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ABSTRACT

SUPERCONVERGENCE IN ITERATED SOLUTIONS OF INTEGRAL
EQUATIONS.

Peter A. Padilla
Old Dominion University. 1998
Director: Dr. Hideaki Kaneko

In this thesis. we investigate the superconvergence phenomenon of the iterated
numerical solutions for the Fredholm integral equations of the second kind as well as
a class of nonlinear Hammerstein equations. The term superconvergence was first
described in the early 70s in connection witli the solution of two-point boundary
value problems and other related partial differential equations. Superconvergence in
this context was understood to mean that the order of convergence of the numerical
solutions arising from the Galerkin as well as the collocation method is higher at
the knots than we might expect from the numerical solutions that are obtained by
applving a class of piecewise polynomials as approximating functions. The tvpe of
superconvergence that we investigate in this thesis is different. We are interested
in finding out whether or not we obtain an enhancement in the global rate of
convergence when the numerical solutions are iterated through integral operators.
A general operator approximation scheme for the second kind linear equation is
described that can be used to explain some of the existing superconvergence results.
Moreover. a corollary to the general approximation scheme will be given which can
be used to establish the superconvergence of the iterated degenerate kernel method
for the Fredholm equations of the second kind. We review the iterated Galerkin
method for Hammerstein equations and discuss the iterated degenerate kernel
method for Hammerstein equations. Also. we investigate the iterated collocation
method for Hammerstein and weakly singular Hammerstein equations and its
corresponding superconvergence phenomena for the iterated solutions. The type of
regularities that the solution of weakly singular Hammerstein equations possess is
investigated. Subsequently. we establish the singularity preserving Galerkin method
for Hammerstein equations. Finally. the superconvergence results for the iterated

solutions corresponding to this method will be described.
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CHAPTER I
INTRODUCTION

In this thesis. we investigate the superconvergence phenomenon of the iterated numerical
solutions for the Fredholm integral equations of the second kind as well as a class of nonlinear
Hammerstein equations. The term superconvergence was first described in the early 70s
in connection with the solution of two-point boundary value problems and other related
partial differential equations. Superconvergence in this context was understood to mean
that the order of convergence of the numerical solutions arising from the Galerkin as well
as the collocation method is higher at the knots than we might expect from the numerical
solutions that are obtained by applying a class of piecewise polvnomials as approximating
functions. See references [9]. [10]. [17]. [18]. [20]. [60]. [61]. [62]. [6R]. and [69]. The
idea of superconvergence that we study here is different and it was originated by Sloan
in references [60]-[61]. \We now describe the Sloan’s iterates and its superconvergence
phenomenon in relation to the Fredholm integral equations of the second kind. The equation
can be written as

y(t) — /b k(s t)y(s)ds = f(t). t € [a.b] (1.1)
1
or if we let

b
Ny(t) :/ A{s t)y(s)ds (1.2)

then the above equation can be written in operator form as.
y—-RKy={. {1.3)

The kernel & of the integral operator A is assumed to be well behaved so that A defines a
compact operator on some appropriate Banach space. X. with f € X. When the Galerkin
or collocation methods are applied to approximate the solution y in (1.3) using piecewise
polynomials of order r. the best results in terms of the order of convergence that we can
expect in an appropriate L, norm is O(h") where h = mar(t,4y —t,). fori=1.....n = 1.
with {t,}7_, the prescribed set of knots.

Both the Galerkin and the collocation methods can be described within the general

framework of the projection method. Specifically. let 5, be a finite dimensional subspace of

The Journal of Computational and Applied Mathematics was used as the journal model
for this thesis.
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a Banach space X. 5,. for example. may be taken as the space of all piecewise polynomials
of order r. the space of all trigonometric polvnomials or the space spanned by wavelet basis.
etc. In the Galerkin method. we take X = L,[a.b] and we approximate the solution y in

equation (1.3) by y, from the space 5,, by requiring that
(yn = Ky, — f.0,) =0. for all 0, € S, (L.4)

where (-.-) denotes the usual L, inner product.

[n the collocation method. we take .X' = ([a.b]. Suppose that {u,}"_, is a basis for
S, and choose a suitable set of distinct points. {¢,}7,. ¢, € [a.b]. ¢ = L.....n. so that
det{u,(t,)}i,=1.... # 0. We seek an approximate solution y, in the form y, = =,

where {a,}"_, are defined by requiring that
yn(t:) = Kyn(t,) = f(£,) =0 fori=1.....n. (1.3)
The equations (1.-1) and (1.3) can be easily seen to be equivalent to:

n

Zrzj[(uj. w) = (KNu,ou))=(fou). i=1..... n. (1.6)
J=1
and
> a,fuy(t) - Kuy(t)] = ft). i=1.....n. (1.7)
J=1

To see that equations (1.6) and (1.7) are special cases of the general projection scheme. we
consider the following. For the Galerkin method. we take the projection P,: L,[a.b] — S,
that is orthogonal. -i.e.. with v € Lya.b]. P,e € S, is defined from (P,v — v.u,) = 0.
for each i = 1.2.....n. For the collocation method. P,:C’[a.b] — S, is the interpolatory
projector. Namely. with v € C'[a.b]. P,v € 5, is defined from the conditions. P,c(t,) =
v(t;).t = 1.....n. The residuval function r, is defined by r, = f - (y, = KNy,). Clearly r,
is nonzero unless the solution y of equation (1.3) happens to belong 1o the space 5,. Now

both equations (1.6) and (1.7) can be written as
P"rﬂ = 0' (l"\‘)

where. of course. the projection P, in (1.8) is orthogonal and interpolatory for the Galerkin
method and the collocation method respectively. Also. since Py, = yn. Y. € S,.. we can
express equation (1.8) as

Yyn — PAKy, = P, f (1.9)
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This is the classical projection equation. As stated earlier. under some suitable smoothness
conditions on A and f.if 5, is the space of all piecewise polvnomials of degree less than or

equal to r. then it is expected that
lyn = yll = OC(hT).

Now we are ready to describe Sloan’s iterate which is the main topic of this thesis.

Let y, be the solution of (1.9). We define Sloan’s iterate by
yl = f+ Ry.. (1.10)

Both the iterated collocation and the iterated Galerkin methods can be generalized using

the projection operators. For y! in equation (1.10). from equation (1.9) we have.
Yn = Pnf + Pn[\-!/n = Pn[f+ [\-.’/n] = P’l!/yl;

and

yl - KPyl = f. (1.11)

[t is useful in the sequel that we provide at this point a detailed review of the superconvergence
phenomenon of Sloan’s iterates. The review below is based upon the paper by GGraham. Joe
and Sloan [22].

For any positive integer n. let
Mya=rg<ry < <orp 1 <r,=b
be a set of partition points (knots) and for i = 1.2..... n set

[, = (r;_y.r;). h, =&, —r,_1. = h(n) = max h,.
1<ikn

We assume that h — 0 as n — x. Let r be a positive integer and v an integer satisfving

0<v<r. LetSy

r.n

denote the space of splines of order r. continuity v. and knots at [],,.
This means that y, € 5S¢, if and only if y, is a piecewise polynomial of degree < r — 1 on
each /; and has v — 1 continuous derivatives on (a.b). If v = 0. then there is no continuity
requirement at the knots. Asin [22]. in this case. we take y, € S?  to be left continuous at
the nonzero knots and right continuous at 0. Denote by P% the orthogonal projection onto

S ,.. It is well-known that when v =0 or 1.

I1PE L. < e (1.12)
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for all n € N and for all partitions [, [8]. Forv > 1. the projections { P7 } are also uniformly

bounded in every L, norm (1 < p < x) under the quasiuniform mesh assumption

h
<e. for each n and some constant ¢ > 0. (1.13)

min h, ~
1<i<n

See [19].
For the collocation method. we denote the interpolatory projector by PS. e select

the collocation points {r,,}"_, to be the zeros of the rth degree Legendre polvnomial (the
p 11 =1 =} =) p R

Q

r.mn

Gaussian quadrature points) on [—1. 1] shifted to the interval [,. PSg € S, is defined for

all g € Cla.b] = S?,, (here C'la.b] = S?, denotes the direct sum of ('[a.b] and 5S¢ ) by

r.n

PCg(r,) = glm,). 1<i<n. 1<j<r (1.1

The uniform boundedness of the projectors { P¢'} follows by noting that || P¢|| is the norm
of the Lagrange interpolation operator for polvnomial interpolation at the r Gauss-Legendre
points. hence from approximation theory. it is uniformly bounded in n. For the Galerkin

and the collocation methods (P, = P% or P, = P’ respectively). we have the following
r n p - O

fundamental results from [22]. Here we denote the t-section of k by k,. -i.e..
k() = k(L. ). (1.15)
Theorem 1.1 Assume that f € Cla.b] and k, € Ly[a.b]. Also assume that
!1_131_ i|ke — k|, = 0. for 7 € [a.b]. (1.16)
Then in both the Galerkin and the collocation methods. for sufficiently large n. we have

(1) yn in (1.9) ezists uniquely in S¥, (with v = 0 in the collocation case). and y! erists

uniquely in C'la. b]:
(it) there erist ¢ > 0 such that inf |y —o,||« <y =yaullx <c inf Jly—o.ll«:
on€Y on €Y o

(iii) there erist cp.cy > 0 such that c\||K(y — Poy)llx < lv = ¥lllx < l|K(y = Pay)ll <.

Before we present the methods of obtaining the superconvergence of the Galerkin and
the collocation methods. it is also beneficial to review the following standard results from

approximation theory. For I < p < oc and m a nonnegative integer. let Wyt = 1r(ab)
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denote the Sobolev space of functions such that g'*) € L, (a.b) for k =0..... m where g%

denotes the Ath derivative of g in the sense of distribution. We define the norm for 11" by

m
l o = {%)
Hollwm =Y g™,
k=0
The following two theorems are described in [22] and they are standard results in approximation

theory.

Theorem 1.2 LetO<v<randlet 1 <p<x. Ifg¢€ W' m > 0. then for each n > 1.

there erists o, € SY, such that

ron
lg ~ onllz, < ch™ llgllyypme

where m™ = min{m.r} and c is a constant independent of h and g.

Theorem 1.3 Let! be a positive integer.

(i) Let g € W. Then there erists a polynomial p of degree <1 — 1 such that

ll(g - P)“)Ilu-; < clb- ﬂ)["HUHu’{ 0<,<l

(ii) Let g € W} . Define Hglle,.1, as the Ly norm of g restricted to the interval [,. Then

for each n > 1. there erists 0, € SP, with the properties

(a) (g = o), < ek NgMi, 1. I<i<n. 0< <l

(b) maxj<,<n HO(HJ)||>;,1, < (‘HgH”-{. J 2 0. where ¢ is independent of n and g.

We are now in a position to state the superconvergence results of Sloan’s iterate for the
Galerkin as well as for the collocation methods. The outline of proofs are also included
because they are frequently referred in the sequel and also this will make this thesis as

self-contained as possible.

Theorem 1.4 (Theorem §.1 of [22]) Let y©1 denote the iterated Galerkin solution. Assume
that f € C'[a.b] in (1.3) and that (1.16) holds. Suppose y € H"‘[, (0 <!l) and ky € W
5y

~“ront

M

(0 < m). with ||k:f|u',;" bounded independently of t. p and q conjugate indices and yf;

0<v<r. Let 6y = min(l.r) and & = min(m.r). Then

ly = yS1l|« = O(%1+3%2).
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6

Proof: From Theorem l.l. in order to estimate ||y — y</||. it is sufficient to estimate

|K(y — Py)(t)|) . For t € [a.b]. we have

K (y — PSy) ()]

;f,f ke(s)(y — POy)(s)ds
((keoy = PTy)|

I

r;

= .(k{ _On-!/_ Pn(,l/)l

where o, is any element of S¥,. and the last step follows from the orthogonality of P¢’.

Using Holder’s inequality. we have

K (y =PIy < ke = onllL,lly = PEyllL,
= |lke = onllL (1 = PEY(y = vallle,

< ke = onlle, (L+ 1P L2, )y = vallr,-

where v, is any element of 57 ,. Two applications of Theorem 1.2 finish the proof. O

Theorem 1.5 (Theorem 4.2 of [22]) Let y$" denote the iterated collocation solution. Assume
that f € Cla.b] in (1.3) and that (1.16) holds. Suppose y € W} (0 <1 <2r) and k, € 0
(0 < m < r) with ||k,||u-lm bounded independent of t. and y< € SU, is the solution of (1.9)

r.n

with P, = P¢. r > 0. Then

n

ly = Sl = O™, where 5 = min{l. r+ m}.

i

Proof: Throughout this proof. ¢ is a generic constant. Using Theorem 1.3. there exists

Ly € 5.3” such that

YoMty =)l STyl 0< <L (L.17)
=1
max el Syl J 20 (L.IR)

Also by Theorem 1.3. for each ¢ € [0. 1]. there exists 0,, € S5, such that

SNtk = DL, < ch™ supllkeliwm.  0< < m. (1.19)
=1 ¢

max Hof;’_ZHxJI < csup||he|lpwm. ] 2>0. (1.20)
1<i<n ¢ 1
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As in the previous theorem. we need to estimate [|A'(y — P$ y)[l«. Fort € [0. 1] we have

Riy— P y)t) = (ke.y— PSy)
= (kt = Ons.y = PCy) + (0ns. (I = PS Yy — vn))+
(On.t~ ([ - PS)L'nL

Now we must show that each of the three terms in the last expression is bounded by ch™.
uniformly in ¢. For the first term. we obtain. for arbitrary &, € SY .
(ke = Zraeey = PSP < ke = saalle, U = POy = E)llL
S ellke = enelleyly = Salle -

where the last step follows from (1.12). Now it follows from the Sobolev embedding theorem
that H"{ C W' and hence y € H'ﬁ:‘. With an appropriate choice of &,. it follows from

Theorem 1.2 and from (1.19) with j = 0. that
(ke = ey = PCy)E S ARyl
where K, = esupy ||ky]lim. Then because m + min(r./— 1) > ~. it follows that
(ke = Faiey = Poy)l < ch” (1.21)

with ¢ independent of n and ¢.

For the second term we obtain using Holder’s inequality and from (1.20).

|(\r‘;n.t- (I - Prf)(l/ - L'n))i < C[\’m“([ - Ps)(.’/ - L.n)”Ll
= C[\-m Zln=l “([ - Pf)(l/ - L‘n)“Ll.l.'
But we have

hl”Prs-(y - L‘YI)“L,\'-II

Chx”.’/ - L’n”Lx-I.

|PS (y — wa)llL,.a,

IN N

IN

((||£/ - L‘n”Ll‘I. + h:“(!] - L’n)(””Ll.I.)'

where the penultimate step follows from (1.12) and the last step from the following observations.
For g € W(1;). |I.] =the length of I,. for r.t € I;. we have g(r) — g(t) = [ g (s)ds. By

the mean value theorem for integrals. there exists ¢ € [, such that

MML=ZMMW=MMWL
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Putting t = . we have g(r) = g(o) + [ g'!)(~)ds and hence

gl v, <lgla)l+ llg™Mlie, .1,
=LYl + e L, a-

Hence

Hene (I = Py — el < Tisilaily — wallen + b iy = ca) Wiz, 1]
< chllyllyr < A

where we have used (1.17) with j = 0. 1. Finally. to prove the third term is of order h™. we

note that

(rn! (I Z(rnr ”)‘- Ji, - {1.22)

=1
It is clear that (1.22) is zero if 0 < [ < r. since we have PS¢, = v*,. Therefore we need
consider only the case r < < 2r.

As £ny is a polvnomial of degree < m — 1 on /;. we can write

m—1

A .
‘r‘:n.((‘Q) = Z rfgx_t)(tl)(s— tl)‘\//k!' S € [l'

k=0

where ¢, is the midpoint of /,. We then have

fne (I = PEYea)n = | S0 J,f,’ t) fi (s =t M= POy, (s)ds/kY
S Tyl | IE VAN TR el P2
< ch?t

where the first inequality follows from Lemma A.2 of [22] (for completeness we state below
without proof Lemma A.2) and the final step is a consequence of (1.18) and (1.20). Using
(1.22) we see that

(e (= PLYea)| Y ehi™ < eh? < ch”
=1

a

Lemma 1.6 (Lemma A.2 of [22]) Let r be a fired positive integer. let j be an integer in
r < j<2r.let.] be any bounded open interval. and let t; be any point in J. Forg € CI(J]).
define

E)(9) = [ (s = )1 = Prig()ds.
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where Py is the polynomial of degree < r — | that coincides with g at the zeros of the rth
degree Legendre polynimial shifted to .J. Then

!J[ZH—I

m“.’lmll x -

|Es(g)] <

[t has been demonstrated that (see refs. [60]-[66]) under mild conditions on k and f. y!
converges faster globally to y than y, does to y. -i.e.. ||yl = y|| = O(h?) with r < 3 < 2r.
The doubling of convergence rate to 2r is attained in the case that the kernel & and the
forcing term f in (1.3) are at least r times continuously differentiable functions. This
observation applies both to the iterated Galerkin method and to the iterated collocation
method. Particularly. for the iterated collocation method. superconvergence occurs when
the collocation points are the Gaussian points due to the orthogonality of Legendre polvnomials.
In the cases of the weakly singular Fredholm equations as well as the weakly singular
Hammerstein equations. some enhancements in the convergence rates for the Sloan iterates
were observed in [34]. [52]. [37]. [70]. and [35]. There is one important difference that we
must consider between the Galerkin and the collocation methods. Namely. in the collocation
method. the sensitivity of the superconvergence to the location of the collocation points must
be considered [38] whereas the Galerkin method obviates such considerations.

This thesis is organized as follows. In Chapter 2. a general operator approximation
scheme for the second kind linear equation is described that can be used to explain the
superconvergence results of Theorems 1.{ and 1.5. Moreover. a corollary will be given that
can be used to establish the superconvergence of the iterated degenerate kernel method.
Chapters 3.4, and 5 are devoted to a study of Hammerstein equations. Hammerstein
equations arise naturally from the study of a class of boundary value problems with certain
nonlinear boundary conditions. We review the iterated Galerkin method for Hammerstein
equations in Chapter 3. In addition to the review. a discussion of the iterated degenerate
kernel method for Hammerstein equations is also included in this chapter. Chapter 14 is
devoted to an investigation of the iterated collocation method for Hammerstein equations.
The weakly singular Hammerstein equations are also treated in Chapters 3 and 4. and its
corresponding superconvergence phenomena for the iterated solutions are described. The
tvpe of regularities that the solution of weakly singular Hammerstein equations possess is
given in Chapter 5. The result obtained in the chapter extends the result of Cao and

Xu in [11]. Subsequently. we establish the singularity preserving Galerkin method for
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10

Hammerstein equations. The superconvergence results for the iterated solutions corresponding
to this method will conclude this chapter. In the final chapter. Chapter 6. we state briefly

future research areas that are related to the topics encompassed in this thesis.
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CHAPTER I1
THE ITERATED DEGENERATE KERNEL METHOD

INTRODUCTION

In this chapter. we start by considering the Fredholm integral equation of the second kind
given by (1.3). We assume that

f € Cla.b]. (2.1)

With A : Cla.b] — C[a.b]. the integral operator defined in (1.2). the compactness of K is

guaranteed by assuming (1.16). i.e.
b
’lim_/ |ke(s) = k-(s)|ds =0 for each 7 € [a. b]. (2.2)

See [21].
In order to establish a general iterated approximation scheme. we assume that {K',} is a

sequence of operators converging to A" in some operator norm. That is.
INn — KL, = 0as n = x for some | < p < x. {2.3)

For each n > 1. we assume that we have an equation whose solution approximates the
solution y of (1.3)

We denote this approximating equation by
Yn = fn + [\-nyn- (2.4)

For exaniple. in the case of the projection method. equation (2.1) is identified by letting
K, =P,K and f, = P, f where P, is a projection of a Banach space X onto some finite
dimensional subspace .X;; of \'. In the case of the degenerate kernel method. A, denotes
the finite rank separable operator. -i.e. KN, y(t) = f:’ L=t Lo=1 g Fdt) e (s)y(syds where

{#:}2, is a linearly independent family of functions defined on [e.b] and f, = f for each

n > 1. \We define the iterated approximation corresponding to (2.4) by
U!’l = f+ [\-Un- (2"))

As was indicated previously. the iterated approximations for the Galerkin and for the

collocation methods exhibit. under suitable smoothness conditions on the kernel & and on
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the forcing term f. global superconvergence. It is shown in this chapter that. a similar
superconvergence result can be obtained for the iterated approximations for the degenerate
kernel method. Next. we prove the main theorem of this chapter. Known superconvergence
results are special cases of this theorem and it can be used to establish the superconvergence

of the iterated degenerate kernel method.

Theorem 2.1 Consider equation (1.3} in a Banach space (X.||-||) where K is a compact
linear operator of X into X. We assume that | is not an eigencalue of K and that condition
(2.3) is satisfied with respect to the norm || -||. Let y, and y! satisfy equations (2.}) and
(2.3) respectively. Then. for sufficiently large n. there erists a constant ¢ > 0. indepe ndent

of n. such that

ly = yall € lIK = Kall® + IK (K = Kadyall + 11K = Kol 1 = full + K = fall}- (2:6)

Proof: From (1.3) and (2.5).

y=yn =Ky - ya) (2.7)
Applyving A on both sides of (1.3) and (2.1). we obtain
Ky=Kf+ Ky (2.8)
and
Ky, =RKK,y, + K f,. (2.9)
It follows from (2.8) and (2.9) that
K(y—y.) =R’y—-KK.yo +K(f~f)

=KN(Ky-K,y,)+ No(KNKy—-RKy,) - K.(Ky—- KNy,)+ K(f - f)

=K. (Ky—RKy,)+ (K -RK,)(Ky-RKy,)+ N(KN — KN,))y, + K{f - f.).
(2.10)

Since ||[N, — K|| » 0 as n = x and (/ — K')~! exists by assumption. we conclude [3]
that (I = K,)~! exists and is uniformly bounded for sufficiently large n. Therefore.
1\-(!/ - .’/n) = (1 - [\-n)—l{([\- - [\-n)([\-y - [\-yn) + [\.(1\- - [\-n).‘/n + [\.(f - fn)}'
Taking the norm on both sides.
IK(y =yl <= Ka) 7 A = Kalll Ky = yall + 1K (K = Ko)yall
+IACf = fa)ll}

(2.11)
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Since
Y= Yn = [\.U - [\-n.'/n + f - fn
=KNy-R,y+RK,y— K.y, + f - fu
we obtain

([ - 1\-n)(.'/ - .'/n) = I\-.’/ - [\-n.’/ + f - fn-

or

Y=y =1 =R,)T"YUK =R, )y+ f-fa} (2.12)
From (2.7). (2.11) and (2.12).

ly = yill =Ky = ya)l
< IR = Rallly = yall + 1K (K = Ka)yall + 1N = fa)ll}
<l = Kall? + 1|8 = Kallllf = fall + 1K (K = Ko)yall
+IK(S = fa)ll}
This completes the proof. O
A new version of this theorem was recently obtained and is given below. The new theorem
does not change the original conclusions presented but provides a simpler expression for the

bound on ||y - y!|i.

Theorem 2.2 Consider equation (1.3} in a Banach space (X. || -||) where K is a compact
linear operator of X into X. We assume that | is not an eigencalue of K and that condition
(2.3) is satisfied with respect to the norm || -||. Let y, and y! satisfy equations (2.4) and
2.3) respectively. Then. for sufficiently large n. there erists a constant ¢ > 0. independent
of n. such that

ly — yhll < AR K = Kojyall + 1K = F)ll}- (2.13)

Proof: From (1.3) and (2.3).

y-yr =Ky -y (2.11)

Applyving A on both sides of (1.3) and (2.4). we obtain

I~
—
wt
—

Ky=HKf+ R’y (2.17

and

Ky, = KK,y + K fa.. (2.16)
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[t follows from (2.15) and (2.16) that

K(y-yn) =K’y—KK.yn+ KN(f - fa)
=RKNKy-RK,y.)+ KKy, -KKy, + K{f - f.) (2.17)
= [\‘(1\-!/ - [\-!/,1) + [\-([\' - [\—n).'/n + [\—(f - fn )

Since K is a compact linear operator which does not have | as an eigenvalue. then

(I — K)~! exists and is bounded. Therefore.
Ky -y.) = = K)"Y{RK(K = Koy, + K(f = fa)}-
Taking the norm on both sides.
IRy =yl S N = YA (R = Kayall + 1K = fll}- (2.18)
From (2.14). and (2.18).

ly =yl = 1IK(y = ya)ll
< AN (K = Koyl + IR = fil}

This completes the proof. C

The following corollary is based upon Theorem 2.1.

Corollary 2.3 For the iterated approrimation scheme (2.5). if f, = f for all n in (2.4).
then
ly = yall € e{IN = Kall* + K (K = Ka)yall}-

Now we note that Theorem 2.1 includes the results of superconvergence of the iterated

Galerkin and the iterated collocation schemes. Let P{' denote an orthogonal projection

n

(with respect to the standard L; inner product) onto 57 . In the Galerkin method. equation

(2.-1) becomes

ye = PiKyl =Pl (2.19)

n
ie. K, = PSR and f, = P7f. The corresponding iteration approximation to (2.3) is
given by

yil = f+ Kyl (2.20)
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If fe W, (m>0). then from Theorem [.2. there exists ¢', € 5¥, (0 < v < r) such that

1f = ealle, <ch™™M N Fl|minim s (2.21)
P

where ¢ is a constant independent of n (see e.g. [59]). Once again. we use ¢ for a generic

constant independent of n below. Under the assumption of the quasiuniform mesh (1.13).

sup ||P,?||L,,—>L,, <ec. (2.22)
Since
1 = BOfl, =S = v + Pl v = PESIL, %)
S (UL IPE L= ) = wallL,-
from {2.21). (2.22) and (2.23). we obtain
1f = P flle, < ™™ fil inimrr (2.21)

Now let &(t) = ff k(t.s)yS(s)ds. Then. following the argument used in the proof of Theorem

1.4.
IK(K = Ka)yd (0] =1 [kt w){€(u) = PEE(u) }ul
— . c_ plc
= {(ki.§ - PEQ) (2.95)
= [(ke = p0. & = PUE)| for every 2, € 57,

< ke = 2alle, fi€ = PUEllL, -
where 1, + :—) = | with convention that if p = L. then ¢ = x. In (2.23}. we have used the
orthogonality in the third equality and the Holder inequality in the last step. If k € 117"
with [Il\'gll‘j";n bounded independently of t and if {(t) € W then from Theorem 1.2 there
exists 2, € 57, such that ||k — 2.flz, < ('h"‘i""""’IIk,Hu.(;mmnm. Finally. from (2.23) we

obtain

A (K = Koy« < of 2minm.r)
Similarly. we can show that whenever f € o
IR (f = PYf)||x < ch?mintm.r)

and that. with A, = P, K.

”[\ _ 1\’11“.\* < Chmin(m.r).

Using these estimates. we obtain Theorem 1.1 as a corollary. In summary. we have
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Corollary 2.4 (see Theorem 1.4) Let y and y&'! denote the solutions for (2.19) and {2.20)
respectively. Suppose that y € W k€ W (m > 0) with ]lk,lhy;n bounded indepe nde ntly
of t and that f. & € W where &(t) = ff k(t.s)y(s)ds. Then

|IJ Y- I“\ < (‘h-mm(mr)

where ¢ is independent of n.

For the iterated collocation method we select in the partition [],. for each i. {t,,}7_,
such that

tl-l Stll <[x.’< "'<[xr S[x-

Let P¢ denote the interpolatory projector of ('[a.b] onto S¥, defined by P y(t,,) = y(t,,)

r.n

foreach i =1.....nand j=1.2..... r. In the collocation method. equation {2.4) becomes

e - Ps Kys = PL f (2.26)

-qie. K= PR and f, = PC f. The corresponding iterated collocation solution is defined

by

= f+ RyS. (2.27)

As in Corollary 2.1 for the iterated Galerkin method. to see that the iterated collocation

method of (2.27) is a special case of Theorem 2.1. we must examine the terms in the right

side of (2.6). The second term of (2.6) in this case is analvzed as follows: Let \(¢) =
f k(t.s)yS (s)ds. Then

K(K = K)yS () = (keoy = PEY)
=(kr—7:n.(-\ PC )'f'(rn( (I—P()(\—Ln“ (2’2'\))
+(7:n.!~ (1 - Pr{')'-‘n)-

where o, € S, and v, € SP,. Now arguing exactly as in the proof of Theorem 1.5. we

m.rn

obtain

”[\-([\' _ [\-n)l/,(,H < < Chmin(l.m+r)
where ¢ is a constant independent of n. Additional terms in (2.6) can be bounded similarly.
Corollary 2.5 (see Theorem 1.5) Let yS and yS! be the solutions of (2.26) and (2.27)

respectively. Suppose f € Cla.b]. y € W} (0 <1 < 2r) and ky € W™ (0 < m < r). with

|kelliwm bounded independently of t. Then

”J yS I”\ < Chmm(l r4m)
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where ¢ is independent of n.

Now we can use Theorem 2.1. Corollary 2.3 in particular. to prove the superconvergence
of the iterated degenerate kernel method.

Counsider equation {1.1). The degenerate kernel method for approximating the solution
of (1.1) requires us to approximate the kernel & by a degenerate kernel whose general form

can be described as

n n

AENEDIDIIEACENG (2:29)

=1 ;=1

where {,}I, is a set of linearly independent functions in an underlying Banach space X.

=1

The operator A in (1.2) is then approximated by a sequence of finite rank operators
h
Kagit) = [ kalt shytsids. (2.30)
Subsequently an approximate solution y, is found by solving
b
palt) = [alteslyalsids = (1) @<t < b, (2.31)

Equation (2.31) can be written as

Ti 143

h
Yyalt) — Z,:l-(t){Z/ a2, (8 yn(s)ds}t = f(t) a <t<b.

r=1 =1 '

If we put
n b
c = Z/ a2, (s ynls)ds, (2.32)
=177

then y, can be written as

ya(ty = f() + D eipilt). (2.33)

=1

Upon substituting (2.33) into (2.32). we obtain the following n x n system of linear equations
for c,.
n n 5 n )
¢ — Z('IZ/ a, ¢, (s)gr(s)ds = Z/ a2, (8) f(s)ds 1<i<n. {2.3-1)
=1 =1 K =1 1
Finally. once these ¢,s are found by solving (2.31). equation (2.33) gives the required
approximate solution for the degenerate kernel method. Equation (2.31) is written in

operator form as

Yn — Knyn = f (2.35)
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which is a special form of (2.4) with f, = f for all n. When the degenerate kernel solution
yn is iterated as in (2.3). an interesting question is to ask under what conditions is the
superconvergence of the iterates guaranteed. The superconvergence of the degenerate kernel
method hinges critically upon the wayvs that the kernel & is decomposed. \We demonstrate
two different methods that guarantee the superconvergence of the iterates of the degenerate
kernel method.

In the first method. we examine the least-squares approximation. For each positive
integer n. assume that the partition [], satisfies the quasiuniform condition (1.13). Let
By.Bj..... B, be the B-spline basis for S7, [39]. with d = nr — v(n — 1) the dimension of
S? .. and. rand v are integers such that 0 < v < r. Assume that k,(t. s) is the least-squares
approximation of k(¢.s) from the tensor product space 57, = SY,. -i.e. assume that a,, in
(2.29) are such that

4 4

h b 4 b b A )
/q/:|k(t..~')—zZaUB,(s)BJ(t)|"(ls(1t:bmi_n/q / [k(t.5)=D > b, B.(~) B, (t)[*dsdt.

=1 =1 ueER =1 y=I

Theorem 2.6 Let y € L[a.b] be the solution of (1.1) and y, the solution of (2.325) where

kn in (2.29) is defined by the least-squares approrimation for k from SY, - SY,. Assumne

that k(t.u) € Wi ([a.b] x [a.b]). 0 < m < r. ke(u)yn(s) € $85([a. b] x [a.b])) for cach n and

t € [a.b] and that ||k(u)ya(s)iL, s uniformly bounded in t. where 0 <[ < r. Then
lly = yallL, = O(A")
with n = min{m + [.2m}.
Proof: Using Corollary 2.3 and noting [|[N — K|, = O(h™) [16]. we obtain
ly = yalle, = Oth*™) + OUIK (K = Ka)yallz,)- (2.36)

Hence we only need to estimate the order of convergence of ||A (A — K, )y.||r,. Note that

IN(KN = Kp)ya(t)| = Ij:’ k(t.u) ﬁf[k(u.s) — hp(u.s))ya(s)dsdu]
= If:’ f: k(t. u)[k(u.s) = kn(u.s)]yn(s)dsdul.

Let vy(u.s) = k(t. u)ya(s) and let sp(u.s) =571, 3272, by, Bi(u) B, () be any element from

cv

Sy . 5S¢, Then since k, is the best approximation in L, norm of & from SY, = 57 .

r.n®

b b
/ / Enlts) k(. s) =k, (u. s)]dsdu = 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

therefore
h b
IN(K — Koya(t)] = [/ / [Lelues) = salues)][Alu. sy = ky(u.s)]dsdul.
Applving the Cauchy-Schwartz inequality.
][\.([\- - [\.n).’/n“){ < ”L'! - r:n“[__a“k - I\'n“L_,-

Noting that ||k —k,||z, = O(h™) and choosing =, particularly so that ||v, — .|, = O(R').
(2.36) proves the desired resuit. O
The second method that produces superconvergence of the iterates of the degenerate
p p g g

kernel solutions is based upon the idea of approximating the kernel & by interpolation.

Let &.5, & be the zeros of the rth degree Legendre polynomial in [—1.1]. We shift
these points to each subinterval [t,_;.¢,]. i = 1.2......\V to obtain {r,} =1~ Denote the

interpolation polvnomials by ;. -i.e.

L if (i.)) = (a. 3)
Fi(Tyy) = (g (2.37)
0 if (i.j) # (a. )

An approximating degenerate kernel &, is now defined by

kals ) =333 S kimy . mas) a5l (2.38)
=1 y=la=1 =1
Let the interpolation projector of ('([a.b] x [a.b]) into S¥, - 5S¢ be denoted by P,. That
is.

P.k(s. t) = k,(s. t)

where k, is defined in {2.3%). The following theorem demonstrates the superconvergence of

the iterated degenerate kernel method when the kernel is decomposed by the interpolation.

Theorem 2.7 .issume that in equation (1.1). k(u.s) € W ([a.b] x [a.b]). 0 < m < r. and
ke(w)ya(s) € Wi[a.b] x [a.b]). 0 < | < r. for each t € [a.b] with ke () yn it sy x o))

bounded independent of t and n. Then

ly — vl = O(h*). v =min{m +1.2m}.
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Proof: Asin the proof of Theorem 2.6. we need to estimate the error of ||N (K = K,.)yn|| « -

By taking -, € 57, © SP, and v, € S% . - S0 .. for each t € [a.b].

K(K - Rjy.(t) = ,Iﬁf k(t. u) ﬁf[k(u.-*) — ko(u. )]y, (s)dsdu
= 2 [2k(t. ) yalsi[h . ) = ko(u. s)]dsdu
= (he(u)yn(s). hlu.s) = Kk, (u.s))
= (ke(u)yn(s) — snlte.s) k(u.s) — ko (u. s))
Hgalws) ([ = Pk s) = vplus)) + (falu.s) (I = Pr)eg(u.s))

The rest of the proof follows once again bv an argument similar to the one given in the
proof of theorem 4.2 of Graham. Joe and Sloan [22]. A straightforward modification is
needed to accommodate the bivariate functions. On this point. the reader is referred to
the book by Cheney [16] that contains a discussion on various methods of approximating a
bivariate function by elements from the tensor product space of finite dimensional univariate

functions. O
NUMERICAL EXAMPLES FOR FREDHOLM EQUATIONS

We present numerical examples for a second kind Fredholm equation using least-squares
(Table 2.1) and interpolation (Table 2.2) to approximate k(s.t). Let k(s.t) = ¢*. [ is
chosen so that the solution is y(¢} = 1. Then. the computed errors for the least squares

method are shown in the following table. The linear spline basis was used in computations.

Table 2.1: Least Squares Results for Fredholm Equations

Errors
n non-iterated iterated
2 .13626032769-135e-1 | R0131211576e-
3 .6229709334709e-2 | .15763:350088e--1
4 356820-4943072e-2 | .49730036-18e-5
convergence rate = 1.93 4

For the interpolation method. using the roots of the second degree Legendre polyvnomial.

we have the following.
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Table 2.2: Interpolation Results for Fredholm Equations

Errors
n non-iterated iterated
2 1308586004729 Le- 1 | .N274288%3 1 13e-4
3 60875629595%8Re-2 | (1647 1687222e--
4 35018814363573e-2 | 5231R14555e-5
convergence rate X 1.9 4

[n these examples. by the conditions in Theorems 2.6 and 2.7 we have that m = r and
I = r. Thus. both theorems predict a doubling of the convergence rate. As we can see.
with the linear spline basis. r = 2. the convergence rate for the non-iterated solution is = 2.

while for the iterated solution it is 2r = 1.
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CHAPTER III
THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN
EQUATIONS

INTRODUCTION

In this section. we review the Galerkin method and the iterated CGalerkin method for
Hammerstein equations that were recently developed in [44]. The review given here for
the aforementioned paper is extensive since the Galerkin method and the iterated Galerkin
method are two fundamental topics and we feel that any thesis that deals with various
numerical methods for the Hammerstein equations should contain a discussion on the

subject. The Hammerstein equations can be written as
b
r(t) —/ ki{t.s)u(s.o(s))ds = f(t). (3.1)
We assume throughout. unless stated otherwise. the following conditions on k. f and ¢
(i) lim,o- ||Ar = k||« = 0. 7 € [a.b]:

(ii) M = sup, <,z [ Rt 5)]dE < x:

(iit) f € C'la.b]:

(iv) v(t..r) is continuousin t € [0. 1] and Lipschitz continuous in r € (-x. x). i.e.. there

exists a constant 'y > 0. independent of ¢. for which

|e(t.ry) — clt.ry)| < Cylry = &3] forall ry.ry € (-x.x): (3.2)

(v) the partial derivative (%) of ¢+ with respect to the second variable exists and is

Lipschitz continuous. i.e.. there exists a constant 'y > 0. independent of ¢. such that

|L'(O'l)(f.1'l) - L'(O'”([..l'g)l < Cylry = £a]. forall oy, ry € (—x.x): (3.3)

(vi) for r € C'[0.1]. v(..x(.)). OV r(.) € Cla.b].
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We note that the condition (ii) is a consequence of the condition {i). We listed (ii}) because
of its use in the sequel. Additional assumptions will be given later as needed. Without loss
of generality we will restrict the interval (a.b) to (0.1).

Results concerning the Galerkin approximation using spline functions for the solutions of
equation (3.1) with smooth and weakly singular kernels are presented.

et n be a positive integer and {.X,} be a sequence of finite dimensional subspaces of

C'[0. 1] such that for any r € C’{0. 1] there exists a sequence {r,}. r, € X,. for which
|tn = r|lx = 0 as n — x. (3.1)

Let P,: L,[0.1] - X, be an orthogonal projection for each n. We assume that the projection

P, when restricted to ('[0. 1] is uniformly bounded. i.e.
P = sup||Plcpall~ < x. (3.5)
n
Then from (3.4) and (3.5). it follows that for each r € C'[0. 1].
[|Poxr = rljx = 0. as n — x. (3.6)
Now let
1
([\'\[’)(.1')([)5/ k(t.syu(s. r(s))ds.
0
With this notation. equation (3.1) takes the following operator form
r—RKV¥r=f. (3.7)
In many interesting cases. equation (3.1) allows multiple solutions. Hence it is assumed
for the remainder of this paper that we are treating a solution r of equation (3.1) that is
isolated.
Let {;n,})=) be a set of linearly independent functions that spans .X,. The Galerkin
method is to find
n
Ln = an_jr:n_/
J=1
that satisfies
o, — P, KVYr, =P, f. (3.8)
Equivalently one is required to find b,,’s that satisfy the system of nonlinear equations

described by

n

n 1

an_] < Pnjevrm 2> — < / k(t"\')L’(S-Zbrur:nj(s))ds- v >=< f- > 1 L ] < n.
1]

J=1 J=1

(3.9)
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where < ... > denotes the inner product in L.
We next estimate the error of the Galerkin approximate solutions to the exact solution.

For notational convenience. we introduce operators T and T, by letting
Ter=f+RKWr (3.10)

and

I.r,=P,f+P,RKV¥r, (3.11)

so that equations (3.7} and (3.8) can be written respectively as r = Trand r, = T,r,.
A proof of the following theorem can be made by directly applyving Theorem 2 of Vainikko

[71]. The paper of Atkinson and Potra [7] is also useful in this connection.

Theorem 3.1 Let r € C'[0.1] be an isolated solution of equation (3.7). Assume that |
is not an eigencalue of the linear operator (KW)' (r). where (KW) (r) denotes the Frechet
derivative of KW at r. Then the CGalerkin approrimation equation (3.8) has a unique
solution r, € B(x.8) for some 8 > 0 and for sufficiently large n. Moreover. there erists a

constant 0 < g < 1. independent of n. such that

LI TP . (3.12)
l+¢q ~ T =y - q
where o, = ||(I — T,'l(r))_l(T,l(.r) — T(r))”x. Finally.
En(r) <ilrn — rl|x S CEL(r). (3.13)

where C' is a constant independent of n and E, (r) = inf ||r - uf| .
WEXn

For any positive integer n. we assume that the partition [], satisfies the quasiuniform
mesh condition (1.13).

Using Theorems 1.2 and 3.1 and the inequality (3.13). we obtain the following theorem.

Theorem 3.2 Let r be an isolated solution of equation (3.1) and let r,, be the solution of
equation (3.8) in a neighborhood of r. Assume that 1 is not an cigencalue of (KW)'(r). If
re Wl (0<i<r) then

£ = zallx = O(R').

If re ”"ﬁ (0<i<r. Il <p<=x) then

|z = ralfx = O(R'™Y).
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We remark that a similar result concerning the Galerkin method for Urvsohn equations
was obtained by Atkinson and Potra [7]. Hence. Theorem 3.2 may be derived by specializing
their result to Hammerstein equations.

In the remaining portion of this section. we investigate the order of convergence of the
Galerkin method for Hammerstein equations with weakly singular kernels. For this purpose.
we define some necessary notation. For simplicity. we let [a.b] = [0.1]. For any ¢ € R. let

[0.1], = {t € [0.1]: t + € € [0.1]}. Let A\, denote the forward difference operator with step

size h. For a > 0 and 1 < p < x. we define the Nikol'skii space N'[0. 1] by

l

"\-[‘J,[O' 1} = {[ € Lp0.1]: [xlup = 71[:&‘3 (lhluo IIAZI(["D”L;:[UJL’») < x} . (3.14)

where [a] is an integer and 0 < ag < 1 are chosen so that a = [a] + ag. N[0.1] s a
Banach space with the norm [[rll, , = |[rll, + |r]., [21]. We remark that the function ¢!
is in V{'[0. 1] but is not in .\'i’[O. l]. for any 3 > a. and logt € N}[0.1]. It is known from

Graham [24] that

NP0 S W01 C N[0 1] C VO, L (3.15)

forme V.0<e< l.and 1 < p < x:and
NJ[0.1)C N[0, (3.16)

forn >0.1 <p<g<xand 3 =a-(1/p—-1/g) > 0. We consider Hammerstein equations
with kernels given by
k{t.s) = m(t.s)k(t —s). t.s € [0.1]. (3.17)
with & € N{[0.1] for some 0 < a < 1 and m € C3([0.1] x [0.1]). and ¢ as defined in the
previous section.
When no further conditions are made on the partition [[, other than the one given
by (1.13). the next theorem gives the best possible order of convergence of the Galerkin

approximation to the solution of equation (3.1) with a weakly singular kernel defined by

(3.17).

Theorem 3.3 Let r be an isolated solution of equation (3.1) with a kernel given by (3.17).
Assume that 1 is not an eigenvalue of (KW)'(r). If f € .\'i’“[O. 1] for some 0 < 3 < 1.
then

il — rallc = Oth™).
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with v = min{a. 3}.
Proof: By Theorem 3.1. we have
lo — raflx SC inf o = af| - (3.1%)
nE€NY

A similar proof to the one given for Theorem 3 (ii) of Graham [24] shows that if f €
N*Y0. 1) then r € .\'{“‘"“*""*”[0. 1] C ‘\'fl'i"{""’}[O. 1]. In addition. (3.15) implies that
f € Wl0.1]. Hence f is equal to an absolutely continuous function almost evervwhere.
Without loss of generality. we have f € 117{0. 1]nC'[0.1]. [t can be shown that r € C'[0. L].
Thus. r € N2[0.1]NC[0. 1]. It was proved in Graham [2] that if o € N2{0. 1]NC’[0. 1] for
some 0 < n < 1. then there exists a spline v € S¥, such that ||o — ¢||« < Ch” where (' is a

constant independent of h. The result of this theorem follows immediately from (3.1%) and

the above argument. O

Now we consider a special form of (3.17). Namely we assume
k(t.s)y =m(t.s)g,(jt = s]). {3.19)

where m € C'**1([0.1] x [0. 1]) and

galsi=q (3.20)

log~s. a =1,
With these kernels. certain regularities of the solutions of (3.1) are known. Let S be a finite
set in [0. 1] and we define the function ws(f) = inf{}t — s : s € S}. A function r is said to

be of Type(a. k. S). for -1 < a < 0. 1f
O] < CleostO]"™* 1 g 5.

and for a > 0. if the above condition holds and r € Lip(a). Kaneko. Noren and Xu [36]
proved thatif fis of Type(.3. . {0. 1}). then a solution of equation (3.1) is of Type (5. . {0. 1}).
where = = min{a..3}. In order to recover the optimal rate of convergence of numerical
solutions. we define a partition [], of [0. 1] corresponding to the regularity of a solution.

The knots of this partition [, are given by

L= (1/2)(2/n)1. 0< i< /2
/ / / (3.21)
ti=1-t,_,. nf2<i<n.
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where ¢ = Z. Let St = SY([T;). with r = L and v = 0. or r > 2 and v € {0.1}. The
following theorem gives the order of convergence of the Galerkin approximations to the
solution of Hammerstein equations with kernels defined by (3.19) and (3.20). [t should
be noted that the technique of approximating a solution of the type described above by
elements from the nonlinear spline space has been used on many occasions in dealing with
the weakly singular Fredholm integral equations. For example. Vainikko and Uba [73]
describe the collocation method. whereas in Vainikko. Pedas and Uba [7] they describe
the Galerkin method. Schneider [36] on the other hand establishes the product-integration

method based upon the idea of the nonlinear spline approximation with nonuniform knots.

Theorem 3.4 Let r be an isolated solution of (3.1) with kerncls (3.19) and (3.20) and
let r, be the Galerkin approrimation to r. Let m € C*+'([0.1] x [0.1]). and f be of
Type( 3.4 {0.1}). Assume that € COD0. U]x(=x.x)) forp = 0.1 and v € C*71{{0. 1] x

(—=x.x)) for g > 2. We also assume 1 is not an eigencalue of (KW)'(r). Then

I
”I - In”x :O(—r)
I

Proof: This follows from Theorem 3.1. the regularity of the solution r. and from the

results of Rice [53]. O
THE ITERATED GALERKIN METHOD

In this section. we study the superconvergence of the iterated Galerkin method for the
Hammerstein equation (3.1). Generalizing the linear case we first define the iterated scheme.
Assume that r is an isolated solution of (3.1). As before. let P, be the orthogonal projection
from L,[0. l]onto X, with conditions (3.4) and (3.3) satisfied. Assume that r,, is the unique

solution of (3.8) in the sphere B(r.d) for some ¢ > 0. Define
r,’l =f+RK¥r,. (3.22)
Applving P, to the both sides of (3.22). we obtain
Purl = Pof + PARKWr,. (3.23)
Comparing (3.23) with (3.8). we see that

Pl =r,. (3.24)
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Upon substituting (3.24) into (3.22). we find that the function z,ﬁ satisfies the following new
Hammerstein equation
r!, = f+ [\'k[anx,I,. (3.23)

By letting 5, = f + AWVP,. we may rewrite (3.23) as r,’l = S,,r,’l. We first study the

invertibility of the linear operators [ — 57 (r) in the following theorem. which will be used

to prove the main results of this section.

Lemma 3.5 Let £ € C[0.1] be an isolated solution of (3.1). Assume that | is not an
eigenvalue of (KW) (r). Then for sufficiently large n. the operators [ — S! (r) are invertible

and there erists a constant L > 0 such that

(I = S'(x)) " Y« < L. for sufficiently large n.

Proof: This follows from an application of the collectively compact operator theory. See
[14] for detail. O
For simplicity, from Lemma 3.5 we assume without loss of generality that [ — 5/ (r) is

invertible for each n > | and
L =sup{||(I =S.(r) Yx:n>1} < x.

Throughout the rest of this section. we assume without further mention that & > 0 satisfies
LCMPd < 1 and 4, is chosen so that (" M9, < 4. The following lemma establishes that
r! defined in (3.22) is the unique solution of (3.23) in some neighborhood of r and provides

an error bound for r! approximating r.

Lemma 3.6 Let r € C'[0. 1] be an isolated solution of equation (3.1) and r, be the unique

solution of (3.8) in the sphere B(r.dy). Assume that | is not an eigenvalue of (KW)'(r).
I

. defined by the iterated scheme (3.22) is the unique solution

Then for sufficiently large n. r
of (3.25) in the sphere B(r.d). Morcover, there erists a constant 0 < ¢ < L. independent
of n. such that

sl -l < 2

where 3, = ||[(I = S (r))"Sa(x) - T(.l‘)]”\ Finally.

llel = £ll < CER(2).

where E, () is defined in Theorem 3.1.
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Proof: This follows easily using Lemma 2.1 and Theorem 2 of Vainikko [71]. T

One way to ensure the superconvergence of the iterated Galerkin method is to assume

AW (L) = Pa)lcpasyllx — 0 as n — . (3.26)

In this case. using the identity (ref. Theorem 2.3 of Atkinson and Potra [7])

(1 = (KW)' () (z] - 1)
=[I - (KW(£)(I = P)][KV¥(r,) — K¥(r) - (KUY (r)(x, — )]
_(1\-\p)l(-r)([ - Pn)(([\"p)'(r) - [)(In - I)'

we obtain

el =2l < W= (K®Y ()Y {1 = (K0 ()] - Po)|

< sup [[(KW) (r+8(r, — 1)) = (K®Y(r)||]le = rali~
0<8<1

HI(RWY (£) ([ = PO)((KW) (x) = )(x, - 1)]|+ }-

This with (3.26) gives the superconvergence of r! to r. In the next theorem. we

establish superconvergence of the iterated Galerkin method in a general setting. In establishing
superconvergence of the iterates of the Fredholm equations. many authors assumed the
condition |A ([ - P,}}| — 0 as n — x with A being a compact linear operator (e.g..
Theorem 5 of Graham [24] and Theorem 3.1 of Sloan [62]). In our current problem. this

is equivalent to assuming condition (3.26). However. the next theorem is proved without

assumption (3.26). First. we apply the mean-value theorem to ¢(s.y) to conclude
clsoy) = elsogo) + O S0 + 80y = o))y = yo). (3.27)

where 8 := 8(s. yy. y) with 0 < 8 < 1. The boundedness of § is essential for the proof of the

next theorem. although it mayv depend on s. yy.y. Let
glt. s yo.y.0) = k(t.s) D (s o + 80y = o).

1
(Gor)t) = /0 G(t 5. Por(s). Pl (s). 8)2(x)ds.

and (Gr)(t) = ful ge(s)r(s)ds. where g,(s) = k(t. s) (O, r(s)).

Theorem 3.7 Letr € C'[0. 1] be an isolated solution of equation (3.1) and r, be the unique

solution of (3.8) in the sphere B(r.8,). Let r! be defined by the iterated scheme (3.22).
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Assume that 1 is not an eigenvalue of (KW) (r). Then. forall 1 < p < x.

e = el <C {Ilr - Parlli + sup inf At et D0 e () = ufl,lle - PanIp}~

0<t<LUEAR

where 1/p+ 1/q =1 and C is a constant inde pendent of n.

Proof: Note that from equations (3.1) and (:3.23) we have

r—url = KNW¥r - \[’Pnr,ll) =hK{(Vr-vP,r)+ KNWVYP,r - ‘[lP,,r,[l). (3.2%)

Replacing y by P,r! and yo by P,z in equation (3.27). the last term of (3.28) can be written
as

KN(UP,r — WP, rl)(t)y = (G Pi(x - £1))(t).
Equation (3.28) now becomes

r—r,’, =A(Vr-vP,r) +G,1P,1(1—1‘,[1). (3.29)

By using condition (3.2) and the fact that 0 < 8 < 1. we have. for all r € C’[0. 1].

1
(G ar) = (Gl € sup [kt s)ldslle || (] Par = 2l + I Pall<lln = 2l 4 ).
0<1<1 Jo

Consequently. by assumption (3.1) and Lemma 3.6.

1G = Gl < M(|Pat = s||« + Pl —=2l|) = 0 as n = x.

That is. (¢, = (7 in the norm of C'[0. 1] as n — x. Moreover. for each r € C’[0. 1].

t
sup (G P,r)(t) — (Gr)y(t)| = sup | Ge (S Pur(s) — r(s)]dsj < MM||Por — 1] .

0<e<1 o<i<t Jo
where

My = sup |L’(U'”(f.1'(f))| < +x.
0<e<l

[t follows that (P, — ( pointwise in ('[0.1] as n — x. Again since P, is uniformly

bounded. we have for each r € C'[0.1].
|GaPor = Grll« S |Go = Gl Pall <2l x + |G Prx = Grlf « -

Thus. ¢, P, — G pointwise in C'[0. 1] as n = >c. By Assumptions ii. v. and vi. we see that

there exists a constant C' > 0 such that for all n

[0 (s, Por(s) 4+ 0(Poxl(s) = Pur(s)))] < Call Par = xllx + 0C, Pzl = £l + M, < C.
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By a proof similar to that for Lemma 3.5. we can show that {(;, P, } is collectively compact.
Since G = (K'W)’(r) is compact and ([ —(') ™! exists. it follows from the theory of collectively
compact operators that (/ - G, P,)~! exists and is uniformly bounded for sufficiently large
n. By (3.29). we have the following estimate
sup |[(r — ri)(l)l < C sup [K(Wr — WP, r)(t).
0<t<1 0<e<1
Next. we estimate the function d(t) = |K(Wr — WP, r)(t)]. Using (3.27) with y = P,r

and yo = r. we obtain. for 0 < ¢ < 1.

1
d(t) = / g(t.s.r(s). Por(s).0)(r(s) — Pyr(s))ds].
0

Note that fol w(s)[r(s) = Por(s)]ds = 0. for all w € X,.. Thus. for all u € X,,.

d(it) =

1
/ [glt. s. r(s). Por(s).0) — u(s)}(x(s) = Por(s))ds
0

1
< / lg(t.s.x(s). Por(s).8) — ge(s)|dslje = P.xf]«
0

1
+ I/U [_q,(.s') - u(.s')](_[(s) - P,r(s))ds
t
Now. by condition (3.2). we have
1 1
/ lglt.s.x. Por(s).0) — g (s)]ds < ('l()/ [k(t. s)dsflr = Pyr||« < CrM|lr = Porfl«.
v 0
Moreover. for 1 /p+ /g = 1.

< Nge = uliglle = Parflp.

1
l/o [9e(5) — u(s)][x(s) = Paox(s)]ds
Therefore.
d(t) < CyM|le = Porl|2 + llge — allylle = Pur|l,. forall ue€ X,.

Hence the desired result follows. O
In the next two theorems. we consider the case that X, = S¥_  with [I, an arbitrary
partition of [0. 1] satisfving (1.13). First. we consider the case when both the kernels and

the solutions of equation (3.1) are smooth.

Theorem 3.8 Let r € H'; (0 <l < r) be an isolated solution of (3.1). r, be the unique

solution of (3.8) in B(x.4y). and x! be defined by the iterated scheme (3.22). Assume that
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1 is not an eigenvalue of (KW)'(r). Assume that for all t € [0.1]. k()PP () €

W0 <m<r)and Hkt(.)c,'(o‘”(..r(.))”u'qm is bounded uniformly int. Then
e = 2]l = O(hw+mintusty
where 1= min{l.r} and v = min{m.r}.
Proof: Since the partition [T, of [0. 1] satisfies condition (1.13). we conclude that
P:= snllpoPon < x.

Hence.

le = Pazllp < fle = Pazllx < (L+P) inf iz = ullx < Ch%.

In addition.

sup inf |k @Dz () = ull, < ChY.
0<t<1 HESY

The result of this theorem follows from Theorem 3.7 with X, = 8¥ . O

We remark that Theorem 3.8 may be obtained from Theorem 3.2 of Atkinson and Potra
[7]. Theorem 3.8 being a special case of Atkinson and Potra’s theorem to Hammerstein
equations.

In the following theorem. we assume that k(t. s) is a kernel given by (3.17). i.c.. k(t.5) =

m(t. syk(t = s). with & € N7[0.1] for some 0 < a < | and m € C'*([0.1] x [0.1]). Also. we

v
r.n

assume that S* is such that v > 1.

Theorem 3.9 Let r he an isolated solution of equation (3.1) with kernels given by (3.17).
r,, be the unique solution of equation (3.8) in B(r.8;). and rl be defined by iterated sche me
(3.22). Assume that | is not an eigenvalue of (NK'W)'(r}). f € .\'iiH[O. 1] for some 0 < 3 < 1.
D r()) e WY for o € W If for each vy € SY L |Jed-) OV e ()|, and [|k[, are
uniformly bounded in t. then

e = £l = O(h*™).

with =~ = min{a. 3}.
Proof: Following the proof of Theorem 3.%. we have

lle = Pazllx < (14 P) inf [lr = ullx. (3.30)

r.n
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As stated in the proof of Theorem 3.1. we know that
€ N[0 N0 NI (3.31)

Using (3.30) and an argument similar to the one used in the proof of Theorem 3.1. we
obtain |lr — P,r|[x < Ch”. Now. by Theorem -4(i) of Graham [21]. we find that there
exists ry € S¥ such that [[k, — /[, = O(h"). Since v > 1. it follows that S¥, C .
Thus. ¢, € H'l. From (3.31). r € li'll. This vields that (1 r()) e H'l‘. Consequently.
(e e() € 31 1. The remark made before Theorem 3.2 implies that there exists

ug € Sy, for which

e e () = w (DL, = O(h).
Therefore.
1
lge = wlle, = /ImUwMU—ﬂv“”&JNH—udﬂw~
< / Im(t. s)k(t = s)e O (s, r(s)) = vo(s) O s p(5)) |ds

+/ Il't(s)L‘(U'”(-‘-I(-‘)) = ur(s)]ds
0

ke = cello e s+ e e D ey = wele,

IA

= O(h")+O(h) = O(h™).

Now. applying Theorem 3.7 with ¢ = 1. p = x<. and X, = 57,,. we conclude that

(R A TN C'{nr—mni + i g = wlleylle - P,‘zul}

‘rn

= O )+0(h*) = Oh*).

The proof is complete. O
Next. we apply Theorem 3.7 to equation (3.1) with kernels given by (3.19) and (3.20)
and use X, = 5/ as approximate spaces such that r > 2 and v = 1. Proofs of the next

two theorems are similar to the one given for the previous theorem and we refer the reader

to [44] for detail.

Theorem 3.10 Let r be an isolated solution of (3.1) with weakly singular kernels given by
(3.19) and (3.20). Let r, be the unique solution of (3.8) in B(r.d,). and rl be defined by

the iterated scheme (3.22). Assume that | is not an eigenvalue of (KW)' (r) and that the
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hypotheses of Theorem 3.4 are satisfied with u > 1. Also assume that OV (- r(-)) is of

Type(a.r.{0.1}) for a > 0 whenever r is of the same type. Then

HI—I{l“x:O( ).

”u+r

As the last application of Theorem 3.7. we consider equation (3.1) with kernels having
singularity at the four corners of the square [0. 1]x [0. 1]. a problem that arises from boundary
integration for the harmonic Dirichlet problem in plane domains with corners (see Kkress
[46]). In the following theorem. we assume k,(t) = A(t. ) is of Type(a.pu.{0.1}).for a > 0.

and k,(s) = k(t.s) is of Type(a.u. {0.1}). for a > —1. eg.. k(t.s) = m(t.s)\/t. and

kit.s) = m([.s)\/l':. etc.. with m(t.s) smooth. and assume f is of Type(.3.11.{0.1}). for
a..3 > 0 and a positive integer u. It is not difficult to prove that an isolated solution r. of
the corresponding equation (3.1).is of Type (~.p.{0.1}). where 5 = min{a. 3} ifa > 0 and
v = min{n + 1. 3} if =1 < a < 0 by modifving the proofs of theorems in Kkaneko. Noren

r

and Xu [36]. \We again let ¢ = = and detine the Galerkin subspace S}, with r = [ and

v =0.and r > 2 and v € {0.1}. where partition [}, is defined as in (3.21). The following

theorem describes the order of convergence of the Galerkin approximation r, and that of

I

n*

superconvergence of the iterated Galerkin approximation r

Theorem 3.11 Let r be an isolated solution of (3.1) with kernels of the type defined in the
paragraph preceding this theorem. Let x,, be the unique solution of (3.8) in B(r.d). and r!
be defined by the iterated scheme (3.22). Assume that 1 is not an cigenvalue of (KW)'(r)
and that f is of Type(3.r.{0.1}). Also assume that OV (- r(-)) is of Type(~.r.{0.1})
whenever & is of the same type. Then.

I
lr —znflx =0O(=).

nr

and
1

n3r

e = 2kl = O

).
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ITERATED DEGENERATE KERNEL METHOD FOR HAMMERSTEIN
EQUATIONS

A study of the degenerate kernel method for Hammerstein equations was made by Kaneko
and Xu [41]. A brief outline of the method is described below for convenience. As in the
Fredholm equation case. the kernel & in (3.1) is replaced by &, of (2.29). The equation that

one must solve is the following:
h
balt) = [ kalto)elsgalsD ds = F(0). a<t<h. (3.32)

Following analogously the development made in (2.33) and (2.3-1). with

noorh
=Y [ ayp et als)ds (3.33)
=177
yn can be written as
Yn(t) = fU)+ ) cinilt). (3.34)
=1

Substituting (3.3) into (3.33). we obtain the following n nonlinear equations in n unknowns

Ci.-**.Cp.

n }) n
c;, = Z/ a;, e (shels. f(s)+ Zq,:,(s))ds. I << n. (:3.35)
=1 “ =1

As before

h
KW y(t) 5/ F(t 5 (s, yx) s

so that (3.1) becomes

y—RKUy=f. (:3.36)

Similarly we write equation (3.32) as

yn — N Wy, = f (3.37)
The iterated solution y! is now obtained by

y,{ =f+ K¥y,. (3.3%)
The Fréchet derivative of AW at 2y € ('[a.b] is denoted and defined by

)
(KW) (o) () () = / k(t.s) O (s, zo(s)) 2 (s)ds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

for = € C'la.b] and (V") denoting the first partial derivative of ¢ with respect to the second
variable. The following theorem describes the superconvergence phenomenon of yf to y.
Here we assume that the decomposition of the kernel in (2.29) is done by the interpolation

scheme of the previous section. The case for the least-squares approximation is similar.

Theorem 3.12 Assume y € Cla.b] is an isolated solution in equation (3.1). k(u.s) €
W ([a. 8] x [a.b]). 0 < m < r. and i p(u.s) = klu)e(s.yal(s)) and ne,(u.s) € H'{([n.b] X
[@.b]). for cach n and t € [a.b]. 0 < [ < 2r. where y, is the solution of (3.37). Assume also
that 1 ts not an eigenvalue of (KW)'(y) and that ||r]t‘,1||“-11 is uniformly bounded in t and n.

Then
ly =yl = O(h*). v =min{2m.!l}.

Proof: From (3.36) and (3.37).
y—yl = KUy - KWy,. (3.39)

Now

Kby - KWy, =RW(f+ RKWPy)- KV(f+ K, Wy,
= (KUY (0(n)(f+ KoWy,) + (1 =0(n))(f + Ky} (KWy — K, Wy,)
for some 0 < 8(n) <1

= Ky (KWy - KWy, + (KWy — KWy,) - (KWy — KWy,)).

where Ay,) = (KW)(6(n)(f + KaWya) + (1 — 8(n))(f + KW¥y)). Since R is compact.
(KNW)'(y) is also compact [30]. Also since the solutions y, of degenerate kernel method
converge to the solution y of (3.1) [41]. {N4(,,} converges in operator norm to (A'W¥)'(y).
From this. along with the fact that I is not an eigenvalue of (A'W)'(y). an application of
theorem 10.1 [47] vields that (I — RNy(,))~" exists and uniformly bounded for sufficiently

large n. Hence we obtain
Kby - Kby, = (I - I\'g(n))'ll\',;(,,)(l\' - K )Wy,. (3.-10)
Combining (3.39) and (3.10). and taking the norm on both sides. we obtain

ly = ylllx < ell(K = Ka)®yall«-
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for some constant ¢ independent of n. Now using the assumptions on & and 15, and arguing
as in the proof of Theorem 2.7 . we obtain the desired result. O

Finallv we consider a computational problem associated with (3.35). It is customary that
the system of nonlinear equations (3.33) is solved by an iterative scheme. For example. the
fixed point iteration scheme for (3.33) is to generate {cfk)},"zl for k£ > | with a given initial
vector {cfo)}f‘:l by

(L+l) Z/ (lu*rj JIAE )‘f‘ZC r! )(1‘ I < t < n. (3.41)

=1

[n this scheme. at each step & of iteration. the integrals in (3.41) must be computed since
the integrands contain the different values of cf ). To circumvent this difficulty. we propose

the following device whose idea was originally discussed in [48]. We let
() = vt ya(t)) (3.42)

where y, is defired in (3.34). We have. assuming that k, takes the form of (2.29).

h N

za(t) = (el f(1) +Zau;,({)/ Z £y (8)zn(s)ds). (3.-13)
=1 '

v
Equation {3.43) can be solved by the collocation-tyvpe scheme that was developed by Kumar
and Sloan [48]. Namely let {5}/, be n functions defined on [a.b] and let {t,}"_, be n
distinct points for which

det(n;(t,)) # 0. (3.-44)

The element :, in (3.42) is now approximated in the form 3 7_, a,7n,. The a,’s can be
found by solving the following nonlinear equations. Note that the constants a,’s are moved
out of the integrals. This makes the repeated computations of the integrals unnecessary
when the following system of nonlinear equations is to be solved by an iterated scheme.

h rn

Z“;’b (te) = vte. f(t) +Za,,y. tk)zﬂlf Z,,J( s)m(s)ds). (3.45)

=1

for | < & < n. If we denote 4 = [n;(¢)] and the right side of (3.45) by vi(a). then with

v(a) = (vi(a)) and a®) = (afk)). (3.45) may be solved by the fixed point iteration scheme

that can be described as
a®) = 4=t atkh)y. (3.46)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3R
NUMERICAL EXAMPLES FOR HAMMERSTEIN EQUATIONS

Here we present numerical examples for a Hammerstein equation using least-squares
{Table 3.1) and interpolation (Table 3.2) to approximate k(s.t). Let k(s.t) = ¢*'. (s t) =
cos(s+t). and f is chosen so that y(¢t) = 1. Then. the computed errors for the least squares

method are shown in the following table. The linear spline basis was used in computations.

Table 3.1: Least Squares Results for Hammerstein Equations

Errors
n non-iterated iterated
2 .28059-1489200%e-2 | 36676667 568e-5
3 .12905-49546556e-2 | .12129557104e-5
4 4154553837 2e-3 | .393903-4993e-6
convergence rate = 1.92 3.85

For the interpolation method. using the roots of the second order Legendre polynomial

for interploation points. we obtained the following.

Table 3.2: Interpolation Results for Hammerstein Equations

Errors
n non-iterated iterated
2 .2755039605-450e-2 | 36150371187 6e-4
3 A272147104832e-2 | .705080-42:36-1e-5
4 .730619930565e-3 | .22199115%79e-5
convergence rate = 1.92 4
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CHAPTER IV
THE ITERATED COLLOCATION METHOD FOR HAMMERSTEIN
EQUATIONS

INTRODUCTION

In this chapter. the collocation method for Hammerstein equations is presented. Some
material from approximation theory is also reviewed to make the presentation more self-contained.
We let [a.b] = [0. 1] for convenience in this chapter. \We consider the following Hammerstein

equation

1
() —/0 k(t. s e(s. o(s))ds = f(t). 0<t< 1. (4.1)

where k. f and ¢ are known functions and r is the function to be determined. \Ve will
assume the conditions (i)-{vi) stated in the beginning of Chapter 3.
We let
(KW)(r)(t) = /Ul k(t. s)e(s.r(s))ds.

With this notation. equation (-1.1) takes the following operator form
r—RKN¥r = f, (-+.2)

For the collocation method. we are interested in 57, with v = 0 or 1. That is. the space of
piecewise polynomials with no continuity at the knots or the space of continuous piecewise
polynomials with no continuity requirement on the derivatives at the knots. We assume
that the sequence of partitions [1, of [0. 1] satisfies the quasiuniform mesh condition (1.13).

In many cases. equation (4.1) possesses multiple solutions (see e.g. [11]). Hence. it is
assumed for the remainder of this paper that we treat an isolated solution r of ({.1). Let
[, = (t,-,.t;) foreach i = 1.....n. Then for v = 0. we let 7,;.73..... 7, be the Gaussian
points (the zeros of the rth degree Legendre polvnomial on [—1. 1]) shifted to the interval
[;. We define

Go={r,:1<i<n 1< j<r} (4.3)

The points in Gy give rise to the piecewise collocation method where no continuity between
polynomials is assumed. This is the approach taken by Graham. Joe and Sloan [22]. Joe

[37]. on the other hand. considered the continuous piecewise polynomial collocation method.
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His method corresponds with taking v = 1. Here we define the set (7| of collocation points
to be the set consisting of the knots along with the Lobatto points (the zeros of the first
derivative of the r — Ith degree Legendre polvnomial) shifted to the interval /;. Namely. let
S—1=land for I <I < r—=2(r2>3). let & denotes the [th Lobatto point. If |[,| denotes

Sr—

the length of /,. then (| contains

T(l—l)(r—l)+l+[ = (l;_[ +[1 + I[,!El). l S l S n. 1 S 1 S r — [. and T = tO = 0. (4.4)

N o—

The analysis for the discontinuous polynomial collocation method [22] and that of the
continuous polynomial collocation method [37] are very similar. e therefore confine
ourselves in this thesis to developing the discontinuous collocation method for Hammerstein
equations that is analogous to the method of [22]. An obvious extension to the continuous
piecewise collocation method will be left to the reader. It is noted that. in the case of
continuous polynomial collocation method using the Lobatto points. one can bring via the
iterated collocation scheme the order of convergence from r up to 2r — 2. This is due to
the fact that the rth degree Legendre polynomial on [—1. 1] is orthogonal to polvnomials of
degree < r—1 whereas the polvnomial (¢ —1)(f+ l)(if_l_)l(t) is onlyv orthogonal to polvnomials
of degree < r—3 where G(rl_)l([) is the first derivative of the r—1 degree Legendre polvnomial.

Define the interpolatory projection P, from C’[0. 1= S¥(I1,) to SZ(I1,) by requiring that.

for r € C[0.1]-= S¥(I1,,).
P,r(7,) = r(r,). for all 7, € Gl. (-+.5)
Then we have. for r € C'[0. 1]+ S¥(I1,)
P,r — r. as n — X (-4.6)

and consequently

sup || Pl < c. (1.7)

The collocation equation corresponding to (-.2) can be written as

S

I'n — Pn [\-l[l_[" = Pnf (4.‘

where r, € S/(I1,,). Now we let

Tr=f+KWUr
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and

T,.r,=P,.f+ P, RKV¥r,

so that equations (1.2) and (4.8) can be written respectively as r = Tr and I, = T,r,.
Now we can see that Theorems 3.1 and 3.2 apply to the collocation case.

When the kernel k is of weakly singular tvpe. see equations (3.19) and (3.20). then the
solution r of equation (-1.2) does not. in general. belong to 117", It was proved by Kaneko.
Noren and Xu [36] that if fis of Type(.3. ;. {0. 1}). then a solution of equation (4.1) with
the kernel defined by (3.19) is of Type(~.u. {0.1}). where = = min{n. .3}. The optimal rate
of convergence of the collocation solution r, to r can be recovered by selecting the knots
that are defined by

t,=(1/2)(2i/n)?. 0< i< n/2 (19)
t=1-t,_,. n/2 < i< n.

where ¢ = r/~ denotes the index of singularity. Details can be found in [37].
THE ITERATED COLLOCATION METHOD

The faster convergence of the iterated Galerkin method for the Fredholm integral equations
of the second kind compared to the Galerkin method was first observed by Sloan in [60]
and [61]. On the other hand. the superconvergence of the iterated collocation method was

studied in [22] and [37]. Given the equation of the second kind
r—Kr=f. (4.10)

where A" is a compact operatoron .X = ('[0. 1] and r. f € X. the collocation approximation

r, is the solution of the following projection equation
In_Pn[\-‘tn:Pnf- (1.11)

Here P, is the interpolatory projection of (4.3). The iterated collocation method obtains a

solution rf by

r,’l = f+ Kr,. (-1.12)

Under the assumption of

IKP, - K|| =0 as n = x (4.13)
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it can be shown that
e — 2l < W= KPR (r = Par). (4.14)

The assumption (4.13) is satisfied if X = L, and P, is the orthogonal projection satisfving
IIP.g — g|l = 0 for all g in the closure of the range of the adjoint A" of A since in this case
KNP, — K|| =||P.K" — R"||. Hence the superconvergence of the iterated Galerkin method
for the Fredholm equations of the second kind (4.10) can be established rather easily by
(-t.14). The results of Sloan et al [22] were recently generalized to the iterated Galerkin
method for Hammerstein equations by Kaneko and Xu [{]. The main theorem of [4-].
Theorem 3.3. that guarantees the superconvergence of the iterates was proved by making
use of the collectively compact operator theory.

The purpose of this section is to study the superconvergence of the iterated collocation

method. For the collocation solution r, of (4.8). we define
r,’l = f+hKN¥r,. {1.15)
A standard argument shows that s/ satisfies
L= f+nwp,rl (1.16)
We denote the right side of (-1.16) by .S',lz,ll. namely
Sprl = f+ KNP, xl. (4.17)
Both Lemmas 3.5 and 3.6 are applicable. Following the development made in [11]. we let

(0.!)(

clsoy) = elsoyo) + 05  (soyo + 0y — yo) )y = o). (4.18)

where 8 := 8(s. yo.y) with 0 < 8 < 1. Also let
glt.s.yo. y.8) = k(t.5)e® s yo + 6(y — yo)).

t
(Gar)(t) = /0 g(t.s. Por(s). Parl(s).0)x(s)ds.

and (Gr)(t) = ful gi(s)r(s)ds. where g,(s) = k(t.s) (O (s. r(5)). Now we are ready to state
and prove our main theorem of this chapter. The proof is a combination of the idea used

in [44] (Theorem 3.3) and the one used in [22] (Theorem -.2).
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Theorem 4.1 Let r € C[0. 1] be an isolated solution of equation ({.2) and r, be the unique
solution of (4.8) in the sphere B(r.d8y). Let rl be defined by the iterated scheme (4§.16).
Assume that 1 is not an eigenvalue of (KW)'(r). Assume that r € W} (0 < 1 < 2r) and

ge € W (0 < m < r) with ||ge|lwm bounded independently of t. Then

lr = rljl« =0(h™). where ~ = min{l.r + m}.

Proof: From equations (4.2) and (4.17). we obtain
r—rl = K(Wr - WP, !y = N(Wr - WP, r)+ K(WP,r - WP, ). (1.19)
Using (.1.18). the last term of (4.19) can be written as
K(WP,r — WP, rh)(t) = (GaPalr — £))(1).
Equation (4.19) then becomes
r—rl = KN(Wr - WP, r)+ G P - rl). (4.20)
Using the Lipschitz condition (3.3) imposed on ¢{%!), for r € C’[0. 1].
I(Giue) = (Gielll < C2 sup, 0‘ (. ) dsllzll (1 Paz = 2l + I Pall 2] = 2l
This shows that
NG = Gllse € MCo(||Par = rjx +clle] —2l]) =0 as n — x.
Also. for each r € C’[0. 1].
sup (GP.r)(t) — (Gr)(t)| = sup [/Olg,(s)[P,,.r(s) —r(s)]dsf < MM Pyr = x| -

0<1<1 0<t<1

where

M = sup [0V (e x(8))] < +x.
0<t<t

[t follows that GP, — ( pointwise in C'[0.1] as n — >. Again since P, is uniformly

bounded. we have for each r € C[0. 1].

NG nPrr = Grllx < IGn = Gl | Pall<llxllx + IGPz = Grfl -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Thus. G, P, — G pointwise in C'[0. 1] as n — >. By Assumptions (ii). (v). and (vi). we see

that there exists a constant (" > 0 such that for all n
| O (s, Par(s) + 8(Pax () = Pur(s))] € Col|Par = rll +0C,Pllel - ol + M < C

This implies that {(,P,} is a family of collectively compact operators [2]. Since G =
(KW)'(r) is compact and ([ —G) ! exists. it follows from the theory of collectively compact
operators that ([ — G, P,)~! exists and is uniformly bounded for sufficiently large n. Now

using (-.20). we see that
le = chllx < ClIK (Wr — WP2)j.

Hence we need to estimate [|[N(Wr — WP, r)||. The following four inequalities are known

(Theorem 1.2 [22]). Let v, € SP([1,) be such that

n
Yol = )My < ek lzlly. 0 <L (-+.21)

=1

c NN verm < . ] 4.22
1??5}71”"" lwmry < el J20. (+.22)

Also for each ¢ € [0. 1]. there exists o € SY(I1,) such that

Do lMgr = en )y S AR, 0< < m, (4.23)
=1
lrgxa<§l ”?"{112”“(‘([.) .<_ (.[\-m- ./ 2 0. (-£.24)

where K, = supy<,<i ”kl““'{“ < x. Now for t € [0.1] we have

[\-(‘DI - ‘IIPnI)({) = (Eh ~ vnt- L — pn'[) + (ﬁ:n.t-([ - Pn)(-[ - L'n))
+('7:n.l~ (I - Pn)L'n)-

(-1.25)

Using equations (-1.21)-(4.2-1) along with the arguments from Theorem 1.5 we can show that

each of the three terms is bounded by ch™ uniformly in ¢t. This completes our proof. O
One way to establish the superconvergence of the iterated collocation method for the

Fredholm equation is to assume (-{.13). In the context of the present discussion. (4.13) is

equivalent to assuming
R (@) = P)lcgasllx =0 asn— x. (+4.26)

Theorem 4.1 was thus proved under weaker assumptions. The idea used to prove Theorem

4.1 originates from [6] (section 6) in which the superconvergence of the iterated collocation
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method for the Fredholm equations was established by showing that {RA'P,} is a family of
collectively compact operators.

Finally in this section. we investigate the superconvergence of the iterated collocation
method for weakly singular Hammerstein equations. Specifically. we consider equation
(4.2) with kernel given by (3.19) and (3.20). An enhancement in the rate of convergence is

given in the following theorem.

Theorem 4.2 Let r € C[0. 1] be an isolated solution of equation ({.2) and r, be the unique
solution of (§.8) in the sphere B(r.4d,) with kernel defined by (3.19) and (3.20) and knots
defined by ({.9). Let r! be defined by the iterated scheme (§.16). Assume that | is not an
eigenvalue of (KW (r) and that OV (- 2(-)) is of Type(a.r.{0.1}) for a > 0 whenever r

is of the same type. Then

e — rhlle =0 ).

Proof: We follow the proof of Theorem 1.1 exactly the same way to (-1.23). which is

R{(Wr —WP,r)(t) =(g9:— Fnr- = Pur) + (Far (I = Po)lr — w4))
HFne (I = Py uen).
The difference in superconvergence arises from the degree to which we may bound the
first term. As in Kaneko and Xu [4] (Theorem 3.6). using an argument similar to [-1].
it can be proved that there exists u € S5/([l,) with knots [I, given by (4.9) such that

llge — ullz, = O(h™). Here h = max;<,<n{ri — ri_1}. Then

Hge = Fneed = Bax)l < Hlge = Fualleile = Parlix
= O(h"*7).

The rest of proof follows once again in the same way as described in Theorem 1.5.0

THE DISCRETE COLLOCATION METHOD FOR WEAKLY SINGULAR
HAMMERSTEIN EQUATIONS

Several papers have been written on the subject of the discrete collocation method.
Joe [32] gave an analysis of discrete collocation method for second kind Fredholm integral

equations. A discrete collocation-type method for Hammerstein equations was described
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by Kumar in [49]. Most recently Atkinson and Flores [5] put together the general analysis
of the discrete collocation methods for nonlinear integral equations. In this section. we
describe a discrete collocation method for weakly singular Hammerstein equations. In the
aforementioned papers [32. 19. 3]. their discussions are primarily concerned with integral
equations with smooth kernels. Even though. in principle. an analysis for the discrete
collocation method for weakly singular Hammerstein equations is similar to the one given
n [3]. we feel that a detailed discussion on some specific points pertinent to weakly singular
equations. -e.g.. a selection of a particular quadrature scheme and a convergence analysis
etc. will be of great interest to practitioners. Qur convergence analysis of the discrete
collocation method presented in this section is different from the one given in [3] in that
it is based upon Theorem 2 of Vainikko [T1]. The idea of the quadrature used here was
recently developed by Kaneko and Xu [12] and a complete Fortran program based on the
idea was developed by Kaneko and Padilla [39]. A particular case of the quadrature schemes

developed in [44] is concerned with an approximation of the integral

1
= /0 Fs)ds. (-£.27)

where f € Type(a.2r.S) witha > —1. Forsimplicity of demounstration. we assume S = {0}.

We define ¢ = ——+— and a partition

Taisg =00sp =07t = s J=2.3..... n. (-£.2%)

Now we construct a piecewise polynomial 5, of degree r — 1 by the following rule: S.(s) = 0.
s € [s9.s1) and S, (s) is the Lagrange polynomial of degree r — 1 interpolating f at {ul} o
for ~ € [sivs,41). i =120, ... n—2and for r € [s,_1.5,]. Here {u } —; denote the zeros of
the rth degree Legendre polynomial transformed into [s,.s,4;). Our approximation process

consists of two stages. First. /(f) is approximated by

A 1 n—1 Sesl
I(f) = / fls)ds = Z/ f(s)ds. (-1.29)
S1 =1 75
Second. I(f) is approximated by f Se(s)ds. A computation of [(S,) can be
accomplished as follows: let 6: [si.s‘-H] [—1.1] be defined by § = )s—s(i'l‘& so that
1
=/ F;(68)d8 (4.30)
-1
where
n-1 1 1 1
Fy(8) =3 S(simn = s f(5(sie1 = 500+ S(sipr + ).
=1
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If {r.:i=1.2....r} denotes the zeros of the Legendre polyvnomial of degree r. then
Se(s) =Y Fp(rli(=)
=1

with /,(s) the fundamental Lagrange polvnomial of degree r — | so that

. T 1
1(5.) = Z w Fe(r). where w, = / [,(s)ds. (-£.31)
-1

=1
It was proved in [11] that

(f) = (S| =0(n=*). (1.32)

In this section. we examine equation (4.1) with the kernel & defined by (3.19) and (3.20).
When the knots are selected according to (-1.9). as stated earlier. it was shown in [37] that
the solution r, of the collocation equation (+4.8) converges to the solution r of (4.1} in the
rate that is optimal to the degree of polynomials used. Specificallv. r, must be found by
solving

1
o)) —/(; ga(lu) = sfym(u). s)u(s rq(s))ds = Sflu)) {-£.33)

where t =0.1....n —tand j=1.2....r.
The discrete collocation method for equation (-.1) is obtained when the integral in (-4.33)
is replaced by a numerical quadrature given in (1.31). Let &, (s) = gi_,(lu; - s‘)nl(u}.s).

Then

jbl gollu) = s[)m(u). s)uis xq(s))ds = ]'01 k(s)e(s ra(s))ds )

= foul + ful; ki (syu(s. ra(s))ds.

The integrals in the last expression of (4.34) represent two weakly singular integrals which
can be approximated to within O(n~%") order of accuracy by (-£.31) by transforming them
to [—1. 1] and selecting the points in (-1.28) appropriately.

Writing (-1.33) as

P,r, - P,KVr, =P, f. (-1.35)

we consider the approximation f, to r, defined as the solution of
-i'n = ann = Pn[\-nlp-i-‘n + Pnf~ (t;b)

where A, is the discrete collocation approximation to the integrals in (4.3-4) described

above.
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We will use Theorem 2 of [T1] to find a unique solution to (4.36) in some & neighborhood
of r,. where n is sufficiently large. Clearly. Q) (r) = P, K, W' (r). where W' (r)[y](s) =
O (s, r(s))y(s). Forsufficiently large n. (4.33) has a unique solution in some & neighborhood
of r. Tosee that [ —Q/ (r,) is continuously invertible with {{(/ —Q’ (rn))~'}_ uniformly

bounded. it is enough to observe that {Q/ (r,)}. =, is collectively compact. and to do this

we will show that
| QL) [e](6) = QL () [£](t) [=] PR W' (£n)2(t) = PR W (L) r(t') [0 (4.37)

as t — t'. for each r € C’[0. 1]. [2]. Here .V is some sufficiently large number.
If we show (-1.37). then part (a) of Theorem 2 [71] is also verified. In order to verifyv part
(b) of Theorem 2 [T1]. we only need to establish (because of the uniform boundedness of

{(I = Qnlza)) 7'} y) that
| Quir) = Qulen) Ix< Ll £ = xullx< L. (4.3%)
for some constant L. and
| Qn(rn) = To(r,) |0 as n — x. (1.39)

Once this is done. Theorem 2 [71] applies vielding a unique solution r, in some neighborhood

of r, (for sufficiently large n) and
II In — i‘n HS Ldn S L ” Qn(-rn) - ’I.n('[li) ”\ . (1;0)

(Here and throughout the remainder of the section. L denotes a generic constant. the exact
value of which may differ at each occurrence.) This inequality will be used to obtain the
order of convergence.

Considering (4.37). the right hand side is bounded by T + T, + T3. where

I, =| PR,V (s, )r(t) — PaRKW (&,)r(t) |.
T, =| PRV (r,)r(t) = PaRKW (r,)r(t')|.
T.'} :l Pn[\‘\[”l(rn)l‘(t,) - Pn[\-n\y’(-rn)-t(tl) I .

Let ¢ > 0. Since {P,})Z, is uniformly bounded. T}, + T3 < ‘)—; by applving (4.32) with
f(s) = ON(s. r (s))r(s) and letting n be sufficiently large. For T, we have

Ty < M J) | k(t.s) = k(t'.s) | ds < M(S) + Sy).
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where
1
51 :/ goll s =ty mit.s) —m(t'.s) | ds
0
and
1
S, = / [g (Jt=s])y =gl =<l mt'.5) ] ds.
v
but
1
Sy < sup | m(t.s) = m(t'.s) | / gotlt — s |)ds
0<s<1 0
<L sup [ m(t.s)—m(t'.s)|=0as t =t
0<s<l1
and

2
IA

L 1galt=s])=ga]t' —s])]ds
=L =) (=) = (L= [+ [t =t ]}
=0 as t = t.

Hence (4.37) holds. For (4.3R8).

| Q) = Qulrn) |x=ll Pala(¥'(2) = Wi(za)) IS MCllx—rp IS Md=q< |

for & sufficiently small. Note that we have used the uniform boundedness of {P,}. {N,}
and because W% (s y(s)) is locally Lipschitz. so is the operator
¥’ C[0. 1] = B(C[0.1].C’[0. 1]) (the space of bounded linear operators from €’[0. 1] into
C'[0. 1]).

For {(1.39). we have

” Qn(-l'n) - Tn(!n) ”\=” Pn([\'nq}l'n - [\_‘[l-[n) “S L ” ([\-n - [\-)‘[/(In) < L(Rl + R'.Z +R3)
(-1.-41)

where

Ry =l| KuW(rn) — Ko®B(r) |l Ry =|| KoW(r)— K¥(r)||. Ry =l| KW(r) - K¥(r,) .

(-1.42)
But
Ry SL||W(ra) —W(o)ISC\L[2n—2l (1.-13)
because W is a Lipschitz operator and {KA’,} is uniformly bounded. and also
Ry S M| W(r) =W(en) IS M| 2a=2]l. (4.-44)
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Finally.
Ry, =0(n~"") {-1.43)
by (1.32) using f(s) = ¥(r.r(s)).
Thus Vainikkos Theorem vields a unique solution r, for n sufficiently large and (-1.40)

holds. Now (-1.-10) and (4.41) - (4.45) show that
| £a — Fa ||I= O(n™7) (1.16)

where .3 is the minimum of 2r and the order of convergence of || £ — r, ||. We summarize

the results obtained above in the following theorem:

Theorem 4.3 Let r be an isolated solution of equation (4.2) and let r, be the solution of
equation ({.8) in a neighborhood of r. Moreover. let 7, be the solution of ({.36). Assume

that | is not an eigenvalue of (KW)'(r). If r € W . then
lo = Fnllx = O(R*).
where p = min{l.r}. If r € H"f (L <p< x) then
o = Fall« = O(R),

where v = min{l — L.r}.

NUMERICAL EXAMPLES

In this section we present three numerical examples (Tables 4.1 - 1.3). Let k(s.t) = ¢°7*
and W(s. r(~)) = cos(s+ur(s)). The spline coefficients were obtained using a Newton-Raphson
algorithm. Also. the Gauss-type quadrature algorithm described in [12] is used to calculate
all integrations. The computed errors for the solution and the iterated solution are shown
in the following table.

For the second example. let k{s.t) = log(|s — t|) and ¥(s.x(s)) = cos(s + £(s)). The
computed errors for the solution and iterated solution of the weakly singular integral are
shown in the following table.

For the third example. let k(s.t) = \/-I%fl W(s.r(s)) = cos(s + r(s)). and r(t) = cos(t).
The computed errors for the solution and iterated solution of the weakly singular integral

are shown in the following table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.1: Smooth Kernel Collocation Results

Errors

n

non-iterated

iterated

2 153571593748 7T56e-1 | 2860290713654
3 SLTARTLIA356116e-2 | 477219911 Le-5
4 A41291276625525e-2 LLHIR0649575e-53
5 .267700-46-122053e-2 .3636996160e-6
convergence rate x 2 4
Table 4.2: Log Kernel Collocation Results
Errors
n non-iterated iterated
2 A579612725-10103e-1 | .242579005-49-139e-2
3 T115066105877 le-2 .766:3852778203e-3
4 A1192622669520e-2 321025898968 6e-3
5 2598223843077 e-2 | . 1T709780-10-170e-3
convergence rate =~ 2 3

Table 4.3: Sqrt~! Kernel Collocation Results

Errors
n non-iterated iterated
2 0.01540356 L L67T-107SR | 0.005968%-1-4 100471715
3 0.007225504-48387438 | 0.002566222099442683
4 0.00-416092437581254 | 0.0013711706164113-14
5 0.0026978563-190R008 | 0.00083516 1 T5646-1808
convergence rate = 2 2.2
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CHAPTER V
THE SINGULARITY PRESERVING METHOD

INTRODUCTION

In this chapter. we are concerned with the problem of approximating the solutions
of weakly singular Hammerstein equations (1.1) with logarithmic kernel by the Galerkin
method that preserves the singularity of the exact solution. Namely we establish a method
that generates an approximate solution in terms of a collection of basis functions some of
which are comprised of singular elements that reflect the characteristics of the singularity of
the exact solution. The idea of the method originates in the recent paper by Caoand Xu [11].
Cao and Xu studied the characteristics of the singularities that are pertinent to the solutions
of the weakly singular Fredholm equations of the second kind. [tis well documented (see. e.g.
[58].[5-4].[25].[72]) that the solutions of the weakly singular Fredholm equations (1.1) exhibit,
in general. mild singularities even in the case of a smooth forcing term f. Here by ~mild”
singularities. we mean singularities in derivatives. The papers of Richter [51] and Graham
[25] contain singularity expansions of the solutions of equation (1.1) with kernel given by
(3.19) and (:3.20) in the case of m(s.t) = L. The results of Graham were recently generalized
by Cao and Xu for weakly singular Fredholm equations. Information concerning the type of
singularities that solutions have is useful when solving equation (1.1) numericallv. In order
to approximate functions with mild singularities. many investigators utilized the theorem of
Rice [33] that gives an optimal order of approximation to such functions. Based upon this
idea of approximating the solutions by splines defined on nonuniform knots. the collocation
method. the Galerkin method and the product-integration method were established for
equation (1.1} with weakly singular kernels (3.19) by Vainikko and Uba [73]. by Graham
[25] and by Schneider [57] respectively. A modified collocation method was introduced in
[43] which also uses the idea of Rice. Recently there has been some considerable interest
in the study of the weakly singular Hammerstein equation. A study on the regularities of
the solution of (4.1) is reported in [36]. extending the results of [58]. Subsequently. Kaneko.
Noren and Xu used the regularity results to establish the collocation method for weakly

singular Hammerstein equations in [37]. The approximate solutions provided by these
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methods are in the form of piecewise polvnomials that are not always satisfactoryv as a tool
for approximating functions with singularities. This observation is quite evident in the areas
of finite element analysis. Hughes and Akin [30] list several problems (e.g. "upwind” finite
elements for treating convection operators [291.[31].[27]: boundaryv-layer elements [1] etc.)
in which the finite element shape functions are constructed to include polynomials as well
as singular functions. Singular shape functions are introduced to the set of basis functions
through asymptotic analvsis on the solution of the problem that is:being considered. It
should be pointed out that the analysis involved in the aforementioned papers on the
finite element method is centered around the collocation method. The problems such
as the choice for the extra collocation points for singular basis elements or the rate of
convergence are not addressed in these papers. It should be pointed out that the location
of additional collocation points for singular basis elements is critical in determining the rate
of convergence of numerical solutions. A detailed discussion on this subject can be found in
[38]. A singularity preserving collocation method. because of the reasons mentioned above.
seems to be more difficult to establish.

In this chapter. a singularity expansion for the solution of equation (-1.1) with logarithmic
kernel is given. This extends the results in [36] and [11]. Only the logarithmic kernel is
considered here because of its important application to obtaining numerical solution of a
Dirichlet problem with nonlinear boundary condition as described in Concluding Remarks.
[t is a routine matter. however. to establish. following the ensuing argument. a singularity
expansion for the solution of (4.1) with an algebraic singularity. The chapter is organized
as follows: first we study the regularity property of the solution of (-.1) and establish its
singularity expansion. The results obtained there generalize the results of [11] and [36].
Secondly. the singularity expansion is then utilized to achieve the singularity preserving
Galerkin method for equation (4.1). Finally. the iterated singularity preserving Galerkin

method is discussed.

SINGULARITY EXPANSION FOR WEAKLY SINGULAR HAMMERSTEIN
EQUATIONS

In this section. we consider the following Hammerstein equation with logarithmic singularity.

1
y(s) — /0 log |s — tim(s. tyo(t. y(t))dt = f(s). 0<s<1 (3.1
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(see (1.1} also). \We let
1
KN¥y(s) = / log {s — t{m(s.)e(t. y(t))dt. {5.2)
0
Then equation (53.1) can be written in operator form as
y—RKvy=f. (5.3)

Let H"™ denote the Sobolev space. H"[0.1] = {w : «{") & L,[0.1]}. equipped with the

5 \1/2 . . . e
norm |[w|gn = (Z?:o ||u'(‘)||;_2) where «(*) describes the ith generalized derivative of w.
We also let 11" = 1", be the linear space spanned by the functions s'log’ s. (1 — s)! log? (1 -

s):i.j=1.2.....n — 1. Throughout this chapter. we assume the following conditions:

m € C*([0.1] x [0.1]). n > L.

{5.-1)
meCY0.1]x[0.1]). n=
ve YR < R) {5.5)
feWw =~ H". (5.6)
We define

Ky(s / log ls — tjm(s.t)y(t)dt. (3.7)

First we quote the following result (lemma -{.4(2)) from [L1].
Lemma 5.1 Letu)(s) = sPlog? s. and uy(s) = (1 -=s)Plog?(1—s). for some integers p.q > 1

and let f € H*'. Assume that m € C"*Y([0.1] x [0.1]). Then. there erist v, € H" and
constants {by}. {d,}. {c,;} € R such that.

n—1

(KN f)(s) = Z [bJ.sJ logs+d, (1 — s}’ log(l — .s)] + va(s).
=1

n=1 q+1 ri—1

(Nuy)(s) = Z ZC,J (log s)" + Z d,(l — sy log(l — s) + ca(s).
J=p+li=1 1=+l

and

n—1 q+1 n—1

(KNuy)(s) = Z ZC,J ) (log(l — %)} + Z d,s log s + v,(s).
J=p+1 =1 J=q+1
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Lemma 5.2 [f u;(s) = s?log? s. uy{s) = (1 — 5)" log' (1 — »). for some integers p.q.r.1> 1

are integers, then uju, € W = H"

Proof: Expand u, in series about s = | and u, about s =0 :

up(s) = Yrsy bl = 8)' + fuls). uy(s) = SIS ast + fols).
= Pi(s) + fils = Py(s) + fa(s)
where f{k)(s) = O((l—s5)""%) near s = 1. f, is analvtic at s = 1. and f{ ~ u(l“(. §)— Pm( 0)
as s = 04 fé“(s) = O(s"_"‘) near s = 0. f, is analyvtic at s = 0. and f_i )(s) ~ u.., (.s) —
Pék)(l) as s — 17,

Now uyuy, = PP+ P fo + P fy + fifo. Clearly PyP, is in H". For f} f,. we have

pelIRrAL =Z() T
=0

Each term fl(i)(“)f_in—‘)(s). i =0.1..... n satisfies
FEO 0 (5) = O i) = O (w) = PU(0)]s) = 0

as s — 0+.
Similarly

f{"(.;)fﬁ""’(.«) —0as~—=17. Thus fi f, € " C H". For fi Py we have f|(~)P{s) =
(uy(s) = Pi(s))Pa(s) = uy (s) Pa(s) = P (s)Pa(s). Since Py is a polvnomial. u; € I, it is easy
to see that u P, € 1" = H" (see [[11]. (4.7)]). So fiP, € H". Similarly foP € 1V -= H".

and Lemma 5.2 has been verified. O
Lemma 5.3 A product of an H" function with a function in W8 is in H" =11,

Proof: Let g € H" and let u; and u, be defined as before prior to Lemma 3.1. For gu,

we write

r (4) K] , sPlo ’ f
wy(s)gls) =30 - ‘.(0) +P log? s .r._p_'_S"_jo g"(a)(s - o)~ d

(n=1})!
=T +T>.

Since Ty € W = H". we turn to Ty and write

LL = L Tiee ()il log? s|E= [ 9 (0) (s — o) 'do]
= - e ket "L'[“p log? s|[(n — 1)..k] f§ 9 (o) (s — 0)*~da

ds
+5P log? sg(")(s).
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But sPlog?s € L>.g(" € L,[0.1] so (sPlog? s)g\")(s) € L2

For the terms
k s
b.(s) = (lk[sp log? ~]/ g™ Na)s — a)* Vo
0

as

we have. for some constant M and nonnegative integer a

Ibn(s) i S .‘[%;:Elifos lg‘”)(a-) | -*'k_lll(f
= Ms(- logs)“’%fn’ [ ¢'"(a) | do.

But ¢{*) € L[,[0.1]. so by Hardy's inequality [53] (p. 72) %]us | g'"Na) | do € L,[0.1].

Since s(—log=s)? € L it follows that b, € L,[0.1]. Hence ';;T, € L,[0.1].or T, € H".
This proves gu; € 1V -~ H™.
The case for gu, € W = H™ is similar. O

Finally we need the following:
Lemma 5.4 The operator KW maps W = H" into " = H"+1.

Proof: Let y=w+h. well. he H". We use Tavlor's theorem in the form

n

v(tor) =Y A[' Kt ayr - a) + —/ (r —a) "t o)do. (3.8)

k=0
Letting » = y(s) and a = h(s) allows us to write
(KW)(y)(ty =3 riz0 %ful log [t — s | m(t.s) e s h(s))u (<) ds
+& folog [t = s m(t.s) 52 e+ (s a)(yis) - o) dods (5.9)
—ZL Uu 1)-1-",3(1)

By (3). )5 h(s)) € H". k = 0.1.....n. and by expanding w(s)* with the multinomial
expansion. it is clear that w(s)* is a sum of terms in I as well as terms of the form
asP log? s(1 = 5)"log"(1 — ). p.q.r.u> | are integers. The constant. a. depends on p.q.r
and u. Since ¥ (h(s)) € H™ and w(s)*¥ € W = H". k =0.1.....n. it follows from Lemma
5.3 that

BN s h(s) w(s)F e W H (3.10)

By Lemma 5.1 and (5.10). we have

Ap € W= H™ L (5.11)

For B(t). if we prove that

y(s)
Fo)= [ o (s.0)(y(s) = o)do € W 2 H™,
h(s)
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then. also by Lemma 5.1. B(t) = K[F](t) will be in 1" -= H"**!. This will complete the

proof of this lemma. First of all. suppose n > 1. We write
F'{s} = —L‘(n+”(s.h(s))u'(s)"h'(s).

Since h € H™. v € (32t ntig h(s)) € H™. By Lemmas 2 and 3. — "D (s h(s))we(s)"
H™ =1V, Since h' € H"™ ', it follows that — "V (s h(s))w(s)"h'(s) € H"™! =11 (Lemma
3.2). Since F' € H™ ! W it is clear that F € H"™ = IV, Second. let n = 0. Then
F(s) = f,f’((:)’ V(s a)de = (s y(s)) — v(s h(s)) € La0.1] C W = HO.

Thus

BelW = H" {5.12)
By (5.9). (5.11) and (5.12). it follows that AW maps IV - H" into 1 -~ "+ O
Using the lemmas which we proved above. we obtain the following main result of this

section.

Theorem 5.5 Suppose the conditions (3.4 )-(5.6) hold and y is an isolated solution of (5.1).
Then there are constants a,, and b,,. fori.j =1.2.....n — 1. and there is a function v, in

H"™ such that
n—1l n—~1

gty = > S [aytlog’ t + b, (1= 1) log! (1 = )] + v, (t). (5.13)

=1 y=1

Proof: For n = 0. this follows from Lemma 5.4 with n = 0. Assume that the result holds
for n = k. that is. if f € H* = 117, then (3.13) holds with n = k. Say y = wy + v). where
vk € H  wy = T80 Zf;l[[aut‘ log’/ t +b,,(1 = t) log/(1 - t)].

Now consider the case n = k + | and suppose f € H**! = 117 ,,.

Since y = wr + vx we write y = AWy + f = KU(wp + ) + f. From Lemma 5.1.

RWU(wy + o) € Wiy -= H**. The proof is complete. O
SINGULARITY PRESERVING GALERKIN METHOD

In this section. we establish the singularity preserving Galerkin method for equation (5.1).
First we recall the definition of the space of spline functions of order n. Define the partition
of [0.1] as

M1 0=ty <) < ... <t = 1.
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Let

h = max (t, —t_y).
lSlS"»‘( )

and assume h — 0 as k — x. It is well known that the dimension of 5% _ is d = nk-v(k-1).

5, is spanned by a basis consisting of B-splines {B,}_,. We let
V=50, (5.14)
and denote the orthogonal projection of L,[0. 1] onto V}* by P{’. The singularity preserving

Galerkin method for approximating the solution of equation ({3.3) requires the solution

yn € V)" to satisfv the following equation:

1}
—
(1]
—

yn — PR Wy, = P f. (5.

More specifically. we need to find y, in the form

n—1

Yn(s) Z a,'log! s+ 3 3,1 = %) log?(1 —~)+Z (5.16)

=1 =1
where {a,,.3,}"7} and {+,}7_, are found by solving the following system of nonlinear
equations:
:nJ llnu( ‘lOg S \Plo‘,-l +Zl_j—l l_S)‘loaj(l“~")-'5plog'1~)+
=1 % (BusPloghs) — (KW(S, ‘lmp log? s + 71, 3, (1 — %)t log/ (1 — ~)+
lej.,B,).sPlog".s) = { f.sPlog? ~) pg=12.....n-1

ZZlJ ll Ou(-*‘i log? s. (1 — s)?log?(1 — s))+
Z,nj ll 3 ((1 - .s)l lOg-’(l — s). (1 - ,Q)P[Og'l([ — &)+
1B (1 —=s)Plog?(1 - s))—
(KW (T2 anstlog! s + Pl 3L = s) log? (1 - 5)+
A (1 Bi). (1= s)Plog?(l — s)) = (f (1 = 5)Plog?(l — s)) pog=1.2.....n-1

Z.”,‘.au( log’ 5. Bp) + 32771, 3, (L = 5)' log? (1 = ). By) +

tgy=1
1 7(B.By) - (KW (Tt agstlogd s+ 5071 by (1= )t log? (1 — s)+
S wB).B) =(fB) p=L12..4d
where (. -) denotes the usual inner product defined on L,[0. 1]. Now let P, be the orthogonal

projection of L,[0. 1] onto S¥ . Then we have

Piv o v as h =0 for all ¢ € L,[0.1]. (3.17)
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Recall that if g € H". n > 0. then for each A > 0. there exists o, € 57 such that
g = onlle, < CR™llgllsn- (5.1%)

where (" > 0 is a constant independent of h. (Theorem 1.2). By virtue of the fact that Pyu

is the best L, approximation of « from 5% . we see immediately that

|Pou— ullr, <llu—onllt, <Ch™|ul|g». forall ue H". (5.19)

The following lemma from [11] is useful in the sequel.

Lemma 5.6 Let X be a Banach space. Suppose that Uy and U, are two subspaces of X
with Uy C Uy, Assume that Py : X = Uy and P, : X — U are linear operators. If P> is a

projection. then

lle = Pozllx < (L+1Psllx)llz = Prally for all s € X.

For convenience. we introduce operators I and T, by letting
Ty=f+ RW¥y (5.20)

and

Thyn = P f + PU R Wy, (5.21)

so that equations (3.1) and (5.15) can be written respectivelv as y = Ty and y, = Thyn,.
The following theorem guarantees the existence of a solution of the singularity preserving

Galerkin method (5.15) and describes the accuracy of its approximation.

Theorem 5.7 Let y € L[0.1] be an isolated solution of equation (5.1). Assume that 1
s not an eigencalue of the linear operator (KW) (y). where (KNW)'(y) denotes the Fréchet
derivative of KW at y. Then the singularity preserving Galerkin approrimation equation
(5.13]) has a unique solution y, such that ||y — yallL, < & for some & > 0 and for all
0 < h < hy for some hg > 0. Moreover, there crists a constant 0 < q < 1. independent of

h. such that
Qp
l+g¢q

Qp

. 5.22
Il —¢q (5 )

Sy = unlle, <
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where ap, = {|([ = T](y)) " (Tu(y) —T(!/))”Lz- Finally. if y = w+v with w € W and v € H",
then

ly = yulle, < Ch™|ef|pn. whenever 0 < h < hg. (5.23)

where (' > 0 is a constant independent of h.

Proof: The existence of a unique solution y; of equation (5.15) in the disk of radius 4
about y and the inequalities in (3.20) can be proved using Theorem 2 of Vainikko [71]. A
detailed discussion on this application can be found in [37]. To get (5.23). first we note

from Lemma 3.1. for v € L,[0.1].

1PFe = elle, <UL+ IPE L M Pae = ¢llL,- (3.24)

By assumption. (I — (K¥)'(y))~! exists. By (5.17). Theorem 3.1 and since (A'W)'(y) is
a compact linear operator. ||PE(RKW¥) (y) — (K¥)(y)|l« — 0 as n — >x. Hence (I -
PE(RWY (y))~' = (I = T/ (y))~" exists and uniformly bounded in || - ||z, norm. Now. from

(5.22).

F

ly = yallL, < 2
= D=0 = Ty~ (Tuty) = Tiy)lie,

SCUPERYy — KWy + PCf - flir,
=CIPCy —yliL,-

—
-

where (' is independent of h. Using the uniform boundedness of {P,g’} (5.19). (5.24) and
(5.25}). we obtain

vy = ynlle, < Ch™|feliyn.

THE ITERATED SINGULARITY PRESERVING GALERKIN METHOD

In this section. the superconvergence of the iterated singularity preserving Galerkin
method is discussed. Throughout this section. the conditions (5.1). (5.3) and (5.6) are
maintained. The discussion of this section depends heavily upon the recent paper by Kaneko
and Xu [44] so that only the points of distinct differences are explained.

Let yo be an isolated solution of (3.1). Assume that y, is the unique solution of (5.15) in

the sphere ||yo — yl|r, < 8. for some & > 0. Define

ot
o
(=]
~—

yh = f + Ky, (5.2
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Applying Pf to both sides of (5.26). we obtain
Pyl = P f+ PER Wy, (5.27)

Comparing (5.27) with (5.13).

P,?_t/,{ = Yh- (3.28)

Substitution of (5.28) into (5.26) vields that y/ satisfies the following Hammerstein equation.
I _ “\ s 1 =9
yo=f+RKVP y,. (5.29)

The theorem of Kaneko and Xu [#1] (Theorem 3.3). with only very minor modification

can be written in the following form.

Theorem 5.8 Let yy € C[0.1] be an isolated solution of equation (2.1} and y, be the
unique solution of (2.5) in the sphere B{yy.d). Let y,{ be defined by the ilerated scheme

(4.1). Assume that 1 is not an eigenvalue of (KW (yy). Then. for all 1 < p < x.

o = yill« < C {Ilyo — P{yoll% + sup inf flk(t. )0 yol0) = ullyllyo - P;f;yuilp}-
(0]

<<t ue‘,:'

where 1/p+1/q =1 and C' is a constant independent of h.

As a corollary. we obtain the main result of the section. First. we introduce some notations.

Applying the mean-value theorem to t*(~.y) to get
o — e (0 9y —
clscy) = vlsoyo) + 07 s oo + 60y — yo))

where 8 = f(s.yo.y) with 0 < 8 < 1 and V") denotes the partial derivative of ¢ with

respect to the second variable. Also
A(s.t) = log(|s — t])ym(s.t)

and

gls. by y. 0) = k(s. )" yo + 0y — o).

Theorem 5.9 Assume the hypotheses of the previous theorem. Assume also that (3.4)-(5.6)
hold. Then

lyo = yallx = O(A"*H).
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Proof: First of all. for each « € V3.

1o = Pi'yoll ~ < lyo = ull~ + 1P u = P yollx < (1 + Phliyo - ull < (5.30)

where P = sup P,f; < x. Since yy = w + v forsome w € W and r € H". welet u = w+ u”.
h>0
where u® € S¥ . We obtain ||yg — ul]« = [Je = «™{| . With (5.30) this vields

o = Puollc < (1+P) inf e = w’ll < CR". (5.31)
ut€Ssy

The last inequality follows from (3.3). Secondly. by [12]. [Theorem - (i)]. there exists
vy € Sy such that ||k, — vo|]g, = O(h). Since v > 1. S =S5 C H'.s0 v, € H".

Since yg € 1= H" it follows that OV (- yy(-)) € W = H"~L, by expanding (V- yo(-})
in Taylor series centered at ¢ (recall yy = w + v.c € H™) and using (2.10) and (2.12).
Consequently. ¢,(-}o OV yo(-)) € W = H™ V. Sav ¢ () O yo(-)) = a, + b,. where
a, € W and b, € "', Now there exists u; € Sy osuch that [Ju, — bef|p, = O(h"™")

and
lge = we — aclle, < ke — cdlo, e gt + o) eyl — e = adl

=O(h) + O(h"™ ") = O(h).

provided n > 2. Now we apply Theorem 1.1 to get

llyo - .’/,Ia”x = O(/l‘)") +()(f1"+l) = Oh"*h).

NUMERICAL EXAMPLE

Let m(s.t) = L. g(|s = t]) = log(]s = t]) and v (s.t) = cos(s + t) in equation (-1.1). We
assume f in such a way that r(¢) = sint + tlogt is the solution. Using splines of order 2

we approximate the solution of the Hammerstein equation with

ki

yolt) =) %.B;

=1

and
A
n(t) =Y 1B +atlogt+ 3(1 - t)log(l —t) (5.32)

=1

Yo represents the numerical solution that uses only the spline basis elements whereas y;
represents the current scheme. yo is computed for comparison. The computed errors for

the spline-only solution and the singularity preserving solution are shown in Table 5.1.
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Table 5.1: Singularity Preserving Method Results

Errors
n Yo 1
2 2032756 | .004002
3 018526 | 001945
! 012246 | 001147
convergence rate < 1.4 1.8

Notice that the convergence rate for yo is lower due to the logarithmic singularity in the
kernel and due to the use of the uniform partition of [0. 1]. The use of nonuniform partition to
obtain the optimal rate of convergence of numerical solution was recently established in [-1-1]
for the Galerkin method. [t should be pointed out that. as the number of partition points
increases. the distribution of these nonuniform points become extremely skewed toward
the end points of the interval. This will cause a sensitivity in numerical computations.
frequently requiring computations in double precision. An introduction of the singular
elements in the basis and working with the uniform partition points will eliminate this
problem. The coefficients in {3.32) were obtained by solving the set of nonlinear equations
of Section 3 {immediately following (5.16)) using the Newton-Raphson algorithm. \lso. the

Gauss-type quadrature algorithm described in [42] is used to calculate all integrals.
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CHAPTER VI
CONCLUDING REMARKS

In this thesis. we investigated the superconvergence of the iterated solutions of several
different numerical schemes for the Fredholm equations of the second kind as well as for
the class of nonlinear Hammerstein equations. The superconvergence result established for
the iterated degenerate kernel scheme is new even in the case of the Fredholm equations. It
should be noted that. in order to double the rate of convergence of a numerical scheme such
as the collocation method. we must in general double the order of the polyvnomials to be
used resulting in more expensive computational cost. The iterated shemes provide us with
an inexpensive alternative to achieve the same goal of accelerating the convergence rates.

One of the important areas to which the iterated methods discussed here can be applied
is the area of boundary integral equations. As an example. consider the following elliptic

boundary value problem:

Au(P) =0. PeD .
> ). 1)
28 = —cu(Py + f(P). Pel =0D.

where D is a bounded simply connected open region in 2 with a smooth boundary I'. In
equation (6.1). np denotes the exterior unit normal to I at P. f is continuous on [ and ¢
is a positive constant. The function « is to be determined. We assume u € C*(D) NCYD).

It is well-known that using Green’s representation formula for harmonic functions. the

function u satisfies

WP = = [ wQ)=2—log|P - Qlr(Q) - - [ 24<Q)
r dng 27

- log |P — QldI(Q) (6.2)
2 27 Jr dng

-

for all P € D. Moving the point P to a point on [' and using the boundary condition in

(6.1). we obtain the following boundary integral equation.

u(P) =L fp 2log|P - QT(Q) - £ fr u(Q) log|P - QT (Q)

Ing

= —% Ir f(Q)log|P - Q|dT'(Q). Pel.

(6.3)

We have now concentrated all the information on u to the boundary [. One of the primary
advantages. of course. of dealing with the boundary integral equations by transforming the
original boundary value problem is that we have reduced the dimensionality of the problem

by one. Now once u is computed along I' from equation (6.3). equation (6.2) now yields
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the value u(P) for all P € D. Anyv numerical method can be applied to approximate
the solution of (6.3) and subsequently the order of approximation can be enhanced by the
iteration process. A reduction in computational cost to achieve the enhancement can be seen
in a more pronounced way when the elliptic problem is proposed in a higher dimensional
space due to its exponential growth in the number of unknowns involved. In this connection.
we note as a future research topic an application of wavelet bases to the boundary integral
equations. Wavelet bases give rise to sparse linear systems that result in the reduction of
the computational cost. It is also interesting to consider the iterated numerical methods
described in this thesis in connection with wavelet bases.

Another interesting application of the iterated scheme is the following. When superconvergence
of the iterated solutions of a certain numerical scheme is known to exist. then the residual of
the numerical solution can be used as an estimator of the error of the numerical solution. For
example. if y, denotes the approximation to equation (-1.2). the error of the approximation
is

€n =Y = Yn (6.-1)
and the residual is defined by

3 = f = (yn — KWyy,). (6.5)

Now
O‘n = f ~(Yn — I\"[/'I/,,)

=(y— KVy) = (yn - KWy,)

(6.6)
=(y—yn) — (I\'\[")I(’]n)(.’/ = Yn)
= (I = (K¥Y(n,))en.
where 5, is between y and y,,. Also note in particular from (6.6) that
(KW)Y (na)(eq) = KW (y) = KW (y,). (6.7)

Now

(1 = (KU) (n2) P (KW) (na)en = (I = (KW) () PO (KU (y) — KW (yn))

(R¥(y) = K (y.)) = (K) () (PaRE(y) - PRV (ya))
= (KW) (ma)en — (KW)' (1) Paen

= (KU)' (na)(I = Pa)en.
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In the third line we made use of

Pn[\—‘p(.’/) - Pn[\-\p(!/n) = Py - f) - (.'/n - Pnf) = P.(y - Yn) = Preg.

Now we assume that 1 is not an eigenvalue of (A'W) (y) so that (I — (RW)'(y))~" exists.
Also assume that ¢%!)(¢.y) is continuous in y and uniformly continuous in t. Then
(AKW) (y) is continuous as a function of y in the space of all bounded linear operators
B(C'[0.1].C[0.1]). Since n, lies between y, and y. 5, — y as n - x. [t follows that
(I = (KW)'(n,)) P, converges to (I — (KNV¥)'(y)) in the space B(C'[0.1].C[0. 1]). Therefore.
((I = (K¥)(n,))P,)~! exists and uniformly bounded for all sufficiently large n. An €/3

argument also shows that lima_o [[(KY) (9.)(I — P.)||L, = 0. Hence
(KUY (nn)en = (I — (KO)' () P) YR (o) (] = Pa)en. (6.8)

and
AW (gndenlle, < p(h)lealle, (6.9)
where p(h) = |[(1 = (KW (n) Po) YL, (K Y (n,) (I = Pa)L, — 0 as h — 0 or equivalently

n — >x. From (6.9) and (6.6).

10alle, = llen = (KW) (a)enil, < (L +pth))eallr,- (6.10)

This equation states that the residual can be used as an estimator for the actual error.
\What is interesting at this point is to observe that superconvergence of the iterates can be

used as a sufficient condition for (6.10} to occur. To see this. denote the iterates by
yh = f+ K¥(ya). (6.11)

Then with ¢! =y — y£.
dn = f—=(yn — KV¥y,)

= Yn = Yn
=€, — c,’l.
From this. we obtain
I Y 7
)
A A 21) 6.1
flenll] = lleanll llenll
Namely. the superconvergence of the iterates.-i.e..
I
) €
im Meall _

A el
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gives a sufficient condition for the inequality (6.10) to occur. \We note here that (6.10)
was proved without reference to the superconvergence of the iterates. Because of (6.12). the
results presented in (6.9) and (6.10) can be obtained by demonstrating the superconvergence
of the iterates for the Galerkin solution for Hammerstein equation under the condition

limaso ([ (AW (7)1 — Pa)]| = 0 which was taken earlier. In this case.

(I = (K@) ()l - y)
=T - (K®)'(y)(I = P)][N¥(yn) — KW (y) = (K (y)(ya — y)]

—([\"[’),(!/)([ - Pn)(([\-q’)l(.'/) - [)(yn - .’/)'
we obtain

Nyl =yl < WU = (KSY(y)~ N {1 - (K@) ()] = P,))|

x sup [[(KW)(y+8(y. — y)) — (KW (y)lly = yall
0<d<t

HIHREY (y) (I — POYUR®Y (y) = D(ys — )]l }-

In any case. we demonstrated the fact that. when the superconvergence of the iterated
solutions is guaranteed. an error of the numerical solution is estimated by the size of the
residual. Of course. the residual is an easily computable quantity whereas the actual error

is not in most of the practical problems.
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