524 research outputs found

    An improvement of the product integration method for a weakly singular Hammerstein equation

    Full text link
    We present a new method to solve nonlinear Hammerstein equations with weakly singular kernels. The process to approximate the solution, followed usually, consists in adapting the discretization scheme from the linear case in order to obtain a nonlinear system in a finite dimensional space and solve it by any linearization method. In this paper, we propose to first linearize, via Newton method, the nonlinear operator equation and only then to discretize the obtained linear equations by the product integration method. We prove that the iterates, issued from our method, tends to the exact solution of the nonlinear Hammerstein equation when the number of Newton iterations tends to infinity, whatever the discretization parameter can be. This is not the case when the discretization is done first: in this case, the accuracy of the approximation is limited by the mesh size discretization. A Numerical example is given to confirm the theorical result

    Post-Processing Techniques and Wavelet Applications for Hammerstein Integral Equations

    Get PDF
    This dissertation is focused on the varieties of numerical solutions of nonlinear Hammerstein integral equations. In the first part of this dissertation, several acceleration techniques for post-processed solutions of the Hammerstein equation are discussed. The post-processing techniques are implemented based on interpolation and extrapolation. In this connection, we generalize the results in [29] and [28] to nonlinear integral equations of the Hammerstein type. Post-processed collocation solutions are shown to exhibit better accuracy. Moreover, an extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation. In the second half of this dissertation, the wavelet-collocation technique of solving nonlinear Hammerstein integral equation is discussed. The main objective is to establish a fast wavelet-collocation method for Hammerstein equation by using a \u27linearization\u27 technique. The sparsity in the Jacobian matrix takes place in the fast wavelet-collocation method for Hammerstein equation with smooth as well as weakly singular kernels. A fast algorithm is based upon the block truncation strategy which was recently proposed in [10]. A multilevel augmentation method for the linearized Hammerstein equation is subsequently proposed which further accelerates the solution process while maintaining the order of convergence. Numerical examples are given throughout this dissertation

    A numerical method for functional Hammerstein integro-differential equations

    Get PDF
    In this paper, a numerical method is presented to solve functional Hammerstein integro-differential equations. The presented method combines the successive approximations method with trapezoidal quadrature rule and natural cubic spline interpolation to solve the mentioned equations. The existence and uniqueness of the problem is also investigated. The convergence and numerical stability of the problem are proved, and finally, the accuracy of the method is verified by presenting some numerical computations

    Non-uniform UE-spline quasi-interpolants and their application to the numerical solution of integral equations

    Get PDF
    A construction of Marsden’s identity for UE-splines is developed and a complete proof is given. With the help of this identity, a new non-uniform quasi-interpolant that repro-duces the spaces of polynomial, trigonometric and hyperbolic functions are defined. Effi-cient quadrature rules based on integrating these quasi-interpolation schemes are derived and analyzed. Then, a quadrature formula associated with non-uniform quasi-interpolation along with Nyström’s method is used to numericallysolve Hammerstein and Fredholm integral equations. Numerical results that illustrate the effectiveness of these rules are pre-sented.Universidad de Granada / CBU

    Singularity Preserving Numerical Methods for Boundary Integral Equations

    Get PDF
    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract

    Superconvergence in Iterated Solutions of Integral Equations

    Get PDF
    In this thesis, we investigate the superconvergence phenomenon of the iterated numerical solutions for the Fredholm integral equations of the second kind as well as a class of nonliner Hammerstein equations. The term superconvergence was first described in the early 70s in connection with the solution of two-point boundary value problems and other related partial differential equations. Superconvergence in this context was understood to mean that the order of convergence of the numerical solutions arising from the Galerkin as well as the collocation method is higher at the knots than we might expect from the numerical solutions that are obtained by applying a class of piecewise polynomials as approximating functions. The type of superconvergence that we investigate in this thesis is different. We are interested in finding out whether or not we obtain an enhancement in the global rate of convergence when the numerical solutions are iterated through integral operators. A general operator approximation scheme for the second kind linear equation is described that can be used to explain some of the existing superconvergence results. Moreover, a corollary to the general approximation scheme will be given which can be used to establish the superconvergence of the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for the Fredholm equations of the second kind. We review the iterated Galerkin method for Hammerstein equations and discuss the iterated degenerate kernel method for Hammerstein and weakly singular Hammerstein equations and its corresponding superconvergence phenomena for the iterated solutions. The type of regularities that the solution of weakly singular Hammerstein equations possess is investigated. Subsequently, we establish the singularity preserving Galerkin method for Hammerstein equations. Finally, the superconvergence results for the iterated solutions corresponding to this method will be described

    On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines

    Get PDF
    The first author acknowledges partial financial support by the IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033. The second author has been partially supported by Spanish State Research Agency (Spanish Min-istry of Science, Innovation and Universities) : BCAM Severo Ochoa excellence accreditation SEV-2017-0718 and by Ramon y Cajal with reference RYC-2017-22649. The fourth author is member of GNCS-INdAM.Nyström method is a standard numerical technique to solve Fredholm integral equations of the second kind where the integration of the kernel is approximated using a quadrature formula. Traditionally, the quadrature rule used is the classical polynomial Gauss quadrature. Motivated by the observation that a given function can be better approximated by a spline function of a lower degree than a single polynomial piece of a higher degree, in this work, we investigate the use of Gaussian rules for splines in the Nyström method. We show that, for continuous kernels, the approximate solution of linear Fredholm integral equations computed using spline Gaussian quadrature rules converges to the exact solution for m →∞, m being the number of quadrature points. Our numerical results also show that, when fixing the same number of quadrature points, the approximation is more accurate using spline Gaussian rules than using the classical polynomial Gauss rules. We also investigate the non-linear case, considering Hammerstein integral equations, and present some numerical tests.IMAG-Maria de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033Spanish State Research Agency (Spanish Min-istry of Science, Innovation and Universities) SEV-2017-0718Spanish Government RYC-2017-2264

    On numerical solution of Fredholm and Hammerstein integral equations via Nystr\"{o}m method and Gaussian quadrature rules for splines

    Get PDF
    Nystr\"{o}m method is a standard numerical technique to solve Fredholm integral equations of the second kind where the integration of the kernel is approximated using a quadrature formula. Traditionally, the quadrature rule used is the classical polynomial Gauss quadrature. Motivated by the observation that a given function can be better approximated by a spline function of a lower degree than a single polynomial piece of a higher degree, in this work, we investigate the use of Gaussian rules for splines in the Nystr\"{o}m method. We show that, for continuous kernels, the approximate solution of linear Fredholm integral equations computed using spline Gaussian quadrature rules converges to the exact solution for m→∞m \rightarrow \infty, mm being the number of quadrature points. Our numerical results also show that, when fixing the same number of quadrature points, the approximation is more accurate using spline Gaussian rules than using the classical polynomial Gauss rules. We also investigate the non-linear case, considering Hammerstein integral equations, and present some numerical tests.RYC-2017-2264
    • …
    corecore