained on the discretizations of the domain with
65448 and 129970 triangles, σ = 0.1: on this scale the solutions are practically indistinguishable.

In the right picture the solution computed for σ = 0.28 with different techniques is shown.

0 2 4 6 8 10 12

0

0.1

0.2

t

Figure 4.4: The solution for σ = 0.07 at the point (2.5, 0, 0). We plot here the solutions obtained
at internal stages of the Runge-Kutta method as well.

The benefit of the suggested technique applied to scattering by a unit sphere is not as
significant for smaller discretizations as for larger ones. Nevertheless, we can see a significant
benefit from the use of the algorithm already for problems with 4.5 million unknowns. In
further sections we show how the efficiency of the improved recursive algorithm depends on
the domain and the problem size.

4.2 Experiments with an Elongated Domain

To demonstrate the efficiency of the algorithm, we perform a set of tests for the domain
depicted in Figure 4.5. The domain and the mesh for it were generated with the help of
Gmsh [94]. The length of this domain is 2.5, width 1 and height 0.32.

135

Chapter 4. Numerical Experiments

Figure 4.5: The domain that we use in experiments. The domain is oriented parallel to x-axis; the
incoming wave first hits the tip of the domain.

The incident wave used in the experiments is the plane-wave modulated by a Gaussian:

uinc(t, x) = − cos(ω(t− α · x− 6σ −A))e−
(x−α·x−6σ−A)2

σ2 , (4.7)

with parameters α = (−1, 0, 0), A = 1.45, σ = 6
ω . The Dirichlet data is given by g(t, x) =

−uinc(t, x) and satisfies, for all σ we considered,

|uinc(0, x)| < 10−15, x ∈ Γ.

As previously, in order to resolve the right-hand side for higher frequencies, time and
spatial discretizations have to be refined, preserving relations hω ≈ const, ∆x

h ≈ const.
At each step of the experiment k = 1, ..., 4, we double ωk, i.e. ωk = 2ωk−1, as well

as increase the number of time steps Nk on the interval [0, 6.4] twice. For the spatial
discretization Mk ≈ 4Mk−1. To check the validity of the results, we perform the experiment
for every frequency ωk, k = 1, ..., 4, on the finer mesh and compare the obtained solutions.
The accuracy of the solution for the largest frequency, namely ω = 48, is compared to the
solution obtained on the time-space mesh with 92 million unknowns (or more than 276
million unknowns if fractional time steps (internal stages of the Runge-Kutta method) are
taken into account).

We increase the number of matrices to be reused for larger problems in order to improve
the performance of the algorithm: it makes sense to reuse also a part of the far-field as
the problem size increases, see Remark 3.3.5. The parameter L, see (4.2), varies here from
21 to 37. For the two largest problems we employ the approach for the near-field reuse
with the diagonalization, while for the smaller problems the direct approach is used (see
Section 3.3.2.2). Additionally we increase the Galerkin quadrature order for the two largest
problems.

Storage costs required for the solution of the problem with different approaches are
shown in the Table 4.3, while computation times are given in Table 4.4. Numerical ex-
periments show that the algorithm based on H2-matrices with the near-field reuse is more
than 3 times faster than the conventional H-matrix based method and allows to reduce
storage costs 2-5 times. In the conventional H-matrix based approach the matrix assembly
time is significantly larger than the actual system solution time, and the use of the fast
Runge-Kutta CQ algorithm allows to reduce this time significantly.

In Figures 4.6, 4.7 we plot the solutions outside of the domain, at the distance 1 from
the tip of the domain (at the point x0 = (2.5, 0, 0)). We show as well the error

en = e(nh) = |ũNn (x0)− ũ2N
n (x0)|, n = 1, . . . , N. (4.8)

136

Chapter 4. Numerical Experiments

ω 6 12 24 48 48

h 0.12 0.06 0.03 0.015 0.01

M 1134 4096 16072 64230 144092

N 54 107 214 427 640

L 21 24 24 26 37

H, Gb 0.95 11.5 159.7 - -

Hsp, Gb 0.42 4.7 113.4 - -

H2, Gb 1.15 9.8 71.7 - -

H2,sp, Gb 0.42 4.2 30.9 169 414.3

Table 4.3: Storage costs for different discretizations and techniques stated in Gb for the problem
with the right-hand side defined by (4.7), time interval [0, 6.4].

ω 6 12 24 48 48

h 0.12 0.06 0.03 0.015 0.01

M 1134 4096 16072 64230 144092

N 54 107 214 427 640

L 21 24 24 26 37

H, hr 0.38 (0.01) 3 (0.08) 43.9 (1) - -

Hsp, hr 0.13(0.02) 1.1 (0.3) 32.2 (2.4) - -

H2, hr 0.28 (0.03) 2.5 (0.5) 23.6 (6.4) - -

H2,sp, hr 0.12 (0.03) 1.2(0.4) 12.4 (5) 135.8 (47.2) 371.2 (157.8)

Table 4.4: Total CPU times for different discretizations and techniques stated in hours for the
problem with the right-hand side defined by (4.7), time interval [0, 6.4]. In parentheses we show the

CPU time needed to solve the system of equations after all the matrices were constructed.

Here ũNn (x0) is the scattered field at the point x0 obtained on the discretization with N time
steps and M spatial degrees of freedom. The quantity ũ2N

n (x0) is the scattered field at the
point x0 computed with the help of fast Runge-Kutta CQ on the finer spatial discretization
(with approximately 4M degrees of freedom) and 2N time steps

0 2 4 6

−5

0

5

·10−3

t

u2, sp
64230

u2, sp
16072

0 2 4 6
10−20

10−15

10−10

10−5
2.2e-4

t

H
Hsp
H2

Hsp2

Figure 4.6: In the left plot we depict the solution computed for ω = 24 (also at internal stages),
while in the right plot we show the errors (4.8) for the same solution obtained with the help of

different techniques. The errors that stem from the near-field reuse are negligible compared to the
matrix approximation and convolution quadrature errors.

137

Chapter 4. Numerical Experiments

0 1 2 3 4 5 6
−4

−2

0

2

4
·10−3

t

h = 0.01
h = 0.015

Figure 4.7: The solution for ω = 48.0 at the point (2.5, 0, 0) obtained on two different
discretizations, with h = 0.015 and h = 0.01 (we plot as well the solution computed on internal

stages). Similarly to the case ω = 24.0, both solutions are in a good agreement.

The above results show that already for problems with 60000 unknowns the use of the
FMM-based approach with the near-field reuse allows to obtain noticeable performance gain
without deterioration of accuracy compared to the conventional H-matrix- and FMM-based
CQ algorithms.

4.3 Experiments with a Trapping Domain

In [41] it is shown that for a class of 2-dimensional domains (that contain an elliptic cavity)
the condition number of the combined field integral formulation for the exterior Helmholtz
problem grows exponentially with the frequency. Hence, for larger frequencies, the scatter-
ing problem seems to be better suited for the solution in the time domain. We consider the
3-dimensional domain of the diameter 2.0 formed by rotating the 2D trapping domain in
question; this domain is depicted in Figure 4.8. The domain and mesh for it were generated
with the help of Gmsh [94].

Figure 4.8: The trapping domain that we use in experiments. The domain is oriented parallel to
x-axis; the incoming wave first hits the cavity.

We solve the scattering problem with the incident wave

uinc(t, x) = − exp
(
−ω2(t− x · α− 6σ −A)2

)
, (4.9)

where ω varies from 11
3 ≈ 3.667 to 28 and A is chosen so that in t = 0, for all x ∈ Γ and all ω

in the above range,
∣∣uinc(0, x)

∣∣ does not exceed 2 ·10−10. For the three smallest experiments
A = 0.5 and for the two largest experiments A = 0.588. As before, to control the error,

138

Chapter 4. Numerical Experiments

we compare the solution in a point outside of the domain to the solution in the same point
computed on a finer discretization, see (4.8).

The vector α = (1, 0, 0) is oriented along the axis of the rotation of the domain. The
results of the numerical experiments are shown in Tables 4.5 and 4.6. As before, we increase
the Galerkin quadrature order for the largest problem. For all the experiments we employ
the algorithm of the near-field reuse with the diagonalization, see Section 3.3.2.2.

The parameter L from (4.2) is chosen in the range from 26 (for the smallest problem)
to 43 (the largest one).

ω 11
3

29
3

41
3 20 28

h 0.075 0.028 0.02 0.014 0.01

M 1344 9588 21900 39612 89202

N 70 188 263 375 525

L 26 36 41 41 43

H, Gb 1.6 78 - - -

Hsp, Gb 1.2 56.6 230.2 - -

H2, Gb 2.9 40.6 99.2 277 608

H2,sp, Gb 1.7 28.1 66.2 161.2 352

Table 4.5: Storage costs for different discretizations and techniques stated in Gb for the problem
with the right-hand side defined by (4.9), time interval [0, 5.25].

Results in Table 4.5 show that storage costs for H-matrix based techniques grow pro-
hibitively large even for quite small problems, hence we do not construct H-matrix based
approximations for problems with M ≥ 39612. For the trapping domain the H-matrix
based algorithm with the near-field reuse is twice faster than the conventional H-matrix
based approach already when dealing with problems having more than 95000 unknowns.
However, both methods have prohibitively high memory requirements. For smaller prob-
lems, the FMM-based algorithm with the near-field reuse is slower than the algorithm with
the near-field reuse that uses H-matrices only, but is less memory-consuming. The use of
the fast multipole method with the near-field reuse for larger discretizations allows to reduce
storage costs about 3.5 times compared to H-matrix based approaches.

The FMM-based algorithm with the near-field reuse is twice faster than the conventional
FMM-based CQ algorithm for the problem with 46 million unknowns, while being only
1.5 times more efficient for smaller problems. Moreover, in this case the near-field reuse
allows to reduce the system solution time after the matrices have been constructed: for
the largest problem it takes 315 hours for the FMM based approach without the near-field
reuse vs 156 hours for the FMM based approach with the near-field reuse. This can be
explained as follows. With the choice of the parameter L as in this section also a part
of the far-field is reused, and hence fewer multipole-to-local translations have to be done
when computing the FMM accelerated matrix-vector product. This, combined with the
fact that the computational complexity of the method for the near-field reuse with the
diagonalization is quite low, see Section 3.3.4, results in improved computational times for
the solution of the Toeplitz system of equations.

In Figures 4.9 and 4.10 the scattered field computed in the point (0, 0, 0) located inside
the cavity is shown. These plots demonstrate that the wave is trapped inside the cavity.

139

Chapter 4. Numerical Experiments

ω 11
3

29
3

41
3 20 28

h 0.075 0.028 0.02 0.014 0.01

M 1344 9588 21900 39612 89202

N 70 188 263 375 525

L 26 36 41 41 43

H, hr 0.8 (0.02) 19.7 (0.4) - - -

Hsp, hr 0.37 (0.03) 8.7 (0.7) 33.6(4.2) - -

H2, hr 1.1 (0.26) 21.8 (3.7) 59.7 (19) 161.8 (57.5) 745 (315)

H2,sp, hr 0.7 (0.1) 15.1 (2.3) 41 (10.7) 105 (37) 373 (156)

Table 4.6: CPU times for different discretizations and techniques stated in hours for the problem
with the right-hand side defined by (4.9), time interval [0, 5.25]. In parentheses we show the CPU

time needed to solve the system of equations after all the matrices were constructed.

0 1 2 3 4 5
−1

0

1

t

u2, sp
39612

u2, sp
9588

0 1 2 3 4 5
10−16

10−11

10−6

2.5e-2

t

H
Hsp
H2

Hsp2

Figure 4.9: In the left plot we depict the scattered field computed for the incident wave with ω = 29
3

inside the cavity in the point (0, 0, 0) (also computed at internal stages of the Runge-Kutta method),
while in the right plot we show the errors of the solution obtained with different techniques

measured at the same point (see also formula (4.8)). We can see that the errors coming from the
near-field reuse are negligible compared to the discretization and matrix approximation errors.

0 1 2 3 4 5
−1

0

1

t

Figure 4.10: The scattered field for ω = 28 at the point (0, 0, 0) (computed also at internal stages
of the Runge-Kutta method).

140

Chapter 4. Numerical Experiments

4.4 Solution Obtained with a Higher Accuracy

The goal of this section is to demonstrate that the fast convolution quadrature algorithm is
capable of producing a more accurate solution. We consider the problem (4.3) for the unit
sphere on the interval [0, 25], on a larger discretization, with M = 32768 and the time step
h = 0.09. The comparison of both techniques is shown in Table 4.7 and Figure 4.11. Let
us remark that we increased the Galerkin quadrature order compared to the experiment in
Section 4.1.1. The matrices are constructed with the accuracy ε0 = 10−8.

Technique Storage, Gb Problem solution time, hr εrel

H-matrices 139.6 65 (4.4) 9.15e-5

H-matrices with near-field reuse 83.4 37 (7.3) 9.14e-5

H2-matrices 78.6 60.8 (17.3) 9.14e-5

H2-matrices with near-field reuse 41.4 35.3 (14) 9.14e-5

Table 4.7: Storage costs and CPU times for the problem (4.3). In parentheses we show the CPU
time needed to solve the system of equations after all the matrices were constructed. The errors εrel

are measured as described in Section 4.1.1, namely, using formulas (4.4, 4.5) with s = 20.

0 2 4 6 8 10 12 14 16 18 20 22 24

−5

0

5

t

λ
(t

)

Exact H2,sp H

Figure 4.11: The solution to the problem (4.3) at one of the points on the sphere. We plot the
solution obtained at internal stages of Runge-Kutta convolution quadrature as well.

4.5 Convergence

4.5.1 Convergence in Time

Section 1.2.8.4 provides tight theoretical estimates on the rate of convergence of Runge-
Kutta convolution quadrature in time. Namely, given a Runge-Kutta method with the
stage order q, the rate of the convergence for the boundary density does not exceed hq.
Hence, for the 3-stage Radau IIA based CQ we expect the convergence rate h3.

141

Chapter 4. Numerical Experiments

We compute the solution of the scattering problem with the incident wave

ui = − cos((t− α · x− 3))e−
(x−α·x−3)2

0.1 , α = (1, 0, 0), (4.10)

for the domain shown in Figure 4.5 discretized with 8780 triangles, on the time interval
[0, 10], for different time steps hN = 10

N , N = 20, 40, 80, 160, 320. We compute the absolute
error

eN =

hN N∑
j=0

‖λNj − λ
Nmax
j ‖2

H−
1
2 (Γ)

 1
2

,

where λNj is the boundary density at the time step tj = jhN computed on the discretization

with the time step hN and λNmaxj is the boundary density at the time step tj obtained on
the finest discretization, Nmax = 320.

As before, to compute ‖.‖
H−

1
2 (Γ)

, we make use of the results of Proposition 1.1.2, see

formula (4.5). For the present experiment the estimate on the norm (4.5) was found using
an H-matrix approximation of V (s) for s ≈ 56.5.

All the computations are performed using the fast Runge-Kutta CQ algorithm, with
highly accurate matrix approximations, ε0 = 10−10. The results presented in Figure 4.12
show that the matrix approximations can be done with the accuracy sufficient not to affect
the convergence of the method.

10−1.2 10−0.9 10−0.6 10−0.3

10−3

10−2

10−1

100

h

eN
h3

Figure 4.12: Convergence of the boundary density in time

4.5.2 Convergence in Space

To check the convergence rate in space, we solve the scattering problem for the unit sphere
with the spatial mesh having M = 2048, 4232, 8192, 16200, 32768 triangles, on the interval
[0, 4] divided into N = 80 time steps. We use constant in space Dirichlet data:

g(t) = e−2tt5H(t).

142

Chapter 4. Numerical Experiments

The solution in this case is given by [165]:

λ(t) = 2g′(t) + 2g′(t− 2) = 10e−2tt4 − 4e−2tt5

+
(

10e−2(t−2)(t− 2)4 − 4e−2(t−2)(t− 2)5
)
H(t− 2).

The error is computed using the formula

e =

(
h

N∑
k=0

‖λ̃k(x)− λ(kh, x)‖2
H−

1
2 (Γ)

) 1
2

,

where λ̃j(x), j = 0, . . . , N, is the numerical solution and λ(t, x) is the exact solution.
The convergence in this case is tested for rather accurate matrix approximations, with

ε = 10−10. The results are shown in Table 4.8. The norm (4.5) is estimated using the
H-matrix approximation of V (s), with s ≈ 2.

The theoretical convergence rate in H−
1
2 -norm is (∆x)

3
2 . As before, we assume ∆x ≈

M−
1
2 .

n, id of the experiment 1 2 3 4 5

M 2048 4232 8192 16200 32768

e(n) 0.009 0.0044 0.0023 0.00117 0.00058

log2
e(n)

e(n+1) 1.03 0.94 0.98 1.01 -

Theoretical 0.79 0.715 0.74 0.76 -

Table 4.8: The convergence rate in space log2
e(n)

e(n+1) compared to the theoretical 3
2 log2

M(n+1)

M(n) . We

can see that it is slightly better than theoretical, and behaves as (∆x)2 rather than (∆x)
3
2 .

We can see that Runge-Kutta convolution quadrature with the near-field reuse is con-
vergent in space, and the rate of convergence for this particular right-hand side is even
better than predicted. Other numerical experiments (see e.g. the experiment with the
domain with the elliptic cavity) demonstrate that often very coarse spatial discretizations
are sufficient to produce an accurate solution to the scattering problem with the help of
convolution quadrature.

143

Conclusions and Future Work

In this work we developed a fast recursive Runge-Kutta convolution quadrature algorithm
for the solution of the wave scattering problem in three dimensions. This method requires
the construction of Galerkin discretizations of boundary integral operators for the Helmholtz
equation with decay.

Fast Runge-Kutta convolution quadrature is based on two ingredients: the use of fast
data-sparse techniques, namely the high-frequency fast multipole method and H-matrices,
and decay properties of Runge-Kutta convolution weights (that are the consequence of the
Huygens principle). The use of the data-sparse techniques allows to solve the scattering
problem in almost linear time. Exponentially fast decay of convolution weights whn(d) away
from the neighborhood of d ≈ nh allows to skip constructing the diagonal and near-diagonal
matrix blocks for most of the boundary integral operator discretizations, thus avoiding the
evaluation of many singular and near-singular BEM integrals.

In the first part of this work the applicability of the high-frequency fast multipole method
to the Helmholtz equation with a complex wavenumber was addressed. We did not encounter
major problems associated to the presence of decay, although we expect the cancellation
errors to be larger than in the case of a purely real wavenumber. The presence of decay
allows to reduce the fast multipole expansions length, thus improving the efficiency of
the FMM approximation, which is confirmed by numerical experiments. Nevertheless, as
our numerical experiments show, for moderate accuracies in the case of prevailing decay
H-matrices are more efficient than the high-frequency FMM even when only a few matrix-
vector multiplications are needed.

The second part of the thesis is dedicated to the study of decay properties of convolution
weights. We prove that whn(d) ≈ nh away from d ≈ nh. Using the approximating properties
of the Runge-Kutta stability function, we show that the size of the (approximate) support
of a convolution weight whn increases with n for a fixed h as O (nα), where α depends on the
order of the Runge-Kutta method. In a nutshell, the higher the order is, the smaller is the
width of the convolution weight, though some Runge-Kutta methods of high order can be
characterized by higher dispersion of convolution weights. The obtained values of α are close
to optimal for Runge-Kutta methods we considered. We demonstrate how this property
of convolution weights can be used to construct only O(logN) matrices with diagonal and
near-diagonal blocks (near-field) and reuse them in all the stages of the recursive convolution
quadrature algorithm.

Compared to the H-matrix based convolution quadrature, the H-matrix based algo-
rithm with the near-field reuse allows to solve small scattering problems 1.5-2 times faster.
For larger problems the high-frequency fast multipole based approach with the near-field
reuse performs better, being 2-3 times faster and requiring 2-5 times less disk space. The
performance of the algorithm was checked on problems from 25000 to 92 million unknowns.

144

In general, the gain from the use of the suggested approach depends on the problem size
and on the geometry of a domain. We demonstrate that the near-field reuse does not influ-
ence the convergence properties of convolution quadrature and also allows to obtain highly
accurate solutions.

The near-field reuse approach relies only on the decay properties of convolution weights
and hence can be extended to solve problems other than acoustic scattering, e.g. Maxwell
equations, see [30], though the theoretical justification for these cases may be required. More
work is needed for optimizing the construction of matrix approximations. Since the assembly
of Galerkin matrices for various frequencies can be treated as a multiparametric problem,
tensor decomposition methods can be used to improve it, see, e.g. [15]. The difficulty here
is the non-analyticity of high-frequency fast multipole operators in the frequency, which
possibly can be overcome by the use of other fast multipole methods, e.g. [81]. The design
of faster techniques for the matrix-vector multiplications involving Helmholtz potentials
would significantly improve the presented approach.

More work can be done for creating the convolution quadrature based method that would
take into account an a priori information about the solution and geometric properties of
the domain, similarly to some of the fast MOT methods we considered in the this work.

145

Appendices

146

Appendix A

The Error of the Fast Multipole
Algorithm

We consider the approximation to h0(is‖x−y‖) in the course of the fast multipole algorithm
as defined in Section 2.2.3.3, namely

h̃0 = QŝM

[
N∗−1∑
n=0

2n+ 1

4π
Qr̂N

[
e−s(x−xβ′ ,r̂)Pn(r̂ · ŝ)

]
× e−s(xβ′−xβ ,ŝ)Mα,β(ŝ)e−s(yα−yα′ ,ŝ)

N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
es(y−yα′ ,q̂)Pk(q̂ · ŝ)

]]
.

(A.1)

Here N∗ = min(N,M). Let

PN (yα′ , yα, y, ŝ) := es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
es(y−yα′ ,q̂)Pk(q̂ · ŝ)

]
.

Then (A.1) can be rewritten as:

h̃0 = QŝM
[
PN (−xβ′ ,−xβ,−x, ŝ)Mα,β(ŝ)PN (yα′ , yα, y, ŝ)

]
. (A.2)

From the expression (A.1) one can see that PN (yα′ , yα, y, ŝ) approximates es(y−yα). Let
us show this. First, let v = yα′ − y. According to (2.22),

PN (yα′ , yα, y, ŝ) := es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π
Qq̂N

[
e−s(v,q̂)Pk(q̂ · ŝ)

]
= es(yα′−yα,ŝ)

N∗−1∑
k=0

2k + 1

4π

+∞∑
m=0

(2m+ 1)imjm(is‖v‖)Qq̂N [Pm(q̂ · v̂)Pk(q̂ · ŝ)] .

147

Making use of Lemma 2.2.8:

PN (yα′ , yα, y, ŝ) = es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π

2N−N∗∑
m=0

(2m+ 1)imjm(is‖v‖)

×Qq̂N [Pm(q̂ · v̂)Pk(q̂ · ŝ)]

+ es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π

+∞∑
m=2N−N∗+1

(2m+ 1)imjm(is‖v‖)

×Qq̂N [Pm(q̂ · v̂)Pk(q̂ · ŝ)]

= es(yα′−yα,ŝ)
min(2N−N∗,N∗−1)∑

m=0

(2m+ 1)imjm(is‖v‖)Pm(ŝ · v̂)

+ es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π

+∞∑
m=2N−N∗+1

(2m+ 1)imjm(is‖v‖)

×Qq̂N [Pm(q̂ · v̂)Pk(q̂ · ŝ)] .

Let us introduce

rK(x, r̂) =

+∞∑
n=K

(2n+ 1)injn(is‖x‖)Pn(x̂ · r̂). (A.3)

Then, using (2.22) and 2N −N∗ > N∗ − 1, PN (yα′ , yα, y, ŝ) can be represented as a sum of
three terms:

PN (yα′ , yα, y, ŝ) = es(y−yα,ŝ) − es(yα′−yα,ŝ)rN∗(yα′ − y, ŝ)

+ es(yα′−yα,ŝ)
N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)] .

Hence, PN (yα′ , yα, y, ŝ) approximates es(y−yα,ŝ) with the error that is a sum of two errors,
one coming from the truncation of series (2.22) to a finite number of terms (see (A.3)), and
another induced by the imprecise quadrature.

The obtained explicit expressions for PN (·, ·, ·, ·) have to be inserted into (A.2). After
computations, it is possible to see that

h̃0 = h0(is‖x− y‖) +
9∑

n=1

An,

148

where

A1 = QŝM

[
es(y−yα,ŝ)Mα,β(ŝ)es(xβ−x,ŝ)

]
− h0(is‖x− y‖),

A2 = −QŝM
[
es(y−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)rN∗(x− xβ′ , ŝ)

]
,

A3 = −QŝM
[
es(xβ−x−yα+yα′ ,ŝ)Mα,β(ŝ)rN∗(yα′ − y, ŝ)

]
,

A4 = QŝM

[
es(y−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)

N∗−1∑
k=0

2k + 1

4π
Qr̂N

[
r2N−N∗+1(x− xβ′ , r̂)Pk(r̂ · ŝ)

]]
,

A5 = QŝM

[
es(xβ−x−yα+yα′ ,ŝ)Mα,β(ŝ)

N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]
,

A6 = QŝM

[
es(yα′−yα+xβ−xβ′ ,ŝ)rN∗(yα′ − y, ŝ)Mα,β(ŝ)rN∗(x− xβ′ , ŝ)

]
,

A7 = −QŝM
[
es(yα′−yα+xβ−xβ′ ,ŝ)rN∗(x− xβ′ , ŝ)Mα,β(ŝ)

×
N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]
,

A8 = −QŝM
[
es(yα′−yα+xβ−xβ′ ,ŝ)rN∗(yα′ − y, ŝ)Mα,β(ŝ)

×
N∗−1∑
k=0

2k + 1

4π
Qr̂N

[
r2N−N∗+1(x− xβ′ , r̂)Pk(r̂ · ŝ)

]]
,

A9 = QŝM

[
es(yα′−yα+xβ−xβ′ ,ŝ)Mα,β(ŝ)

×
N∗−1∑
m=0

2m+ 1

4π
Qr̂N

[
r2N−N∗+1(x− xβ′ , r̂)Pm(r̂ · ŝ)

]
×
N∗−1∑
k=0

2k + 1

4π
Qq̂N [r2N−N∗+1(yα′ − y, q̂)Pk(q̂ · ŝ)]

]
.

149

Appendix B

Proof of Lemma 3.1.2

Recall the definition of E-polynome (3.4,3.5):

E(y) = |Q(iy)|2 − |P (iy)|2 = e0y
2s +O(y2s+2), e0 > 0. (B.1)

Lemma B.1. There exist a, ν > 0, such that the domain

{(x, y) : |y| < νx
1
` , 0 < x < a}

belongs to Υ1 (and intersects all the order star fingers). Here

` =

{
p+ 1, if p is odd,
2s, if p is even,

where s is as in (B.1).

Proof. Let us first remark that this proof is similar to the proof of Theorem 7 in [120].
We rewrite the stability function as

R(z) = ez + Cp+1z
p+1 + r(z), Cp+1 6= 0, (B.2)

where r(z) = O(zp+2).
Let us consider (x, y) satisfying

|R(x+ iy)| = 1.

Clearly, R(0) = 1 and ∂|R(x+iy)|
∂x

∣∣∣
(0,0)

= 1. By the implicit function theorem, there exists

ε > 0 and the unique continuously differentiable function f : Bε(0)→ R, s.t.

f(0) = 0, and |R(f(y), y)| = 1.

Then, for y → 0,
x = f(0) + f ′(0)y +O(y2) = O(y).

To prove the statement of the lemma, we explicitly study the behavior of the function
f(y) in the vicinity of 0.

Let us consider the following cases.
1. p is odd.

150

|R(x+ iy)|2 = e2x + 2Cp+1 Re
(
ex+iy(x− iy)p+1

)
+

2 Re
(
ex+iyr(x− iy)

)
+ C2

p+1(x2 + y2)p+1 + |r(x+ iy)|2

+ 2Cp+1 Re
(
r(x+ iy)(x− iy)p+1

)
.

(B.3)

Next we expand this expression into the Taylor series in x and y, singling out higher order
terms (retaining that x = O(y)):

e2x = 1 + x+O(x2),

Re
(
ex+iy(x− iy)p+1

)
= Re

p+1∑
k=0

(
p+ 1

k

)
xkip+1−kyp+1−k(1 + r

(2)
1 (x))(1 + r

(2)
2 (y)), (B.4)

where r
(2)
1 (x) = ex − 1 = O(x), r

(2)
2 (y) = O(y).

Since p+ 1 is even,

Re
(
ex+iy(x− iy)p+1

)
= (−1)

p+1
2 yp+1 +O(yp+2).

Finally,

Re
(
ex+iyr(x− iy)

)
= O(yp+2),

which follows from the definition of r(z) = O(zp+2), and

(x2 + y2)p+1 = O(y2p+2),

|r(x+ iy)|2 = O(y2p+2),

Re
(
r(x+ iy)(x− iy)p+1

)
= O(y2p+2).

Summarizing the above,

|R(x+ iy)|2 = 1 + 2x+ 2Cp+1(−1)
p+1

2 yp+1 +O(yp+2 + x2). (B.5)

Hence,

|R(x+ iy)|2 = 1 + yp+1
(

2Cp+1(−1)
p+1

2 + 2xy−p−1 +O(y) +O(x2y−p−1)
)
. (B.6)

We look for x, y lying in an ε-neighborhood of 0 and satisfying

|R(x+ iy)|2 = 1.

From the expression (B.6) we deduce that x = f(y) with

x = −Cp+1(−1)
p+1

2 yp+1 +O(yp+2).

Note as well that |R(iy)|2 < 1, hence from (B.2)

Cp+1(−1)
p+1

2 < 0.

Hence there exists ã, ν > 0 s.t. |R(x+ iy)|2 > 1 for all{
(x, y) | 0 < x < ã, |y| < νx

1
p+1

}
.

151

2. p is even.
In this case we will make use of properties of the E-polynomial (B.1), similarly to how

it was done in the proof of Theorem 7 in [120].
Let us define

ψy(x) = |R(x+ iy)|2.

For a fixed y we can expand the above expression into Taylor series in x:

ψy(x) = |R(iy)|2 + x
dψy
dx

(0) +O(x2). (B.7)

Using (B.1), we can rewrite the first term:

|R(iy)|2 = |P (iy)|2
|Q(iy)|2 = 1− E(y)

|Q(iy)|2 ,

which, after expansion into Taylor series (and using the convention Q(0) = 1), gives

|R(iy)|2 = 1− e0y
2s +O(y2s+2).

Next, we need an expression for d
dxψy(0). From (B.3,B.4), for non-even p (using the

same arguments as previously),

|R(x+ iy)|2 = 1 + 2x+ 2Cp+1(p+ 1)xyp(−1)
p
2 +O(xyp+1 + yp+2 + x2)

Hence

dψy
dx

(0) = 2 + 2Cp+1(p+ 1)yp(−1)
p
2 +O(yp+1).

Substituting the above into (B.7), we obtain

ψy(x) = 1− e0y
2s + x(2 + 2Cp+1(p+ 1)yp(−1)

p
2 +O(yp+1)) +O(y2s+2) +O(x2)

= 1 + y2s
(
−e0 + 2xy−2s + 2Cp+1(p+ 1)xyp−2s(−1)

p
2

+O
(
xyp+1−2s + x2y−2s

)
+O(y2)

)
.

Recall that e0 > 0. From the above expression we can see that |R(x + iy)|2 = 1 in the
vicinity of zero for (x, y):

x = e0y
2s +O(y2s+1).

Hence there exists q̃, ν > 0 s.t. |R(x+ iy)|2 > 1 for all{
(x, y) | 0 < x < q̃, |y| < νx

1
2s

}
.

Since the bounds derived are asymptotically optimal, this domain indeed intersects all
the order star fingers.

152

Appendix C

Singular Value Decomposition

The following well-known lemma can be found in e.g. [111, Lemma C.2.3, p. 374].

Lemma C.1. Let M ∈ Rm×n and let

M = UΣV T

be its singular value decomposition. The matrix

Rk = UΣkV
T ,

where

(Σk)ij =

{
σi, i = j ≤ min(k,m, n),
0, else,

is a rank-k matrix that approximates the matrix M with the error

‖M −Rk‖2 = σk+1,

‖M −Rk‖F =

√√√√min(m,n)∑
i=k+1

σ2
i .

Remark C.2. [111, Corollary C.2.4, p.375] The matrix Rk as defined in Lemma C.1
solves the following two minimization problems:

min
rank(R)≤k

‖M −R‖2 and min
rank(R)≤k

‖M −R‖F .

In the case when σk > σk+1, such matrix is unique.

153

References

[1] NIST digital library of mathematical functions. http://dlmf.nist.gov/, release 1.0.5 of 2012-
10-01.

[2] T. Abboud, M. Pallud, and C. Teissedre, SONATE: a parallel code
for acoustics, tech. report, Internal Report IMACS - Hewlett Packard.
http://imacs.polytechnique.fr/Reports/sonate-parallel.pdf.

[3] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, vol. 55 of National Bureau of Standards Applied Mathemat-
ics Series, For sale by the Superintendent of Documents, U.S. Government Printing Office,
Washington, D.C., 1972.

[4] A. Aimi, M. Diligenti, A. Frangi, and C. Guardasoni, Neumann exterior wave prop-
agation problems: computational aspects of 3D energetic Galerkin BEM, Computational Me-
chanics, 51 (2013), pp. 475–493.

[5] A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri, and S. Panizzi, An energy approach
to space-time Galerkin BEM for wave propagation problems, Internat. J. Numer. Methods
Engrg., 80 (2009), pp. 1196–1240.

[6] A. Aimi, M. Diligenti, and S. Panizzi, Energetic Galerkin BEM for wave propagation
Neumann exterior problems, CMES Comput. Model. Eng. Sci., 58 (2010), pp. 185–219.

[7] A. Ambroladze and H. Wallin, Rational interpolants with preassigned poles, theoretical
aspects, Studia Math., 132 (1999), pp. 1–14.

[8] S. Amini and A.T.J. Profit, Multi-level fast multipole solution of the scattering problem,
Engineering Analysis with Boundary Elements, 27 (2003), pp. 547 – 564.

[9] D. E. Amos, Algorithm 644: a portable package for Bessel functions of a complex argument
and nonnegative order, ACM Trans. Math. Software, 12 (1986), pp. 265–273.

[10] R. J. Astley, Transient wave envelope elements for wave problems, Journal of Sound and
Vibration, 192(1) (1996), pp. 245–261.

[11] R. J. Astley, Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary
Element Methods, Springer Berlin Heidelberg, 2008, ch. Infinite Elements.

[12] K. Aygun, M. Lu, N. Liu, A.E. Yilmaz, and E. Michielssen, A parallel PWTD ac-
celerated time marching scheme for analysis of EMC/EMI problems, 2 (2003), pp. 863 – 866
Vol.2.

[13] I. Babuška and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods
Engrg., 40 (1997), pp. 727–758.

[14] H. Bagci, A.E. Yilmaz, J.-M. Jin, and E. Michielssen, Time Domain Adaptive Integral
Method for Surface Integral Equations, vol. 59 of Lecture Notes in Computational Science and
Engineering, Springer Berlin Heidelberg, 2008.

154

[15] J. Ballani, Fast evaluation of near-field boundary integrals using tensor approximations,
dissertation, Universitt Leipzig, 2012.

[16] , Fast evaluation of singular BEM integrals based on tensor approximations, Numerische
Mathematik, 121 (2012), pp. 433–460.

[17] J. Ballani, L. Banjai, S. Sauter, and A. Veit, Numerical solution of exterior Maxwell
problems by Galerkin BEM and Runge-Kutta convolution quadrature, Numer. Math., 123
(2013), pp. 643–670.

[18] A. Bamberger and T. Ha-Duong, Formulation variationnelle espace-temps pour le calcul
par potentiel retardé de la diffraction d’une onde acoustique (I), Mathematical Methods in the
Applied Sciences, 8 (1986), pp. 405–435.

[19] , Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par
une surface rigide, Mathematical Methods in the Applied Sciences, 8 (1986), pp. 598–608.

[20] L. Banjai, A boundary element method for the solution of Helmholtz problems for a large
range of complex wavenumbers. Presentation at the 23rd Annual GAMM Seminar Leipzig
’Integral Equation Methods for High-Frequency Scattering Problems’.

[21] L. Banjai, Multistep and multistage convolution quadrature for the wave equation: Algorithms
and experiments, SIAM Journal on Scientific Computing, 32 (2010), pp. 2964–2994.

[22] L. Banjai, Time-domain Dirichlet-to-Neumann map and its discretization, (2012). Preprint
5/2012, Max Planck Institute for Mathematics in the Sciences, Leipzig.

[23] L. Banjai and W. Hackbusch, Hierarchical matrix techniques for low- and high-frequency
Helmholtz problems, IMA Journal of Numerical Analysis, 28 (2008), pp. 46–79.

[24] L. Banjai and M. Kachanovska, Fast convolution quadrature for the wave equation in
three dimensions. Submitted.

[25] , Sparsity of Runge-Kutta convolution weights for three-dimensional wave equation. Sub-
mitted, 2012.

[26] L. Banjai, A. Laliena, and F.-J. Sayas, Fully discrete Kirchhoff formulas with CQ-BEM,
Preprint, http://arxiv.org/abs/1301.0267, (2013).

[27] L. Banjai and Ch. Lubich, An error analysis of Runge-Kutta convolution quadrature, BIT
Numerical Mathematics, 51 (2011), pp. 483–496.

[28] L. Banjai, Ch. Lubich, and J.M. Melenk, Runge-Kutta convolution quadrature for oper-
ators arising in wave propagation, Numer. Math., 119 (2011), pp. 1–20.

[29] L. Banjai and S. Sauter, Rapid solution of the wave equation in unbounded domains, SIAM
J. Numerical Analysis, 47 (2008), pp. 227–249.

[30] L. Banjai and M. Schanz, Wave propagation problems treated with convolution quadrature
and BEM, Lecture Notes in Applied and Computational Mechanics, 63 (2012), pp. 145–184.

[31] A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm.
Pure Appl. Math., 33 (1980), pp. 707–725.

[32] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000),
pp. 565–589.

[33] , Hierarchical LU decomposition-based preconditioners for BEM, Computing, 74 (2005),
pp. 225–247.

[34] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, vol. 63 of Lecture Notes in Computational Science and Engineering (LNCSE),
Springer-Verlag, 2008. ISBN 978-3-540-77146-3.

155

[35] M. Bebendorf and R. Grzhibovskis, Accelerating Galerkin BEM for linear elasticity using
adaptive cross approximation, Math. Methods Appl. Sci., 29 (2006), pp. 1721–1747.

[36] M. Bebendorf and W. Hackbusch, Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L∞-coefficients, Numer. Math., 95 (2003), pp. 1–28.

[37] E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group veloc-
ities and anisotropic waves, J. Comput. Phys., 188 (2003), pp. 399–433.

[38] E. Bécache and P. Joly, On the analysis of Bérenger’s perfectly matched layers for
Maxwell’s equations, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 87–119.

[39] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), pp. 185–200.

[40] , Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,
J. Comput. Phys., 127 (1996), pp. 363–379.

[41] T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner,
Condition number estimates for combined potential integral operators in acoustics and their
boundary element discretisation, Numer. Methods Partial Differential Equations, 27 (2011),
pp. 31–69.

[42] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, AIM: Adaptive integral method for
solving large-scale electromagnetic scattering and radiation problems, Radio Science, 31 (1996),
pp. 1225–1251.

[43] A. Boag, V. Lomakin, and E. Michielssen, Nonuniform grid time domain (NGTD)
algorithm for fast evaluation of transient wave fields, IEEE Trans. Antennas and Propagation,
54 (2006), pp. 1943–1951.

[44] S. Börm, Efficient numerical methods for non-local operators, vol. 14 of EMS Tracts in Math-
ematics, European Mathematical Society (EMS), Zürich, 2010.

[45] S. Börm and L. Grasedyck, Hybrid cross approximation of integral operators, Numer.
Math., 101 (2005), pp. 221–249.

[46] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Com-
puting, 69 (2002), pp. 1–35.

[47] J. Breuer, Schnelle Randelementmethoden zur Simulation von elektrischen Wirbelstrom-
feldern sowie ihrer Wärmeproduktion und Kühlung, PhD thesis, Universität Stuttgart, Holz-
gartenstr. 16, 70174 Stuttgart, 2005.

[48] D. Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. Gaul, Comparison of the
fast multipole method with hierarchical matrices for the Helmholtz-BEM, CMES: Computer
Modeling in Engineering & Sciences, 58 (2010), pp. 131–160.

[49] J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons
Ltd., Chichester, second ed., 2008.

[50] E. Candès, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of
Fourier integral operators, Multiscale Model. Simul., 7 (2009), pp. 1727–1750.

[51] Q. Carayol and F. Collino, Error estimates in the fast multipole method for scattering
problems. I. Truncation of the Jacobi-Anger series, M2AN Math. Model. Numer. Anal., 38
(2004), pp. 371–394.

[52] , Error estimates in the fast multipole method for scattering problems. II. Truncation of
the Gegenbauer series, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 183–221.

[53] C. Cecka and E. Darve, Fourier-Based Fast Multipole Method for the Helmholtz Equation,
SIAM J. Sci. Comput., 35 (2013), pp. A79–A103.

156

[54] D. J. Chappell, A convolution quadrature Galerkin boundary element method for the exterior
Neumann problem of the wave equation, Math. Methods Appl. Sci., 32 (2009), pp. 1585–1608.

[55] , Convolution quadrature Galerkin boundary element method for the wave equation with
reduced quadrature weight computation, IMA J. Numer. Anal., 31 (2011), pp. 640–666.

[56] Q. Chen, P. Monk, X. Wang, and D. Weile, Analysis of convolution quadrature applied to
the time-domain electric field integral equation, Commun. Comput. Phys., 11 (2012), pp. 383–
399.

[57] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge,
J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, A wideband fast multipole method for
the Helmholtz equation in three dimensions, J. Comput. Phys., 216 (2006), pp. 300–325.

[58] W. Ch. Chew, J.-M. Jin, E. Michielssen, and J. Song, eds., Fast and Efficient Algo-
rithms in Computational Electromagnetics, Artech House, 2001.

[59] W. Ch. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s
equations with stretched coordinates, Microwave and Optical Technology Letters, 7 (1994),
pp. 599–604.

[60] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Tables Aids Comput.,
9 (1955), pp. 118–120.

[61] R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method for the wave
equation: a pedestrian prescription, Antennas and Propagation Magazine, IEEE, 35 (1993),
pp. 7 –12.

[62] F. Collino, High order absorbing boundary conditions for wave propagation models: straight
line boundary and corner cases, in Second International Conference on Mathematical and
Numerical Aspects of Wave Propagation (Newark, DE, 1993), SIAM, Philadelphia, PA, 1993,
pp. 161–171.

[63] F. Collino and P. B. Monk, Optimizing the perfectly matched layer, Comput. Methods
Appl. Mech. Engrg., 164 (1998), pp. 157–171. Exterior problems of wave propagation (Boulder,
CO, 1997; San F.co, CA, 1997).

[64] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM
J. Math. Anal., 19 (1988), pp. 613–626.

[65] , Time-dependent problems with the boundary integral equation method, in Encyclopedia
of Computational Mechanics, Erwin Stein, Rene de Borst, and Thomas J.R. Hughes., eds.,
John Wiley & Sons, Ltd., 2004.

[66] T. Cruse, A direct formulation and numerical solution of the general transient elastodynamic
problem ii., J. Math. Anal. Appl., 22 (1968), pp. 341–355.

[67] T. A. Cruse and F. J. Rizzo, A direct formulation and numerical solution of the general
transient elastodynamic problem i., J. Math. Anal. Appl., 22 (1968), pp. 244–259.

[68] E. Darrigrand, Coupling of fast multipole method and microlocal discretization for the 3-D
Helmholtz equation, J. Comput. Phys., 181 (2002), pp. 126–154.

[69] E. Darve, The fast multipole method I: error analysis and asymptotic complexity, SIAM
Journal on Numerical Analysis, 38 (2000), pp. 98–128.

[70] E. Darve, The fast multipole method: numerical implementation, Journal of Computational
Physics, 160 (2000), pp. 195 – 240.

[71] E. Darve and P. Havé, A fast multipole method for Maxwell equations stable at all frequen-
cies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 603–628.

157

[72] P. J. Davies, Numerical stability and convergence of approximations of retarded potential
integral equations, SIAM J. Numer. Anal., 31 (1994), pp. 856–875.

[73] P. J. Davies and D. B. Duncan, Stability and convergence of collocation schemes for
retarded potential integral equations, SIAM J. Numer. Anal., 42 (2004), pp. 1167–1188 (elec-
tronic).

[74] , Convolution-in-time approximations of time domain boundary integral equations, SIAM
J. Sci. Comput., 35 (2013), pp. B43–B61.

[75] P. J. Davis, Interpolation and approximation, Dover Publications Inc., New York, 1975. Re-
publication, with minor corrections, of the 1963 original, with a new preface and bibliography.

[76] J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Comput. Methods
Appl. Mech. Engrg., 195 (2006), pp. 3820–3853.

[77] V. Dominguez and F.J. Sayas, Some properties of layer potentials and boundary integral
operators for the wave equation, to appear in Journal of Integral Equations and Applications,
(2012).

[78] B.L. Ehle, On Padé approximations to the exponential function and A-stable methods for
the numerical solution of initial value problems, ProQuest LLC, Ann Arbor, MI, 1969. Thesis
(Ph.D.)–University of Waterloo (Canada).

[79] B. L. Ehle, A-stable methods and Padé approximations to the exponential, SIAM J. Math.
Anal., 4 (1973), pp. 671–680.

[80] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation
of waves, Math. Comp., 31 (1977), pp. 629–651.

[81] B. Engquist and L. Ying, Fast directional multilevel algorithms for oscillatory kernels,
SIAM J. Sci. Comput., 29 (2007), pp. 1710–1737 (electronic).

[82] , A fast directional algorithm for high frequency acoustic scattering in two dimensions,
Commun. Math. Sci., 7 (2009), pp. 327–345.

[83] , Fast directional algorithms for the Helmholtz kernel, J. Comput. Appl. Math., 234
(2010), pp. 1851–1859.

[84] M. A. Epton and B. Dembart, Multipole translation theory for the three-dimensional
Laplace and Helmholtz equations, SIAM J. Sci. Comput., 16 (1995), pp. 865–897.

[85] A.A. Ergin, B. Shanker, and E. Michielssen, The plane-wave time-domain algorithm for
the fast analysis of transient wave phenomena, Antennas and Propagation Magazine, IEEE,
41, pp. 39–52.

[86] A. A. Ergin, B.Shanker, and E. Michielssen, Fast evaluation of three-dimensional tran-
sient wave fields using diagonal translation operators, Journal of Computational Physics, 146
(1998), pp. 157 – 180.

[87] S. Erichsen and S. A. Sauter, Efficient automatic quadrature in 3-d Galerkin BEM, Com-
put. Methods Appl. Mech. Engrg., 157 (1998), pp. 215–224. Seventh Conference on Numerical
Methods and Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc).

[88] W. N. Everitt and D. S. Jones, On an integral inequality, Proc. Roy. Soc. London Ser.
A, 357 (1977), pp. 271–288.

[89] M. Fischer, The Fast Multipole Boundary Element Method and its Application to Structure-
Acoustic Field Interaction, PhD thesis, University of Stuttgart, 2004.

[90] Matthias Fischer, Holger Perfahl, and Lothar Gaul, Approximate inverse precon-
ditioning for the fast multipole BEM in acoustics, Comput. Vis. Sci., 8 (2005), pp. 169–177.

158

[91] A. Frangi and M. Bonnet, On the application of the fast multipole method to Helmholtz-like
problems with complex wavenumber, CMES. Computer Modeling in Engineering & Sciences,
58 (2010), pp. 271–295.

[92] S.D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of
FDTD lattices, Antennas and Propagation, IEEE Transactions on, 44 (1996), pp. 1630–1639.

[93] N. Geng, A. Sullivan, and L. Carin, Fast multipole method for scattering from an arbi-
trary PEC target above or buried in a lossy half space, IEEE Trans. Antennas and Propagation,
49 (2001), pp. 740–748.

[94] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities, International Journal for Numerical Methods in Engineering,
79 (2009), pp. 1309–1331.

[95] D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave Motion, 39
(2004), pp. 319–326. New computational methods for wave propagation.

[96] D. Givoli, Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary
Element Methods, Springer Berlin Heidelberg, 2008, ch. Computational Absorbing Boundaries.

[97] S. Goreinov, Mosaic-skeleton approximations of matrices, generated by asymptotically
smooth and oscillatory kernels, in Matrix Methods and Computations, E. Tyrtyshnikov, ed.,
INM RAS, Moscow, 1999, pp. 42–76. (in Russian).

[98] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin, A theory of pseudoskeleton ap-
proximations, Linear Algebra Appl., 261 (1997), pp. 1–21.

[99] L. Grasedyck, Adaptive recompression of H-matrices for BEM, Computing, 74 (2005),
pp. 205–223.

[100] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Comput-
ing, 70 (2003), pp. 295–334.

[101] L. Grasedyck, R. Kriemann, and S. Le Borne, Domain decomposition based H-LU
preconditioning, Numer. Math., 112 (2009), pp. 565–600.

[102] E. Grasso, S. Chaillat, M. Bonnet, and J.-F. Semblat, Application of the multi-level
time-harmonic fast multipole BEM to 3-D visco-elastodynamics, Eng. Anal. Bound. Elem., 36
(2012), pp. 744–758.

[103] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Com-
putational Physics, 73 (1987), pp. 325 – 348.

[104] L. F. Greengard and J. Huang, A new version of the fast multipole method for screened
Coulomb interactions in three dimensions, J. Comput. Phys., 180 (2002), pp. 642–658.

[105] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Cambridge
University Press, 1996.

[106] M. J. Grote and J. B. Keller, Exact nonreflecting boundary conditions for the time
dependent wave equation, SIAM J. Appl. Math., 55 (1995), pp. 280–297. Perturbation methods
in physical mathematics (Troy, NY, 1993).

[107] N. A. Gumerov and R. Duraiswami, Recursions for the computation of multipole trans-
lation and rotation coefficients for the 3-D Helmholtz equation, SIAM J. Sci. Comput., 25
(2003/04), pp. 1344–1381.

[108] T. Ha-Duong, On retarded potential boundary integral equations and their discretization, in
Topics in Computational Wave Propagation. Direct and Inverse Problems, P. Davies, D. Dun-
can, P. Martin, and B. Rynne, eds., Springer: Berlin, 2003, pp. 301–336.

159

[109] T. Ha-Duong, B. Ludwig, and I. Terrasse, A Galerkin BEM for transient acoustic
scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg., 57 (2003), pp. 1845–
1882.

[110] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.

[111] , Hierarchische Matrizen: Algorithmen und Analysis, Springer-Verlag Berlin Heidelberg,
2009.

[112] W. Hackbusch and S. Börm, H2-matrix approximation of integral operators by interpo-
lation, Appl. Numer. Math., 43 (2002), pp. 129–143. 19th Dundee Biennial Conference on
Numerical Analysis (2001).

[113] W. Hackbusch, B. Khoromskij, and S. A. Sauter, On H2-matrices, Springer, Berlin,
2000, pp. 9–29.

[114] W. Hackbusch and Boris N. Khoromskij, A sparse H-matrix arithmetic. II. Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[115] W. Hackbusch, W. Kress, and S. A. Sauter, Sparse convolution quadrature for time
domain boundary integral formulations of the wave equation by cutoff and panel-clustering, 29
(2007), pp. 113–134.

[116] , Sparse convolution quadrature for time domain boundary integral formulations of the
wave equation, IMA J. Numer. Anal., 29 (2009), pp. 158–179.

[117] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math., 54 (1989), pp. 463–491.

[118] W. Hackbusch and S. A. Sauter, On numerical cubatures of nearly singular surface inte-
grals arising in BEM collocation, Computing, 52 (1994), pp. 139–159.

[119] Th. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, in Acta
numerica, 1999, vol. 8 of Acta Numer., Cambridge Univ. Press, Cambridge, 1999, pp. 47–106.

[120] E. Hairer, G. Bader, and Ch. Lubich, On the stability of semi-implicit methods for
ordinary differential equations, BIT Numerical Mathematics, 22 (1982), pp. 211–232.

[121] E. Hairer, Ch. Lubich, and M. Schlichte, Fast numerical solution of nonlinear Volterra
convolution equations, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 532–541.

[122] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, vol. 14 of Springer
Series in Computational Mathematics, Springer-Verlag Berlin Heidelberg, 2010.

[123] E. Hairer, G. Wanner, and S.P. Nørsett, Solving Ordinary Differential Equations I,
vol. 8 of Springer Series in Computational Mathematics, Springer-Verlag Berlin Heidelberg,
1993.

[124] P. Henrici, Fast Fourier methods in computational complex analysis, SIAM Review, 21
(1979), pp. 481–527.

[125] N. J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1996.

[126] R. Jakob-Chien and B. K. Alpert, A fast spherical filter with uniform resolution, Journal
of Computational Physics, 136 (1997), pp. 580–584.

[127] B. Kaltenbacher, M. Kaltenbacher, and I. Sim, A modified and stable version of a
perfectly matched layer technique for the 3-D second order wave equation in time domain with
an application to aeroacoustics, J. Comput. Phys., 235 (2013), pp. 407–422.

160

[128] B. Khoromskij, S. Sauter, and A. Veit, Fast quadrature techniques for retarded potentials
based on TT/QTT tensor approximation, Computational Methods in Applied Mathematics,
11 (2011), pp. 342–362.

[129] L. Kielhorn and M. Schanz, Convolution quadrature method-based symmetric Galerkin
boundary element method for 3-D elastodynamics, Internat. J. Numer. Methods Engrg., 76
(2008), pp. 1724–1746.

[130] S. Koc, J. Song, and W. Ch. Chew, Error analysis for the numerical evaluation of the
diagonal forms of the scalar spherical addition theorem, SIAM J. Numer. Anal., 36 (1999),
pp. 906–921.

[131] W. Kress and S. Sauter, Numerical treatment of retarded boundary integral equations by
sparse panel clustering, IMA J. Numer. Anal., 28 (2008), pp. 162–185.

[132] R. Kriemann, HLIBpro user manual. Technical Report 9/2008, MPI for Mathematics in the
Sciences, Leipzig, 2008.

[133] A. R. Laliena and F.-J. Sayas, Theoretical aspects of the application of convolution quadra-
ture to scattering of acoustic waves, Numer. Math., 112 (2009), pp. 637–678.

[134] G. Lancioni, Numerical comparison of high-order absorbing boundary conditions and perfectly
matched layers for a dispersive one-dimensional medium, Comput. Methods Appl. Mech. En-
grg., 209/212 (2012), pp. 74–86.

[135] M. Lu, J. Sarvas, and E. Michielssen, A simplified 3D plane wave time domain (PWTD)
algorithm, vol. 1, 2001, pp. 188 –191 vol.1.

[136] Ch. Lubich, Convolution quadrature and discretized operational calculus I, Numerische Math-
ematik, 52 (1988), pp. 129–145.

[137] , Convolution quadrature and discretized operational calculus II, Numerische Mathematik,
52 (1988), pp. 413–425.

[138] , On the multistep time discretization of linear initial-boundary value problems and their
boundary integral equations, Numerische Mathematik, 67 (1994), pp. 365–389.

[139] Ch. Lubich and A. Ostermann, Runge-Kutta methods for parabolic equations and convo-
lution quadrature, Mathematics of Computation, 60 (1993), pp. 105–131.

[140] G. Manara, A. Monorchio, and R. Reggiannini, A space-time discretization criterion
for a stable time-marching solution of the electric field integral equation, Antennas and Prop-
agation, IEEE Transactions on, 45 (Mar), pp. 527–532.

[141] W. J. Mansur, A time-stepping technique to solve wave propagation problems using the
boundary element method, PhD thesis, University of Southampton, 1983.

[142] W. McLean, Strongly elliptic systems and boundary integral equations, (2000), pp. xiv+357.

[143] J. Meng, A. Boag, V. Lomakin, and E. Michielssen, A multilevel Cartesian non-uniform
grid time domain algorithm, J. Comput. Phys., 229 (2010), pp. 8430–8444.

[144] M. Messner, Fast Boundary Element Methods in Acoustics, Verlag der Technischen Univer-
sitaet Graz, 2012.

[145] M. Messner, M. Schanz, and E. Darve, Fast directional multilevel summation for oscil-
latory kernels based on Chebyshev interpolation, J. Comput. Phys., 231 (2012), pp. 1175–1196.

[146] P. Meszmer, Hierarchical quadrature for multidimensional singular integrals, J. Numer.
Math., 18 (2010), pp. 91–117.

[147] P. Meszmer and J. Ballani, Tensor structured evaluation of singular volume integrals,
Preprint MPI Leipzig, (2012).

161

[148] E. Michielssen and A. Boag, Multilevel evaluation of electromagnetic fields for the rapid
solution of scattering problems, Microwave and Optical Technology Letters, 7 (1994), pp. 790–
795.

[149] F. W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd., Wellesley,
MA, 1997. Reprint of the 1974 original [Academic Press, New York].

[150] M. O’Neil, F. Woolfe, and V. Rokhlin, An algorithm for the rapid evaluation of special
function transforms, Appl. Comput. Harmon. Anal., 28 (2010), pp. 203–226.

[151] D. Rabinovich, D. Givoli, and E. Bécache, Comparison of high-order absorbing boundary
conditions and perfectly matched layers in the frequency domain, Int. J. Numer. Methods
Biomed. Eng., 26 (2010), pp. 1351–1369.

[152] J. Rahola, Diagonal forms of the translation operators in the fast multipole algorithm for
scattering problems, BIT, 36 (1996), pp. 333–358.

[153] S.M. Rao and D.R. Wilton, Transient scattering by conducting surfaces of arbitrary shape,
Antennas and Propagation, IEEE Transactions on, 39 (Jan), pp. 56–61.

[154] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput.
Phys., 60 (1985), pp. 187–207.

[155] , Diagonal forms of translation operators for the Helmholtz equation in three dimensions,
Applied and Computational Harmonic Analysis, 1 (1993), pp. 82 – 93.

[156] B.P. Rynne and P.D. Smith, Stability of time marching algorithms for the electric field
integral equation, Journal of Electromagnetic Waves and Applications, 4 (1990), pp. 1181–
1205.

[157] L. Grasedyck S. Börm and W. Hackbusch, Hierarchical Matrices, Lecture notes for a
winter school on the hierarchical matrices, 2003. http://www.mis.mpg.de/publications/other-
series/ln/lecturenote-2103.html.

[158] A. Sadigh and E. Arvas, Treating the instabilities in marching-on-in-time method from a
different perspective [electromagnetic scattering], Antennas and Propagation, IEEE Transac-
tions on, 41 (Dec), pp. 1695–1702.

[159] Takahiro Saitoh and Sohichi Hirose, Parallelized fast multipole BEM based on the convo-
lution quadrature method for 3-D wave propagation problems in time-domain, IOP Conference
Series: Materials Science and Engineering, 10 (2010), p. 012242.

[160] T. Saitoh, S. Hirose, T. Fukui, and T. Ishida, Development of a time-domain fast
multipole BEM based on the operational quadrature method in a wave propagation problem, in
Advances in Boundary Element Techniques VIII, V. Minutolo and M.H. Aliabadi, eds., EC,
Ltd. UK, 2007.

[161] T. Saitoh, Ch. Zhang, and S. Hirose, Large-scale multiple scattering analysis using fast
multipole BEM in time-domain, AIP Conference Proceedings, 1233 (2010), pp. 1196–1201.

[162] T. Sakuma, S. Schneider, and Y. Yasuda, Fast solution methods, in Computational
Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods, S. Marburg
and B. Nolte, eds., Springer Berlin Heidelberg, 2008, pp. 333–366.

[163] H. E. Salzer, Lagrangian interpolation at the Chebyshev points Xn,ν ≡ cos(νπ/n), ν = 0(1)n;
some unnoted advantages, Comput. J., 15 (1972), pp. 156–159.

[164] J. Sarvas, Performing interpolation and anterpolation entirely by fast Fourier transform in
the 3-D multilevel fast multipole algorithm, SIAM J. Numer. Anal., 41 (2003), pp. 2180–2196.

[165] S. Sauter and A. Veit, A Galerkin method for retarded boundary integral equations with
smooth and compactly supported temporal basis functions. Part II: Implementation and refer-
ence solutions, Preprint (Universität Zürich, 03/2011).

162

[166] , A Galerkin method for retarded boundary integral equations with smooth and compactly
supported temporal basis functions, Numer. Math., 123 (2013), pp. 145–176.

[167] S. A. Sauter, Cubature techniques for 3-D Galerkin BEM, in Boundary elements: implemen-
tation and analysis of advanced algorithms (Kiel, 1996), vol. 54 of Notes Numer. Fluid Mech.,
Vieweg, Braunschweig, 1996, pp. 29–44.

[168] S. A. Sauter and A. Krapp, On the effect of numerical integration in the Galerkin boundary
element method, Numer. Math., 74 (1996), pp. 337–359.

[169] S. A. Sauter and Ch. Schwab, Boundary element methods, vol. 39 of Springer Series in
Computational Mathematics, Springer-Verlag, Berlin, 2011. Translated and expanded from
the 2004 German original.

[170] F.-J. Sayas, Retarded potentials and time domain boundary integral equations: a road-map
(march 19, 2013). The lecture notes for the workshop on the Theoretical and numerical aspects
of inverse problems and scattering theory, La Coruna, Spain, July 4-8, 2011.

[171] A. Schädle, M. López-Fernández, and Ch. Lubich, Fast and oblivious convolution
quadrature, SIAM J. Sci. Comput., 28 (2006), pp. 421–438 (electronic).

[172] Martin Schanz, A boundary element formulation in time domain for viscoelastic solids,
Comm. Numer. Methods Engrg., 15 (1999), pp. 799–809.

[173] M. Schanz and H. Antes, A new visco- and elastodynamic time domain: boundary element
formulation, Comput. Mech., 20 (1997), pp. 452–459.

[174] Y. Shi, M.-Y. Xia, R.-Sh. Chen, E. Michielssen, and M. Lu, Stable electric field TDIE
solvers via quasi-exact evaluation of MOT matrix elements, IEEE Trans. Antennas and Prop-
agation, 59 (2011), pp. 574–585.

[175] J.M. Song, C.-C. Lu, W.C. Chew, and S. W. Lee, Fast Illinois solver code (FISC),
Antennas and Propagation Magazine, IEEE, 40 (1998), pp. 27–34.

[176] J. Song, C.-C. Lu, and W. Ch. Chew, Multilevel fast multipole algorithm for electromag-
netic scattering by large complex objects, Antennas and Propagation, IEEE Transactions on,
45 (1997), pp. 1488–1493.

[177] O. Steinbach, Numerical approximation methods for elliptic boundary value problems,
Springer, New York, 2008. Finite and boundary elements, Translated from the 2003 Ger-
man original.

[178] E. P. Stephan, M. Maischak, and E. Ostermann, Transient boundary element method
and numerical evaluation of retarded potentials, in Computational Science, ICCS 2008,
M. Bubak, G. D. Albada, J. Dongarra, and P. M.A. Sloot, eds., vol. 5102 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2008, pp. 321–330.

[179] M. S. Tong and W. Ch. Chew, Multilevel fast multipole acceleration in the Nyström dis-
cretization of surface electromagnetic integral equations for composite objects, IEEE Trans.
Antennas and Propagation, 58 (2010), pp. 3411–3416.

[180] L. N. Trefethen, Computing numerically with functions instead of numbers, Math. Comput.
Sci., 1 (2007), pp. 9–19.

[181] S. V. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl.
Numer. Math., 27 (1998), pp. 465–532. Absorbing boundary conditions.

[182] H. Wang and S. Xiang, On the convergence rates of Legendre approximation, Math. Comp.,
81 (2012), pp. 861–877.

[183] G. Wanner, E. Hairer, and S. P. Nørsett, Order stars and stability theorems, BIT
Numerical Mathematics, 18 (1978), pp. 475–489.

163

[184] G.N. Watson, A Treatise on the theory of Bessel functions, Cambridge University Press,
Cambridge, England, 1944.

[185] R.A. Wildman, G. Pisharody, Daniel S. Weile, S. Balasubramaniam, and
E. Michielssen, An accurate scheme for the solution of the time-domain integral equations
of electromagnetics using higher order vector bases and bandlimited extrapolation, Antennas
and Propagation, IEEE Transactions on, 52 (Nov.), pp. 2973–2984.

[186] A.C. Woo, H.T.G. Wang, M.J. Schuh, and M.L. Sanders, Em programmer’s notebook-
benchmark radar targets for the validation of computational electromagnetics programs, An-
tennas and Propagation Magazine, IEEE, 35 (1993), pp. 84–89.

[187] N. Yarvin and V. Rokhlin, A generalized one-dimensional fast multipole method with ap-
plication to filtering of spherical harmonics, J. Comput. Phys., 147 (1998), pp. 594–609.

[188] Y. Yasuda and T. Sakuma, Analysis of sound fields in porous materials using the fast
multipole BEM, in 37th International Congress and Exposition on Noise Control (Inter-noise
2008), 2008.

[189] A.E. Yilmaz, D.S. Weile, B. Shanker, Jian-Ming Jin, and E. Michielssen, Fast
analysis of transient scattering in lossy media, Antennas and Wireless Propagation Letters,
IEEE, 1 (2002), pp. 14 –17.

[190] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm
in two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

[191] K. Yoshida, Applications of Fast Multipole Method to Boundary Integral Equation Method,
PhD thesis, Kyoto University, Japan, 2001.

164

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde Hilfe
angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und Hilfsmittel benutzt
und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten
Schriften entnommen wurden, und alle Angaben, die auf mündlichen Auskünften beruhen, als solche
kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien oder er-
brachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 9. Oktober 2013

. .
(Maryna Kachanovska)

Daten zum Autor

Name: Maryna Kachanovska
Geburtsdatum: 21. Februar 1987 in Borowa, Oblast Kiew, Ukraine

09/2003 - 07/2007 Bachelorstudium der Angenwandte Mathematik
Nationale Technische Universität der Ukraine
’Kiewer Polytechnisches Institut’

09/2007 - 06/2009 Masterstudium der Angenwandte Mathematik,
Fachrichtung Informatik
Nationale Technische Universität der Ukraine
’Kiewer Polytechnisches Institut’

seit 10/2009 Doktorand am Max-Planck-Institut für
Mathematik in den Naturwissenschaften

