
On numerical solution of Fredholm and Hammerstein integral equations via
Nyström method and Gaussian quadrature rules for splines
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Abstract

Nyström method is a standard numerical technique to solve Fredholm integral equations of the second kind
where the integration of the kernel is approximated using a quadrature formula. Traditionally, the quadrature
rule used is the classical polynomial Gauss quadrature. Motivated by the observation that a given function
can be better approximated by a spline function of a lower degree than a single polynomial piece of a
higher degree, in this work, we investigate the use of Gaussian rules for splines in the Nyström method. We
show that, for continuous kernels, the approximate solution of linear Fredholm integral equations computed
using spline Gaussian quadrature rules converges to the exact solution for m→∞, m being the number of
quadrature points. Our numerical results also show that, when fixing the same number of quadrature points,
the approximation is more accurate using spline Gaussian rules than using the classical polynomial Gauss
rules. We also investigate the non-linear case, considering Hammerstein integral equations, and present
some numerical tests.
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1. Introduction

It is well-known that a quadrature rule (QR for short) to estimate the value of I (f) :=
∫ b
a
f(x) dx of a

given function f defined on the interval [a, b] is defined as

Qm (f) :=

m∑
i=1

ωif (τi) , (1.1)

where the coefficients ωi := ωi,m and the pairwise distinct abscissae τi := τi,m, 1 ≤ i ≤ m, are said to be the
weights and the nodes of the rule, respectively. The QR given by (1.1) that requires m function evaluations
is referred to as an m-point rule.

Usually, the remainder term
Rm (f) := I (f)−Qm (f)

is required to be zero for each element of a predefined linear function space L. In such a case the rule is
said to be exact on L. The rule (1.1) is said to be Gaussian if m is the minimal number of nodes at which
f is evaluated and Rm(f) = 0 for all f ∈ L. That is, Gaussian quadratures are optimal in terms of the
number of quadrature points used. In the case when L is the linear space P2m−1 of polynomials of degree
at most 2m− 1, then the classical Gaussian m-point QR is both exact and optimal in terms of the number
of quadrature points. The nodes and the abscissae are computed using the orthogonal polynomials with
respect to the measure dx or using the recursion algorithm of Golub and Welsch [15].



Classical techniques for numerically solving Fredholm integral equations of the second kind are Galerkin,
collocation, Nyström and degenerate kernel methods (see the monograph [2]). Moreover, recently, spline
quasi-interpolation has been shown to be very useful for this purpose (see e.g. [4, 5, 11, 12]). Even though
there are various alternative methods to solve Volterra and/or Fredholm integral equations, see e.g. [25, 26,
27, 28] and other references cited therein, the Nyström method is a very efficient method to deal with integral
equations. This method is based on the use of numerical integration, and typically Gaussian quadrature
[14] or rules derived from spline quasi-interpolants are used. It is therefore quite natural to think of using
Gaussian QR for spline spaces.

The topic of Gaussian quadratures for splines has been considered in [18, 19], where the minimal number
of nodes for the knot sequence associated with the spline space is derived, as well as the subintervals that must
contain at least one node. The difficulty with spline Gaussian rules stems from the fact that the number of
quadrature points in each knot span may vary depending on a particular knot vector. A numerical approach
to compute the Gaussian spline rules, including spaces over non-uniform knot vectors, has been proposed
recently [8].

In this paper, we both exploit the Gaussian spline rules derived recently [1, 6, 8] and the newly computed
Gaussian quadrature rules for C4 quintic splines over uniform knots to show that these rules act favorably
in the Nyström method when compared to the classical polynomial Gauss rules. In particular, we show that
when fixing the number of quadrature points, the Nyström method produces the smallest error when spline
Gaussian rules are used. The closest work to ours is [21], where some spline Gaussian rules are used in the
Nyström method to numerically solve Fredholm integral equations of the second kind. However, only spline
spaces with maximum continuity are considered and the quadrature rules come from the solution of the non-
linear systems of equations yielding the exactness of the rule for the functions in a basis of truncated powers.
Our work extends [21] by studying the convergence rate, moreover, we compare Gaussian quadratures of
spline spaces of various continuities and apply them also to non-linear integral equations. The rest of the
paper is organized as follows. Section 2 concerns spline Gaussian QR for certain spline spaces. Then we
describe the Nyström method in Section 3 and present numerical results in Section 4 for linear integral
equations. In Section 5 we also investigate the non-linear case, considering Hammerstein integral equations
and propose some numerical tests. Finally, we conclude the paper in Section 6.

2. Gaussian quadrature for splines

In this section, we recall the main results related to spline spaces [10] and we propose the Gaussian rules
for splines for the numerical evaluation of I (f).

2.1. Spline spaces

We consider the break points x := {xi}ni=0 such that a = x0 < x1 < . . . < xn−1 < xn = b and the space
Pp,x of piecewise polynomial functions of degree p (and order d = p+1) associated with the partition of [a, b]

induced by x. Let r := {ri}n−1i=1 be a vector with entries ri ≤ d, and consider the subspace Pp,x,r formed by
all functions in Pp,x of Cri−1 class at xi, 1 ≤ i ≤ n− 1. Its dimension is equal to

N := dn−
n−1∑
i=1

ri. (2.1)

Let u := {ui}N+d
i=1 be the knot sequence formed by the break points xi repeated d − ri times, u1 ≤ u2 ≤

. . . ≤ ud ≤ x0 and xn ≤ uN+1 ≤ uN+2 ≤ . . . ≤ uN+d. The integer d− ri denotes the knot multiplicity and
ri − 1 is the spline regularity at xi. We further define the k-th normalized B-spline of degree p and order d
as

Bk,p (x) := (uk+p+1 − uk) [uk, . . . , uk+p+1] (· − x)
p
+ , x ∈ R,

where [z0, · · · , zp+1] f stands for the divided difference at knots z0, . . . , zp+1 for the function f , and z+ :=
max (0, z) denotes the truncated power. The B-spline Bk,p is a piecewise polynomial function of degree p,
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supported on [uk, uk+p+1] and positive on (uk, uk+p+1). The B-splines Bk,p can be computed by using the
de Boor-Cox recurrence formula

Bk,0 (x) =

{
1, if x ∈ [uk, uk+1) ,

0, otherwise,

Bk,p (x) =
x− uk

uk+p − uk
Bk,p−1 (x) +

uk+p+1 − x
uk+p+1 − uk+1

Bk+1,p (x) , p > 0,

where by convention the value 0 is assigned when the term 0/0 appears. By Curry-Schoenberg’s Theorem
[10], we know that the sequence {Bk,p}Nk=1 is a basis of Pp,x,r, and it holds

Snp = span {Bk,p (u) , u ∈ [ud, uN+1]} = Pp,x,r.

Another normalization can be used to define the Curry-Schoenberg’s B-spline as follows:

Mk,p (x) :=
p+ 1

uk+p+1 − uk
Bk,p (x) , x ∈ R.

Therefore, we have
Mk,p (x) = (p+ 1) [uk, . . . , uk+p+1] (· − x)

p
+ ,

and taking into account that

[uk, . . . , uk+p+1] f =
1

p!

∫ b

a

Mk,p(x)

p+ 1
Dp+1f(x) dx,

it follows that
Mk,p

p+1 is the Peano kernel of the linear functional [uk, . . . , uk+p+1] when applied to f ∈
Cp+1 ([a, b]) with uk, . . . , uk+p+1 ∈ [a, b]. As a consequence,∫ b

a

Mk,p(x) dx = 1.

However, the QRs in the following subsection use the non-normalized B-spline defined as

Dk,p (x) :=
1

p+ 1
Mk,p (x) = [uk, . . . , uk+p+1] (· − x)

p
+ , x ∈ R (2.2)

and the two definitions of a basis function are linked via the following relation:∫ b

a

Dk,p(x) dx =
1

p+ 1

∫ b

a

Mk,p(x) dx =
1

p+ 1
.

In the subsequent sections, where the used degree is clear, we omit it. In the case of uniform regularity, i.e.
ri = µ+ 1, 1 ≤ i ≤ n− 1 the following notation will be used:

Snp,µ =
{
f ∈ Cµ ([a, b]) : f|[xi,xi+1] ∈ Pp, i = 0, . . . , n− 1

}
,

where Pp denotes the space of polynomials of degree p. The existence of Gaussian QRs for these spaces
with uniform regularity is proved in [17] and the uniqueness in [19, Theorem 3.4]. Moreover, the following
relationship holds:

p+ `+ 1 = 2m,

where p is the polynomial degree, ` the total number of interior knots (when counting multiplicities), and m
is the number of Gaussian nodes. This fact is in accordance with the dimension count of the spline space,
c.f. Eq. (2.1), that is N = p+ `+ 1, which is the maximum number of basis functions that is expected to be
integrated exactly by only half the number of quadrature points. If p is assumed to be small compared to `,
then the number of quadrature points is approximately half the number of interior knots in the integration
interval. In the limit, when n → ∞, the spline rules converge to the half-point rules of Hughes et al. [16],
that are exact and optimal over the whole real line.
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2.2. Quadrature rules for C1 cubic splines with uniform knots

In general, Gaussian rules for splines cannot be computed analytically, however, for certain specific
spaces, e.g. of lower degrees over special knot vectors, one can compute the weights and nodes in a closed
form fashion using a recursive formula [20, 6, 1]. One such a prominent spline space are C1 cubic splines
with uniform knots, which has the special structure that guarantees existence of a single quadrature point
in every element, except the middle one that requires two [20]. This fact allows us to construct a recursive
algorithm that starts in the boundary element, computes the first node and weight analytically, and proceeds
towards the middle of the domain, computing the following nodes and weights using a recursive formula
containing the nodes and weights from the preceding element. Let consider [a, b] = [0, 1] and fix in [0, 1] the

break points x := {xi}ni=0 with xi := i
n , r := {ri}n−1i=1 with ri = 2 and define

Sn3,1 :=
{
f ∈ C1 ([0, 1]) : f|[xr,xr+1] ∈ P3, r = 0, 1, . . . , n− 1

}
.

For this space over n uniform elements, the main goal is to look for the Gaussian QR that is known to need
only m = n+ 1 quadrature points, that is

Qn+1 (f) =

n+1∑
i=1

ωif(τi), 0 < τ1 < . . . < τn+1 < 1. (2.3)

Since there exists only one optimal rule, it must be symmetrical, so it is sufficient to determine the left half
of the nodes and weights. The next result is proved in [20, Theorem 2.1] and, depending on the parity of
the elements n, it gives a recursive formula to compute the nodes and weights.

Theorem 1. Let ωi = δi
n and τi = (i−θi)

n , i = 1, . . . , bn/2c + 1, be the weights and nodes of the m-point
Gaussian QR (2.3), where bzc stands for the integer part of z. Then, the sequences (δi)1≤i≤bn/2c+1 and

(θi)1≤i≤bn/2c+1 are determined by

δ1 =
16

27
, θ1 =

3

4
,

and for, i = 1, . . . , bn/2c − 1, by the recurrence relations

θi+1 =
1− δi(1− θi)2(5θi + 1)

1− δi(1− θi)2(4θi + 1)
and δi+1 =

1− δi(1− θi)2(4θi + 1)

θ2i+1

. (2.4)

If n is even, say n = 2l, then θl+1 = 1 and

δl+1 = 1− 2δl (1− θl)2 (2θl+1 + 1) .

If n is odd, say n = 2l − 1, then

δl = 1− δl−1 (1− θl−1)
2

(2θl−1 + 1)

and θl is the greater zero of the equation

θl (1− θl) =
δl−1θl−1 (1− θl−1)

2

1− δl−1
(
1− θ2l−1

)
(2θl−1 + 1)

.

Note that the δ- and θ-sequences do not depend on n, and (considered as infinite sequences, defined by
(2.4)) both tend monotonically to 1 with second-order convergence. Theorem 1 constructs the QR on the
unit interval. For non-unit intervals, the quadrature is mapped via an affine transformation. That is, for a
general interval [a, b] we get w̄i := (b− a)ωi, and τ̄i := (b− a) τi + a, where ωi and τi are the weights and
the nodes computed on the unit interval.

For f ∈ C4 ([0, 1]) \ Sn3,1, then there exists z ∈ [0, 1] such that

Rn+1 (f) = I (f)−Qn+1 (f) = cn+1,4f
(4) (z) ,
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where [20, Theorem 2.2, eq. (2.6)]

cn+1,4 =
1

720n4
− 1

12

bn+1
2 c∑
i=1

ωi (xi−1 − τi)2 (xi − τi)2 .

Moreover, from [20, Corollary 2.3] it holds

1

720n4
− 1

551.9775n5
≤ cn+1,4 ≤

1

720n4
− 1

552n5
.

The proof of Theorem 1 is based on the representation of the spline functions in Sn3,1 in terms of the

basis of B-splines Dk,3 in (2.2). Let x−1 := − 1
n and xn+1 := 1 + 1

n be two extra break points, added to

the partition x of the interval [0, 1] in order to obtain the extended knot partition u := {ui}N+4
i=1 , with

N = 2n+ 2 and u2i+3 = u2i+4 = xi, i = −1, . . . , n+ 1. Therefore, the B-splines are given explicitly by the
following expressions: for r = 1, . . . , n+ 1,

D2r−1 (t) = [xr−2, xr−2, xr−1, xr−1, xr] (· − t)3+ ,
D2r (t) = [xr−2, xr−1, xr−1, xr, xr] (· − t)3+ .

(2.5)

They are supported on [xr−2, xr] and positive on (xr−2, xr).

2.3. Quadrature rules for C1 quintic splines with uniform knots

Another spline space that admits to compute the Gaussian QR using a recursive formula are C1 quintic
splines with uniform knots. For this space, each element is guaranteed to have two Gaussian points, except
the middle one that requires three [6]. Analogously to [20], the nodes and weights can be computed analyti-
cally using a recursive formula. The construction of QRs for C1 quintic splines with uniform knots proceeds
as follows, see also [6]. For a given set of break points x := {xi}ni=0, xi := a+ (i− 1)h, 1 ≤ i ≤ n+ 1, with

steplength h := (b− a) /n, and r := {ri}n−1i=1 with ri = 2, the spline space considered is

Sn5,1 :=
{
f ∈ C1 ([a, b]) : f|[xr,xr+1] ∈ P5, r = 0, 1, . . . , n− 1

}
.

Its dimension is equal to dimSn5,1 = (5 + 1) + 4(n − 1) = 4n + 2, therefore the number of nodes of the
Gaussian QR is equal to 2n+ 1.

As in the C1 cubic case, in order to derive a recurrence method to determine the weights and nodes, an
appropriate basis to Sn5,1 is considered, whose non-normalized B-splines are defined by (2.2). Therefore, an
appropriate extended partition u is needed. It is achieved from x and r, by adding two additional break
points x−1 := a− h and xn+1 := b+ h with multiplicity two. It is given by u := {ui}N+6

i=1 , with N = 4n+ 2
and u4i+3 = u4i+4 = u4i+5 = u4i+6 = xi, i = 0, . . . , n, and u1 = u2 = x−1, u4n+7 = u4n+8 = xn+1. From
this partition the basis {Di}4n+2

1 is defined according (2.2) to obtain the following expressions:

D4k−3 (t) = [xk−2, xk−2, xk−1, xk−1, xk−1, xk−1, xk] (· − t)5+ ,

D4k−2 (t) = [xk−2, xk−1, xk−1, xk−1, xk−1, xk, xk] (· − t)5+ , k = 1, . . . , n+ 1,

D4k−1 (t) = [xk−1, xk−1, xk−1, xk−1, xk, xk, xk] (· − t)5+ ,

D4k (t) = [xk−1, xk−1, xk−1, xk, xk, xk, xk] (· − t)5+ , k = 1, . . . , n.

Functions D4k−3 and D4k−2 are supported on [xk−2, xk], while the supports of D4k−1 and D4k are equal
to [xk−1, xk], see Fig. 1. Moreover, after some computations, the following expressions are obtained: for
t ∈ [xk−2, xk] it holds

D4k−3 (t) =
1

4h6
(t− xk−2)

4
(xk + 8xk−1 − 9t) ,

D4k−2(t) =
1

4h6
(t− xk−2)

5
,
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Figure 1: Only the B-splines D4k−3, . . . , D4k+2 have supports intersecting the interval [xk−1, xk].

and for t ∈ [xk−1, xk] we have

D4k−3(t) =
1

4h6
(xk − t)5 ,

D4k−2(t) =
1

4h6
(xk − t)4 (9t− 8xk−1 − xk−2) ,

D4k−1(t) =
10

h6
(t− xk−1)

2
(xk − t)3 ,

D4k(t) =
10

h6
(t− xk−1)

3
(xk − t)2 .

(2.6)

For every interval [xk−1, xk] only six B-splines have supports intersecting it.
A detailed study in [6] leads to a recurrence method to determine the nodes and weights of the (2n+ 1)-

Gaussian QR

Q2n+1 (f) :=

2n+1∑
i=1

ωif (τi) (2.7)

to approximate I(f). They are summarized in the following result (see Theorem 2.1 in [6]), that, similarly
to Theorem 1, considers two scenarios depending on the parity of n.

Theorem 2. Let A1 := 1
24 and B1 := 1

8 , and for k = 2, . . . , bn/2c+ 1 define

Ak := I (D4k−3)− ω2k−3D4k−3 (τ2k−3)− ω2k−2D4k−3 (τ2k−2) ,

Bk := I (D4k−2)− ω2k−3D4k−2 (τ2k−3)− ω2k−2D4k−2 (τ2k−2) .

Then, the nodes and weights relative to the Gaussian QR (2.7) are determined by recurrence as follows: for
k = 1, . . . , bn/2c,

τ2k−1 = xk−1 +
−bk −

√
b2k − 4akck

2ak
and τ2k = xk −

−bk +
√
b2k − 4akck

2ak
,

with

ak := 1− 480Ak + 576A2
k + 576B2

k − 1152AkBk,

bk := 2h (12Bk + 108Ak − 1) ,

ck := h2 (1− 24Bk + 24Ak) ,

and

ω2k−1 =
2h5 (9βkAk + hAk − hBk + βkBk)

5 (h− τ2k−1 + xk−1)
4

(τ2k − τ2k−1)
,

ω2k =
h5 (2τ2k−1 − 2xk−1 − h)

60 (τ2k − xk−1)
2

(h− τ2k + xk−1)
2

(τ2k−1 − τ2k)
.
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If n is even, namely n = 2l, then

τn+1 = xl =
a+ b

2
and ωn+1 =

2

3
h− 2α2

l (5h− 4αl)ωn−1 + 2β4
l (5h− 4βl)ωn

h5
,

with αl := τn−1 − xl−1 and βl := τn − xl−1. If n is odd, namely n = 2l − 1, then τn+1 = a+b
2 ,

τn = xl−1 +
−b̃l −

√
b̃2l − 4ãlc̃l

2ãl
,

where

ãl := 2 (108Al + 12Bl − 1) ,

b̃l := −2h (108Al + 12Bl − 1) ,

c̃l := −h2 (24Al − 24Bl + 1) ,

and τn+2 is the symmetrical point of τn with respect to τn+1. Moreover, the associated weights are given by
the expressions

ωn = ωn+2 =
h (108Al + 12Bl − 1)

2

30 (156Al − 36Bl + 1)
,

ωn+1 =
4h
(
1152AlBl + 264Al − 576A2

l − 576B2
l − 24Bl + 1

)
15 (156Al − 36Bl + 1)

.

It can be seen that the cost of integration with this method is reduced by 2/3 compared to the classical
Gaussian quadrature for polynomials as the spline rule requires asymptotically (for large n) only two quadra-
ture points per element while the polynomial Gauss needs three. This cost reduction is even more significant
in multivariate (tensor product) setups where this ”cost saving ratio” 2/3 powers by the dimension.

The rule from Theorem 2 is guaranteed to exactly integrate C1 quintic splines. One can use the rule also
for quintic spaces of higher continuities over uniform knot vectors (as these space are contained), however,
the rule is not optimal in terms of number of quadrature points anymore.

For functions outside the spline space of interest, the integration error can be estimated using [6, Theo-
rem 3.1]. That is, for f ∈ C6 ([a, b]) \ Sn5,1 there exists ξ ∈ [a, b] such that

Rn+1 (f) = I (f)−Qn+1 (f) = c2n+1,6f
(6) (ξ) ,

where

c2n+1,6 =
(b− a)

7

5040
− 1

720

2n+1∑
k=1

ωk (τk − a)
6
.

2.4. Quadrature rules for C2 cubic and C4 quintic splines by homotopy continuation

While for C1 cubic and quintic spline spaces there exist recursive formulas to compute Gaussian QRs, for
higher continuities such explicit formulas are not at hand. To this end, one has to derive the QRs numerically.
Polynomial homotopy continuation (PHC) is a numerical scheme that solves polynomial systems of equations
(for a detailed explanation, see the book [23]) and it has been used in [7, 8, 9] for generating Gaussian
quadrature rules for splines. In particular, to generate a Gaussian quadrature rule in a given (target) spline
space, an associated source space with known Gaussian quadrature is built and the rule from the source
space to the target space is transferred, while preserving the number of quadrature points and therefore
optimality. The exactness of the quadrature rule is formulated as a polynomial system and the quadrature
nodes and weights, considered as a higher-dimensional point, is a zero of this system. Using the homotopy
continuation concept, the source space is continuously deformed by changing the source knot vector to the
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target configuration and the quadrature rule gets updated numerically by tracing the unique root of the
continuously modified (piecewise polynomial) system.

We consider a uniform knot vector x on the interval [a, b] as in Section 2.2, where each of the n − 1
interior knots has associated multiplicity two and the spline space Sn3,1. We define h := b−a

n = xr − xr−1 for
all r = 1, . . . , n. Let us denote ñ := 2n− 1 and consider a uniform knot vector

x̃ = (a = x̃0, x̃1, ..., x̃ñ−1, x̃ñ = b)

such that each its knot is of multiplicity one. Then the spline space is

Sñ3,2 = {f ∈ C2 ([a, b]) : f|[x̃k−1,x̃k] ∈ P3, k = 1, . . . , ñ}

and we further define h̃ := b−a
ñ = x̃r − x̃r−1 for all r = 1, . . . , ñ. The dimension of both spaces is 2n + 2,

that is, the total number of interior knots is the same for both spaces, while the number of non-zero knot
spans is different.

Moreover, we consider the two extended partitions u, obtained by considering x0 and xn as double knots
and adding two extra double knots outside the interval [a, b] that we set as to be

x−1 = x0 − h and xn+1 = xn + h, (2.8)

and ũ, obtained by extending the knot sequence of x̃ by two triplets of single knots as

x̃−k = x̃0 − kh̃ and x̃ñ+k = x̃ñ + kh̃, k = 1, 2, 3. (2.9)

We define {D̃k}2n+2
k=1 the basis of the target space Sñ3,2 where

D̃k(t) = [x̃k−4, . . . , x̃k](· − t)3+, k = 1, . . . , 2n+ 2.

We further have that
I(D̃k) = I(Dk), k = 4, . . . , 2n− 1, (2.10)

where {Dk}2n+2
k=1 is the basis of the source space Sn3,1, defined as in (2.5). The ten boundary integrals (five

only due to symmetry) are computed directly by integrating the corresponding B-splines. These integrals
change during continuation and therefore have to be recomputed for various continuation parameter t,
typically t ∈ [0, 1]; t = 0 (source), t = 1 (target).

Now we consider a continuous transition between the source Sn3,1 and target Sñ3,2. Since the transition
of the spline spaces is governed by the transformation of the corresponding knot vectors, we consider the
mapping

x→ x̃

including the six outer knots defined in (2.8) and (2.9). Due to the fact that we work with non-normalized
basis functions, (2.10) remain unchanged. The total number of knots is 2n+ 6, but since the two boundary
knots are constrained to stay fixed, there are 2n+ 4 free knots. The transformation can be conceptualized
as a curve between x and x̃, two points in R2n+4. There exist infinitely many paths connecting the source
and target knot vectors. In particular, we use the geodesic path when considering the Euclidean metric on
the vector of free knots.

We set our source space as Sn3,1 for which we know a Gaussian source quadrature rule of the form (2.3),

with nodes and weights given in Theorem 1. Due to the equal dimensions of Sn3,1 and Sñ3,2, the target rule
requires the same number of nodes and therefore we look for a QR of the form

Q̃n+1 (f) =

n+1∑
i=1

ω̃if(τ̃i).

During the continuation, we transform the spline space Sn3,1 to Sñ3,2 and accordingly the Gaussian rule

Qn+1 → Q̃n+1. Therefore Q̃n+1, represented by its nodes and weights, is a function of t. Without loss
8



of generality, we conceptualize t = 0 (source) and t = 1 (target) and write the source quadrature rule
as Qn+1 = Q̃n+1(0) and the target rule as Q̃n+1 = Q̃n+1(1). The vector of unknowns consisting of the
quadrature nodes and weights is conceptualized as a (2n+ 2)-dimensional point

(τ̃1, . . . , τ̃n+1, ω̃1, . . . , ω̃n+1) ∈ R2n+2

and the source polynomial system expresses that exactness condition, i.e., that the source rule exactly
integrates the source basis. The source root that solves it is the quadrature rule of Section 2.2. By using
the homotopy framework, in [8] a Gaussian QR for uniform C2 cubic spline spaces has been constructed,
see [8] for more details.

By using the same logical argument, it is possible to derive a QR for uniform C4 quintic spline spaces,
starting from the QR of Section 2.3 for C1 quintic splines with uniform knot sequences. In this case, we
consider a uniform knot vector x on the interval [a, b] as in Section 2.3, where each of the n − 1 interior
knots has associated multiplicity four. We denote the associated source spline space by Sn5,1. We define

h := b−a
n = xr − xr−1 for all r = 1, . . . , n. Let us denote ñ := 4n− 3 and consider a uniform knot vector

x̃ = (a = x̃0, x̃1, . . . , x̃ñ−1, x̃ñ = b)

such that each its knot is of multiplicity one. Then the target spline space is

Sñ5,4 = {f ∈ C4 ([a, b]) : f|[x̃k−1,x̃k] ∈ P5, k = 1, . . . , ñ}

and we further define h̃ := b−a
ñ = x̃r − x̃r−1 for all r = 1, . . . , ñ. The dimension of both spaces is 4n + 2,

that is, the total number of interior knots is the same for both spaces, while the number of non-zero knot
spans is different.

Moreover, we consider the two extended partitions u, obtained by considering x0 and xn as knots of
multiplicity four and adding two extra double knots outside the interval [a, b] that we set to be

x−1 = x0 − h and xn+1 = xn + h,

and ũ, obtained by extending the knot sequence of x̃ by two sets of single knots as

x̃−k = x̃0 − kh̃ and x̃ñ+k = x̃ñ + kh̃, k = 1, . . . , 5.

We define {D̃k}4n+2
k=1 the basis of the target space Sñ5,4 where

D̃k(t) = [x̃k−6, . . . , x̃k](.− t)5+, k = 1, . . . , 4n+ 2,

and we have that
I(D̃k) = I(Dk), k = 6, . . . , 4n− 3,

where {Dk}4n+2
k=1 is the basis of the source space Sn5,1, defined as in (2.6). The six boundary integrals (three

only due to symmetry) are computed directly by integrating the corresponding B-splines. These integrals
change during continuation and therefore have to be recomputed for various continuation parameter t,
typically t ∈ [0, 1]; t = 0 (source), t = 1 (target).

Now we consider a continuous transition between the source Sn5,1 and target Sñ5,4. We set our source
space as Sn5,1 for which we know a Gaussian source quadrature rule of the form (2.7), with nodes and weights
given in Theorem 2 and we look for a QR of the form

Q̃2n+1 (f) =

2n+1∑
i=1

ω̃if(τ̃i). (2.11)

By using the homotopy framework, we are able to obtain the desired Gaussian QR. In Table 1 we report
nodes and weights for various values of ñ. We also report the error ‖r‖ of the rule that is measured as the
Euclidean norm of the vector of the residues, normalized by the system’s dimension 4n+ 2 = ñ+ 5, i.e.,

‖r‖ =
1

ñ+ 5

( ñ+5∑
i=1

(Q̃2n+1(D̃i)− I(D̃i))
2

) 1
2

.
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i τi ωi ‖r‖ τi ωi ‖r‖

ñ = 9 6.42(−18) ñ = 13 1.21(−17)
1 0.070809859159811 0.183349827808167 0.065385669153961 0.169325364763240
2 0.377199653495331 0.423226004611632 0.348498904402831 0.391327681325333
3 0.888400716916905 0.579969346497780 0.822112583828282 0.538918320717784
4 1.500000000000000 0.626909642164842 1.395550612462171 0.596379706769487
5 − − 2.000000000000000 0.608097852848314

ñ = 17 1.91(−17) ñ = 21 1.95(−17)
1 0.062501758846785 0.161857754107132 0.060716019702809 0.157233335577858
2 0.333134377797970 0.374085047673794 0.323616604989813 0.363397640909352
3 0.785911368439571 0.515262428552110 0.763459071760679 0.500544699204603
4 1.334359996496279 0.570705014728738 1.296248210647031 0.554420719611212
5 1.913781728943024 0.584630042082223 1.859170957103380 0.568041687847310
6 2.500000000000000 0.586919425712005 2.428939359660305 0.570767137676093
7 − − 3.000000000000000 0.571189558347143

ñ = 25 1.82(−17) ñ = 29 1.99(−17)
1 0.059501700174624 0.154088671891742 0.058622364733744 0.151811499504440
2 0.317144284901381 0.356129713236112 0.312457423959895 0.350866713409836
3 0.748189969221157 0.490533943462980 0.737132977306587 0.483284678101352
4 1.270323682402073 0.543333040508792 1.251550440956447 0.535303513391059
5 1.821989881285721 0.556684789756668 1.795064002776477 0.548458055855679
6 2.380373136568870 0.559372890108410 2.345195639148952 0.551107018869507
7 2.940067341931896 0.559878806579807 2.896620379924060 0.551608612579667
8 3.500000000000000 0.559956288910975 3.448288240582612 0.551701856114277
9 − − 4.000000000000000 0.551716104348365

ñ = 33 2.10(−17) ñ = 37 4.05(−17)
1 0.057956201499154 0.150086368831821 0.057434073557755 0.148734239383008
2 0.308906771429059 0.346879591696191 0.306123827542799 0.343754550330581
3 0.728756466293858 0.477792806922296 0.722191092726851 0.473488367225914
4 1.237328277368729 0.529220519787704 1.226181175788537 0.524452767387078
5 1.774665550962560 0.542225582588944 1.758677573121231 0.537340667590496
6 2.318545703519458 0.544844463986058 2.297657904899482 0.539935956159231
7 2.863704318670243 0.545340466255171 2.837905183402830 0.540427493680052
8 3.409103572755148 0.545433231813783 3.378390942637572 0.540519443566724
9 3.954547737362110 0.545450436137280 3.918921259881264 0.540536600406546
10 4.500000000000000 0.545453063961504 4.459459881438810 0.540539780926602
11 − − 5.000000000000000 0.540540266687536

Table 1: Nodes and weights for Gaussian quadrature rules (2.11) for uniform knot distribution for various ñ. The integration
interval is [0, ñ+3

4
] and thanks to symmetry properties only the first ñ+3

4
+ 1 nodes and weights are reported.

3. Numerical solution of linear Fredholm integral equations of the second kind via the Nyström
method

Consider the linear Fredholm integral equation of the second kind

λu (x)−
∫
I

k (x, y)u (y) dy = f (x) , x ∈ I := [a, b], (3.1)

where k(x, y) is a enough regular bivariate kernel.
Among the methods to solve (3.1) (see e.g. [2]), we are interested in the Nyström method. It stems in

numerical integration of the integral operator in (3.1) using a numerical quadrature. To approximate the
value of I(g), we consider an m-point quadrature rule Qm (g) of kind (1.1), that is exact for some function
space L, i.e., Rm(g) = 0 iff g ∈ L. Traditionally, Gaussian quadrature for polynomials is used, i.e. L = Pp.
The kernel k is assumed to be smooth, usually it is assumed to be several times differentiable. The function
g typically lies outside L and it is also assumed that there is a sequence of quadratures (Qm)m≥1 that
converges to the exact integral as m→∞. Applying the quadrature rule to (3.1), one obtains

λun (x)−
m∑
j=1

ωjk (x, τj)un (τj) = f (x) , x ∈ I, (3.2)

where the unknown is the approximate solution un and the integer n is the number of elements, i.e., the
uniform discretization of the interval I. Then the Nyström method proceeds by sampling x values at the
quadrature points τ ’s also in the x-direction, which gives an m×m linear system

λun (τi)−
m∑
j=1

ωjk (τi, τj)un (τj) = f (τi) , i = 1, . . . ,m, (3.3)
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with the vector of unknowns
un := (un (τ1) , . . . , un (τm))

T
.

Let z := (z1, . . . , zm)
T

be a solution of (3.3), then the solution reads as

z (x) =
1

λ

f (x) +

m∑
j=1

ωjk (x, τj) zj

 ,

which is known as Nyström interpolation formula [2].
Let us consider the Banach space X = C (I) and the operators K, Kn : X → X defined as

Kx (t) =

∫
I

k (t, s)x (s) ds and Knx (t) =

m∑
j=1

ωjk (t, τj)x (τj) , (3.4)

associated respectively with the integral equation (3.1) and a sequence of QRs∫ b

a

g(x) dx ≈
m∑
j=1

ωn,jg (τn,j) (3.5)

such that

sup
n≥1

m∑
j=1

|ωn,j | <∞.

To simplify the notation, we will omit the index n from now on.
It holds

‖Kn‖∞ = max
t∈I

m∑
j=1

|ωjk (t, τj)| .

With the notation given in (3.4), equations (3.1) and (3.2) read

(λ−K)u = f and (λ−Kn)un = f.

Observe that m is the number of quadrature points and this number depends on n, the number of
elements of the discretization, in various ways, depending on particular quadrature rules based on splines
of various degrees and continuities or polynomial Gaussian ones. It holds that m→∞ as n→∞, but the
concrete relation between m and n depends on the particular rule. For example, for the C1 cubic spline
space and its Gaussian quadrature we have n = m + 1, so asymptotically n ≈ m. See later Table 3 in
Section 4 for relations of m and n for other discretization spaces.

Next, we give a result on the convergence of the sequence (un)n≥1 provided by the Nyström method
when QRs for splines are used [2].

Theorem 3. Let k (t, x) be a continuous kernel defined on D := I×I, and suppose that the sequence (3.5) of
QRs converges for all continuous functions defined on I. Moreover, let us suppose that the integral equation
(3.1) admits a unique solution for all function f ∈ C (I) with λ 6= 0. Then, for n enough large, for instance

n ≥ N , the operator (λ−Kn)
−1

exists and is uniformly bounded. More precisely, there exists a constant cs
such that ∥∥∥(λ−Kn)

−1
∥∥∥
∞
≤

1 +
∥∥∥(λ−K)

−1
∥∥∥
∞
‖Kn‖∞

|λ| −
∥∥∥(λ−K)

−1
∥∥∥
∞
‖(K −Kn)Kn‖∞

≤ cs, n ≥ N.

Furthermore, for the solutions of equations (λ−K)u = f and (λ−Kn)un = f , n ≥ N , it holds

‖u− un‖∞ ≤
∥∥(λ−Kn)−1

∥∥
∞ ‖(K −Kn)u‖∞ ≤ cs ‖(K −Kn)u‖∞ .

We recall that the sequences of Gaussian QRs here considered are convergent for all continuous functions
because they have positive weights (see e.g. [22, Theorem 3] and [13, p. 130]).
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i Ii ki (x, t) ui (x) fi (x)

1 [0, 1] cos (πxt) e−x e−x − e+πx sin(πx)−cos(πx)
(π2x2+1)e

2 [0, 1] ext ex ex − ex+1−1
x+1

3 [0, 1] ln (1 + x+ t) 1− x+ x2 − x3 x
(
1
4x

3 + 4
3x

2 + 3x+ 4
)

ln
(
x+1
x+2

)
+ 25

12 ln (x+ 1)− 8
3 ln (x+ 2)

− 3
4x

3 + 47
24x

2 + 7
12x+ 385

144

4 [0, 1] ext e−x cosx e−x cosx− ((x−1) cos 1+sin 1)ex−e(x−1)
e(x2−2x+2)

5 [0, π] cos (t+ x) cos (50x) cos(50x)− 2
2499 sinx

6 [0, π] ext x2 cos (50x) − 1
(2500+x2)3

(
−2x

(
−7500 + x2

)
+eπx

(
2x
(
−7500 + x2

)
+ π2x

(
2500 + x2

)2)
+2πeπx

(
6250000− x4

))
+x2 cos (50x)

7 [0, π] t+ x e−x cos (50x) − e
−π(2499−2501π−2501x+eπ(−2499+2501x))

6255001
+e−x cos (50x)

Table 2: Seven test datasets for the Fredholm integral equations of the second kind. In turn, the columns contain the intervals,
kernels, exact solutions, and right-handsides of (4.1).

4. Numerical tests of the Nyström method based on QRs for splines

In this section, we consider seven integral equations

ui (x)−
∫ bi

ai

ki (x, t)ui (t) dt = fi (x) , x ∈ Ii = [ai, bi], (4.1)

whose kernels and independent terms are given in Table 2, as well as the corresponding solutions and the
intervals Ii.

We numerically solve them by using the Nyström method in combination with the QRs proposed in
Section 2 defined on a uniform partition of the interval Ii into n subintervals (elements). We compare the
results with the ones produced when polynomial Gaussian quadratures are used. We develop all the tests
in the Matlab environment.

The uniform norms ‖ui−ui,n,β‖∞,Ii of the errors ui−ui,n,β between the exact and approximate solutions
ui and ui,n,β are estimated from their values at 1000 equispaced points in Ii, yielding values ei,n,β . Here β
denotes the QR applied in the Nyström method, in particular we use the following notation:

• β = 3 for the QR exact on Sn3,1;

• β = 5 for the QR exact on Sn5,1;

• β = 3H for the QR exact on Sn3,2;

• β = 5H for the QR exact on Sn5,4;

• β = G2 for the classical Gaussian rule with 2 nodes, exact on cubic polynomials;

• β = G3 for the classical Gaussian rule with 3 nodes, exact on quintic polynomials.

The numerical convergence orders are computed as

NCOβ := log2

ei,n,β
ei,2n,β

.

In order to qualitatively compare the results produced by different quadratures, we fix the number of
nodes as this corresponds to the computational cost of the numerical integration. We consider the sequence of

12



[τ5, ω5]

dim(S5,−1) = 18 dim(S3,2) = 16

Figure 2: Two spline spaces and their corresponding Gaussian quadratures used in the Nyström method. Left: Discontinuous
(C−1) quintic spline space over n = 3 elements and the corresponding polynomial Gauss quadrature (blue dots) applied
elementwise with total m = 9 quadrature points. Right: C2 cubic spline space over n = 13 uniform elements with its Gaussian
quadrature consisting of only m = 8 quadrature points.

Relation between m and n NoE
Formula exact in Sn3,1 m = n+ 1 m− 1
Formula exact in Sn5,1 m = 2n+ 1

[
m
2

]
Formula exact in Sn3,2 2m = n+ 3 2m− 3
Formula exact in Sn5,4 2m = n+ 5 2m− 3
Formula based on Q2 [5] n = m m
Formula based on Q4 [5] n = m m
Composite 2-nodes Gaussian Formula 2n = m

[
m
2

]
Composite 3-nodes Gaussian Formula 3n = m

[
m
3

]
Table 3: Relation between the number of elements and number of nodes (middle column) and the number of elements (NoE)
n (right) used for a fixed m to compare the results of the Nyström method using various quadrature rules (left), where
[`] := round(`).

integers m = [8, 16, 32, 64, 128] and, for each fixed m, we compute the number of subintervals (aka elements)
for each quadrature by using the relations reported in Table 3. In the case of spline Gaussian rules, the
relation between m and n comes from the fact that the dimension of each corresponding spline space over
n elements equals 2m. The number of subintervals varies as it depends on the degree and continuity of the
underlying spline space. In cases where the particular number of nodes does not permit admissible number
of elements (i.e., n is not integer in Table 3) or it does not permit to satisfy the relations explained in Section
2.4, we round n up to fairly compare spline spaces with (almost) the same dimension, and consequently
almost the same number of nodes. This is depicted in Fig. 2 where two spline space requiring almost the
same number of quadrature points are shown. Observe a lot higher flexibility of the spline space that
spans n = 13 elements while the discontinuous counterpart spans only n = 3 elements, yet being of even a
slightly higher dimension. This phenomenon is reflected by larger approximation error when using standard
polynomial Gaussian quadrature in contrast to some spline alternatives.

Tables 4 and 8 contain estimations of the errors provided by the different methods used to compute
numerical solutions to the first integral equation whose kernel, independent term and exact solution are
given in Table 2.

These results confirm the theoretical ones regarding the numerical convergence orders. They are equal
to 4 for the formulas based on cubic splines and 6 for the formulas based on quintic splines. Comparing
formulas with the same convergence order, we can conclude that the QRs constructed in Section 2.4 produce
better results.

When compared to polynomial Gaussian quadrature, the Gaussian quadratures for splines exploit the
continuity between the polynomial pieces and therefore would not capture behavior of a function with low
continuity. If, for example, the right hand-side of (3.1) is discontinuous, it is not recommended to use spline
quadratures as they might underintegrate the solution.

The conclusions are similar for the other examples, whose results are given in Tables 5-11. Observe that
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m n = e1,n,3 NCO3 n = e1,n,5 NCO5

m− 1 m
2

8 7 2.13 (−05) − 4 1.75 (−07) −
16 15 1.04 (−06) 4.35 8 3.02 (−09) 5.85
32 31 5.70 (−08) 4.19 14 4.87 (−11) 5.95
64 63 3.33 (−09) 4.10 32 7.70 (−13) 5.98
128 127 2.01 (−10) 4.05 64 1.21 (−14) 5.99

m n = e1,n,3H NCO3H n = e1,n,5H NCO5H

2m− 3 2m− 3
8 13 1.49 (−06) − 13 2.19 (−09) −
16 29 6.43 (−08) 4.53 29 2.42 (−11) 6.50
32 61 3.31 (−09) 4.28 61 3.01 (−13) 6.33
64 125 1.88 (−10) 4.14 125 4.22 (−15) 6.16
128 253 1.12 (−11) 4.07 253 7.77 (−16) 2.44

Table 4: Results for example 1.

m n = e2,n,3 NCO3 n = e2,n,5 NCO5

m− 1 m
2

8 7 2.59(−05) − 4 5.63(−08) −
16 15 1.40(−06) 4.21 8 1.03(−09) 5.77
32 31 8.16(−08) 4.11 14 1.74(−11) 5.89
64 63 4.92(−09) 4.05 32 2.83(−13) 5.94
128 127 3.02(−10) 4.03 64 1.51(−14) 4.23

m n = e2,n,3H NCO3H n = e2,n,5H NCO5H

2m− 3 2m− 3
8 13 2.01(−06) − 13 1.28(−10) −
16 29 9.02(−08) 4.48 29 6.00(−12) 5.95
32 61 4.82(−09) 4.22 61 5.31(−13) 6.10
64 125 2.79(−10) 4.11 125 1.10(−15) 4.39
128 253 1.68(−11) 4.05 253 − −

Table 5: Results for example 2.

when we do not have results of errors for certain values of m in these tables, it is because the double float
precision of our Matlab implementation was reached.

In the last three examples, solution functions ui(x) are highly oscillating functions. Observe that the
performances of the QRs in Section 2.4 are by several orders of magnitude better when compared to their
polynomial Gauss counterparts. Note that, due to the oscilatory behavior of ui(x), the error is large for
small number of elements and therefore we start with n = 32 and n = 16 in Table 10 and 11, respectively.

5. Numerical solution of Hammerstein integral equations via the Nyström method

In this section we consider Hammerstein integral equations of the form

u(x)−
∫
I

k(x, y)g(y, u(y))dy = f(x), x ∈ I := [a, b], (5.1)

where the kernel k(x, y) and the function f(x) are given, and g(x, u(x)) is a non-linear function of u(x) while
the unknown function u(x) represents the solution of the integral equation. The existence and the uniqueness
of solutions to this type of integral equations have been investigated in the literature by many authors (see
e.g. [24]). Hammerstein integral equations arise in several applications in physics and engineering, such
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m n = e3,n,3 NCO3 n = e3,n,5 NCO5

m− 1 m
2

8 7 2.22 (−05) − 4 5.29 (−08) −
16 15 1.20 (−06) 4.21 8 1.02 (−09) 5.70
32 31 6.96 (−08) 4.11 14 1.78 (−11) 5.84
64 63 4.19 (−09) 4.05 32 2.96 (−13) 5.91
128 127 2.57 (−10) 4.03 64 8.77 (−15) 5.08

m n = e3,n,3H NCO3H n = e3,n,5H NCO5H

2m− 3 2m− 3
8 13 1.72 (−06) − 13 1.29 (−10) −
16 29 7.69 (−08) 4.48 29 6.31 (−12) 5.21
32 61 4.11 (−09) 4.23 61 5.70 (−14) 5.91
64 125 2.38 (−10) 4.11 125 1.18 (−15) −
128 253 1.43 (−11) 4.05 253 − −

Table 6: Results for example 3.

m n = e4,n,3 NCO3 n = e4,n,5 NCO5

m− 1 m
2

8 7 1.91 (−06) − 4 1.01 (−09) −
16 15 1.01 (−07) 4.24 8 1.80 (−11) 5.81
32 31 5.82 (−09) 4.12 14 2.98 (−13) 5.92
64 63 3.48 (−10) 4.06 32 5.47 (−15) 5.77
128 127 2.13 (−11) 4.03 64 − −
m n = e4,n,3H NCO3H n = e4,n,5H NCO5H

2m− 3 2m− 3
8 13 1.45 (−07) − 13 9.92 (−12) −
16 29 6.45 (−09) 4.49 29 1.32 (−13) 6.23
32 61 3.42 (−10) 4.24 61 2.36 (−15) 5.81
64 125 1.97 (−11) 4.11 125 − −
128 253 1.18 (−12) 4.06 253 − −

Table 7: Results for example 4.

e1,n,G2 e1,n,G3 e2,n,G2 e2,n,G3

m n = m
2 n =

[
m
3

]
n = m

2 n =
[
m
3

]
8 3.49 (−05) 3.55 (−07) 5.14 (−05) 1.28 (−07)
16 2.14 (−06) 1.62 (−08) 3.23 (−06) 6.00 (−09)
32 1.33 (−07) 1.41 (−10) 2.02 (−07) 5.31 (−11)
64 8.30 (−09) 2.91 (−12)) 1.26 (−08) 1.10 (−12)
128 5.19 (−10) 3.95 (−14) 7.90 (−10) 1.87 (−14)

e3,n,G2 e3,n,G3 e4,n,G2 e4,n,G3

m n = m
2 n =

[
m
3

]
n = m

2 n =
[
m
3

]
8 4.38 (−05) 1.29 (−07) 3.65 (−06) 2.19 (−09)
16 2.75 (−06) 6.31 (−09) 2.28 (−07) 1.01 (−10)
32 1.72 (−07) 5.70 (−11) 1.42 (−08) 8.94 (−13)
64 1.08 (−08) 1.18 (−12) 8.89 (−10) 1.87 (−14)
128 6.73 (−10) 1.68 (−14) 5.56 (−11) 9.16 (−16)

Table 8: From top to bottom and from left to right, results for examples 1, 2, 3 and 4 using classical Gaussian rules with 2 and
3 nodes.
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e5,n,3 e5,n,5 e5,n,3H e5,n,5H e5,n,G2 e5,n,G3

m n = m− 1 n = m
2 n = 2m− 3 n = 2m− 3 n = m

2 n =
[
m
3

]
8 5.39 (−02) 5.04 (−01) 2.57 (−01) 9.00 (−02) 4.37 (−02) 2.37 (−01)
16 4.83 (−03) 2.04 (−02) 4.66 (−03) 5.04 (−03) 1.72 (−01) 7.44 (−01)
32 4.46 (−03) 9.84 (−05) 2.55 (−03) 3.70 (−03) 3.11 (−03) 9.30 (−03)
64 2.01 (−05) 1.43 (−04) 9.54 (−06) 2.17 (−08) 8.28 (−04) 4.87 (−05)
128 1.17 (−06) 5.56 (−08) 9.43 (−08) 3.15 (−11) 1.10 (−05) 3.93 (−06)

Table 9: Results for example 5.

e6,n,3 e6,n,5 e6,n,3H e6,n,5H e6,n,G2 e6,n,G3

m n = m− 1 n = m
2 n = 2m− 3 n = 2m− 3 n = m

2 n =
[
m
3

]
32 7.80 (+00) 6.61 (+00) 1.61 (+00) 8.07 (−01) 1.04 (+01) 3.56 (+00)
64 9.94 (−02) 3.29 (−01) 2.54 (−02) 5.46 (−04) 2.52 (+00) 3.56 (−01)
128 1.43 (−02) 1.11 (−03) 6.10 (−04) 6.93 (−06) 4.43 (−02) 1.43 (−02)

Table 10: Results for example 6.

as in fluid mechanics, biological models, solid state physics, kinetics in chemistry, etc. In most cases, it is
difficult to solve them, especially analytically.

For g ∈ C(I), the integral operator can be approximated in the following way∫
I

k(x, y)g(y, u(y))dy ≈
m∑
j=1

ωjk (x, τj) g (τj , un (τj)) ,

where ωj e τj are weights and nodes of the QR, respectively. Thus, we approximate integral equation (5.1)
by

un (x)−
m∑
j=1

ωjk (x, τj) g (τj , un (τj)) = f (x) , x ∈ I. (5.2)

This is equivalent to first solve the system of non-linear equations

un (τi)−
m∑
j=1

ωjk (τi, τj) g (τj , un (τj)) = f (τi) , i = 1, . . . ,m,

where the unknows are the values un(τi), 1 ≤ i ≤ m and then obtain the approximate solution by (5.2)

un (x) =

f (x) +

m∑
j=1

ωjk (x, τj) g (τj , un (τj))

 .

e7,n,3 e7,n,5 e7,n,3H e7,n,5H e7,n,G2 e7,n,G3

m n = m− 1 n = m
2 n = 2m− 3 n = 2m− 3 n = m

2 n =
[
m
3

]
16 8.05 (−02) 5.20 (−02) 4.04 (−02) 7.69 (−02) 9.86 (−02) 3.75 (−01)
32 8.21 (−03) 1.03 (−02) 1.68 (−02) 5.78 (−03) 3.30 (−03) 9.15 (−03)
64 3.38 (−04) 1.40 (−04) 2.21 (−05) 5.66 (−06) 8.76 (−04) 4.15 (−05)
128 2.60 (−05) 2.12 (−06) 4.77 (−07) 2.80 (−08) 1.18 (−05) 4.19 (−06)

Table 11: Results for example 7.
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i ki (x, t) gi(t, u) ui (x) fi (x)
1 cos (πx) sin (πt) u2 sin (πx) sin(πx)− 4

3π cos(πx)
2 −x eu x ex

3 −ex−2t u3 ex ex+1

Table 12: Three test datasets for the Hammerstein integral equations.

Let us consider the Banach space X = C (I) and the non-linear operators K, Kn : X → X defined as

Kx(t) =

∫
I

k(t, s)g(s, x(s))ds,

Knx(t) =

m∑
j=1

ωjk(t, τj)g(τj , x(τj)), t ∈ I, x ∈ C(I).

Moreover, we assume that the following assumptions are satisfied [3]:

1. K and Kn, n ≥ 1 , are completely continuous operators on Ω into X , where Ω is an open connected
subset of X ;

2. {Kn}n≥1 is a collectively compact family on Ω;

3. Kn → K as n→∞, all x ∈ Ω;

4. {Kn}n≥1 is equicontinuous at each x ∈ Ω.

We also assume that the integral equation (5.1) has a unique solution for f ∈ C(I) and we denote the
solution by x∗. In order to compute the convergence rate, assume [I −K′(x∗)]−1 exists on X , where K′(x∗)
denotes the Fréchet derivative of K(x) in x∗ and further assume

‖K′n(x)‖ ≤ c1 <∞, ‖K′′n(x)‖ ≤ c2 <∞

for n ≥ 1 and ‖x∗ − xn‖ ≤ ε, with ε, c1 e c2 > 0. Then [3]

‖x∗ − xn‖ ≤ c‖K(x∗)−Kn(x∗)‖, n ≥ N.

Thus, the speed of convergence is that of the numerical integration method applied to K(x∗), and this is
usually obtained easily.

5.1. Numerical tests

In this section, we consider three integral equations

ui (x)−
∫ 1

0

ki (x, t) gi (t, ui (t)) dt = fi (x) , x ∈ [0, 1],

whose corresponding data are given in Table 12.
We numerically solve them by using the Nyström method in combination with the QRs proposed in

Section 2 defined on a uniform partition of the interval [0, 1] into n subintervals. We compare the results
with the ones produced when polynomial Gaussian quadratures are used and with those obtained in [4].
We develop all the tests in the Matlab environment. For the solution of the non-linear systems we use the
fsolve command.

The uniform norms ‖ui − ui,n,β‖∞,[0,1] of the errors ui − ui,n,β between the exact and approximate
solutions ui and ui,n,β are estimated from their values at 1000 equispaced points in [0, 1], yielding values
ei,n,β . As in Section 4, β denotes the QR applied in the Nyström method. Moreover, here we consider

• β = 3nu for the QR based on the non-uniform quadratic quasi-interpolant Q3, as explained in [4].
The formula is of order O

(
h4
)
;
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m n = e1,n,3 NCO3 n = e1,n,5 NCO5

m− 1 m
2

8 7 1.07 (−04) − 4 4.27 (−06) −
16 15 8.93 (−06) 3.59 8 1.77 (−07) 4.60
32 31 5.43 (−07) 4.04 14 3.39 (−09) 5.70
64 63 3.26 (−08) 4.06 32 5.56 (−11) 5.93
128 127 1.98 (−09) 4.04 64 8.80 (−13) 5.98

m n = e1,n,3H NCO3H n = e1,n,5H NCO5H

2m− 3 2m− 3
8 13 9.27 (−06) − 13 1.30 (−08) −
16 29 5.33 (−07) 4.11 29 1.08 (−09) 3.59
32 61 3.13 (−08) 4.09 61 2.00 (−11) 5.75
64 125 1.83 (−09) 4.09 125 2.99 (−13) 6.06
128 253 1.10 (−10) 4.06 253 4.75 (−15) 5.98

Table 13: Results for example 1 – non-linear case.

e1,n,3nu e1,n,5nu e1,n,G2 e1,n,G3

m n = m n = m n = m
2 n =

[
m
3

]
8 1.38 (−04) 1.36 (−03) 4.14 (−04) 3.65 (−05)
16 7.99 (−06) 2.86 (−05) 2.21 (−05) 1.32 (−06)
32 4.94 (−07) 4.79 (−07) 1.33 (−06) 1.05 (−08)
64 3.08 (−08) 7.61 (−09) 8.24 (−08) 2.14 (−10))
128 1.93 (−09) 1.49 (−10) 5.14 (−09) 2.88 (−12)

Table 14: Results for example 1 – non-linear case.

• β = 5nu for the QR based on the non-uniform quartic quasi-interpolant Q5, as explained in [4]. The
formula is of order O

(
h6
)
.

As in Section 4, we consider the integers m ∈ [8, 16, 32, 64, 128] and for each on them we compute the
number of subintervals for each quadrature by using the relations reported in Table 3.

Tables 13-18 contain estimations of the errors provided by the different methods used to compute nu-
merical solutions of the three integral equations (when we do not have results of errors for certain values of
m in these tables, it is because the double float precision of our Matlab implementation was reached).

These results confirm the theoretical ones regarding the numerical convergence orders. They are equal to
4 for the formulas based on cubic splines and 6 for the formulas based on quintic splines. Comparing formulas
with the same convergence order, we conclude that, among the quadrature rules tested, the spline Gaussian
rules with maximum continuity, described in Section 2.4, produce the best solutions. In particular, when
compared to the classical polynomial Gauss quadrature, the approximated solutions are by two to three
orders of magnitude better.

6. Conclusions

We solve Fredholm linear integral equations of the second kind and non-linear Hammerstein integral
equations via Nyström method using various existing spline Gaussian quadrature rules and newly derived
rules for quintic C4 spline spaces with uniform knots. We prove that the method converges to the exact
solution as the number of uniformly distributed elements goes to infinity and show numerically that, in the
majority of the test cases, using spline Gaussian rules the approximation error is smaller by several orders
of magnitude than the one when the classical polynomial Gaussian rule is used.
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m n = e2,n,3 NCO3 n = e2,n,5 NCO5

m− 1 m
2

8 7 3.99 (−07) − 4 2.62 (−10) −
16 15 2.14 (−08) 4.22 8 4.74 (−12) 5.79
32 31 1.23 (−09) 4.12 14 7.23 (−14) 6.04
64 63 7.41 (−11) 4.06 32 2.66 (−15) 4.76
128 127 4.54 (−12) 4.03 64 − −
m n = e2,n,3H NCO3H n = e2,n,5H NCO5H

2m− 3 2m− 3
8 13 3.06 (−08) − 13 2.27 (−12) −
16 29 1.37 (−09) 4.49 29 3.30 (−14) 3.59
32 61 7.27 (−11) 4.23 61 − −
64 125 4.20 (−12) 4.11 125 − −
128 253 2.53 (−13) 4.06 253 − −

Table 15: Results for example 2 – non-linear case.

e2,n,3nu e2,n,5nu e2,n,G2 e2,n,G3

m n = m n = m n = m
2 n =

[
m
3

]
8 3.41 (−07) 2.17 (−07) 7.75 (−07) 5.82 (−10)
16 2.18 (−08) 5.31 (−10) 4.85 (−08) 2.72 (−11)
32 1.36 (−09) 9.24 (−12) 3.03 (−09) 2.27 (−13)
64 8.46 (−11) 1.49 (−13) 1.90 (−10) 6.22 (−15))
128 5.29 (−12) 2.89 (−15) 1.19 (−11) −

Table 16: Results for example 2 – non-linear case.

m n = e3,n,3 NCO3 n = e3,n,5 NCO5

m− 1 m
2

8 7 3.53 (−07) − 4 2.31 (−10) −
16 15 1.89 (−08) 4.22 8 4.19 (−12) 5.79
32 31 1.09 (−09) 4.12 14 7.11 (−14) 5.88
64 63 6.54 (−11) 4.06 32 4.00 (−15) 4.15
128 127 4.01 (−12) 4.03 64 − −
m n = e3,n,3H NCO3H n = e3,n,5H NCO5H

2m− 3 2m− 3
8 13 2.70 (−08) − 13 2.01 (−12) −
16 29 1.21 (−09) 4.49 29 3.11 (−14) 6.01
32 61 6.42 (−11) 4.23 61 2.66 (−15) 3.54
64 125 3.71 (−12) 4.11 125 − −
128 253 2.260 (−13) 4.04 253 − −

Table 17: Results for example 3 – non-linear case.

e3,n,3nu e3,n,5nu e3,n,G2 e3,n,G3

m n = m n = m n = m
2 n =

[
m
3

]
8 3.01 (−07) 1.92 (−08) 6.85 (−07) 5.14 (−10)
16 1.92 (−08) 4.69 (−10) 4.29 (−08) 2.41 (−11)
32 1.20 (−09) 8.16 (−12) 2.68 (−09) 2.12 (−13)
64 7.48 (−11) 1.30 (−13) 1.68 (−10) 7.99 (−15))
128 4.67 (−12) 3.55 (−15) 1.05 (−11) −

Table 18: Results for example 3 – non-linear case.
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[7] M. Bartoň, V.M. Calo, Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to
isogeometric analysis, Comput. Aided Des. 82 (2017) 57 – 67.
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