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ABSTRACT

S E P E R C O X Y E R G E X C E  IX IT E R A T E D  S O L E T IO X S  O F INTEGRAL 

EQUATIONS.

Peter  A. Padilla 
Old Dominion Tniversity. 199S 
Director:  Dr. Hideaki Kaneko

In this thesis, we invest igate  the superconvergence phenomenon of the iterated 

numerical solutions for the Fred holm integral equations of the second kind as well as 

a  class of nonlinear Hammerstein equations. The term superconvergence was first 

described in the early 70s in connection with the solution of  two-point boundary 

value problems and other  related partial  differential equations.  Superconvergence in 

this context  was understood to mean that  the order of convergence of the numerical 

solutions arising from the  Galerkin as well as the collocation method is higher at 

the knots than we might expect  from the numerical solutions that  are obtained by 

applying a class of piecewise polynomials as approximating functions. The type of 

superconvergence that  we invest igate in this thesis is different. We are interested 

in finding out  whether or not we obtain an enhancement  in the global rate of 

convergence when the numerical  solutions are iterated through integral operators. 

A general operator  approximation scheme for the second kind linear equation is 

described that  can be used to explain some of the existing superconvergence results. 

Moreover, a  corollary to the  general approximation scheme will be given which can 

be used to establish the superconvergence of the iterated degenerate  kernel method 

for the Fred holm equations of  the second kind. We review the i terated Galerkin 

method for Hammerstein equations and discuss the i terated degenerate kernel 

method for Hammerstein equations.  Also, we investigate the iterated collocation 

method for Hammerstein and weakly singular Hammerstein equations and its 

corresponding superconvergence phenomena for the i terated solutions. The type of 

regularities that  the solut ion of weakly singular Hammerstein equations possess is 

investigated.  Subsequently, we establish the singularity preserving Galerkin method 

for Hammerstein equations. Finally, the superconvergence results for the iterated 

solutions corresponding to  this method will be described.
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I

CH APTER I 

INTRO DUCTIO N

In this thesis, we investigate  the superconvergence phenomenon of  the i terated numerical 

solutions for the F'red holm integral equations of the second kind as well as a class of nonlinear 

Hammerstein equations. The  term superconvergence was first described in the early 70s 

in connection with the solution of  two-point boundary value problems and other  related 

partial differential equat ions. Superconvergence in this context was understood to mean 

that  the order of  convergence of the numerical solutions arising from the Galerkin as well 

as the collocation method is higher at the knots than we might expect from the numerical 

solutions that  are obtained by applying a class of piecewise polynomials as approximating 

functions. See references [9]. [10]. [17]. [18]. [20]. [60]. [61]. [62], [68]. and [69], The

idea of  superconvergence th a t  we s tudy here is different and it was or iginated by Sloan

in references [60]-[61]. We now describe the Sloan's i terates and its superconvergence 

phenomenon in relation to the Fred holm integral equations of the second kind. The  equation 

can be written as

!j(t) -  [  k ( s . t ) y ( s )d s  = f ( t ) .  / € [ « .& ]  ( 1 . 1 )
J  a

or if we let

k{* . t )y (s)ds  ( 1. 2 )

then the above equation can be wri tten in operator  form as.

y - l \ y  = f .  (1-3)

The kernel k  of  the integral opera to r  K  is assumed to be well behaved so tha t  l\ defines a 

compact operator  on some appropr iate  Banach space. .V. with /  € A . When the Galerkin 

or collocation methods are applied to approximate the solution y in (Id)) using piecewise 

polynomials of order  r. the best results in terms of the order  of convergence that  we can

expect in an appropr iate  Lp norm is 0 ( h r ) where h =  maj-(t t+l -  t ,). for / =  1 n — 1.

with {/,}[“_[ the prescribed set  of  knots.

Both the Galerkin and the  collocation methods can be described within the general 

framework of the projection method.  Specifically, let S n be a finite dimensional  subspace of

The Journal of  Computa t iona l  and Applied Mathematics  was used as the journal model 
for this thesis.
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a Banach space A". S n . for example,  may he taken as the space of all piecewise polynomials 

of order  r. the space of all t rigonometric polynomials or the space spanned by wavelet basis, 

etc. In the Galerkin method,  we take .V =  £•>[«.&] and we approximate the solution y  in 

equation (1.3) by yn from the space S n by requiring that

(!Jn ~ K'Jn -  f - O n ) = 0. for all o n G S n (l.-t)

where (•.•) denotes the usual Li  inner product.

In the collocation method,  we take .V =  C'[a.b]. Suppose tha t  {;i j } j =l is a basis for

S n and choose a suitable  set of distinct points. { / .} 'A.t . t, G [a. 6]. i =  1 n. so that

det[u; (tI)]1̂ = i ....„ ^  0. We seek an approximate solution y n in the form y n =  «7u;

where are defined by requiring that

!Jn(t,) -  /V !/„(/,) -  / ( M  =  o for i =  I  n. I 1.5)

The equations (l.-l) and (L.5) can be easily seen to be equivalent to:

n

X I  fl j [ ( UJ-  -  ( I < U j -  “ «)] =  ( / •  «<) •  '  = .1 ..........« •  ( 1 -G)

and

X I  aj [ lLj ( t ^  -  /v «j(^«)] =  / ( M -  ' = 1 ..........’>■ (1.7)
7 = 1

To see that  equations (1.6) and (1.7) are special cases of the general projection scheme, we

consider the following. For the Galerkin method,  we take the projection Pn: L>[a.b] —y S n

that  is orthogonal,  -i.e.. with v € £,>[«.(»]. Pnr  G S n is defined from (P„c — r . i t ,) =  0.

for each i = 1 .2  n. For the collocation method.  Pn:C'[a.b] —>■ S n is the interpolator}’

projector. Namely, with r  € C'[«.6j. Pni’ € .S’n is defined from the conditions. Pnr ( t t ) =

r ( t , ) . i  = I  n. The residual function r n is defined by r n = f  -  (y n -  K y n ). Clearly r n

is nonzero unless the solution y  of equation (1.3) happens to belong to the space S n. Now

both equations (1.6) and (1.7) can be written as

Pnr n = 0. (1.8)

where, of course, the projection Pri in (1.8) is or thogonal  and interpolator}’ for the Galerkin 

method and the collocation method respectively. Also, since Pny n =  yn. yn G 5 n. we can 

express equation (1.8) as

yn - P nI<yn = Pnf  (1-9)
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This is the classical projection equation. As s ta ted  earlier, under  some suitable smoo thness  

condit ions on k  and / .  if .S'ri is the space of all piecewise polynomials of degree less than  or 

equal to r. then it is expected that

I I * / n  -  i / | | r t  =  0 ( h r ) .

Now we are  ready to describe Sloan's i terate  which is the main topic of this thesis.

Let tjn be the  solution of (1.9). We define Sloan 's i terate by

y rn = f+ I< > J n -  (1.10)

Both the i terated  collocation and the i terated Galerkin methods can be generalized using

the projection operators .  For //,( in equation (1.10). from equation (1.9) we have.

IJn =  P n f  +  P n K l J n  =  P n  [ /  +  l< Un]  =  P i ! j i

and

Un ~  K P n U L  =  / •  ( 1 - 1 1 )

It is useful in the  sequel that  we provide at  this point  ade tai l ed  review of the superconvergence 

phenomenon o f  Sloan's i terates. The review below is based upon the paper by G r a h a m .  Joe 

and Sloan [22].

For any positive integer n. let

n„ :  a =  j-0 < j-i < • • ■ < < x n = b

be a set of  part i t ion points (knots) and for i = 1 .2  n set

/, =  ( i . x t ). h t = x t — j-,_! . h = h(n)  =  m ax / ) , .
1 <;<n

We assume t h a t  h —> 0 as n —> oc. Let r be a positive integer and u an integer  satisfying 

0 < v < r.  Let S ? n denote  the space of splines of order  r. continuity v. and knots  at 

This means t h a t  y n £ n if and only if y n is a piecewise polynomial of degree < r  -  1 on 

each /, and has  v  — 1 continuous derivatives on (a . b ). If u = 0. then there is no continui ty  

requirement  a t  the knots. As in [22]. in this case, we take y n £  .S'J?n to be left cont inuous  at 

the nonzero knots  and right continuous at  0. Denote  by P ^  the orthogonal  projection onto  

S ? n. It is well-known that  when v  =  0 or I.

\ \P?\\Lx ^ < c .  (1.12)
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4

for all n E -V and for all part i t ions ]”[n M- ^or v  > I - the projections {P f f } are also uniformly 

bounded in every Lp norm (1 < p < :x) under the quasiuniform mesh assumption

— :—— < c. for each n and some constant  r > 0. ( 1.14)
mm n,I < i < rj

See [19].

For the collocation method,  we denote  the interpolator}- projector by P f  . We select 

the collocation points {~tJ}r x to be the zeros of  the r th  degree Legendre polynomial (the 

Gaussian quadra tu re  points) on [ - 1 .  1] shifted to the interval P„ g £ S ^ n is defined for 

all eg E C'[a. 6] ~  (here C'[a. 6] — i >’r .n  denotes  the direct sum of C[«.  6] and n) by

P n 'g ( - j )  = 3 ( r tJ). ! < / < « .  I < j  < r. (1.1 1)

The  uniform boundedness of the projectors {P * } follows by noting tha t  | |P^ || is the norm 

of the Lagrange interpolation ope ra to r  for polynomial interpolation at the r  Clauss-Legendre 

points,  hence from approximation theory, it is uniformly bounded in n. For the Galerkin 

and the collocation methods ( Pn = Pff  or Pn =  Prn respectively), we have the following 

fundamental  results from [22]. Here we denote  the /-section of k by k,. -i.e..

k t (s) = k ( t . s ) .  [ 1.1.',)

T h e o r e m  1.1 .-lw ntnie that f  E C'[a. 6] anel k t E Li[a.b], Also assume that

lim \\k, — A-- | | i .1 =  0. for  r  E [a. 6]. ( I. lb)

Then in both the Galerkin anel the collocation methods, for  sufficiently large n. we hare

(I) Un ht (1-9) exists uniquely in S f  n (with u =  0 in the collocation case), anel yj. exists 

uniquely in C[fl.6]:

(ii) there exist c > 0 such that inf | | ^ - o „ | | x  < | | / / - t f „ | | x  < c  inf | | i / - o „ | | x ;
4iS-r.n Ofi€-'rn

(Hi) there exist  cq.c-j > 0 such that  c t | | / \  (y -  Pny ) | |x  < ||</ -  t/^| |x  < c2||/\(«/ -  P n.(/)||x-

Before we present the methods of  obtaining the superconvergence of the Galerkin and 

the collocation methods, it is also beneficial to review the following s tanda rd  results from 

approximat ion  theory. For I < p <  oc and m  a  nonnegative integer, let U =  \ \ ' f l (a.b)
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denote the Sobolev space of functions such tha t  eg^ £ Lp(a.b)  for k  =  0  rn where g^k)

denotes the Arth derivative of eg in the sense of dist ribut ion.  We define the norm for l l ’"1 by

rn

lir/llirp"  =  E l l ' / (;' ,l k P-
k=U

The following two theorems are ilescribed in [22] and they are s tandard  results in approximation 

theory.

T heorem  1.2 Let 0 < v < r and let 1 < p < yc. I f  g £  l l ’"1. rn > 0. then for  each n > L. 

there exists o„ £ S " n such that

\ \ g - O n \\Lp < c h mm\\g\\W;r. 

where m m = m in{m .r}  and c is a constant independent o f  h and g.

T heorem  1.3 Let I be a posit ice integer.

(i) Let g £ U ’(. Then the re exists a polynomial  p o f  degree < 1 — 1 such that

\\(3 ~  A>)(j)IUv1i < c ib ~  n)'_JIll/llir« 0 < J < l -

(ii) Let g £  J l ’[. Define j | <711 z. t . /, « s the L\ norm o f  g restricted to the interred /,. Then 

for  eeich n > L. there exists o n £ .b/°n with the pretperties

( n )  W(g -  o n )u ) \ \Lx.It < <-'hl ~ J \ \gl l ) \\L l .[,. I < I < n .  0 <  j  <  / .

(b) maX|<,<„ j  > 0. where c is i rule pendent  o f  n anel eg.

We are now in a position to s ta t e  the superconvergence results of Sloan's i terate for the 

Galerkin as well as for the collocation methods.  The outline of proofs are also included 

because they are frequently referred in the sequel and also this will make this thesis as 

self-contained as possible.

T heorem  1.4 (Theorem .{. I of  [22]) Let i f f 1 denote the iterated Gederkin solution. Assume  

that f  £ C'[a.b\ in (1.3) anel that (1.16) holds. Suppose y £ \\ ^ (0 < I) and k t £  U ’"‘

(0 < rn). with ||Af||n-m bounded inelepenelently o f  t . p anel r/ conjugate indices and y^ £ S ‘r' n.

0 < v  < r. Let Si = min(/.  r) and  =  min(m. r ) .  Then

l l y - y ^ l k  =  < W ' +H
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6

Proof: From Theorem 1.1. in order  to estimate ||y — y ^ i l x -  is sufficient to es t imate

\ \K(y  -  P^'/y)(OlU- For t G [a.b], we have

~ P?y ){ t )  I =  k , ( s ) (y  -  P^;y)(.s)r/.s|

=  | ( A : , . y  -  P% y)\

=  | ( A - f  -  o n. y  -  F f y ) | .

where o n is any element of S? n. and the last s tep follows from the or thogonal ity of P f f . 

Using Holder’s inequality, we have

iK ( y  -  Pn;u ) ( t )I < IIA-, -  o n\\Lrl\\y -  P ? y \ \ Lp

= \ \ k ' - O n\\Lq\ \ ( f - P ! ; ; ) ( y - L - n)\\Lp

< U - ' - o nh , M  + \\P?\\Lp^ L p ) \ \ y -

where c„ is any element of S PM. Two applications of Theorem 1.2 finish the proof. □

T h e o r e m  1.5 (Theorem  . / .J o f  [22]) Let i/n 1 denote the iterated collocation solution. Asa time 

that f  G C'[a.b] in ( I .S) and  that ( 1. 16)  holds. Suppose y  G H { (0 < / < 2r) and k t G 117  

(0 < m < r) with j[A*f11n-"* bounded independent o f  t. and i/n G S Pn is the solution o f  (1.9)  

u-ith Pn =  Pfi . r > 0. Then

111/ -  !Jn l \\-x =  0 { l T ) .  where - =  min{/.  r  +  m}.

P roof: Throughout  this proof, c is a generic constant.  Using Theorem 1.3. there exists 

(.•„ G S f n such tha t

rj

£ | | ( * / - <-'n)l j ) \ \ L l .i.  < c / / - J ||yl!u-; . 0 < j  < / .  (1.17)
1=1

max IK-i/'llx./, < clltflliri. j  >  0. (l.l-S)
I < j < n  I

Also by Theorem 1.3. for each t G [0. 1]. there exists o n.t € 5 “ n such that

a

Z l K ^ - 0 ! ' ! ) lki . / I < c/im- J sup| |Av| | i r r . 0 < j < m .  (1.19)

,t]}ax < csupllAyllir,"*. j >  0. (1.20)I <i<a • * 1t ’
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As in the previous theorem, we need to es t im a te  |j/v (y — P^ /y) | j ^ - For t £ [0. 1] we have

I \ ( y  -  P (n y)( t)  = {kt . y -  P£ y)

-  {kt -  On.,. !J — Pa U) +  (On.,. ( /  ~  P^ )(.{/ ~  f „ ) )  +

(0„.(. ( /  -  Pn )On).

Now we must  show tha t  each of the three te rms  in the last expression is bounded by ch~. 

uniformly in /. For the first term, we obtain,  for a rb i t ra ry  £n £

\ ( k t - r n . t - y -  p £ y ) \  <  P r  ^ T ) ( . v - ^ ) l k .

— o| I A.‘f — ^n.t I i £. I 111/ — •

where the last s tep  follows from (1.L2). Now it follows from the Sobolev e m bedding  theorem

that  \V[ C W'l~ l . and hence y  £ H’! " 1. With  an appropr ia te  choice o f £ „ .  it follows from

Theorem L.2 and from (1.19) with j  = 0. that

|(A, -  f n . t . y - f * ' y )  t <  /j''n+min(r-/ -1) /vm]|,y||[l.^_1 .

where /v'm =  rsup,< Ikvlln'"1 • Then because m +  m in ( r . /  — 1) > . it follows tha t

I [kt -  PnU)\ < c h \  (1.21)

with c independent of n and t.

For the second term we obtain using Holder's inequality and from (1.20).

| (vn., .  ( /  -  P a ) { y  ~  Cn))i <  cl \  m | | ( /  -  P (n ) { l j  -  } [ | ^ ,

=  c l \ , n £ (n=1 | | ( /  -  P% )(y -  fnl llf . , . / , .

But we have

IIF’n (U ~ <.'n)\\LlJ l < h , \ \ f * ' ( y  ~  rn )

< ch,\\y -  L'nWL^.I,

< c(||«/ -  W.IU,./. +  *i||(*/ -  W,)( l , | k , . / J -

where the penu l t imate  s tep follows from (1.12) and  the last s tep  from the following observat ion 

For y  £ H ’( (/,•). | / , | = th e  length of for x . t  £  /,. we have y (x )  -  g(t)  =  f tr g^l ^{.n)ds. By

the mean value theorem for integrals, there  exists a  £ /, such that

Ill/Ik,./, = \ y { s ) \d s =  |/,| |«/(ct)|.
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P u t t in g  t =  rr. w e h a v e  </(x) =  g( &)  +  fnf g ^ l \ s ) e l s  and h en ce

ilflllLx./. <  +  llff01!!/.!./,

Hence

) ( / ; -  f n ))| <  E . ' U k i l l y  -  '--Jr.,./, +c>ht \ \ ( t j -  t-ri)( ‘’Hi.,./.]

<  ^ ' l l i / l l i r '  <  h ''-

where we have used (1.17) with j  — 0. 1. Finally, to prove the third term is of order h~. we 

note  that
n

( r n . r . ( f -  P ^ ’ ) f n )  =  K ' « ) / .  • d - 2 2 )

1=1

It is clear that  (1.22) is zero if 0 < / < r. since we have P£ v n = v rl. Therefore we need 

consider  only the case r < I < 2 r.

As rn.t  is a polynomial of degree < m  — I on we can write

rn — I

r ' , : W  =  E  ) (» ~  ' . )*/*!• * € L •

k=0

where t t is the midpoint of /,. We then have

I ( r n . t -  ( L ~  l * ' ) f n ) l t \ =  I E l ' ^ U  r ! 5 ( M  i , , ( «  ~  M  V  "  P ^ ' ) f n ^ ) fl s / k l  \

/.-r+1 ii -E’hi ii,.(-> *■')11^  h , Ea.~u Ikn .f lkv . / . lk '*

< c h ; r+l .

where the first inequality follows from Lemma A.2 of [22] (for completeness we s ta te  below 

without proof  Lemma A.2) and the final s tep is a consequence of (1.1S ) and (1.20). I sing 

(1.22) we see that

n

Kw,.f. ( /  -  f * ' ) f n)i < E f / , r>r+1 < (-f>2r < ch"-
< = 1

□

L e m m a  1.6 (Lemma  .1.2 of  [32]) Let r be a fireel positive integer, let j  be an integer in 

r < j  < '2r. l e t ./ be any bounded open interval, and  let t j  be any point in J . For g 6 C J(.J). 

ele fine

Ej[(J) =  L {* ~  t j ) ' r~J ( !  -  PJ)9(*)dS'
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where P j  is the polynomial  o f  degree < r — L that roinrides  with g at the zeros o f  the rth

degree Legendre polynimied shifted to ./. Then

It has been demonstra ted that  (see refs. [b0]-[6(i]) under  mild conditions on k  and / .  y ln 

converges faster globally to g than  gn does to y. -i.e.. ||g ln -  ij|| =  0 { h A) with r < i < 2r.

The doubling of  convergence rate  to 2r is a t ta ined in the  case that  the kernel k  and the

forcing term /  in (1.3) are a t  least r  times continuously differentiable functions. This 

observat ion applies both to the i terated Galerkin method and to the iterated collocation 

method.  Particularly, for the i terated collocation method,  superconvergence occurs when 

the collocation points are the Gaussian points due to the or thogonali ty  of Legendre polynomials.  

In the cases of the weakly singular  Fredholm equations as well as the weakly s ingular 

Hammerstein equations,  some enhancements  in the convergence rates for the Sloan i terates  

were observed in [34]. [52]. [37]. [70], and [35]. There is one importan t  difference that  we 

must  consider between the Galerkin and the collocation methods. Namely, in the collocation 

method,  the  sensitivity of the superconvergence to the location of the collocation points must  

be considered [33] whereas the Galerkin method obviates  such considerations.

This thesis is organized as follows. In Chap te r  2. a general opera tor  approximation 

scheme for the second kind linear equation is described that  can be used to explain the 

superconvergence residts of Theorems 1.4 and 1.5. Moreover, a corollary will be given tha t  

can be used to establish the superconvergence of  the i terated degenerate kernel method.  

Chapte rs  3.4. and 5 are devoted to a s tudy of  Hammerstein equations.  Hammerstein 

equations arise naturally from the s tudy  of a class of boundary value problems with certain 

nonlinear boundary conditions. We review the i terated Galerkin method for Hammerstein 

equat ions in Chapter  3. In addit ion to the review, a discussion of the iterated degenerate  

kernel method for Hammerstein equations is also included in this chapter .  C hap te r  4 is 

devoted to an investigation of  the i terated collocation method for Hammerstein equations. 

The  weakly singular Hammerstein equations are also t reated in Chapte rs  3 and 4. and its 

corresponding superconvergence phenomena for the i terated solutions are described. The  

type of regularities tha t  the solution of  weakly s ingular Hammerstein equations possess is 

given in Chap te r  5. The result obtained in the chap te r  extends the result of C’ao and 

Xu in [11]. Subsequently, we establish the singulari ty preserving Galerkin method for
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Hammerstein equat ions.  The  superconvergence results for the iterated solutions corresponding 

to this method will conclude this chapter.  In the final chapter .  Chapter  0. we s ta t e  briefly 

future research areas  tha t  are related to the topics encompassed in this thesis.
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C H A PT E R  II 

TH E ITE R A TED  DEG ENERATE KERNEL M ETHOD  

IN T R O D U C T IO N

In this chapter ,  we s t a r t  by considering the Fred holm integral equation of the second kind 

given by (1.3). We assume tha t

f e C ' [ a . b \ .  (2.1)

With K  : C'[a.b] —> C[<7.6]. the integral ope ra to r  defined in (1.2). the compactness  of K  is 

guaranteed by assuming (1.16). i.e.

b

|A‘r(s) -  k T(s) \ds  =  0 for eaclt r  e  [«.&]. ('2.2)

See [21].

In order  to es tabl ish a general iterated approximation  scheme, we assume tha t  { l \ n} is a 

sequence of opera to rs  converging to K  in some opera to r  norm. Tha t  is.

||/v"n — A"|\lp —> 0 as n —* oc for some I < p < :x. (2.2)

For each n > I. we assume that  we have an equat ion whose solution approximates  the 

solution y  of  ( 1.3)

We denote  this approx im at ing  equation by

!Jn — fn  T  Pnl/ri' (2.4)

For example,  in the  case of  the projection method,  equation (2.4) is identified by letting 

I \ n =  Pn [\ and f n =  Pnf  where Pn is a projection of a Banach space .V onto some finite 

dimensional subspace A',, of .V. In the case of  the degenerate  kernel method.  l \ n denotes 

the finite rank separable  operator ,  -i.e. K ny(t )  = f ht YL?=i l n i j r i ( 0 ' r j ( s )!/('s )f/-s where 

{'ri}T=1 >s a linearly independent  family of funct ions defined on [«. 6] and / „  =  /  for each 

n > 1. We define the  i terated approximation corresponding to (2.4) by

yh = f + K y n- (2.o)

As was indicated previously, the iterated approximations for the Galerkin and  for the 

collocation methods  exhibi t,  under suitable smoothness  conditions on the kernel k  and on
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the forcing term / .  global superconvergence.  It is shown in this chapter  that ,  a similar 

superconvergence result can be obtained for the iterated approximations for the degenerate 

kernel method.  Next, we prove the  main theorem of this chapter .  Known superconvergence 

results are special cases of this theorem and it can be used to establ ish the superconvergence 

of the iterated degenerate kernel method.

T h eorem  2.1 Consider equation (1.3) in n Banach spare (.V. || • ||) where I\ is a ronipeirt 

l inear operator of  X  into X . H e assume that 1 is not an eigenvalue o f  f\ anel that condition

(2.3) is satisfied with respect to the norm  || • ||. Let y n anel ijln sat is fy  equeitions ( J. f )  and  

(3.-5) respectively. Then, for  suff iciently large n. there exists a constant  c > 0. indeperident 

o f  n. such that

\\u -  t/'ll < Ml A' -  A ' J 2 +  I!/v ( /v -  K n )yn || +  || A’ -  K n\\ 11/ -  M l  +  || A' ( / -  M | |} .  (2.0)

Proof: From (1.3) and (2.5).

!J -.(/,{ =  A'(y -  yn ). (2.7)

Applying K  on both sides of (1.3) and (2.1). we obtain

K y  =  K  f  4- A'~y (2.S)

and

K y n =  K l \ ny n +  K  f a. (2.9)

It follows from (2.S) and (2.9) tha t

A'( y  -  !Jn  )  =  A'-/y -  l\ h ' n f j n  +  A’ ( /  -  f n  )

=  A' ( K y  -  l \ ny n ) +  A' „ ( Ky  -  l \ y n ) -  l \ n( I \ y  -  I\ y n ) +  A’( /  -  f n )

= K n( A'y -  K y n) +  (I\ -  K n ) { Ky  -  K y n ) + K ( K  -  l \ n )yn +  A’( / - / „ ) .
(2.10)

Since | |/v„ — /\'|| —> 0 as n —> oc and ( /  — K )_1 exists by assumption,  we conclude [3] 

tha t  ( I  — l \ n)~ l exists and is uniformly bounded for sufficiently large n. Therefore.

A'(</ -  yn) =  ( /  -  [ \ n ) ~ l {([\  -  !<„)([<y -  I \ y n) +  1\{I< -  A'ri)t/n +  /\ ( /  -  /„)}.

Taking the norm on both sides.

II A' (y  -  i/n) II < | | ( /  -  A'„) — 111 { 11 A' -  A’ n 1111 /v 11111/ -  i/n II +  | |A'(/v -  A'„)l/„||

T11 A" ( /  fn  ) 11 } •
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Since
!l ~  >Jn =  KlJ ~ K nIJn + f  -  f n

=  K y  -  K ny  +  K ny  -  K ny n + f  -  f n

we obtain

( I  -  K n )(y  -  ijn ) =  K y  -  K ny  +  /  -  /„ .

or

y = K n ) - l { ( K  -  K n )y + f -  / „} .  (2.12)

[•Tom (2.7). (2.11) and (2.12).

I I / / - . ( / ' I I  = \ \K(y -  y „ ) | |

< c{\ \K -  -  !Jn  i I +  ||/v(/v -  K n)Un II +  \ \ K ( f - f n )\\]

< c{||/v- -  /vn ||* +  II/v -  KnWWf  -  / „ | |  4- ||/v-(/v -  K n)yn\\

+ \ \ K( f - f n ) \ \ } .

This completes the proof. □

A new version of this theorem was recently obtained and is given below. The new theorem 

does not change the original conclusions presented but provides a simpler expression for the 

bound on ||y -  i//j|.

T h e o r e m  2.2 Consider equation (I.-)) in a Banarh spare (A.  || • ||) where l\ is a compart  

l inear operator of  X  into X . UV assume that 1 is not an eigenvalue o f  K  anel that cemeUt ion 

(2.-1) is satisfied with respert to the norm || • ||. Let y n anel (/,{ satisfy eepiations (2..{) and  

(2.5) respectively. Then, f o r  sufficiently large n. there exists a constant c > 0. independent  

o f  n. such theit

111/ -  y'n II < c{| |/v(/v -  A’,I) I/n 11 +  II K ( f  -  /„) | |} .  (2.13)

P roof: From (1.3) and (2.5).

y  ~ iA =  K ( y  -  y n). (2.1-1)

Applying K  on both sides of  (1.3) and (2.4). we obtain

K y  =  K  f  + K 1y  (2.15)

and

K y n =  K  K ny n + K f n. ('2.1b)
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It follows from (2.15) and (2.1b) that

K ( j J  -  t i n )  =  K 2 U -  K K n U n  +  K  ( /  “  f n  )

= K ( K t j  -  K n U n )  4- K K y n -  K K !Jn 4- K ( f  -  fn)  (2 .17)

=  K ( K ij -  K y n ) 4- K { K  -  K n)//,, 4- K ( f  -  / „ ) .

Since K  is a compact linear opera to r  which does not have I as an eigenvalue, then

( f  — K ) ~ l exists and is bounded. Therefore.

K( y  -  y n ) = ( f  -  K ) ~ l { K ( K  -  K n)!jn 4- K ( f  -  / „ )} .

Taking the norm on both sides.

l |A ' ( / / - / /n) | |  < | | ( / -  K ) - l \ \ { \ \ K( K -  K n),Jn\\ + \ \ K ( f  -  f n )\\}. (2. IS)

From (2.14). and (2.IS).

I l l / - / / ' I I  =  I I A ' ( / /  -  t f J I I

< c{l | /v( / \  -  /v,,).!/,,|| 4- \ \ K ( f  -  /«)!(}

This completes the proof. □

The  following corollary is based upon Theorem 2.1.

C o r o l l a r y  2 .3  F o r t in  iterated approximation scheme (J. ~>). i f  f n =  f  f o r  all n in (J-4J- 

then

Hi/ -  i j ' j  <  c{ \ \K  -  / \ „ | | 2 4- \ \ K( K  -  AT)/ /J |} .

Now we note that  Theorem 2.1 includes the results of superconvergence of the iterated 

Galerkin and the iterated collocation schemes. Let P \ denote  an or thogonal  projection 

(with respect to the s tandard L> inner product)  onto.Sj/ ;1. In the Galerkin method,  equation

(2.4) becomes

!J Cf  -  P ^ K y *  = P ^ f  (2.19)

-i.e. K n =  Pff K  and /„  =  Pf f f .  The  corresponding iteration approximation  to (2.5) is 

given by

i f f 1 =  /  4- K , / f .  (2.20)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



If /  € \\'pn. ( m  > 0). then from Theorem 1.2. there exists t*rl € S ? n (0 < u < r) such th a t

11/ -  < r/ tmi"<m-'-»||/| |i r rn (m .rl (2.21)

where c is a constant  independent  of  n (see e.g. [59]). Once again, we use r for a generic 

cons tan t  independent of n below. I ’nder the assumption of  the (|uasiuniforrn mesh ( 1.13).

s u p | |F k ! | / . p-,/ .p < c. (2.22)

Since

11/  -  P ? f \ \ L p =  11/  -  -  P r ' f \ \ l . p

<  d  +  \ \ P n \ \ L p - > L p ) \ \ f  -  t - n l k p -  

from (2.21). (2.22) and (2.23). we obtain

2.23)

I I / -  P ? f \ \ Lp < c / t ' nin("1-r »| | /! | ll.m,„|m, , .  (2.24)
*► p

Now let £(/) =  k( t  .*){/% (s)ds.  Then, following the argument  used in the proof of Theorem 

1.4.

| K  ( K  -  K n )>jn' (01 =  I [ ht k(t .  u){£(u)  -  P,ks ( ii) }du |

= l(* ,s‘ - / ^ ) l  (225)

=  ( 7  -  r n - s  -  PnZ) \  for every e  S ? n

< Ik't -  F n l k j i s  -  7 / / l k p -

where A -f A =  1 with convention tha t  if p =  I. then q — sc. In (2.2-5). we have used the 

or thogonal ity in the third equal ity and the Holder inequal ity in the last step. If k, G U ’7m 

with Ik'f||it'j'1 bounded independent ly  of t and if £(/)  G U ’7"‘ then from Theorem 1.2 there  

exists r n  € S ‘r\n such tha t  j|A-( -  ^ „ | | /  < c/im,n,m-r , ||A-r|| n .  Finally, from (2.25) we
V ' i

obtain

\ \ K ( K  -  A k ) ^ i U  <

Similarly, we can show tha t  whenever  /  G H / .

l|A‘( / - ^ 7 ) l k  < ^ - ,rnin(m-r)

and tha t ,  with K n = PnK .

II/v -  /v„||x < chmin{m-r).

I  sing these estimates , we ob ta in  Theorem 1.4 as a corollary. In summary, we have
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C orollary 2.4 (see Theorem l..{) Let y^' and  y ^ 1 denote the solutions for  (2.19) and (2.20)  

respectively. Suppose that y £ H’™. Af £ 11 {rn > 0) with || A,|| iv-n bounded independently  

of  t and that f . £ ( z  U " “ where f ( t )  = k[t .  s ) i j^  (s)ds.  Then

i | y - ^ 7 lk  < r/j-n,in("t r*

where c is irnlepenele nt o f  n.

For the i terated collocation method we select in the partition f ] ri. for each i. { t tJ}'j=l 

such that

L - l  <  T l  <  T l  <  • • • <  t  ir  <  T -

Let P^ denote the interpolator}- projector  of C[n.6] on to  S ? ri defined by P^ y ( t tJ) = y ( t tJ) 

for each i = 1 n and j  = 1.2 .r. In the collocation method,  equation (2.4) becomes

Un -  P n K l J n  =  ^ 7  (2.2b)

-i.e. l \ n =  P£ K  and / „  =  P% f .  The corresponding i terated collocation solution is defined 

by

y ?  = f +  l < £ -  (2.27)

As in Corollary 2.4 for the iterated Galerkin method,  to see that  the i terated collocation

method of (2.27) is a special case of Theorem 2.1. we must examine the terms in the right 

side of (2.6). The second term of (2.6) in this case is analyzed as follows: Let \ ( t )  = 

X,6 k(t .  s ) y cn (s)ds.  Then

K ( l \  -  K ri)ycn (t ) =  (A-f. \  -  f * \ )

=  (A', -  - P n . t -  \  ~  P f i \ )  +  ( r » . | . ( / -  -  f J )  f'2 - 2 S >

+  ( r n . t '  ( I  ~  P n  ) L ' n ) -

where p nJ £ .S’“ „ and t ’„ £ .S'(°n. Now arguing exact ly as in the proof of Theorem l.o. we 

obtain

\\K(I< -  AA).!/n llx < ^ min|,'"i+r| 

where c is a constant  independent of n. Addi tional  terms in (2.6) can be bounded similarly.

C orollary 2.5 (see Theorem 1.6) Let ij£ and y „ l be the solutiejns o f  (2.26) and (2.27) 

respectively. Suppose f  £ C'[fi.f>], y £ U’j (0 < / < 2 r) and k t £ Hjm (0 < in < r). with 

| |A-f | | i v , m bounded independently of  t. Then
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where c is independent o f  n.

Now we ran  use Theorem 2.1. Corol lary 2.:} in particular,  to prove the superconvergence 

of the i terated degenerate kernel method.

Consider equation (1.1). The  degenerate  kernel method for approximating the solution 

of (1.1) requires us to approximate  the kernel k  by a degenerate  kernel whose general form 

can be described as
r i  r i

M - s . n  = Y , Y * a 'jr> ("ly- jin  (2 .2 9 )
,=1 j=1

where { t is a set of linearly independent  functions in an underlying Banach space .V. 

The opera tor  I\ in (1.2) is then approximated by a sequence of finite rank operators

l \ ny(t )  = J  k n (t. s )y(s)ds .  (2.20)

Subsequently an approximate solution y n is found by solving

y,dt)  -  f h k n( t . s ) y n(s)ds = f ( t )  a < t  < b .  (2.21)
J  a

Equat ion (2.21) can be writ ten as

! J n ( l )  -  5 3  C < 0 { 5 3  [  =  / ( O

, = 1  J = l j *

a < t < b.

If we put
'■ rhft r n

. = 53 / nlJ^ J(s)y, l (s)ds.  
j = \ Jl

( 2 .2 2 )

then .(/„ can be written as
a

Un(t) = f i t )  +  5 3 r ‘V-.-(0- 
1 = 1

I ’pon subst itut ing (2.22) into (2.22). we obtain the following n x n system of linear equations 

for c , .

c, -  5 3 r i 5 3  /  =  5 3  /  «<jo(-s')/(-s'W-s i < * < C2 .2 -1)
l=1 j=iJt

Finally, once these c,'s are found by solving (2.2-1). equation (2.22) gives the required 

approximate  solution for the degenerate  kernel method.  Equat ion (2.21) is written in 

opera tor  form as

U n  -  K a t J n  = f  (2.2-5)
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which is a special form of  (2.4) with f n = f  for all n.  W hen the degenerate  kernel solution 

y n is i terated as in (2.5). an interesting question is to ask under what  conditions is the 

superconvergence of the i te rates  guaran teed.  The superconvergence of  the degenerate kernel 

method hinges critically upon the ways that  the kernel k  is decomposed.  We demons t ra te  

two different methods t ha t  gua ran tee  the superconvergence of the i terates  of the degenerate  

kernel method.

In the first method, we examine  the least-squares approx imation.  For each positive 

integer n. assume tha t  the part i t ion satisfies the quasiuniform condition (1.14). Let

B i. B> B.i be the fl-spline basis for S') n [59], with d =  nr  — i/( n — 1) the dimension of

S )  n. and. r and u are integers  such tha t  0 < v  < r. Assume tha t  k n{t. s) is the least-squares

approximation of k( t . s )  f rom the tensor  product space S ) n A S " n. -i.e. assume tha t  a tJ in 

(2.29) are such that

f h f b \ k ( t . s ) - y Y . fl‘J B ‘( ^ B j ( t ^ (l^ lt  =  m i n  t  f h \ k ( t . s ) - Y , ' t 2 b lJB l ^ ) B J U) \ i d s d t .  
J i J i  ,= l j  = 1 b„€RJa J ,  = l j  = l

T h e o r e m  2.6 Let y  € £■>[«. 6] be the solution o f  ( L I )  and  y n the solution o f  (2.3b) where 

k n in (2.29) is defined by the least-sr/uares approximation f o r  k f rom  S )  n S ) n. Assume  

that k ( t . u)  € ll jn ([«.f>] x [«.&]). 0 < m < r. k t(u)yn (s) t  H ’i([rt.6] x [a.b])) for  eeirh n and  

I € [«. 6] anel that || Aq ( u )yn{-s )|| r., IS uniformly bounded in t.  where 0 < / < r. Then

II// -  UnWLi = 0(h")

with i] = min{m 4- 1.'2m}.

P r o o f :  I sing Corollary 2.3 and not ing ||/v -  /v„||f., =  0 ( h " 1) [16]. we obtain

II'/ -  Ij'nWu =  0 ( / r " ‘) + 0 ( | | / v ( / v  -  f \n)9n\\i. ,)-  (2.36)

Hence we only need to e s t ima te  the order  of convergence of  ||/v ( /\  -  A",i)</n||z.,- Note that

\K{[< -  l \ n )yn (t)\ = | f!) k(t .  u) f i [ k ( u . s )  -  k n (u.  s)]yn{s)elsdu\

=  I X* X,6 *(A u)[k(u.  s) -  k n{u.  s)]yn(s)dsdu\.

Let c t (u. s)  = k(t .  u) yri( s ) and let ^ n( u . s )  =  5ZX=i btJ B i(a) B j ( s )  be any element from

S') n S ) n. Then since k n is the  best approximation in L i norm of k  from S ) rl >: S ) n.

[ f  ^ n (u. s ) [k{u. s )  -  k n(u.s)]dsdu  =  0.
J a  J  a
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therefore

| / \ ( / \  -  /\\,).(/n(0| =  | j  J  ['-'(("••''I ~  *)][£(«.*) -  k n(ll .s)]dsdu\.

Applying the Cauchy-Schwartz  inequality.

| K ( K  -  l < n ) ! J n l t )  | <  | |  L' t  -  r n l k J I ^  ~  M k > -

Noting tha t  | |A--Arl| k ,  =  0 { h m ) and choosing ~pn particularly so that  ||c*r — ^„ | | / . 2 =  0 ( h l ). 

(2.36) proves the desired result.  □

The second method that  produces superconvergence of the i terates  of the  degenerate 

kernel solutions is based upon the idea of approximating  the kernel k  by interpolation.

Let £1 . ^ 2  sr be the zeros of the r th  degree Legendre polynomial in [—1. 1]. We shift

these points to each subinterval [/,_!./ ,] .  i = 1 .2  V to obtain { r lJ}rj _ l . Denote the

interpolation polynomials by -i.e.

-I — <
1 if ( i . j )  = (n. J)

2 .31
0 if ( i . j ) #  ( n . J )  

An approximating degenera te  kernel k n is now defined by

r i  r n r

k n ( » . t )  =  Y . Y .  Z  Y .  r , C 2 - 3 S )
,=i j=i ,j=i

Let the interpolation projector  of (.'([«.&] x [«./>]) into n S ^ n be denoted by Pn. That  

is.

Pnk( s . t )  =  k n(s. t )

where k n is defined in (2.38). The  following theorem demonstra tes  the superconvergence of 

the i terated degenerate  kernel method when the kernel is decomposed by the interpolation.

T heorem  2 .7  Assume that in equation ( I . I) ,  k ( u . s )  £ 11',"1 ([a. 6] x [n.6]). 0 < m < r. and  

k t(u)yn(s) €  U ’(([a.6] * [«•&])• 0 < / < r. f o r  each t £ [a.fc] with ||Arf(-)(/ri(-) jUf'( x[-i.6]) 

bounded independent  o f  t and n. Then

~  .ValU = 0 ( h v ). u =  min{m + l . 2 m } .
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P roof: As in the proof of Theorem 2.0. we need to es t imate  the error of ||/v( K  -  /\„  )//a|| ^ . 

By tak ing  6 .S';°n : .S',°n and c n € S’” n . for each t £ [«.&].

K ( [ \  -  [ \n )!jn(t) = [' fc{t. u) f i [ k ( u . s )  -  k n (u.s)]!jn(s)rlsdu

= J-i ^  u)ijn{s)[k{ it. s) -  k n{u. s)]dsdu 

= (kt{u)yn[ s ) . k ( u . s )  -  k n {u. s))

= (M'O'/rif*) -  £,,(«• * ) . k ( u . s ]  - k n(u. s) )

+  (^„(f/..s). ( /  -  Pn ) {k( u. s )  -  Cn(u. s ) )  4- ( r-rl( « . . - ) . ( /  -  Pn )L'n(l l . s))

The rest of  the proof follows once again by an argument  similar to the one given in the 

proof  of  theorem -1.2 of Graham. Joe  and Sloan [22]. A straightforward modification is 

needed to accommodate  the bivariate funct ions.  On this point,  the reader is referred to 

the book by Cheney [l(j] that  contains  a discussion on various methods of approximating a 

bivariate function by elements from the tensor  product  space of finite dimensional univar iate 

functions.  □

N U M E R IC A L  E X A M P L E S F O R  F R E D H O L M  E Q U A T IO N S

We present numerical examples for a second kind Frodholm ecpiation using least-squares 

(Table  2.1) and interpolation (Table 2.2) to  approximate  k( s . t ) .  Let k( s . t )  = t*1. f  is 

chosen so that  the solution is ij(t) = 1. Then ,  the computed errors for the least scpiares 

method are shown in the following table. The  linear spline basis was used in computa t ions .

Table 2.1: Least Scpiares Resul ts  for Fred holm Equations

Errors

n non-iterated iterated

2 .I3626032769435e-l .SO 13124157(ie—1

3 .6229709334709e-2 . l57633500SXe— 1

-1 .3568204943072e-2 .4978003648e-5

convergence rate ~ 1.93 1

For the  interpolation method, using the  roo ts  of the second degree Legendre polynomial,  

we have the following.
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Table 2.2: Interpolation Results for Fredholrn Equations

Errors

n non-iteratcd iterated

2 . 120X5X6004729Le-1 .X242XXX2112e-4

2 .60X75629595XXe-2 .I64716X7222e--l

-1 .250lXX4262572e-2 .522IX1 1555e-5

convergence rate % 1.9 1

In these examples ,  by the conditions in Theorems 2.6 and 2.7 we have tha t  m  =  r and

I = r. Thus, both theorems predict a doubling of the convergence rate. As we can see.

with the linear spline basis, r  =  2. the convergence rate for the nou-iterated solut ion is ~  2.

while for the i terated solution it is 2r  =  I.
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C H A P T E R  III 

THE ITE R A TED  GALERKIN M ETH O D  FOR HAM M ERSTEIN  

EQ UATIO NS

IN T R O D U C T IO N

In this sect ion, we review the Galerkin method and the iterated Galerkin method for 

Hammerstein equat ions that  were recently developed in [44]. The review given here for 

the aforementioned paper  is extensive since the Galerkin method and the i terated Galerkin 

method are two  fundamental  topics and we feel tha t  any thesis that  deals with various 

numerical m e thods  for the Hammerstein equa t ions  should contain a discussion on the 

subject.  The  Hammerstein equations can be wri t ten as

x(t ) -  J  k ( t .  .s)c(.s. x { s ) ) ( h  =  / ( / ) .  (3.1)

We assume th roughou t ,  unless s ta ted otherwise, the  following conditions on k. f  and c:

(i) lim,_>r ||A'f -  A*-1| ^  = 0 .  r  G [a. 6]:

(ii) M  = sup.J<s<6 j ht \k(t .s)\tl t  < x :

(iii) f e C ' [ a . b ] :

(iv) c ( t . x )  is cont inuous in t G  [0. 1] and Lipschitz cont inuous in x  G  ( - x .  x ) .  i.e.. there 

exists a cons tan t  C\  > 0. independent  of  t. for which

| i-(t. xi)  — c( t .  ) | <  C \  | j* i — .r>|. for all j:[. x 2 G  ( — 'x.. ^c): (3.2)

(v) the par t ia l  derivative of c  with respect  to the second variable exists and is 

Lipschitz cont inuous,  i.e.. there exists a cons tan t  C> > 0. independent  of /. such that

| cA0A)(t. j - i ) — l-10’1*]/. j-j)| <  C>\x\ — | . for all j-i . x 2 € ( -  x .  x ) :  (3.3)

(vi) for x  G C'[0. 1]. <-•(.. x(. ) ) .  c,(0-1)(.. x( . ) )  G C’[«. 6],
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We note that  the condition (ii) is a  consequence of the condition (i). We listed (ii) because 

of its use in the sequel. Addit ional  assumptions will be given later as needed. W i thou t  loss 

of generality we will restrict the  interval (a . b)  to (0. 1).

Results concerning the Galerkin approximation using spline functions for the solut ions of 

equation (3.1) with smooth and weakly singular kernels are presented.

Let n be a positive integer  and { A rl} be a sequence of finite dimensional subspaces of

C’[0. 1] such tha t  for any x £ C’[0. L] there exists a sequence {x,,}. x„ 6 ,Y„. for which

ll-rrl -  x | | x ► 0 as h -> x .  (3.-1)

Let Pn: L >[0. 1] —► .Y„ be an or thogonal  projection for each n. We assume that  the projection 

Pn when restricted to G'[0. 1] is uniformly bounded, i.e.

P  :=  sup ||P„|c-ru.i)||x < (3.3)
n

Then from (3.4) and (3.3). it follows that  for each x  6 (T'[0. 1].

| |P„x  -  x | jx  -¥ 0. i t s  n 3C. (3.G)

Now let

( / \ tp )( j - ) ( / )  =  [  A-(/.s)c(.s.x(.s))r/s.
J o

With this notat ion,  equation (3.1) takes the following opera tor  form

x -  k ' tyx  = / .  (3.7)

In many interesting cases, equat ion (3.1) allows multiple solutions. Hence it is assumed

for the remainder  of this paper  t h a t  we are t reating a solution x of equation (3.1) that  is 

isolated.

Let { ■ r n J } j = i he a set of l inearly independent functions that  spans X n . The Galerkin 

method is to find
ri

x« — }  ~ bnj ^:nj
j =i

that  satisfies

Xn ~ PnI\'t>Xn = P ,J .  (3.S)

Equivalently one is required to  find bnj 's that  satisfy the system of nonlinear equat ions

described by
n  n

^  \ b n  j  ^  ' r ' n j ' ' r : ni  ^  /  A ( f . s )  L ' ( s ,  bnj r n )  ( -S) ) fAs .  y m  >  =  <C f  • ' -f  m  ^  • 1 5: * ^  H .

J=1 J °  1
(3.9)
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whore < . . .  > denotes the inner product  in L >.

We next estimate  the error  of the Galerkin approximate  solutions to the exact  solution. 

For notational convenience, we introduce operators  T  and Tn by letting

t x  = /  +  K'Vx  (2.10)

and

Tnx n = Pnf  +  Pn I \ t y x n (3.11!

so that  equations (3.7) and (3.S) can be written respectively as j- =  T x  and x n =  Tnx ri. 

A proof of the following theorem can be made by directly applying Theorem '2 of Vainikko 

[71]. The paper  of Atkinson and Pot ra  [7] is also useful in this connection.

T heorem  3.1 Let x  £  C[0. 1] be an isolated solution o f  equation (-1.7). Assume that 1 

is not an eigenvalue o f  the linear operator (I\^>)'(x).  where ( I \ ^ ) ' ( x )  denotes the Fre'rhet 

derivative o f  /v'F at x .  Then the Galerkin approximation equation (■}.8) has a unique 

solution x n £ B (x .S )  fejr some S > 0 and fo r  sufficiently large n. Moreover, there exists a 

constant  0 < q < I. independent  o f  n. such that

7 ^ -  < I k a - ^ l l x  < T~~ • (3.12)
1 + 7  1 - 7

where e\n = ]|(/ -  T'n { x ) ) ~ l { Tn (x ) -  7'U'))||-.;. Finally.

Enl-r) < Ika -  J-IU < C E n(x).  (3.13)

where C' is a constant inele pt title nt o f  n and T n (x ) = inf j|_r — u| |x .
« € -V n

For any positive integer  n. we assume tha t  the part it ion fin satisfies the quasiuniform 

mesh condition (1.13).

Lsing Theorems 1.2 and 3.1 and the inequality (3.13). we obtain the following theorem.

T heorem  3.2 Let x  be an isolated solution o f  equation (-I. I )  and let x n be the solution of  

equation (d.8) in a neighborhood o f  x.  Assume that 1 is not an eigenvalue o f  ( / \ ' F ) , (x). If  

x  £ U’x (0 < I < r ). then

I k  -  J-r.ll>; =  0 ( h ‘).

I f  x  £ Up (0 < I < r. 1 < p < oc). then

| j "  J* r. 11 x  = 0 ( h ‘~ l ).
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We remark that  a s imilar  result concerning the Galerkin method for I ’rysohn equations 

was obtained by Atkinson and P o t r a  [7], Hence. Theorem .'{.2 may be derived by specializing 

their result to Hammerstein equations.

In the remaining portion of this section, we investigate the  order of convergence of the 

Galerkin method for Hammers tein  equations with weakly s ingular  kernels. For this purpose, 

we define some necessary no tat ion .  For simplicity, we let [«.6] =  [0. I]. For any e € /?. let 

[0. 1], =  {/ G [0. 1] : / -he G [0. 1]}. Let denote the forward difference operator  with s tep 

size h.  For o > 0 and 1 < p  <  oc.  we define the Nikol’skii space Ap [0. 1] by

-V [° -  1] =  j *  € M ° -  l ] : k L p  =  ( i ^ l l A fc-r(I“ I>ll/ .p[o.iu) <

where [o] is an integer and 0 < n 0 < I are chosen so t h a t  o =  [a] +  o 0. Ap’[0. I] is a 

Banach space with the norm ||.rj|u.p =  Ikllp +  k L .p  [2d]. remark that  the function f >-1 

is in A'i*[0. I] but is not in A’j*[0. 1]. for any .3 > n. and log / G A’tl [0. I]. It is known from 

Graham  [24] that

. v ; 1+,[0 . 1] c  u pm[o. i] c  .vpm[0 . i] c  , v ; ‘- ' [o .  1]. (.4 . 1 5 )

for tn G .V. 0 < t < I. and I < p < x;: and

.v;/[o. i] c  ,v; [o.  i], (4. h>)

for n  > 0. 1 < p < q < oc and J  =  n - ( l / p -  I /  q) > 0. We consider Hammerstein equations 

with kernels given by

k ( t . s )  = m( t .  s )k( t  - s ) .  /..s e  [0. I]. (4.17)

with k  € A j’[0. I] for some 0 < n < 1 and m G G J([0. 1] x [0. 1]). and c  as defined in the 

previous section.

When no further condi tions are  made on the partition f in  o ther  than the one given 

by (1.14). the next theorem gives the best possible order  of  convergence of the Galerkin 

approximation to the solut ion of  equation (4.1) with a weakly singular kernel defined by 

(4.17).

T h e o r e m  3 .3  Let x  be an isolated solution o f  equation (-3.1) with a kernel given by (-3.17). 

Assume that 1 is not an eigenvalue o f  (L\ty) ' (x) . I f  f  G A’[i+1[0. l] f o r  some 0 < J  < 1. 

then

Ik ~  -fnllx =  0 ( h ~).
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u'ith '  — min{n. J } .

Proof: By Theorem 3.1. we have

l k - ^ n l K < ^ '  i n f  i I J -  —  H  f | -v. -  ( 3 .  I S )

A similar proof to  the  one given for Theorem 3 (ii) of G ra h a m  [21] shows that  if /  G  

.Yji+1[0. 1] then x  G  .Y1mm  ̂ ,+1-J+1 1[q. i] c  .Y"l,n^ ’"^[0. I], In addit ion.  (3.15) implies t ha t  

/  G  H / [0. 1]. Hence /  is equal  to  an absolutely continuous function almost everywhere.  

Without  loss of generality, we have /  G  H’/[0. l ] n C [ 0 .  1]. It can be shown that  x  G  C[0.  L]. 

Thus,  x  G  -Y^.[0. l ] n C [ 0 .  1]. It was proved in Graham  [24] tha t  if o  G  -YfJ-[0. l ] n C ’[0. 1] for 

some 0 < q < L. then there  exists a spline c G  S " n such t h a t  | |o — t’H^ < C h n where C  is a 

constant  independent of h. T he  result of this theorem follows immediately front (3. IS) and 

the above a rgument .  □

Now we consider a special form of (3.17). Namely we assume

k ( t . s )  = -  s \ ) .  (3.19)

where in G  ("'"^'([O. 1] x [0. 1]) and

s " ~ l . 0 < a  < 1.
(3.20)

logs, n =  I.

With these kernels, cer ta in regularities of the solutions of (3.1) are known. Let S  be a finite 

set in [0. I] and we define the  function -•>•(/) =  in f{|/ -  s| : s £ .5'}. A function x  is said to 

be of T y p t ( a .  k\ S ) .  for — 1 < o < 0. if

k ,fc,(/)l < c '[ -* (n ]a “ fc t $ s .

and for a  > 0. if the above  condit ion holds and x  G  Lip (n ) .  Kaneko. Noren and Xu [36] 

proved tha t  if /  is of T y p t ( i .  p .  {0. I}), then a solution of equation (3.1) is of Typt  (*..//. {0. 1}). 

where * =  min{a .  i} .  In orde r  to recover the opt imal  ra t e  of convergence of numerical  

solutions, we define a part i t ion f[„ of [0. 1] corresponding to the regularity of a solution. 

The  knots of this par t i tion are  given by

/, =  ( l / 2 ) ( 2 i / n ) 7. 0 < / < n / 2.
-  “  (3.21)

t, =  1 -  n/ ' l  < i < n.
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where q =  C  Let (ITTi)- vv’ith r =   ̂ anf l ^ =  0. or r  > 2 and u £ {0. L}. The

following theorem gives the order of convergence of the Galerkin approximations to the 

solution of  Hammerstein equations with kernels defined by (:{. 19) and (3.20). It should 

be noted tha t  the technique of  approximating a solution of the type  described above by 

elements from the nonlinear spline space has been used on many occasions in dealing with 

the weakly singular  Fred holm integral equations. For example. Vainikko and L’ba [73] 

describe the collocation method, whereas in Vainikko. Pedas and L’ba [74] they describe 

the Galerkin method .  Schneider [5(j] on the other  hand establishes the product-integration 

method based upon the idea of  the nonlinear spline approximation with nonuniform knots.

T heorem  3 .4  Let x  be an isolated solution o f  (3.1) with kernels (3.19) and (3.JO) and 

let x n be the Galerkin approximation to x.  Let m <E C’“+1([0. I] x [0. I]). and f  be of  

Type(.i .  p.  {0. 1}). Assume that c  € G'(O-1*([0. l] x ( — oc. dc) ) fo r  p = 0. I and w € C u_l ([0. l] x 

( —d c . o c ) )  fo r  p > 2. l i t  also assume  1 is not an eigenvalue o f  (KAt ) ' ( x ) . Then

I k  -  J - n l U  =  O ( - i ^ ) .
n r

P r o o f :  Th is follows from Theorem 3.1. the regularity of the solution x.  and from the 

results of Rice [53]. □

T H E  IT E R A T E D  G A L E R K IN  M E T H O D

In this section, we s tudy  the superconvergence of the i terated Galerkin method for the 

Hammerstein equation (3.1). Generalizing the linear case we first define the i terated scheme. 

Assume that  x  is an isolated solution of (3.1). As before, let Pn be the orthogonal  projection 

from L)[0. I jon to  A n with conditions (3.4) and (3.3) satisfied. Assume that  x n is the unique 

solution of (3.8) in the sphere B (x .S )  for some 6 > 0. Define

x rn = f +  K^>xn . (3.22)

Applying Pn to the  both sides of (3.22). we obtain

P n f ln = P n f + P n K V j r n -  (3.23)

Comparing (3.23) with (3.8). we see that

Pn*h = ■Tn.  (3.24)
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Upon subst i tut ing (3.24) into (3.22). we find that  the function xj. satisfies tfie following new 

Hammerstein equation

x'n = f  + k ' V P nx !n. (3.23)

By letting S n = f  + K ' f 'P„ . we may rewrite (3.23) as x lrl = S „ x !n. We first s tudy the 

invertibility of the linear operators  I  -  .f>'(.r) in the following theorem, which will be used 

to prove the main results of this section.

L e m m a  3 .5  Let x  £ C[0. 1] be an isoleited solution o f  (■L I ). Assume  that  I is not an 

eigenvalue o f  (/v'Pj'fj*). Then fo r  sufficiently large n. the operators [ — S'n (x ) are invertible 

anel there exists a constant L > 0 such that

j|(/ — 5^( x ) ) _1| |^ < L. for  sufficiently large it.

P r o o f :  Th is follows from an application of the collectively compact  ope ra to r  theory. See 

[44] for detail. □

For simplicity, from Lemma 3.3 we assume without loss of generali ty that  /  -  .V'(r) is 

invertible for each n > 1 and

L =  sup{ |[( /  -  (j*))“ 11| ^ : n > 1} <

Throughout the rest of this section, we assume without further mention tha t  d > 0 satisfies 

LC’- iU PS  < 1 and d[ is chosen so that  C'\MS\  < 6. The following lemma establishes that  

x defined in (3.22) is the unique solution of (3.23) in some neighborhood of  x  and provides 

an error bound for x !n approximating x.

L e m m a  3 .6  Let x £ C[0. I] be an isolated solution of  equation (3.1) and  x n be the unique 

solution o f  (3.8) in the sphere B ( x . 6 i ) .  Assume that I is not an eigenvetlue o f  ( /v 'L)'(x ). 

Then for  sufficiently large n. x ln defined by the iterated scheme (3.32) is the unique solution 

of  (3.35) in the sphere B ( x .S ) .  Moreover, there exists a constan t 0 < q < 1. / nelepe ndent 

o f  n. such that

J “ < n d - a u <I + <7  ..........  I ~ q
where 3n = | | ( /  -  -V'(j*))- 1 [.S'„(j-) -  f ( j - ) ] |U -  Finally.

Ikn -  -rllx < C’En(x).  

where E n(x) is defined in Theorem 3.1.
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Proof: This follows easily using Lemma 2.1 and Theorem 2 of Vainikko [( 1], □

One way to ensure the superconvergence of the i terated Cialerkin method is to assume

I K / V ^ l ' M l / - P J lc 'M l l l  * ->• 0 as n —r oc. (3.2(5)

In this case, using the ident ity (ref. Theorem 2.3 of  Atkinson and Pot ra  [7])

( / -  ( K * l» ' { x ) H x ln -  x)

=  [ /  -  ( / \ > I ' ) ' ( j - ) ( /  ~  P r i ) ] [ / \ ' I ' ( x „ )  ~  / V * P ( - r )  -  ( / \  ' i M ' f x H x ^  -  X ) ]  

- ( / V ^ ) ' ( X ) ( /  -  P rl ) ( ( K V ) ' ( x )  -  [ ) ( X n -  X ) .

we obtain

l k ' - - r ! k  <  || ( /  — ( / V VP ) / ( j - ) ) _ l || ^  { || /  -  ( I \ t y) ' {x) ( [  -  P r, ) | |  x

x sup | | ( / \ ^ ) ' ( x  + 0 ( x n -  x)) -  ( /v ' IM 'U d lM k  -  x rl| | ^
0<t?<l

+ \ \ ( K V ) ' ( x ) ( l  -  Pn) ( ( K V ) ' ( x )  -  / ) (x„  - x ) | k  }-

This with (3.2b) gives the superconvergence of x [  to x. In the next theorem, we

establish superconvergence of the i terated Galerkin method in a general sett ing.  In establishin 

superconvergence of the i terates  of the Fredholm equations,  many au thors  assumed the 

condition | | / \ ( /  — P,i)|| -> 0 as n - t  x  with I\ being a compact  linear opera to r  (e.g.. 

Theorem 5 of G ra ha m  [2-1] and Theorem 3.1 of Sloan [02]). In our current problem, this 

is equivalent to assuming condit ion (3.26). However, the next theorem is proved without 

assumption (3.26). First,  we apply the mean-value theorem to L'(s.y)  to conclude

l-(s . ij) = L'(s.yu) -f L’l°-l , (.s-. i/o + 0(y -  yn))(y -  yQ). (3.27)

where 6 := 8 {s .yu.y )  with 0 < 0 <  L. The boundedness  of 0 is essential for the proof  of the 

next theorem, although it may depend on .s. i/0 .y .  Let

' /((•*. .Vo-</• #) =  h ( t . s ) c {0A]( s . y 0 + d{y -  //o)).

( G nx)( t )  = [  g ( t . s ,  Pnx(s ) .  P,lx In (s).6)x(s)els.
Jo

and (G’x)(f) =  / 0l y t ( s )x (s )ds .  where £/,(.s) =  k( t .  .s) (.•(0-l)(s. x(.s)).

T heorem  3 .7  Let x  €  C’[0. 1] be an isolated solution o f  equation (S. I) and x n be the unique 

solution o f  (3.8) in the sphere B ( x .6 i ) .  Let x^  be defined by the iterated scheme (3.33).
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Assume that I is not an f  iyenvalue o f  ( KA! )'( x ). Then, for  all 1 < P <  5C.

Ik -  - ^ I k  < c  { | k  -  PaJ ' l l i  +  -sup inf ||A-(f. .)'--(0-I,(..-r(.)) -  h| |7| |x -  .
(_ 0< t <  I  “ G  ' n  J

where I / p  + 1 /<( — I anel C  is a constant inde pendent  o f  n .

P r o o f :  Note that  from equations (3.1) and (3.25) we have

x -  x ln = K { tyx  -  tyPnx ln) = /\'(>]fx -  tyPnX)  +  K( 'VPnx -  Pnx ‘n ). (3.2X)

Replacing y  by Pnx ln and y0 by Pnx  in equat ion (3.27). the last term of (3.2X) can be written

as

K(A>Pnx  -  <[/Pri./•')(/) =  ( G nPn{x -  x ! j ) ( t ) .

Equat ion (3.2X) now becomes

x  -  x'Tl =  K ( ^ x  -  4>Pnx)  + G n Pn(x -  x ln). (3.29)

By using condition (3.2) and the fact that  0 < 0 <  I. we have, for all x  £ C[0. 1].

ilK/n-r) -  ( 6 \ r ) | | :c <  sup [  \k-(t. s ) | d s i k l U ( i | k  .-r -  - r | k  +  II I k  Ik* ~ K U  >•
0 < f < l  J o

Consequently, by assumpt ion (3.-1) and Lemma 3.(i.

IKk -  <7 |k  < , \ / ( | | P rlj- -  j - | k  + P \ \x ‘n -  j - j k )  -* 0 as n -+ oc.

Tha t  is. G n —* G  in the norm of  C’[0. 1] as n —> ?c. Moreover, for each x £  C[0.  1].

sup | (6 'Pnj-)(/) -  (6 \ r ) ( / ) |  =  sup | [  r/,(.s-)[P„r(.s-) -  x{s)]ds\ < . \ / . \ / ,  || P„.r -  j- | |x .
0<<<1 ° < < < i  J °

where

.\/[ =  sup |(.-(U,I)(P x( / ) ) |  <  +zc.
0<f<I

It follows that  G P n —► G  pointwise in C[0. 1] as n —> oc. Again since Pn is uniformly 

bounded,  we have for each x  £  C'[0. 1],

\ \ G n P n x  -  G \ r | k  <  IKk -  6 ' I K I I P J U k l k  +  I\ G P n X  -  O r  I k .

Thus. G riP n —>■ G  pointwise in C’[0. I] as n —* yz.  By Assumptions ii. v. and vi. we see that  

there exists a constant  C  > 0 such that  for all n

k (cu,k .  P n x ( s )  +  e ( P n x ln ( s )  -  P nx ( s ) ) ) \  <  C 2 \ \ P n x  -  x | k  +  0C2P | k '  -  - r lk  +  M l  <  C'.
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By a proof similar to that  for Lemma 3.5. we can show that  {G nPn } is collectively compact.  

Since G  — ( l \ ŷ ) ' ( x )  is compact and ( l —G ) ~ x exists, it follows from the theory of collectively 

compact  opera tors  that  ( / - G nPn)~ l exists and is uniformly bounded for sufficiently large 

n. By (3.29). we have the following est imate

sup |(.r -  j-fjKMl <  G  sup \ K ( ^ x  -  ^ P rix)( t ) \ .  
o<t<i o<r< 1

Next, we est imate  the function d(t) =  |/v(' l ' .r — 'I 'Pi-rlf/)!. I ' sing (3.27) with g =  Pnx  

and i/o =  x.  we obtain,  for 0 < 8 < 1.

dU) -  I [  g ( t . s . x ( s ) .  Pnx ( s ) . 8 ) ( j-(.s) -  Pnx(s ) )d»  .
\J 0

Note that  / 0l «(*)[■*'(*) — Prij-(.s)]r/.s =  0. for all u G .V„. Thus,  for all u G A fl.

d(t) =  1 /  [fid/.*. x(.s). Pnx ( s ) .8 )  -  u(*)j(x(*) -  Pnx ( s ) )d s
\Jo

< [  \ g ( t .s .x ( s ) .  Pnx[s ) .8 )  -  g,(s)\ds\\x -  Pnx \ \ ^
Jo

+  I [  [fft(-s ) -  'd-s')]U(-s ) -  Pnx(s))ds  .
\Jo

Now. by condit ion (3.2). we have

[  \g ( t .s .  X .  Pnx(s ) .  8) -  I/d •'■Old* < C t8 f  |d(/. *)|r/*||j- -  < O.UH-r  -  P^-rU*..
Jo Jo

Moreover, for ! / />+  l / g  = I.

Therefore.

d(/) < Cl  . \ / | |x -  PaJ-||t- +  \\g, -  «H7| k  -  PnJ-||p. for all « 6 .Y„.

Hence the desired result follows. □

In the next two theorems, we consider the case that  ,Va =  .S'^„ with r in an arbi t rary 

partition of [0. I] satisfying (1.13). First, we consider the case when both the kernels and 

the solutions of ecpiation (3.1) are smooth.

T h e o r e m  3 .8  Let x  G W 1 (0 < I < r) be an isolated solution o f  (3. I ). x n be the unique 

solution o f  (3.3) in B (x .S i ) .  and x ln be defined bg the iterated scheme (3.22). Assume that
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1 is not an eigenvalue o f  ( l \Ai ) ' (x) .  Assume that f o r  all t £ [0. t], A-,(. ) l r f .)) £ 

117 (0  < m < r ) and  ||A-f( . ) f <0 I,(.-•r (-))||u'.lm '■s bounded uni formly in t. Then

||j* -  x f j U  =  

u'here // =  min{/. r} and u = min{m. r}.

Proof: Since the part it ion n ri of [0. I] satisfies condition ( I . Id ) ,  we conclude that

P  :=  s i ip | |Pn| | x < o c .

n

Hence.

I k  -  PnA\P <  I k  -  PnA\*  <  k  +  P)  > n f  I k  -  “ I U  <  ch*.ues‘‘n

In addition.

sup  inf \\kt ( . ) i A0A){. .x( .) )  -  «| |7 < C h u.
0<(<!

The  result of this theorem follows from Theorem 3.7 with .Y„ =  S * n. □

We remark that  Theorem 3.8 may be obtained from Theorem 5.2 of Atkinson and Po t ra  

[7]. Theorem 3.8 being a special case of Atkinson and Po t ra 's  theorem to Hammerstein 

equations.

In the following theorem, we assume that  k( t . s )  is a kernel given by (3.17). i.e.. k ( t . s )  = 

n i ( t . s ) k ( t  -  >■). with k  £ A j‘[0. 1] for some 0 < n < I and m  £ C*([0. 1] x [0. 1]). Also, we 

assume that  n is such th a t  u > 1.

T h e o r e m  3.9 Let x  be an isolated solution of  equation (-1.1) with kernels given by ( i. I 7). 

x n be the unique solution o f  equation (-I.S) in B(x . t i \ ) .  and  x^  be defined by iterated scheme  

(d.JJ) . Assume that 1 is not  an eigenvalue ejf (A'^M'k) .  /  € .Vj1+I[0. I] fo r  some 0 < J  < 1. 

c-( a l ) ( . .x(.)) e  U ’/ f o r  x  £ \\ f .  If. f o r  each v, £ S " n. j|/',(-) t*(01 >('■ and ||A-,|k, are

uniformly bounded in t. then

Ik  ~  J ' l l l  x  =  0 ( / r " ) .

with - =  m in j a .  J} .

P roof: Following the proof of  Theorem 3.8. we have

I k  -  ^1*11 x, < (1 +  P) inf | k - « | | x -  (3.30)n >» ̂
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As stated  in tfie proof  of  Theorem 3.4. we know th a t

x e  .Yjjo. i ] n c [ o .  i ] n  (3.3i)

Using (3.30) and an a rgum en t  similar to the one used in the proof of Theorem 3.1. we

obtain ||j* — P„.r| |x <  C’h~. Now. by Theorem -Mi) of  G r a h a m  [21], we find tha t  there

exists v, 6 S ”n such th a t  \\kt -  o i k .  =  O(h ').  Since u > 1. it follows that  S ‘) n C M'/- 

Thus.  c, 6 IU,1. From (3.31). x  6 IF,1. This yields t h a t  t.,(0' 1)(--•*■(•)) € H ’/ .  Consequent ly . 

cf(.)t.,(01*(.. x(.)) € IU,1. The  remark made before Theorem 3.2 implies that  there  exists 

tit € - '̂r.n f°r "'hich

| | c t ( . ) f (0-1)( . . x ( . ) )  -  M - I l k ,  =0(h).

Therefore.

Wilt -  Uflk, =  [  \m ( t . s ) k ( t  -  . s)c(0J)(s. J-(-s)) -  u,(s) \ds
J 0

<  [  Im ( t . s ) k ( t  -  s ) v {0A)( s . x ( s ) )  -  cf(.s)t-(0-1)(s. x(s))\ (ts
Jo

+  f  |c,(-s)t.-(0-I)(s. x(s ))  -  u,(s) \ds
Jo

<  l l * f  -  ^ i k J l k 0 - 1 ^ . .  x ( . ) ) | U  +  | | c f ( . ) f , u - I > ( . . i - ( . ) )  -  fi  f i k  i 

=  O ( h ' )  + 0 ( h )  = 0 { h ' ) .

Now. applying Theorem 3.7 with q =  1. p = oc. and  A'„ =  S ^ n. we conclude that

=  0 ( h " +-’) + 0 ( h 2' )  = 0 { h - - ) .

The proof is complete.  □

Next , we apply Theorem 3.7 to equation (3.1) with kernels given by (3.19) and (3.20) 

and use X n = as approx imate  spaces such th a t  r > 2 and  is =  I. Proofs of  the next 

two theorems are similar  to the one given for the previous theorem and we refer the reader 

to [4-1] for detail.

T h e o r e m  3 .10  Let x  be an isolated solution o f  (3.1) u'ith weakly singular kernels given by 

(3.19) and (3.30). Let x n be the unique solution o f  (3.3) in B ( x . S i). and x !n be defined by 

the iterated scheme (3.33).  Assume that 1 /.s not an eigenvalue o f  {l \ t y ) ' (x )  and  that the
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hypotheses o f  Theorem j..} nre satisfied with p  > L. Also assume that  c-*0-1*!-. x( •)) is of  

Type (o.  r.  {0. I}) f o r  n  > 0 whenererx  is o f  the same type. Then

I k  -  * a i U  =

As the last applicat ion of  Theorem 3.7. we consider equation (3.1) with kernels having 

singularity a t  the four corners of the square [0. l ]x [0 .  l ] .a  problem that  arises from boundary 

integration for the  harmonic Dirichlet problem in plane domains with corners (see Kress 

[46]). In the following theorem, we assume k s(t) = k ( t . s )  is of Type (a.  p.  {0. 1}). for o  > 0. 

and k t (s) =  k ( t . s )  is of T  ype(a. p.  {0. 1}). for a  > -L .  e.g.. k ( t . s )  =  m ( t . s ) y / t .  and 

k ( t . s )  =  m (Z . . s )y==.  etc.. with m ( t . s )  smoo th ,  and assume /  is of Type  (J .  p.  {0. 1}). for 

o . d  > 0 and a positive integer p.  It is not difficult to prove that  an isolated solution x.  of 

the corresponding equat ion (3.1). is of Type{~ . p.  {0. 1}). where - =  m i n j n .  3} if o  > 0 and 

* — min{n +  1 .3}  if — 1 < o < 0 by modifying the proofs of theorems  in Kaneko. Xoren 

and Xu [36]. We again let q =  ^ and define the Galerkin subspace S ‘fin " ' ith r =  1 and 

v  =  0. and r > 2 and u  £  {0. L}. where part i t ion TI  ̂ is defined as in (3.21). The  following 

theorem describes the order  of convergence of the Galerkin approximation  x n and that  of 

superconvergence of the iterated Galerkin approximation x !n.

T h e o r e m  3 .11 Let x be an isolated solution o f  Id. I)  with kernels o f  the type defined in the 

paragraph preceding this theorem. Let x n be the unique solution o f  (d.S) in B ( x .  d\ ). and x[  

be defined by the iterated scheme (S.22). Assume that  1 is not an eigenralue of  (A'vI, )/(^) 

and that f  is ejf Type( . i .  r. {0. 1})- Also assume that  (.•(01)(-. x(-)) is o f  Type (*■. r. {0.1}) 

whenererx  is o f  the same type. Then.

I k  -  - T n l U  =

and

l k - ^ i k  = 0 ( ^ r ) .
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IT E R A T E D  D E G E N E R A T E  K E R N E L  M E T H O D  F O R  H A M M E R S T E IN  

E Q U A T IO N S

A study of the degenerate  kernel method for Hammerstein equations was made by Kaneko 

and Xu [41]. A brief out line of  the  method is described below for convenience. As in the 

Fredholm equation case, the kernel k  in (4.1) is replaced by k n of  (2.29). The equation that  

one must solve is the following:

yn(t) -  j \ - n(t .s)L'(#.yn(s))ds  =  f( t ) .  a < t <  b.  (4.42)

Following analogously the development  made in (2.44) and (2.4 1). with

n h,
c, = Y L l  fli j r j ( s l l ’(#-!/»(s ) ) ' ^  (4.44)

j = i Jl

ijn can be written as
n

Un(t) =  / ( / )  +  ^ c 1Tr,(/).  (4.44)
1=1

Subst ituting (4.44) into (4.44). we obtain the following n nonlinear equations in n unknowns

n  h n

c, -  ^ 2  / ( - ^  +  ^ c /7;/(.s-))r/.s. ! < / < « •  (4.4-">)
j =i J i=i

As before

K V y i t )  =. J  k [ t . s ) v ( s . y ( s ) ) d s

so that  (4.1) becomes

!j -  h'tyy = f.  (4.4b)

Similarly we write equation (4.42) as

!Jn ~ K n^ y n = f  (4.47)

The iterated solution y ln is now obtained by

y ln =  f  +  h'*yn.  (4.4*)

The  Frechet derivative of  /v'F a t  yT0 £ C'[a.b] is denoted and defined by

( / v * ) V o ) M ( 0  =  f h k(t . ro(s))'r(s)d*
J  a
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for r  € C'[«.6] and denot ing the first partial derivative of c  with respect to the second

variable. The following theorem describes the superconvergence phenomenon of iyr{ to  y.  

Here we assume that  the decomposi tion of the kernel in (2.29) is done by the interpolation 

scheme of the previous section. The  case for the least-squares approximation is similar.

T h e o r e m  3.12 .-Is.* • time y  <E ( ’[«. b] is an isolated solution in equation (-1.1). k { u . s )  6 

IF™ ( [ a . 6] x [«.&]). 0 < in < r. and ijt.n (u.s)  =  k, ( u ) c ( s .  y n( s ) ) and  r/f .„(«.*) € H'(([n.6] x 

[a. b]). f o r  each n and t € [a. 6], 0 < / <  2r. where y n is the solution o f  ( i.-J7). Assume also 

that 1 is not an eigenralue o f  {K ty ) ' (y)  and that ||r/(.n ||n-' ,-s uniformly bounded in t and  n. 

Then

ili/ -  Z/nlU =  0 { h l/). v  =  min{2m. /}.

P r o o f :  From (3.29) and (3.37).

y -  y ln = K V y  -  l \ ^ y n . (3.39)

Now

k ' t y y  -  k t y i j n  -  A ’ ' I ' ( /  +  A ' ' I ' / / )  ~  A ' l ' f /  +  A . \ , ' V y n )

=  ( A ' ^  ) ' ( # ( » ) ( /  +  A'n t yyn ) +  (1 -  9 { n ) ) (  f  +  l \ xH y ) ) ( k ^ y  -  A \l 'l'/y„ ) 

for some 0 < 0(n) < L 

=  K, j{n)( -  Kn Vt j n  -f ( A 'F/y -  A ''!'</„) -  ( f c V y  -  T ' ^ l Jn  ) )•

where K 0{n) = (K 'V ) ' (9 ( n ) ( f  +  K rl^ y n ) +  (I -  0 ( n ) ) ( / - F  K V y ) ) .  Since A' is compact .  

( I\ ' fyy(y)  is also compact  [oO]. Also since the solut ions y n of degenerate  kernel method 

converge to the solution y  o f  (3.1) [-11]. converges in opera to r  norm to ( l \ ^ ) ' ( y ) .

From this, along with the fact tha t  I is not an eigenvalue of ( I \ t y ) ' (y ) .  an applicat ion of

theorem 10.1 [47] yields t h a t  ( /  — I\o(n))~l exists and uniformly bounded for sufficiently 

large n. Hence we obtain

K V y  -  KWijn = ( /  -  /vo(n))_l A',j(,l)( / \  -  A'„)'t'i/„. (3.40)

Combining (3.39) and (3.40). and taking the norm on both sides, we obtain

l l y - i / n l k  < c\\(K -  f<n ) ^ y n \ \^ .
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for some constan t  r independent  of n. Now using the  assumptions on k  and q, and arguing 

as in the proof of  Theorem 2.7 . we obtain the desired result. □

Finally we consider a computa t iona l  problem associated with (3.3-j). It is cus tom ary  tha t  

the system of  nonl inear  equations (3.35) is solved by an i terat ive scheme. For example, the 

fixed point i terat ion scheme for (2.35) is to genera te  for k > 1 with a given initial

vector {cj°,}'l_ [ by

c[k+"  = i t ,  [  / ( - s') +  1 < i < n. (3.41)
j = i J a  l = i

In this scheme, a t  each s tep k  of i terat ion, the integrals  in (3.41) must  be computed  since 

the integrands conta in  the different values of  To c ircumvent  this difficulty, we propose

the following device whose idea was originally discussed in [48]. We let

_-„(/) =  L-(t-!U(t))  (3.42)

where y n is defined in (3.34). We have, assuming t h a t  k n takes the form of (2.29).

z n (t) = L- ( t . f ( t )  + ^ 2 a lJ1: l (t) /  ^ ^ ( s ) - - fl(.s)r/s). (3.43)
,=i Jl  j=i

Equat ion (3.43) can be solved by the col locat ion-type scheme that  was developed by Kumar  

and Sloan [48], Namely let {r/,}[‘=1 be n funct ions defined on [r/. 6] and let be n

distinct points for which

<let(//;(/_,)) ±  0. (3.44)

The element -n in (3.42) is now approximated  in the form The  o 7‘s can be

found by solving the  following nonlinear equa t ions .  Note tha t  the cons tants  n 7‘s a re  moved 

out  of the integrals.  This makes the repeated com puta t ions  of the integrals unnecessary 

when the following system of  nonlinear equa t ions  is to be solved by an i terated scheme.

n  n  n  . j ,  n

=  t - V k - f t f k )  +  5 3  a;_, *?,■(/*) 5 ^ 0 /  /  5^^(n)///(.x)rf*-). (3.45)
j = i  1 = 1  l = i  1 j = l

for I < k < n. If we denote  .4 =  [t?j(/i)] and the right side of  (3.45) by (.^(a). then with 

c (d )  =  ( t ’, (d)) and  a**’’* =  ( o | fc*). (3.45) may  be solved by the fixed point i terat ion scheme 

that  can be descr ibed as

d (*> =  . l -1 c ( d (A:-1)). (3.46)
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NUMERICAL EXAMPLES FOR HAMMERSTEIN EQUATIONS

Here we present numerical examples  for a Hammerstein equation using least-squares 

(Table 3.1) and interpolation (Table 3. 2) to approximate  A-(.s./). Let k ( s . t )  =  t 3t. L'(s.t) = 

cofi{s + t).  and /  is chosen so that  y( t )  =  1. Then,  the computed errors for the least squares 

method are shown in the following table. The  linear spline basis was used in computations.

Table 3.1: Least Squares  Results for Hammerstein Equations

Errors

ri non-iterated iterated

2 .2805944892008e-2 .5667666756Se-5

3 .1290549546556e-2 .121295574040-5

4 .74154555S372e-3 .3939034993e-6

convergence rate 1.92 3..<5

For the interpolation method,  using the roots  of the second order  Legendre polynomial 

for interploat ion points, we obtained the following.

Table 3.2: Interpolation Results for Hammerstein Equat ions

Errors

n non-iterated iterated

2 . 2 7550396054 50e-2 .36150374l876e-4

3 .1272147104832e-2 .70508042364e-5

4 .730619930565e-3 .22199115879e-5

convergence rate 1.92 4
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C H APTER IV 

THE ITERATED COLLOCATION M ETHOD FOR HAMMERSTEIN  

EQUATIONS

INTRODUCTION

In this chapter,  the collocation method for Hammerstein equations is presented. Some 

material from approximation theory is also reviewed to make the presentat ion more self-contained. 

We let [a. b] =  [0. 1] for convenience in this chapter.  We consider the following Hammerstein 

equation

x( t )  -  f l Ar(f.s)c-(.s.x(.s))r/.s= f ( t ) .  0 < t < 1. (4.1)
Jo

where k. f  and c  are known functions and x  is the function to be determined. We will 

assume the conditions (i)-(vi) s ta ted  in the beginning of C ha p te r  3.

We let

(l\ ' l>){x)(t) = [  k ( t . s )L -( s .x{s ) )d s .
Jo

With this notation, equation (4.1) takes  the following opera to r  form

x  — K W x  - f .  (-1.2)

For the collocation method,  we are interested in .S'£n with u — 0 or I. Tha t  is. the space of 

piecewise polynomials with no cont inui ty  a t  the knots or the space of continuous piecewise 

polynomials with no continui ty  requirement  on the derivatives at the knots. We assume 

tha t  the sequence of  part i t ions f ln of [0. I] satisfies the quasiuniform mesh condition ( I. Id).

In many cases, equat ion (4.L) possesses multiple solutions (see e.g. [41]). Hence, it is 

assumed for the remainder of this paper  that  we t reat an isolated solution x  of (4.1). Let

/, =  ( f ,_ | . t , )  for each i = 1.......n. Then for u =  0. we let r ,[.  r,>...rtr be the Gaussian

points ( the zeros of the r th  degree Legendre polynomial on [—1. 1]) shifted to the interval

We define

Go = { r tJ: 1 < / < n. 1 < j  < r} .  (4.3)

The  points in G’o give rise to the piecewise collocation method where no continuity between

polynomials is assumed. This is the approach taken by G ra ha m .  Joe  and Sloan [22]. Joe 

[37]. on the other  hand, considered the continuous piecewise polynomial collocation method.
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His method corresponds with taking v — 1. Here we define the set G\  of collocation points 

to be the set consist ing of the knots along with the Lobat to  points (the zeros of the first 

derivative of the r — 1th degree Legendre polynomial) shifted to the interval p .  Namely, let 

£r _i =  1 and for 1 < / < r — 2 (r > 3). let denotes the / th  Lobat to  point. If | / , |  denotes  

the length of then G \  contains

i — i )(>— [)+/+i =  — ( î — i +  P +  IA|s/)- 1 < i <  n. 1 < / < r  — 1. and T[ =  /0 =  0. (4.4)

The  analysis for the discont inuous polynomial collocation method  [22] and tha t  of the 

cont inuous polynomial  collocation method [37] are very similar. We therefore confine 

ourselves in this thesis to developing the discont inuous collocation method for Hammerstein 

equations that  is analogous to the method of [22]. An obvious extension to the continuous 

piecewise collocation method will be left to the reader. It is noted that,  in the case of 

cont inuous polynomial  collocation method using the Lobat to  points,  one can bring via the 

i terated collocation scheme the order  of convergence from r up to 2 r  -  2. This is due  to 

the fact that  the r th  degree Legendre polynomial on [—1. 1] is or thogonal  to polynomials of 

degree < r — I whereas  the polynomial ( / — 1)(/-F l)T»J.!_!i(0 is only or thogonal  to polynomials 

of degree < r — 3 where G l  lJ | ( / )  is the first derivative of  the r — 1 degree Legendre polynomial.  

Define the in terpolatory projection Pn from C'[0. 1 ] — S?  (TI n ) to .b'^(nn ) by requiring that ,  

for x £ C[0. I] i- Sr  ( n „ ) .

P a - r ^ j )  = x ( r tJ). for all rtJ e  G 0. (4.3)

Then we have, for x  G C'[0. 1] -f S ? (Hn)

PnX —̂ x . as « - f  x  (4.f>)

and consequently

sup IIPall < c. (4.7)
n

The  collocation equat ion corresponding to (4.2) can be writ ten as

x n - P n K * x n = Pnf  (4.S)

where x n 6 5 ^ ( n a ). Now we let

t x  = f  + I \ t yx
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and

Tnx ri =  P nf  + Pn K xVxn

so that  equa t ions  (4.2) and (4.8) can be wri t ten respectively as x  =  T x  and x n = Tnx n. 

Now we can see tha t  Theorems 4.1 and 3.2 apply to the collocation case.

When the kernel k  is of weakly s ingular  type,  see equations (3.19) and (3.20). then the 

solution x  of equat ion (4.2) does not. in general,  belong to U^'1. It was proved by Kaneko. 

Noren and Xu [36] tha t  if /  is of T ( . i .  {0. 1}). then a solution o f  equat ion (4.1) with 

the kernel defined by (3.19) is of T y p e (* . f i . {0. I}), where *• =  min{o.  .4}. The  opt imal  rate 

of  convergence of  the collocation solution x n to x  can be recovered by selecting the  knots 

that  are defined by

t, =  ( l / '2){'2i/n)'!. 0 < i < n/2 .
~ (4.9)

n / 2  < i < n.

where q =  r / -  denotes  the index of  singulari ty.  Details can be found in [37].

THE ITERATED COLLOCATION METHOD

The faster convergence of the i terated Galerkin method for the Fred hoi ni integral equations 

of the second kind compared to the Galerkin method was first observed by Sloan in [60] 

and [61]. On the  o ther  hand, the superconvergence of the iterated collocation method was 

studied in [22] and [37]. Given the equat ion of tlie second kind

x — [ \ x  =  / .  (4.10)

where [\ is a  com pac t  opera tor  on .V =  C'[0. 1] and x. f  £ .V. the collocation approximation 

x n is the solut ion of the following projection equation

x n -  Pn K x n = Pnf .  (4.11)

Here Pn is the interpolator^'  projection of (4.5). The iterated collocation method obtains a 

solution x !n by

x'n = f + K x n. (4.12)

I ’nder the assumpt ion  of

| | /vP„ -  A’|| —► 0 as n oc (T13)
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it can be shown that

||.r -  x ' | |  < | | ( /  -  K P n) - l \\\ \K(x -  P„j-)| | .  (4.14)

The assumption (4.14) is satisfied if .V =  L> and P„ is the or thogonal  projection satisfying 

\\Pn9 — (]\\ 0 for all g in the closure of the range of the adjoint l \ m of l\ since in this case

— K || =  | |Pn /v- -  / \ ' | | .  Hence the superconvergence of the i terated Galerkin method 

for the Fredholm equations of  the second kind (4.10) can be established rather easily by 

(4.14). The results of Sloan et al [22] were recently generalized to the iterated Galerkin 

method for Hammerstein equa t ions  by Kaneko and Xu [44]. The main theorem of [44]. 

Theorem 4.4. that  guaran tees  the superconvergence of the i terates was proved by making 

use of the collectively compact  opera to r  theory.

The  purpose of this section is to s tudy  the superconvergence of the iterated collocation 

method.  For the collocation solution x n of (4.8). we define

•r' =  /  +  (4-15)

A standard  argument  shows t h a t  x !n satisfies

x ‘n = f  + l<ty Pnx ln. (4.16)

We denote the right side of (4.16) by S nx ln. namely

S nx ln = f  + [<^Pnx ln. (4.17)

Both Lemmas 4.5 and 4.6 are  applicable. Following the development made in [44]. we let

c(.s. y) =  f(.s.//o) +  c-(0-1)(.s-. i/o +  0(g -  i/o))(g  -  i/o). (4.18)

where 9 := 9{s.ij0.y )  with 0 < 9  < 1. Also let

g( t . . s .y0. y . 9 )  -  k ( t . # ) v l0A)( s . y 0 +  9{y -  iy0 )).

(Gnx) ( t )  =  f  g(t..s. Pnx(s).  Pnx In (a).9)x(.s)ds.
J  o

and (G'x)( t ) =  / J  gt (s)x(Ls)ds .  where gt(.s) = k(t. .s)c^0AH$. x(.a)). Now we are  ready to s ta te  

and prove our main theorem of  this chapter.  The proof is a combination of the idea used 

in [44] (Theorem 4.4) and the one used in [22] (Theorem 4.2).
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T h e o r e m  4.1  Let x  £ C'[0. 1] be an isolated solut ion o f  equation (.{.2} and x n be the unique 

solution o f  (.{.$) in the sphere B{x .S i ) .  Let x ^  be defined by the iterated scheme (.{.16). 

Assume that 1 is not an eigenvalue of  {K xl>)'(x ). Assume that x  £ H'{ (0 < / <  2 r) and

St € U [" (0 < m < r) with ||r/f||n-m bounded independent ly  o f  t. Then

||.r — -r^H x, =  0(h~  ). where - =  min{l .  r + m}.

P r o o f :  From equat ions (4.2) and (4.17). we obtain

x -  x'n = K { V x  -  V P nx ln) = K W x  -  A>Pnx)  +  /v f 'F P .x  -  ^ P nx ln). (4.19)

Using (4.IS), the last term of  (4.19) can be wr i t t en  as

M ' i >Pnx - * P nx ln )(t) =  {G nPn ( x - x [ ))(/).

Equation (4.19) then becomes

x -  x ln = K( tyx  -  tyPnx)  -r G n Pn(x  -  x[ ) .  (4.20)

Using the Lipschitz condition (2.4) imposed on r ( i u *. for x  £ C[0. I].

| |(G„.r) -  (G'x) | |x < C ,  sup f  |;-(/..s-)|r/.s'||j-||>;( | |P,ix -  j- | |x +  HPnlk lk f ,  -  r | | x  )•
U < / < 1  J o

This shows tha t

||G'rl -  G’Hx < A/G'»(||Pnx -  x \ \ ^  4- c| |x^ -  x | | x ) -» 0 as n - r  oc.

Also, for each x  £ G[0. 1],

sup |(G'Prlx ) ( 0  -  (G’x)(/ ) |  =  sup I [  g , ( s ) [ p ux (s )  -  x(s)]rf.s| < || P,,x -  x | | x .
0<(<i o<r<I Jo

where

Mi = sup | 1)(  ̂ j . ( / ) ) j < -(-oc.
0<:<i

It follows tha t  G'Pn —> C! pointwise in C’[0. 1] as  n —> oc. Again since Pn is uniformly 

bounded, we have for each x  £ C[0. I].

||G’„ P nx -  6 \ r | | x < ||G'a -  G 'H x I IP n lU lk lU  +  | |6 'P flx -  Gx\\.x .
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Thus. G n Pn —> G  point  wise in C[0. I] as n -> oc. By Assumptions (ii). (v). and (vi). we see 

that  there exists a constant  C  > 0 such t h a t  for all n

| f (0-1)(.s. Pnx(.s) +  0(Pnx lJ s )  -  Pnx(.S)))| <  C 2\\Pnx  -  J-IU +  e c , p \ \ x ln -  j-iU +  -U, < c .

This implies t h a t  {G nPn } is a family of  collectively compact opera to rs  [*>]. Since G  =  

( K ^ ) ' ( x )  is compact  and ( / - 6 ' ) -1 exists, it follows from the theory of  collectively compact 

operators tha t  ( I  — G n Pn)~ l exists and is uniformly bounded for sufficiently large n. Now 

using (-1.20). we see tha t

I k  -  X n \ \ x  <  C | | A ' ( ^ - ^ P r l x ) i | .

Hence we need to es t imate  ||A'('P.r — lP F r[x) | | .  The  following four inequalities are known

(Theorem 1.2 [22]). Let L-n G .^ ( r i n )  be such tha t

ri
E  I l k  -  ^ ) ( J ) I I <  c / i / - j i k l l i j - < -  o  <  j  < i. (-1.2 D
1 = 1

m a x  ' l l i r j l / . j  <  c l k l l i r ‘ - J > I 4 -2 2 )

Also for each t G [0. 1]. there exists y nJ G S '^ fn , , )  such that

fl
H k ( ~  ^ • < ) (',)II»-,"*(/.) ^  ch'n- J K m. 0 < j  < rn. (-1.22)

1 =  1

niax HrnJl l i r"! / , )  < J > 0- M-24)1 < t < n

where A'm =  s u p u<t<1 < sc. Now for t G [0. 1] we have

K ( ^ x  -  4>Pnx)( t )  = (gt -  j nA. x  -  Pnx)  -I- (y:„.f. ( /  -  Pn)(x  -  c - J )
( 1-2-j)

+  ( r n . i '  (  I  — P n  )  t ' n ) .

L'sing equat ions (4 .2L)-(4.2-l) along with the  a rgum en ts  from Theorem 1.5 we can show that 

each of the three terms is bounded by ch~ uniformly in /. This completes our  proof. □

One way to establish the superconvergence of the iterated collocation method for the 

Fredholm equat ion is to assume (-1.12). In the  context  of the present discussion. (-1.12) is 

equivalent to assuming

\ \ ( K * ) ' { x ) ( I  -  P „ ) | C [a . 6 ] l l *  0 as n —> oc. (-1.26)

Theorem 4.1 was thus proved under weaker  assumptions.  The idea used to prove Theorem 

4.1 or iginates f rom [6] (section 6) in which the  superconvergence of  the i terated collocation
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method for the Fredholm equa t ions  was established by showing tha t  {/v'Pri} is a family of 

collectively compact  opera to rs .

Finally in this section, we investigate  the superconvergence of the i terated collocation 

method for weakly s ingular  Hammerstein equations.  Specifically, we consider equation 

(4.2) with kernel given by (4.19) and (4.20). An enhancement  in the rate  of convergence is 

given in the following theorem.

T h e o r e m  4.2 Let x  € C’[0. 1] be an isolated solution o f  equation (■{■-) and x n be the unique

solution o f  (.j.S) in the sphere B ( x .  6[) with kernel defined by ( S .19) and (■(.20) and knots

defined by (.{.9). Let xj. be defined by the iterated scheme (.{.Id). Assume  that 1 is not an 

e igencalue of ( L \ ^ ) ' ( x )  and  that  )(.. jr(-)) is o f  Ty pe (a .  r. {0. L}) f o r a  > 0 whenererx  

is o f  the same type. Then

l k - ^ |  | x = 0 ( / « '•+•*).

P r o o f :  \Ve follow the proof  of  Theorem 4.1 exactly the same  way to (4.2o). which is

I \ ( ^ X  -  t y P n X ) ( t )  -  [ejt -  r n . t - X  -  P n J-) +  (y„. , .  ( /  -  f }n ) ( X  -  C*rl ) )

+  ( r " n . l '  [ I  —  P n ) c „ ) .

The difference in superconvergence arises from the degree to which we may bound the 

first term.  As in Kaneko and  Xu [44] (Theorem 4.0). using an a rgument  similar to [41]. 

it can be proved th a t  there  exists u t  .S’r ( n „ )  with knots n n given by (4.9) such that  

\\<jt -  i/|!l, = 0 ( h ' ) .  Her e h  =  m ax i< ,< n {x, -  j-,_, }. Then

I ( £ / f  Tpn . t -  J- P r i X ) |  ^  | | f / f  T ' n . f l l f . i  l l " t "  P n ^  | |  M

=  0(tP+r).

The rest of proof follows once again in the same way as described in Theorem l.o.D

T H E  D I S C R E T E  C O L L O C A T I O N  M E T H O D  F O R  W E A K L Y  S I N G U L A R  

H A M M E R S T E I N  E Q U A T I O N S

Several papers have been wri t ten on the subject  of the  discrete collocation method. 

Joe [42] gave an analysis of  discrete  collocation method for second kind Fredholm integral 

equations. A discrete collocat ion-type method for Hammerstein equat ions was described
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by Kumar in [49]. Most recently Atkinson and Flores [5] put together  the general analysis 

of the discrete collocation methods for nonl inear integral equations. In this section, we 

describe a discrete collocation method for weakly singular Hammerstein equations.  In the 

aforementioned papers  [32. 49. 5]. their discussions are primarily concerned with integral 

equations with smooth kernels. Even though,  in principle, an analysis for the discrete 

collocation method for weakly singular Hammerstein equations is similar to the one given 

in [5]. we feel t ha t  a  detailed discussion on some specific points pertinent to weakly singular 

equations, -e.g.. a selection of a part icular q u a d ra tu re  scheme and a convergence analysis 

etc. will be of  great  interest to practit ioners. Our  convergence analysis of  the discrete 

collocation method  presented in this section is different from the one given in [o] in that  

it is based upon Theorem 2 of Vainikko [71]. The  idea of the quadra tu re  used here was 

recently developed by Kaneko and Xu [42] and a complete Fortran program based on the 

idea was developed by Kaneko and Padilla [39]. A part icular case of the qua d ra tu re  schemes 

developed in [44] is concerned with an approximat ion of  the integral

/ ( / )  =  [ '  /(-s)rfs. (4.21
J  o

where /  £ T y p t ( n . 2 r .  S)  with n > — I. For simplicity of demonstrat ion,  we assume .S' =  {0}. 

\Ve define q =  ~>tr+[1 and a partition

=  O.-sq =  r r ' . S j  =  7 =  2 . 3 ........ n. (4.2*)

Now we construct  a piecewise polynomial S r of  degree r — 1 by the following rule: .Sr (s) =  0. 

•s’ € [s'o. si)  and .Sr (s) is the Lagrange polynomial of degree r -  I in terpolat ing /  at  {iij}' = 1

for s £ [s,. s,+ 1). i = 1 .2  n — 2 and for x  £ [-Si-i . *«]. Here {Uj}j = 1 denote  the zeros of

the r th  degree Legendre polynomial t ransformed into [s, . ,s1+1). Our approximation  process 

consists of two stages.  First, / ( / )  is approximated by

/ ( / )  =  [ 1 /(*)rf-s =  £  / S,+I / ( * ) ^ -  (1.29)
J*i ,=i Js•

Second. 1( f)  is approximated by I ( S r ) = / al S’r (.s)r/.s. A computation of f ( S r ) can be

accomplished as follows: let 8: [.s,. >'1+1] —> [—1. 1] be defined by 0 - so that

/ ( / )  =  f  Ff (9)(l0 (4.30)

where

F f { 0 ) —  X I  o ^ ' + i  ~  i + i  -  *‘i ) 0 +  r j ( - s' i + t  +  - S i ) ) -
i = i
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If {r,: / =  L . 2 . . . .  r} denotes the  zeros of the Legendre polynomial of  degree r. then

r

■Vr(*) =  Ff  f"  )/,(•"')
i = t

with It(s) the fundamental  Lagrange polynomial of degree r — 1 so that

r r l
l (Sr)  = Y 2  iL\Ff(Tt ). where u\ — / l t{s)ds.  (4.31)

i=i

It was proved in [-11] that

( / ( / )  -  i ( S r ) \ = 0 [ n - 2r). (4.32)

In this section, we examine ecpiation (4.1) with the kernel k defined by (3.19) and (3.20). 

When the knots are selected according to (4.9). as s ta ted earlier, it was shown in [37] that  

the solution j-,, of the collocation equation (4.8) converges to the solution x  of (4.1) in the 

rate tha t  is optimal to the degree of polynomials used. Specifically. x tl must be found In- 

solving

-  J  3 >( I -  -si)m(u‘ . .-•)(.•(.s. x n(s))dt< = / K ) (4.33)

where / =  0. 1 . . . . »  — 1 and j  =  1. 2 . .  . . r.

The  discrete collocation method for equation (4.1) is obtained when the integral in (4.33) 

is replaced by a numerical qu a d ra tu re  given in (4.31). Let k tJ(s) =. </,,(|«‘ — •i’|)m( u‘ . .-■). 

Then

i o f f o d ^  -  s | ) m ( u ‘ * ) c ( s .  x n{.s))ds = f  l k, j(s)i - (s .  x n(s))ds

= fo J +  f u' k tJl s ) i ' ( s .  x n{s))ds.
J

The integrals in the last expression of (4.34) represent two weakly singular integrals which 

can be approximated to within 0 { n ~ 2r) order  of accuracy by (4.31) by t ransforming them 

to [—1. 1] and selecting the points in (4.28) appropriately.

Wri ting (4.33) as

Pn-Tn -  p n l\ ^ x „  = P ,J .  (4.35)

we consider the approximation x n to x n defined as the solution of

■Tn =  Qn^n  =  P,J<n^ in  +  Pnf ■ (4.3(1)

where [ \ n is the discrete collocation approximation to the integrals in (4.34) described 

above.
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We will use Theorem 2 of [71] to find a unique solut ion to (4.36) in some S neighborhood 

of x n. where n is sufficiently large. Clearly. Q'n [x) =  Pn K  nty' ( x ) .  where ty '(j*)[/y](s ) =  

t .(°-1) (_s. j-(.S'))iy(s). For sufficiently large n. (4.35) has a  unique solution in some 6 neighborhood 

of x .  Tosee  tha t  I —Q'n {xn) is continuously invertible with { ( /  — Q'n (x n ))_I }^_ v uniformly 

bounded, it is enough to observe that  { Q ^ k n ) }  *= [ i-s collectively compact ,  and to do this 

we will show that

I QmUn )[•*■](') “  Q n U r j M U ' )  1 =  1 -  Pn I\ n ̂ '(.T,, ) X (t ' ) | -> 0 (4.37)

as f —> C. for each x £  C’[0. 1]. [2]. Here .V is some sufficiently large number.

If we show (4.37). then part  (a) of Theorem 2 [71] is also verified. In order  to verify part  

(b) of Theorem 2 [71]. we only need to establish (because of the uniform boundedness  of 

{ ( /  -  Q n U n ) ) - 1 } , ^  ) that

I I  Q n ( ' ) - Q n i * n )  I k  <  L  | |  X  X n  | | x  <  L S .  ( 4 . 3 8 )

for some constant  L .  and

I I  Q n { * , i )  -  T n ( x n) | | - >  0 as  n  - >  s c .  (4.39)

Once this is done. Theorem 2 [71] applies yielding a unique solution x n in some neighborhood 

of x n (for sufficiently large n) and

II -Tn -  k  II < L(\n < L j| Q n{xn ) -  Tn( x n ) | |x . (4.40)

(Here and throughout  the remainder of the section. L  denotes  a generic constant ,  the  exact  

value of which may differ at  each occurrence.) This inequality will be used to obtain the  

order of convergence.

Considering (4.37). the right hand side is bounded by Ti •+- T> ■+■ T.i. where

Ti = |  PnI<n'V'{x,l )x(t)  -  Pn I \ 'H '{xn)x{t)  |.

T> = |  P n / \ ' t ' , ( j \ i k ( 0  ~ Pn I \ ^ ' ( x n )-r{t') |.

k  =1 P . / v ' l ' V n k k )  -  )*( ' ' )  | .

Let t > 0. Since {Pn},^= i is uniformly bounded.  Li f  T  <  y  by applying (4.32) with

f ( s )  =  k a i *(s. J‘n(s)) j ‘(-s) and letting n be sufficiently large. For T> we have

T >  <  M l 1 | f c ( t . s )  -  k - ( t ’ . s )  | d s  <  . \ / ( . V ,  + 5 , ) .
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where

A'i =  [  '/..(l ~ M) ! m ( t . s )  -  m{t ' . s )  | ds
Jo

and

R> = f  I (J,A\ t -  s |) -  £/,,(| t' -  s |) || m ( t ' . s )  | ds.
Jo

but

S \  <  sup \ m ( t . s )  -  n i l t ' . s )  \ [  rj,A\t -  s \)ds 
0<3<i Jo

< L sup | m(t .  .s) — m ( t ' . s) |-> 0 as / —> t ' .
0 < 3 < \

and
< L f0l | (/„(| t -  s |) -  (J.,(\ t' -  s  |) | (Is

=  k i \  r  - ( t ' r  ! +  i d -  t r  -  ( i  -  /')'* i +-pr \ t -  f  i '}

—> 0 as t —̂ tf .

Hence (4.37) holds. For (4.3-S).

II Q'n(r)  -  Q ’J x n) 11̂  =  11 PnK n( * ’(x) -  # ' ( * „ ) )  | |< \ I C  || j- -  r „  | |<  M S  = q <  1

for 6 sufficiently small.  Note that  we have used the uniform boundedness  of {Prl}.{A\,} 

and because 'F*0-1 *(*.//(*)) is locally Lipschitz. so is the operator

VF/ : C[0. 1] —> B (C [ 0. 1].C[0. 1]) ( the space of  bounded linear opera tors  from C'[0. I] into 

C’[0. I]).

For (4.39). we have

II Q n ( x n) ~ Tn( x n ) | U = | |  Pn(l<nVXn ~ l \ ^ X n ) | |<  L || ( K n -  f \ ) V ( x n ) < L{R\  +  R> +  Pi)

(4.41)

where

P t =!| K n<b(xn ) -  K nV(x)  ||. R ,  =11 K n ^ ( x )  -  K V ( x )  ||. R :i =!| K V ( x )  -  I \ * [ x n ) II .

( - 1. -1 2 )

But

P i  < L II ¥ ( * „ )  -  * ( * )  | |<  C \ L  || x n -  x  || (4.43)

because *F is a Lipschitz operator  and is uniformly bounded, and also

P.3 < M  II * ( * )  -  # ( * „ )  | |<  C \ M  II — JT II . (4.44)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5 0

Finally.

R , = 0 ( n ~ - r ) (4.45)

by (4.32) using /(.s) =  ^ ( . r .  .r(.s)).

Thus Yainikko's Theorem yields a unique solution for n sufficiently large and (4.40) 

liolds. Now (4.40) and (4.41) - (4.45) show that

II f n  ~  | |= 0 ( n ~ J ) (4.40)

where .1 is the minimum of 2 r and the order of convergence of  || x — x n ||. We summarize

the results obtained above in the following theorem:

T heorem  4 .3  Let x  be an isolated solution o f  equation (4.2) and  let x n be the solution o f

equation (4-8) in a neighborhood ejf x .  Moreover, let x n be the solution o f  ( .{.-ifi). Assume

that 1 is not an eigenvalue o f  ( / \ ' P ) /( j ) .  I f  x  £ U '^ .  then

Ik  -  J‘n|| x  = 0 ( h il).

where p =  min{/.  r } .  I f  x £ W'^ (I < p < oc). then

J k  -  || x  = 0 ( h 1' ).

where u = m in{/ — 1. r}.

NUMERICAL EXAMPLES

In this section we present three numerical examples (Tables 4.1 - 4.3). Let k ( s . t )  — t s~ l 

and 'F( s .x (s ) )  =  cus(s+x(.s)) .  The spline coefficients were obtained using a Xewton-Raphson 

algorithm. Also, the Gauss- type  quadra tu re  algorithm described in [42] is used to calculate 

all integrations.  The computed  errors for the solution and the i terated solution are shown 

in the following table.

For the second example,  let k ( s . t )  = log{\s -  /|) and 'Pf.s. r(.s)) =  co.s(.s +  j*(>■)). The 

computed errors for the solut ion and i terated solution of the weakly singular integral are 

shown in the following table.

For the third example,  let k ( s . t )  =  ■ J — . 'Ff.s. j-(.s)) -  co.s(.s +  j ( . s ) ) ,  and x(f) =  cos(/).
v /b -d

The computed errors for the solution and iterated solution of  the weakly singular integral 

are shown in the following table.
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Table 4.1: Smooth Kernel Collocation Results

Errors

n non-iterated iterated

2 .15357l59374X756e-1 .2X60290743650-4

3 .7175X7143561 l6e-2 .4772199l441e-5

4 .4 1291276625525e-2 . 14lX0649575e-5

5 .26770046422053e-2 .5636996160e-6

convergence rate % 2 4

Table 4.2: Log Kernel Collocation Results

Errors

n non-iterated i terated

2 . 157961272540103e-l .24257900549439e-2

3 .7115066105X77 le-2 .7663X5277X203e-3

4 .41192622669XX0e-2 .321025X9X96X6e-3

5 ,259X223XX43077e-2 .177097X040470e-3

convergence rate 2 3

Table 4.3: Sqrt  1 Kernel Collocation Results

Errors

ti non-iterated i terated

2 0.015405561167407X8 0.005968844100471715

3 0.007225504483X7438 0.0025662220994426X3

4 0.00416092487581254 0.0013711706164 11344

5 0.002697X568490X00X 0.000835161756464X0X

convergence rate =s 2 2.2
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CH A PTER  V  

THE SIN G U L A R IT Y  PRESERVING M ETH O D

INTRODUCTION

In this chap te r ,  we are concerned with the problem of approximat ing  the solutions 

of weakly s ingular  Hammerstein equations (4.1) with logarithmic kernel by the Galerkin 

method tha t  preserves the singular ity of  the exact solution. Namely we establ ish a method 

that  generates  an approx im ate  solut ion in terms of a collection of basis funct ions some of 

which are comprised of  s ingular  elements that  reflect the character ist ics of  the  singularity of 

the exact  solution.  The  idea of the method originates in the recent paper  by C a o a n d  Xu [11]. 

C'ao and Xu s tudied the character ist ics  of the singularities that  are per t inent  to the solutions 

of the weakly singular  Fredholm equat ions of the second kind. It is well docum ented  (see. e.g.

[58],[54].[25].[72]) tha t  the solut ions of  the weakly singular Fredholm equat ions  (1.1) exhibit, 

in general,  mild singularities even in the case of a  smooth forcing term / .  Here by "mild" 

singularities, we mean singularities in derivatives. The papers of Richter [54] and Graham 

[25] contain s ingular ity expansions of the solutions of equation (1.1) with kernel given by 

(3.19) and (3.20) in the case of m(s .  t) =  1. The  results of Graham were recently generalized 

by Gao and Xu for weakly singular  Fredholm equations.  Information concerning the type of 

singularities t h a t  solut ions have is useful when solving equation (1.1) numerically. In order 

to a pprox im ate  functions with mild singularities, many investigators utilized the theorem of 

Rice [53] t h a t  gives an opt imal  order  of approximation to such functions. Based upon this 

idea of  app rox imat ing  the solut ions by splines defined on nonuniform knots,  the collocation 

method,  the  Galerkin method and the product-integration method were established for 

equation (1.1) with weakly singular  kernels (3.19) by Vainikko and I ’ba [73], by Graham

[25] and by Schneider [57] respectively. A modified collocation method was introduced in 

[43] which also uses the idea of Rice. Recently there has been some considerable interest 

in the s tudy  of  the weakly singular  Hammerstein equation. A s tudy  on the  regularities of 

the solution of  (4.1) is reported in [36]. extending the results of [58], Subsequently.  Kaneko. 

Xoren and Xu used the regulari ty results to establish the collocation method for weakly 

singular Hammers tein  equations in [37]. The  approximate  solutions provided by these
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methods are in the form of piecewise polynomials that  are not always satisfactory as a tool 

for approximating funct ions with singularities. This observation is cpiite evident in the areas 

of finite element analysis. Hughes and Akin [30] list several problems (e.g. 'upwind '  finite 

elements for t reat ing convect ion operators  [29].[31].[27]: boundary-layer elements [1] etc.) 

in which the finite e lement  shape functions are constructed to include polynomials as well 

as singular functions. Singular  shape functions are introduced to the set of basis functions 

through asymptotic  analysis on the solution of the problem that  is- being considered. It 

should be pointed out  tha t  the analysis involved in the aforementioned papers  on the 

finite element method is centered around the collocation method.  The  problems such 

as the choice for the e x t r a  collocation points for singular basis elements or the rate  of 

convergence are not addressed in these papers. It should be pointed out  that  the location 

of additional collocation points  for singular basis elements is critical in determining the rate 

of convergence of numerical solutions. A detailed discussion on this subject can be found in

[38]. A singularity preserving collocation method,  because of the reasons mentioned above, 

seems to be more difficult to establish.

In this chapter ,  a s ingulari ty expansion for the solution of equation (1.1) with logarithmic 

kernel is given. This ex tends the results in [36] and [11], Only the logarithmic kernel is 

considered here because of  its impor tan t  application to obtaining numerical solution of a 

Dirichlet problem with nonlinear boundary condition as described in Concluding Remarks.

It is a routine matter ,  however, to establish, following the ensuing argument ,  a singulari ty 

expansion for the solution of (4.1) with an algebraic singularity. The chapter  is organized 

as follows: first we s tudy  the regularity property of the solution of (4.1) and establish its 

singularity expansion. The  results obtained there generalize the results of [11] and [36]. 

Secondly, the s ingularity expansion is then utilized to achieve the s ingularity preserving 

Galerkin method for equat ion (4.1). Finally, the iterated singularity preserving Galerkin 

method is discussed.

SINGULARITY EXPANSION FOR WEAKLY SINGULAR HAMMERSTEIN 

EQUATIONS

In this section, we consider the following Hammerstein equation with logarithmic singularity.

y(s) -  f  'og|.s -  t \m(S' t )L '{ t .  !j(t))dt =  f ( s ) .  0 < .s < 1 (o.l)
Jo
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(see (4.1) also). We let

f  log |s -  f | fri(s. t )<.’(/. y(t ))dt .
J o

Then equation (5.1) can be wri tten in operator  form as

(5 .2 )

!) -  K'Vy  = f . (5.5)

Let H n denote the Sobolev space. / f ” [0. 1] =  {ic : u•(rl* £ L>[0. 1]}. equipped with the
/ \ 1 / -norm ||ir||f/r> =  II, r l , ' l l l ,) where ir*0 describes the /1h generalized derivative of u\

We also let U'  =  M rl be the  linear space spanned by the functions s‘ logJ s. (1 — >•)* logJ ( I — 

s): i . j  =  1 .2  n — 1. Th roughout  this chapter,  we assume the following conditions:

m £ C 2,,([0. 1] x [0. 1]). n > 1. 

m £ C l ([0. I] x [0. 1]). n = 0.

r  £ C~'l+l ( R  x R)

(5.4)

We define

f  £ \ Y ~ H n.

= f  log !■" -  t \m{s. t)t j{t)elt .  
Jo

First we quote  the following result (lemma 4.4(2)) from [11].

(5.6)

(5.7)

L e m m a  5.1 Let ui (s)  = sp log7 .s. and u->(s) =  (1 — -s)p log7( 1— *). for  some integers p. e/ > 1 

and let f  £  H n ~ l . Assume  that m  £  C ,i +  1 ( [ 0 .  l ]  x [ 0 .  1 ] ) . Then, there exist rn £  H n and  

constants  {6 .̂}. {d^}. {ci7} € R such that.

n - \

+  r n (•s ) •
J=l

r i— 1rl — 1 7+1( /vu1)(.s)= y  Y  1 - -s )j i°g( i - +  t-a (s).
j = p + l i = l  J = 7 + l

anel
n — In - l  7+ 1

(Ku2){s) =  y  Y c' j ( l - (i°g(i  -  •s ))‘ +  Y dJsJlo«-s +
j = p + 1 i = I  J = 7 + l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



o o

L e m m a  5 .2  I f  «i(-s ) =  •s'p log7 *. u>(s) =  (1 -  s ) r log*( I — >■). f o r  some integers p. q. r . l  > I 

are integers, then uxti2 € IF G- IP' .

P r o o f :  Expand u x in series about  * =  1 and «■> about  > =  0 :

uj(-s ) — y i  ; ' J  a ‘s ‘ "i- / ^ ( -s )• 

=  P > ( s ) +h \ » )

w h e re  f [ k \ s )  =  0 ( ( l  — .s)n *•') n e a r  .s =  I .  f \  is a n a ly t ic  a t  s =  1. a n d  / j * ' 1 ~  ^ * ( -s) - P j ; ) (0 )  

as s —► 0-F: f \ k \ s ) =  O ( -s1-1—^ ) n e a r  .s =  0 .  f 2 is a n a l y t ic  a t  s =  0 .  a n d  / | A*(-s) ~  u (/ * ( . s )  — 

P j A , ( l )  as .s -s- l - .

N o w  UiU> =  P i  P> +  P i f >  - f  P>f i  +  / i  f> . C le a r ly  P\ P>  is in 11" .  F o r  f \  f>.  w e  have

Each term ' ' ( s ) .  i = 0. 1 n satisfies

/ I( , )( . s ) / ‘, " - , ) (.s) =  O t / ^ t s i / 1) =  O f t u ' / ' f s )  -  P,( , ) (0)].s') -+  0

as s —y 0 *

Similarly

/ 1(' )( s ) / i " ~ , | (s) - t 0 a s . s - t  r .  Thus / [ / ,  € ( " '  C I P 1. For f x P >  we have / ,  ( s ) P 2 { s )  =  

( «i f.s) — Pi (.s)) P2(s) =  «i (s) P_>(>) — Pi (*)P2(s). Since P 2 is a polynomial.  i<[ G  I F .  it is easy

to see tha t  u \ P y  €  I F  —  t l n  (see [[11]. (-1.7)]). So / i  P2 G  I P ' .  Similarly f 2 P { G  I F  I P ' .

and Lemma 5.2 has been verified. □

L e m m a  5 .3  .1 product o f  an H n funct ion with a funct ion in IF is in IP' ~ IF.

P r o o f :  Let g G IP'  and let u ( and u2 be defined as before prior to Lemma 5.1. For g u x

we write

Mi (•>')«/(■*>’) =  £

=  Ti +  T2.

Since T\ G I F - f  H n. we tu rn  to T2 and write

+ s p log7 sg^’̂ ( s ) .
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But sp log7 .s £ L x .<7̂ n* £ L>[ 0. I] so (*p log7 .«••)</*'*•(*) £ L l .

For the terms

M - s ) =  loS7 -s' ] ^  <7(rl)( ^ ) ( s -  er)k~ lda

we have, for some constant  M  and nonnegative integer  a

I b n{s)  i <  | ff(n)( a}  | s k - l d(r

= M s ( - Iog.s’)L> i- f j  I g (n>(a)  I da.

But £ L>[0. I], so by Hardy's inequality [55] (p. 72) j  f j  | g^n)(a) j da £ L].

Since . s ( - l o g s ) 1’ £  it follows tha t  bn £ £>[0. I]. Hence ^  £_,[0. 1], or T> £ H n.

This proves g u i £ IF -f H n.

The case for g a ,  £ W  ~  H n is similar. □

Finally we need the following:

L e m m a  5 .4  The operator K ty  map .s I F -7  H '1 into  U" H n+l .

P r o o f :  Let g =  <r -|- h. ir £ IF. h £ H n. We use Taylor 's  theorem in the form

fi  ̂ [ [ r r
L-(t.x) = ^ 2  — v {k)[ t .a ) (x  -  a)k  - / (x  -  <T)'1c ('l'r l ) (/. a)da.  (5.X)

k = o  k •  " •

Letting x = g(s)  and a = h ( s ) allows us to write

( I <V) ( y ) { t )  =  £ £ = o /ft/o  loS I f ~ s  I m { t . s ) i - l k){ * . h ( s ) ) t r { s ) k'rls

+  7TT fo loS I 1 ~ s  I m(t .  s) rr)(/y(.s-) -  a ) ,ldads  (5.9)

=  ZIl—o iff-"MO -r

By (3). h ( s ) ) £  H n. k  =  0. 1......................n. and by expanding w(s)k with the multinomial

expansion, it is clear tha t  ic{s)k is a sum of terms in IF as well as terms of the form 

a s p log? s( 1 — s ) r log"( I -  >•). p. (/. r. u > L are integers.  The  constant ,  a. depends on p. g. r

and u. Since c, ( i*(/!(s)) 6 H n and w(s)k £  IF — H n. k  =  0. 1 n. it follows from Lemma

5.3 that

L'{k){ s .h {»))w(s )k £  IF ~  H n. (5.10)

By Lemma 5.1 and (5.10). we have

A k e W ~ H n+l. (5.11)

For B(t) .  if we prove that

F (s )  =  [ y(S) LAn+l){.s.a)(g(e>) — a ) nda  £ \ Y  ~  H n.
Jh(s)
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then, also by Lemma 5.1. B ( t ) =  /\’[F](/) will be in IF ; f [ n+l. This will complete the 

proof of this lemma. First of all. suppose n > I. We write

r ' ( s )  = - C (a+1)( s . / t ( s ) ) (f (s ) ' ‘//(.S).

Since/? G f /" .t .*G r ’2,1+1. /?(>•)) G f l n- By Lemmas 2 and 5. -(.•(,‘+1)(s. h(s ) )w[s )n G

H n ~ \ Y .  Since h'  G H n~ l . it follows tha t  — M*. h(s))u-(s)r>h'(s)  G H n~ l ; l f  (Lemma

5.2). Since F'  G t l n~ l IF it is clear that  F  G / / "  : IF. Second, let n — 0. Then 

=  fh{*) ^l^/cr =  (.•(*.(/(*)) -  c ( s . h ( s ) )  G Lj[0. L] C I F -  H°.

Thus

B e W ~ H n. (5.12)

By (5.9). (5 .11) and (5.12). it follows that  /v'F maps IF-;- H n into U’ -r H n+l. □

Fsing the lemmas which we proved above, we obtain the following main result of this 

section.

T h e o r e m  5.5 Suppose the conditions (o..{ j-fo.fj) hold and tj is an isolated solution o f  (5.1).

Then there are constants eiu and btJ. f o r  i . j  =  1 .2  n — I. and there is a funct ion rn in

H n such that
n — 1 n  — 1

y( t )  = 5 2  £ [ « „ / ' logJ / + / ? „ ( !  -  /)'  I d s ' (I -  / )]+»•„( /)•  (5.15)
. = 1  J = l

P r o o f :  For n = 0. this follows from Lemma 5.4 with n = 0. Assume that  the result holds

for n = k.  that  is. if /  G H k I Ft . then (5.15) holds with r? =  k. Say y =  u'k -+- i\.. where

n- G H k. u-k = Y i jZ l[ (l<jr  [o%J t +  btJ(l  -  t ) ‘ log-7( I -  /)].

Now consider the case ?? =  A.- +  1 and suppose /  G f l k+l ;■ IF;.+ 1.

Since y =  u\. 4- ck we write y =  /v'I'y + f  = [ \^Hirk i\.) +  / -  From Lemma 5.1.

l \ t y{wk + vk ) G lF;.+ i H k+l. The proof  is complete. □

S I N G U L A R I T Y  P R E S E R V I N G  G A L E R K I N  M E T H O D

In this section, we establish the s ingulari ty preserving Galerkin method for equation (5.1). 

First we recall the definition of the space of spline functions of order  n. Define the partition 

of [0. 1] as

FIjt-t-1 : 0 =  /q < /i < ... < t k = 1.
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Let

h =  max (?, -  /,_>).
I <1 <Jk

and assume h —>• 0 as k  —► oc. It is well known tha t  the dimension of S lr[ k is d = n k - v { k - l ) .  

S' i k is spanned by a basis consisting of /5-splines {P,}'/= I . We let

\ \ n = \ V ~  -V", (5.14)

and denote the orthogonal  projection of ZLj[0. 1] onto \ b y  P^'. The singulari ty  preserving 

Clalerkin method for approximating the solution of pquation (5.3) recpiires the solution 

!Jh € \ £  to satisfy the following equation:

!Jh -  l f K * y h = r f f .  (5.15)

More specifically, we need to find y n in the form

n  — [ t i —  L /

a.j.s' log7 .s +  ,i,j( L -  s ) ‘ log7( 1 -  s) +  (5.1b)
, j  = l :._/=! i=l

where Tij}"7=i and {*,}'/_[ are  found by solving the following system of  nonlinear 

equations:

£ " 7 = i  n o(-s'‘ logJ s. *p log7 s)  -1- 5 1 7 7 = 1  -  s')‘ log-7! I -  s ) . s p log7 .s)-(-

£ i = i  log7 s) -  ( loSJ H 7.7= l 7 7  1 -  ■s )‘ >og7( I -■"•) +

£ ’/= i ' .#■)•  log7 .s) =  ( / .  sP log7 s ) p. q =  1. 2  ti -  1

£ " 7 = i  ° u  (-s< lo§J s - <1 -  -s )p loS7( 1 ~ s ) ) +

E r j i ,  . i , 7 ( l  -  7 ‘ log7 (I -  s).  (1 -  s )p log7(1 — s) )  +

£' ,=i  *<(fl.-(i -  •")p iog7(i -  >•))-

au-s‘ ■os-7 + £"7=1 -771 -  s)‘ *°s71 -  ■•>■)+
Z ‘L i  l iB i ) .  (1 -  s)P log7( 1 -  *)) =  ( / .  ( 1 -  .s)f log'( I -  - s ) )  p. c,  =  1. •_> n -  1

£"7=i n‘7-s‘ *°sJ b p ) + £r.7=! 7 7 7  -  -7' iogj (i -  •"■). b p ) +

£' /=i  Bp) -  (/v v f » ( a , j S ' log7 .s +  £ ; ‘j 7 ,  6 , 7  I -  7 '  log7( I -  .s) +

Z L r n B i ) . B p) =  ( / .  Bp) p = 1 .2  d

where (•. •) denotes the usual inner product  defined on £j[0.  1]. Now let P* be the orthogonal

projection of Li[0. I] onto S ” k . Then we have

Phi' —y c as h —> 0 for all c £ L-i[0- 1]- (-5.17)
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Recall that  if rj G / /  n. n > 0. then for each h >  0. there  exists Oh € .5’" t  such that

Ilfl-OfcH/., <  C h n\\g\\H*. (5.1*)

where C  > 0 is a constant  independent of h. (Theorem 1.2). By virtue of the fact t h a t  PhU 

is the best L> approximation of u from S ^ k , we see immediately that

l|Pfc« -  wilt, <  II" - o h\\L2 < C'hn\ \ for all a € H n. (5.19)

The following lemma from [11] is useful in the sequel.

L e m m a  5.6 Let X  be a Banarh space. Suppose that L \  and  f are tiro subspaces o f  X  

with L\  C t  j . Assume that P\ : .V —> L\ and P> : X  —>• i  > arf linear operators. I f  P> i* ei 

projection, then

Ik  -  P>-r\\x < (1 +  IIP-ll.vHk -  P i * II.Y f or  all x  € .V.

For convenience, we introduce operators  f  and Th by letting

Ty  = f  + K ^ y  (5.20)

and

n g n = P (h’ f  +  p [ : l\  * y n (5.21)

so that  equations (5.1) and (5.15) can be written respectively as ;/ =  Ty  and y n = Thlfn-

The following theorem guarantees  the existence of a solution of the singularity preserving

Galerkin method (5.15) and describes the accuracy of  its approximation.

T h e o r e m  5 .7  Let y € L>[0. 1] be an isolated solut ion o f  equation (5.1). Assume that  I 

is not an eigenvalue of  the linear operator ( K ^ ) ' ( y ) .  where ( I \ ^ ) ' ( y )  denotes the Frechet  

derivative o f  Kty  at y. Then the singularity preserving Galerkin approximation equation 

(5.15) has a unique solution jjh such that ||y — yk 11/ , < 6 fo r  some 6 > 0 and f o r  all 

0 < h < ho fo r  some hQ >  0. Moreover, there exists a constant  0 < q < 1. independent  o f  

h. such that

ah < \ \ y - y h \\L2 < ^ - .  (5222)! +  < / -  -  1 - q
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where ah =  j| ( I  - T ' h(y)) 1 (Th(ij) -  T ( ij))\\l 2. Finally, i f  y =  ic +  r  with w £  U '  and  r £ f l n . 

then

\\!J -  !Jh\\L, < whenecerO < h < h0. (5.2:5)

where C  > 0 is a constant inelepenelent o f  h.

P r o o f :  The  existence of a unique solution (//, of equation (5.15) in the disk of radius 8

about  y  and the  inequalities in (5.20) can be proved using Theorem 2 of  Vainikko [71]. A 

detailed discussion on this application can  be found in [37]. To get (5.23). first we note 

from Lemma 3.1. for r £ L >[0. I].

w r f c -  t i k ,  < ( i  - H i n fi i G H i A c -  v \\L2. (5.2-d

By assumption .  ( /  -  (/\'il')'(/y))_1 exists. By (5.17). Theorem 3.1 and since ( / v ^ l ' f y )  is 

a compact  l inear  operator .  | |P ,^ ( /v ' t ) , (i/) — ( /v* )7 (.(/) 11 x —► 0 as n —► :x. Hence ( /  -  

F f  (K lI, )/ ( y ) )_1 =  ( I  — T'h{y))~x exists and  uniformly bounded in || • j | /.2 norm. Now. from 

(5.22).

Wl J  -  U n h ,  <  T ± j

=  -  r h( y ) ) - x(Tk(y) -  T(/y))| | /.,  .

< C \ \ P (h: I < ^ y  -  K V y  +  i f f  -  f \ \ , . :

=  C\\Pfj y  — u\\l >-

where C  is independent  of h. L'sing the uniform boundedness of { P ^ } .  (5.19). (5.2-1) and 

(5.25). we ob tain

111 /  “  ! J h \ \ L 2 <  C h " I l l ' l l / / ' * •

□

T H E  I T E R A T E D  S I N G U L A R I T Y  P R E S E R V I N G  G A L E R K I N  M E T H O D

In this sect ion, the superconvergence of  the  i terated singularity preserving Galerkin 

method is discussed. Throughout  this sect ion,  the conditions (5.1). (5.5) and (5.6) are 

maintained. T h e  discussion of this section depends  heavily upon the recent paper  by Kaneko 

and Xu [44] so th a t  only the points of  dist inct differences are explained.

Let y0 be an isolated solution of (5.1). Assum e that  y n is the unique solution of (5.15) in 

the sphere ||/y0 — y/||ŷ 2 < 8. for some 8 > 0. Define

ijI  = f  +  K'Vtjh- (5.26)
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Applying Pff to  both sides of (5.26). we obtain

Pk'A  =  P h f  +  Ph K*Uh -  ( 0 - 2 7 )

Comparing (5.27) with (5.15).

f f y i  =  Uh. ( o . 2 S )

Substitution of (5.28) into (5.26) yields tha t  y[ satisfies the following Hammerstein equation.

y !h = f  + K * P £ ' y !h. (5.29)

The theorem of Kaneko and Xu [4-1] (Theorem -i.'-i). with only very minor modification 

can be written in the following form.

T h e o r e m  5 .8  Let tjo £ C’[0. I] be an isolated solution o f  equation (3.1) and y n be the

unique solution o f  (3.5) in the sphere B(ijo.S). Let y lh be defined by the iterated scheme

(■(■I). Assume that L is not an eigenvalue o f  (A**P)'(i/u)- Then, f o r  all 1 < P <  3C.

11 l/o -  ul  IU  < f ' j l l j A )  -  ^h'  i/o 11 x +  sup inf \\k(t. -) t-f01'(.. ,Vo( -)) -  «!|v||l/b -  P[’y0\\p \ ■
[  0 < ?  < I h J

where I / p +  l / q  =  L and C  is a constant  inelepe nelent o f  h .

As a corollary, we obtain the main result of the section. First ,  we introduce some notations. 

Applying the mean-value theorem to L'(s. y) to get

c ( s . y )  =  c ( s . y 0) +  c-(01 *(.s. i/o + 6{y -  y0 ))

where 9 = 9 ( s . y a .y )  with 0 < 9 < I and denotes  the  part ial  derivative of v  with

respect to the second variable. Also

k ( s . t )  = log(|.s -  t \ )m(s .  t )

and

e j ( s . t . y u. y . 0 ) =  k(s .  t) i ’10'1 }(s. yu + 9(y  -  yu )).

T h e o r e m  5.9 Assume the hypotheses o f  the previous theorem. Assume also that (5..{)-(5.fi) 

hold. The n

\ \ m - y lh \ U = 0 ( h n+l).
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P r o o f :  F irst of all. for each u £  \ '£ .

1 1 . ( / o  -  P h U o W x .  5 :  l l i / o  ~  “ | | x  4 -  | |  P [ '  u  —  P ^ '  i j q  11 x  < ( 1 4 -  P ) | | / y u  -  M l | x -  ( o . - I O )

where P  =  sup Pfj < oc. Since i/() =  ir 4  r  for some tc £ IT and r £ t l n. we let u =  tc 4- u“.
h> 0

where um £ N'^.. We obtain ||/y0 — u | |x  =  ||c — «" | |x . With (5.20) this yields

lli/o ~  Pk'yo\\>i <  ( I 4- P)  inf ||r — i/"|j x  < C h '1. (.5.21)
n.k

The last inequality follows from (2.5). Secondly, by [12]. [Theorem 4 (i)]. there exists

i’f € k such that  | | t f -  ct ||£.t =  O (h) .  Since u > I. S* k. = S ^ ' u C H l . so r, £ / / 1.

Since i/o € \ V ~ H n it follows tha t  c (0-1)(‘-.(/oH) € W  ~  H n~ l . by expanding c*0,1 ’(•. yo(-)) 

in Taylor series centered at r (recall ;y0 =  ir 4  c . c  £ H n ) and using (2.10) and (2.12). 

Consequently. cf(-)c,(0-1,(-. iyo(-)) €  IT 4  f / ' 1-1. Say c,(-) iyo(-)) =  « ( 4  bt. where

a, £ U' and b, £ H n~ l . Now there exists u, £ 5  ̂t  such that  ||i/f — bt\ \ i l =  Of/ i" - 1 ) 

and

11 fill -  «i -  « i lk ,  <  ik'i -  ' ’illy.! |] c**0' 11 ( - .  #/o (■) )  11 x  4  | |  t-,(- )  c-(01 ’( y/o( * ) )  -  tt, -  n f | | .

=  0 ( h ) + 0 ( h n~l ) =  O( h) .  

provided n > 2. Now we apply Theorem 4.1 to get

Il<yu -  !/!, II x  = 0 ( h 2n) 4  0 ( / C +1i =  0 ( / i " +1).

N U M E R I C A L  E X A M P L E

Let in (s . t )  =  1. i/(|.s — / 1) =  log(|s — /|) and c ( s . t )  = ros(s  4  /) in equation (4.1). We 

assume /  in such a way that  x[t)  =  sin / 4 / lo g /  is the solution. I ' sing splines of order  2 

we approximate the solution of the Hammerstein equation with

■I
! J u ( l )  =  5 1 * . # .  

i = i

and
■i

y i ( 0  =  + a /1 ° g / 4  .1(1 -  / ) l o g ( l  -  /) (5.22)
i=i

iyo represents the numerical solution tha t  uses only the spline basis elements whereas /yi 

represents the current  scheme, i/o is computed for comparison.  The  computed errors for 

the spline-only solution and the s ingulari ty  preserving solution are shown in Table 5.1.
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Table 5.1: Singularity Preserving Method Results

Errors

II I/O Ui

■) .052756 .004002

5 .01X526 .001945

1 .0122-16 .001147

convergence rate = 1.4 l.x

Notice that  the convergence rate for i/o i-s lower due  to  the logarithmic s ingulari ty  in the 

kernel and due to the use of the uniform part i t ion of  [0. 1]. The  use of nonuniform part i t ion to 

obtain the opt imal  ra te  of  convergence of numerical  solution was recently established in [-1-1] 

for the Galerkin method.  It should be pointed out  tha t ,  as the number of  par t i t ion points 

increases, the dist r ibut ion of these nonuniform points become extremely skewed toward 

the end points of the interval.  This will cause a sensi tivi ty in numerical computa t ions ,  

frequently requiring computa t ions  in double precision. An introduction of the  singtdar 

elements in the basis and working with the uniform part it ion points will e l imina te  this 

problem. The coefficients in (5.52) were ob tained by solving the set of nonl inear  equations 

of Section 5 ( immediately following (5.16)) using the Xewton-Raphson algori thm. Also, the 

Gauss-type qua d ra tu re  a lgori thm described in [42] is used to calculate all integrals.
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C H A P T E R  VI 

C O N C L U D IN G  REMARKS

In this thesis, we invest igated the superconvergence of the i terated solutions of several 

different numerical schemes for the Fredholm ecpiations of the second kind as well as for 

the class of nonlinear Hammerstein equat ions.  The  superconvergence result established for 

the i terated degenerate kernel scheme is new even in the case of the Fredholm equations. It 

should be noted that ,  in order to  double  the rate  of  convergence of a numerical scheme such 

as the collocation method, we must in general double the order  of the polynomials to be 

used resulting in more expensive computa t iona l  cost.  The i terated shernes provide us with 

an inexpensive alternat ive to achieve the same  goal of accelerating the  convergence rates.

One of  the important  areas  to which the i terated methods discussed here can be applied 

is the area of boundary integral  equat ions.  As an example, consider the following elliptic 

boundary  value problem:

A « ( P )  = 0 .  P  € D
( 6 . 1) 

=  - c u [ P )  +  f ( P ) .  P e i ' = o n .

where D is a bounded simply connected open region in R~ with a smooth  boundary I'. In 

equation (6.1). rip denotes the exter ior unit normal  to r  at P. f  is cont inuous on F and c 

is a positive constant.  The function u is to be determined.  We assume u € C ' ( D ) C \ C ' l {D).

It is well-known that  using Green ' s  representation formula for harmonic functions, the 

function u satisfies

u[P)  = - -  [  « ( Q ) ^ - l o g | P - Q | r / r « 3 )  -  i -  /  ^ 0 ± \ o ° \ P - Q \ d V ( Q )  (6.2)
J r  OtiQ 2~ J r UriQ

for all P e D.  Moving the point  P  to a point on F and using the boundary  condition in 

(6.1). we obtain the following boundary  integral  equation.

“ ( p ) -  Ir  “7 ^ 7  log | P  -  Q\dY{Q)  -  f  f r u(Q) log IP -  Q\dY{Q) ^

=  - U r f ( Q ) ^ \ f 3 - Q \ ^ ( Q ) -  p z  r.
We have now concentrated all the  information on u to the boundary T. One of the primary 

advantages,  of  course, of dealing with the boundary  integral equations by t ransforming the 

original boundary value problem is t ha t  we have reduced the dimensionali ty  of the problem 

by one. Now once u is computed along F from equation (6.4). equat ion (6.2) now yields
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the value u(P)  for all P  6  D.  Any numerical method can be applied to approximate 

the solution of (6.4) and subsequently the order of approximation can be enhanced by the 

i teration process. A reduction in computational  cost to achieve the enhancement  ran be seen 

in a more pronounced way when the elliptic problem is proposed in a higher dimensional 

space due to its exponential  growth in the number of unknowns involved. In this connection, 

we note as a future research topic an application of  wavelet bases to the boundary integral 

equations.  Wavelet bases give rise to sparse linear systems th a t  result in the reduction of 

the computational  cost. It is also interesting to consider the i terated numerical methods 

described in this thesis in connect ion with wavelet bases.

Another interesting applicat ion of the iterated scheme is the following. When superconvergence 

of the iterated solutions of a certain numerical scheme is known to exist, then the residual of 

the numerical solution can be used as an est imator  of the error  of  the numerical solution. For 

example, if y n denotes  the approximation to equation (4.2). the  error  of the approximation 

is

t  ,i =  y — !Jn  (6.4)

and the residual is defined by

<>-, =  /  -  (<Jn -  K ^ U n ) -  (6.5)

Now

S n =  f  ~  ( ! Jn  ~  K V l J n )

= (y -  K V y )  -  (yn -  Ktytjn )
(b.b)

=  ( !J -  U n )  -  I k ’ m n n H y  -  ! J n )

=  ( /  -  J ) t n .

where is between ij and y n. Also note in particular from (6.6) that

( l \ ^ Y { n n) ( t n) =  K V ( y )  ~  A.'VI'( '/»)• (6 .7 )

Now

( /  -  ( / ^ ) ' ( , n ) P „ ) ( 0 ) ' ( r / » ) t ,  =  ( /  -  ( / N ' I M , ( r / , l ) P , l ) ( A - * ( ; / )  -  K * ( y n))

= ( KV{y)  -  h ' ^(yn) )  -  ( / \ 'P ) /(t/„)(PnA'»I»(«/) -  P J \ ' ^ { y n))

=  ( K ^ ) ' ( i ] n)t„ -  ( l\<bY(t)n)P nt n 

=  ( / v  ¥ ) ' ( / / „ ) ( / -  P n ) tn.
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In the third line we made  use of

P rl/ \ ' t ' ( y )  -  Pn K ^ ( { J n ) = Pn(y -  f )  -  (ijn ~ Pnf )  -  Pn {l) ~ I J n )  =  Pnfr n.

Now we assume tha t  I is not an eigenvalue of  ( l \ '&) '(y)  so th a t  ( /  — ( K ~ l exists. 

Also assume tha t  c 10' 1 *(/. (/) is continuous in y  and uniformly continuous in t. Then 

(/v'l'l't.y) is continuous as  a function of y  in the space of  all bounded linear ope ra to rs  

0(C[O. 1].C'[0. 1]). Since qn lies between y n and y. qn —► y as n —> d c .  It follows tha t  

( /  -  (I\ ' \!)'{qn))P,l converges to ( I — {l \ ty) ' (y))  in the  space B(C'[0. 1].C’[0. I]). Therefore.  

( ( /  -  (A 'V) '^ r}„) )Pn ) - , exists and uniformly bounded for all sufficiently large n.  An t / . i  

argument  also shows t h a t  lim/,_>o 11( A.'' 'V)'(qn) ( f  — Pn )\\L> =  0- Hence

( A ' » P ) , ( l 7 „ ) t n  =  ( I  -  { K V ) , ( q n ) P n ) - l (!<'S>)'(qn)(I -  P n h n . ( 6 . * )

and

| |( k ^ )' (/ /„)f„ ||Li <  / k * ) I K I k >

where y ( h ) =  | | ( /  -  ( / v ' l ' ) ' (qn ) Pn ) " 1 | k , | | ( /v ' l ' ) ' (qn ) ( /  -  Pn )| |/., 

n —> d c . From (6.9) and (6.6).

(6.9)

-r 0 as h —y 0 or equivalently

I k k l k ,  =  I k n  -  ( A ' ^ j ' f t / n J t n l k .  <  ( 1 +  h  > )  I l f  n  h  > • ( 6 . 1 0 )

This equation s ta tes  t h a t  the  residual can be used as an es t imator  for the actual  error.  

What  is interesting at  this point is to observe tha t  superconvergence of the i terates  can be 

used as a sufficient condi tion for (6.10) to occur. To see this, denote  the iterates by

Then with t ln = y  -  y ln .

!Jn = f  +  K'VilJn i

=  /  -  ( i j n  -  A ' P ' / n J  

=  u L  -  !Jn

= fn -  t .

(6.11;

From this, we obtain

1 -
< M  < 1 + Ik; ( 6 . 12 )

Namely, the superconvergence of  the iterates.-i.e..

m .  =  0
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gives a sufficient condit ion for the inequal ity (6.10) to occur. We note here that  (6.10) 

was proved without  reference to the superconvergence of the iterates. Because of (6.12). the 

results presented in (6.9) and (6.10) can be obta ined  by demons trat ing  the superconvergence 

of  the  i terates  for the Galerkin solution for Hammerstein equation under the condition 

lini/j-t.o ( |( /v'P) , ( 7 ,l ) ( /  -  P ,J | |  =  0 which was taken  earlier. In this case.

( I  -  (A’«P) ' ( y) )(;/'  -  y)

=  [I -  (A'lp)' (y)(! -  P„)][A'y(<Jn) ~ ~ (A'l<)'(y)(yn -  y)\

- (K' \ >) ' ( y ) { l  -  Pn) ( ( K* ) ' ( y )  -  I ) ( y n -  y).

we obtain

111/'-i/ll <  ! l ( / -  ( K * ) ' l y ) r l \\ {\\I - ( l < ^ ) ' ( y ) { I  -  P„)| |

X sup ||(A'  ̂ ) ' ( y  +  6( yn -  y)) -  ( A "  . ' l„ -  y n \\ 
o<e<i

+  ||( A'vfi)'(.«;)(/ -  P n )((Avfi)'(y) -  I )(yn -  ;,)|| } .

In any  case, we demons tra ted  the fact tha t ,  when the superconvergence of the iterated 

solut ions is guaranteed ,  an error of the numerical  solution is est imated by the size of the 

residual. O f  course, the residual is an easily computab le  quant i ty  whereas the actual  error 

is not in most of the practical problems.
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