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FINAL REPORT NCC1-213 (ODURF #152741)

prepared by Hideaki Kaneko and Peter A. Padilla

In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement
with Division of Multidisciplinary Optimization a,t‘NASA Langley, we have accomplished the
following five projects: - '

1. A note on the finite element method with singular basis functions

2. Numerical quadrature for weakly singular integrals

3. Superconvergence of degenerate kernel method

4. Superconvergence of the iterated collocation method for Hammersteion equations

5. Singularity preserving Galerkin method for Hammerstein equations with logarithmic ker-
nel.

This final report consists of five papers describing these projects. Each project is preceeded
by a brief abstract. The first author, Hideaki Kaneko, would like to thank Dr. Thomas Zang,
Director of Division of Multidisciplinary Optimization at NASA Langley, for the financial support
that he provided.



PROJECT 1

HIDEAKI KANEKO and PETER A. PADILLA
A Note on the Finite Element Method with Singular Basis Functions

Recently there has been considerable interest in the finite element analysis that incorporafeS'
singular element functions. A need for introducing some singular elements as part of basis -
functions in certain finite element analysis arises out of the following considerations. The solution
of certain problems, such as a field problem, exhibits highly singular behavior due to geometric
features of the spatial domain. It is thought that an incorporation of singular elements that
emulate the solution with the standard polynomial elements may perhaps be desirable. In order
to make the computations of the finite element method with singular elements more efficient,
Hughes and Akin (The Finite Element Method, T.J.R. Hughes, Prentice Hall) established an
algorithm for constructing interpolation fuﬁctions that have the same interpolation properties
of the Lagrange polynomials.

We pointed out in this research that the aforementioned algorithm of Hughes and Akin is
sensitive to the locations of the interpolation points that correspond to the singular basis func-
tions. Specifically, we demonstrated numerically that the rate of convergence of a finite element
solution varies according to the locations of these points. A general theoretical explanation is
provided for this variance in the rates of convergence.

A further invesigation is required toward the establishment of mathematical theory that
guarantees the optimal rate of convergence of a finite element method that uses singula,r functions

as part of its basis.



A Note on the Finite Element Method with

Singular Basis Functions

Hideaki Kaneko *
Department of Mathematics and Statistics
Old Dominion University
Norfolk, Virginia 23529-0077

Peter A. Padilla
Multidisciplinary Design and Optimization Branch
NASA-Langley Research Center
MS-159
Hampton, VA 23681

Abstract

In this note, we make a few comments concerning the paper of Hughes and Akin [3]. First
it is noted that algorithm reported in [3] to produce a new set of functions is subject to the
location of collocation points. Second we make a note concerning the rate of convergence of

numerical solutions of the finite element method with singular basis functions.

*This author is partially supported by NASA under grant NCC1-213



1 Finite Element Method With Singular Basis Functions

In the paper [3], Hughes and Akin made an interesting observation concerning the finite element
analysis that incorporates singular element functions. A need for introducing some singular
elements as part of basis functions in certain finite element analysis arises out of the following
considerations. The solution of certain problems, such as a field problem [1], exhibits highly
singular behavior due to geometric features of the spatial domain. On the other hand, in other- P
circumstances, the solution is‘ ov;arwhelmjngly a.ﬁ'ectéd by the nature of loading and the i)roblem ‘

of singularity can be ignored. To satisfy both situations just described, it is thought that
an incorporation of singular elements that emulate the solution with the standard polynomial
elements may perhaps be desirable. Thisb is the point that was exploited in [3] by Hughes and
Akin. In order to make the computations of the finite element method with singular elements
more efficient, they consider the following algorithm for constructing interpolation functions.
A construction of such algorithm was motivated by the idea that “it is of practical interest to
develop techniques for systematically defining shape functions for singularity modeling (and for
developing special elements in general), which circumvent the interpolation problem” ([4] p.176).

The algorithm that they developed go as follows:

ALGORITHM Suppose that there are n shape furictions N, a = 1,2,...,n which satisfy the
interpolation property on the first m nodes 7y, viz., No(r3) = o, a,0 = 1,2,...,m (m < n).
Their idea here is to reshape N,’s so that the interpolation property is satisfied on all n nodes.
The algorithm is given by

Nm+1('r)—2a=1"‘Nm+1(ra)Na(r)
Step 1 Nty < Nm+1(fn§+1)—zr=1 Nt (ra)Na{rmy1)

Step 2 Ng(r) &« Nuo(r) = No(rrng1) Nt (1), a=1,2,....m
Step 3 If m+ 1 < n, replace m by m + 1 and repeat Steps 1 to 3.

If m + 1 = =, stop.

To demonstrate this algorithm, we borrow one of the examples from [4]. Let r; = 0,72 =

and 73 = 1. The shape functions that we reconstruct are Nyi(r) = 1 — 2r, Ny(r) = 2r and

N3(r) = r* where o representing some real number. Note that N,(rp) = 855, 1 < a,b < 2. An



application of the above algorithm gives

re—2(i)er
Nl('l') —1-2r+ [Tz—};;_“—]
re—2(1)er
Na(r) «—2r—2 [T%-;-“;E‘]
r°-—2(-1~)°r

N3(r) - 1__2(_2_)a M

Of course, the newly defined shape functions satisfy
No(rs) = 8 1<a,b<3. 1

What is not addressed in [3] [4] is that the algorithm is subject to the location of the interpolation
points 75, m+1 < b < n. Clearly, step 1 of algorithm does not work if these interpolation points

are such that

Neg1(tm1) = O Nms1(ra)Na(rmy1) = 0 (2)

a=1

Out of this observation, there seems to arise a profound and difficult problem in the area of
approximation theory. The problem is important in that the success of the finite element method
using the collocation scheme hinges on a resolution of this problem. To describe it, let W: denote

the Sobolev space,
wy = {f1f® € L)}

where f(¥) denote the kth genera]jzéd'deriva.tive and (2 is a bounded region in R. The theory
extends easily to higher dimensions. Now let U = span[N,];_,, ;- Also denote an approximation
space by S¥. Here Sh is usually taken as the space of piecewise polynomials of degree k — 1 with
length of each subinterval h. Our goal is to approximate each element of U & W: by an element
from U @ SF by interpolation. That is, if Sk = spa.n[Na];"___l, then foreach fe U® W: , we must
find v € U @ SF that satisfies

v(r)=f(m) b=1,...,n. (3)
Denote the interpolation projector of U & W: toUBS ’,f by Pj,. Namely P; is defined so that
Prf(s) = v(s) s €. (4)

Notice that PZ = P,,. In order to achieve a convergence by the collocation scheme in the finite
element method, we must examine the following inequality. Here we assume that the number of

singular basis functions, n — m, is fixed.

[det[No(rp))l5 4=y 2 €>0  forall n. (5)



This inequality is a necessary and sufficient condition for the algorithm of Hughes and Akin
to work. It is important to remark at this point that the success of algorithm depends upon
the éxistence of a solution to the interpolation problem (3) which in turn is equivalent to the
condition (5). For each fixed index n (hence for fixed m) , it is not difficult to find » — m
interpolation points 7y, m + 1 < b < n, that correspond to the singular basis elements N,
m+1<a ‘<" n for which the inequality in (5) is satisfied. What is difficult here is the question
-of locating n — m points for as many singular elements for which condition (5) is satisfied. The
problem of finding n — m interpolation points for singular basis functions that work for all n
is currently under investigations. In the following section, we proceed our discussion of the
finite element analysis assuming condition (5). The analysis will provide information concerning
the rate of convergence of numerical solutions. Interpolation examples at the end of the section
show that ra.tés of convergence are quite sensitive to locations of interpolation points for singular

elements.

2 Convergence Analysis

When condition (5) is satistied, one can deduce the rate of convergence of the projector P to
the identity operator I. As is well known -e.g., [4], the convergence rate of such interpolation
projectors determine the rate of convergence of the finite element method that uses collocation

scheme. The following theorem of Cao and Xu [2] is useful. We sketch a proof for completeness.

Lemma 2.1 Let X be a Banach space. Assume that U, and U, are two subspaces of X with
Ui C U;. Moreover assume that P;: X — U, and P;: X — U, are linear operators. If P, is a

- projection, then
Iz — Pozllx < (1 + || Pllx)llz — Pizllx Jorallz € X.
Proof: Let z € X. We write
z— Pz =(z —‘Pl:z:) + (Piz — P3z).
Since Pyz € Uy and Uy C U,, we have P,Pyz = Pyz. Hence,

z - PQID = T ~—’P1:B + P2P1:l: - Pg.’l:
= (I - Pg)(x - Pl.'l.').

It follows that
llz — Pazllx £ (1 + || Pllx)llz = Pizllx for all z € X.

4.



O Using lemma and a well known fact about the approximation power of piecewise polynomials

of degree k — 1 to approximate elements in W;‘ [5], we see immediately that

Theorem 2.2 Assume that y=u+v withu € U and v € W:. Then o ®
1Py = 3llp < Ch™lo¥]leo

where 1 < p < 00 and C is a constant.

To demonstrate the sensitivity of the location of interpolation points for singular elements,

consider the following interpolation problem.

EXAMPLE: Let f(z) = v/ + /1 - + z2. We wish to approximate f.over [0,1] by an
element from U @ S?, where U = span[/z,+/1 — z]. Let {z;}%, be the uniform partition of [0, 1]
defined by z; = —f;, 1=0,1,...,nand h = % The interpolation points used to define an element
from S? are taken to be the zeros of the second degree Legendre polynomials transformed into
[Zic1,2] for i = 1,2,...,n. The following data shc;ws that (a) when the interpolation points for
the siﬁgular elements are taken to be t; = % and t; = £ for each n, the convergence is O(h1/?),

whereas (b) when #; = 55 and #; = 1 — 1, then the convergence is of the order O(h?).

interpolation point t; = 1/2n 1/5
n=4 0.0513168 - 0.0513168
n==6 0.0008437 0.0235540

convergeﬁce exponent = 1.99 0.56

Table 1. Error and convergence rate data for the example -
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PROJECT 2

HIDEAKI KANEKO and PETER A. PADILLA
Numerical Quadratures for Weakly Singular Integrals

In this report, a Fortran program for approximating weakly singular integrals is given. In .
particular, we are interested in approximating integrals of functions having algebraic or loga-
rithmic end point singularities. Program is based upon the idea that was recently developed
in the paper by Kaneko and Xu Gauss-type quadratures for weakly singular integrals and their
application to Fredholm integral equations of the second kind- Mathematics of Computations,
Vol. 62, (1994), 739-753. The idea of the quadrature scheme in the aforementioned paper is
based upon the nonlinear splines approximation of weakly singular functions using a certain set
of nonuniform knots that was originally developed by John Rice.

The progfam developed here is useful for approximating solutions of weakly singular integral
equations. This is demonstrated in Reports # 3 and # 4 in which the quadrature is used to
approximate the solution of weakly singular Hammerstein equation that arises as a reformulation

of the Dirichlet problem with a certain class of nonlinear boundary conditions.



Numerical Quadratures for Weakly Singular

Integrals

Hideaki Kaneko™
Department of Mathematics and Statistics

Old Dominion University
Norfolk, VA 23529

Peter A. Padilla
NASA - Langley Research Center
M/S 130
Hampton, VA 23681

Abstract

In this report, Fortran programs for approximating weakly singular integrals are given.
In particular, we are interested in approximating integrals of functions having algebraic or
logarithmic end point singularities. Programs are based upon the idea that was recently

developed in the paper by Kaneko and Xu [1].

*This author is partially supported by NASA under grant NCC1-213
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1 Theoretical Background

In this report, we develop Fortran codes for Gauss-Legendre-type quadratures for weakly singular
integrals. The idea of the quadratures was recently developed by Kaneko and Xu [1}. The integrals

which we intend to approximate can be described in the form
b : .

[ fey(z)ds | SR

where f is a smooth function and w takes one of the following forms;

1. (z—a)*(b— z)?

2. (z —a)*(b— z)Plog(z — a)

3. (z—a)*(b- z)Plog(b- z)

4. (z — a)*(b— z)Plog(z — a)log(b— z)
where o, > ~1. To familiarize the reader with the basic theory that supports the current
program, we shall consider the following prdblem. The reader who is interested in a more rigorous

and broader development of the theory can find necessary materials in [1].

Consider _
19)= [ fepo(a)ds e
where w(z) = z%, @ > —1, -i.e., w belongs to type 1 above and f is a smooth function. Define
the index of parameter that measures the degree of singularity by

_2k+1
7= a4+l

where k is a positive integer that corresponds to the degree k — 1 of polynomials used to approx-
imate fw over [0,1]. In the case of the logarithmic singularity w(z) = logz, we set o = 0. A

partition 74 of [0,1] is defined according to the parameter o by
Toito = 0,4 = n79,t; = j9%,, i=2,3,...,n. (3)

The more severe the singularity of w is at 0, the closer ¢ is to 0. In the ordinary Gauss-Legendre
quadrature scheme to approximate the integral fol f(z)dz, f is approximated by the polynomial
Sk of degree k — 1 that interpolates f at the k points {z;}5., where {z;}%_, are k zeros of the

kth degree Legendre polynomial transformed into [0,1]. The kth degree Legendre polynomial is

described by

1 d*, .,
mm(z - 1) 5 NS [—1, 1].



The quadrature then takes the form

> wif(z:)

. =1
where w;’s are weights for the quadratue. It is well known [2] that the error of the Gauss-Legendre

quadrature is given by

1f(2n)(§)| / H(“’ —z)%ds| i f € CEM[o,1] (4)
S ) o i

As evidenced by this formula for the error of the Gauss-Legendre quadratufe, the scheme doés' )
not provide an optimal degree of approximation when the integrand f is not sufficiently smooth.
It is exactly this reason why we require some special treatment for approximating the integrals
in (2) that produces an optimal convergence rate. To achieve this goal, in the current method, a
piecewise polynomial Sj of degree k— 1 is constructed by the following rule; Si(z) = 0, z € [to,t1)
and Si(z)is the Lagrange polynomial of degree k—1 interpolating fw at {:c?) };F:l forz € [t;i,tit1),
i=1,2,...,n—2and for z € [t,_1,1,]. Here {:c( )} 7.1 denote the zeros of the kth degree Legendre
polynomial transformed into [t;,t;41). Over the first interval, because of the endpoint singularity
of fw, formula (4) is not at our disposal. Dispite this, we are able to recover the optimal rate of
convergence due to sufficiently small size of the first interval that was determined by the index ¢
of singularity corresponding to fw. To describe, in a more detailed way, the error of the current

quadrature scheme, let

Eig1 Lig1 .
Ei= / F(z)w(z)ds — / Si(z)dz, i=0,1,...,n— 1L (5)
t; t

Then
|Exol < fit [f(z)w(z) - Si(z)ldz
< [ 1f(2)w(z)ldz
< Cf ! 2%z
< Ct§t! = Cn~2%-1,

C denotes a generic constant whose value may change as it appears. For ¢ > 1, by using (4), we

w(z") i . 3
|yl < Welpml@ll) fen 5 (2 - 20)2dz|

< &1o (i — )2

< Cte 2k (154, — 1;)%H

= C(i%;)*~2k[(i + 1)1 — {9)2k+142kH1
< Cg¥F+1(i 4 1)(a-1)(2k+1)59(a—2k) o1

obtain

- Cn—Zk-l



The last equality was obtained using

gla-2k)=qla+1)—q2k+1)=(2k+1)—q(2k + 1) = (1 — q)(2k + 1).

Combining local errors above, the total error of approximation Ej is given by
. n-1 . _ .
|Exl =1 Exil < Cn~%* » (6)
=0 . .

obtaining the optimal convergeﬁce rate of approximation.
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/* Author: Peter A.. Padilla

Summary: This program test the function sintegrate ability to integrate
a function with weak singularities at both ends of the interval.
The program calculates the integral in two ways, first we
calculate the value by using sintegrate ability to automatically
split the interval into two sections, in the second method we
split the interval manually and feed sintegrate the appropriate
parameters for each half of the interval.

*/

#include <stdio.h>
#include <stdlib.h>
-#include <math.h>

#include "sintegrate.h"
/* === Punction Definitions ----- */

double one(double x)
{
return(l.0);

}

double fun(double x)
{

return{log(l-x)*sqrt(x));
} .

main{int argc, char argvl[])

{
double v1, v2, v3, v, (*gl) (), (*g2){();
int n;

/* Example 3.2 of {1) */

n = 16;
g2 = &one;
gl = &fun;

v = sintegrate(gl,g2, 0.0, 1.0, n, 1, 1, 1, 0.5, 0.0);

#

printf("Results: %g for n %$i\n*,v,n);
n = 24;
g2 = &one;

gl = &fun;

v = sintegrate(gl,g2, 0.0, 1.0, n, 1, 1, 1, 0.5, 0.0);

printf ("Results: %g for n %i\n",v,n);

n = 28;
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g2 = &one;

gl &fun;
v = sintegrate(gl,g2., 0.0, 1.0, mn, 1, 1, 1, 0.5, 0.0);
printf("Results: %g for n = %i\n*,v,n);

exit (EXIT_SUCCESS);



/* Arguments:

1)

7)

8)

*/

f is declared a pointer to a function that returns a double and takes
a double as input. (double = double precision). This pointer must

be set to point to the weakly singular function for the interval in
question, see test_driver.c for an example.

weight is declared a pointer to a function that returns a double
and takes a double as input. This pointer must be set to point to
the smooth part of the kernel, see test_driver.c and test_driver_l.c
for examples.

a and b are the lower and upper bounds of the integration interval.

n integer. Need I say more.

left_singularity is a flag, 0 if the singular point for the interval
is not at the left (point a) of the interval, 1 if it is.

right_singularity is another flag. Can you guess how is defined?

with_log i< another flag. Set it to 1 if the function f is of types
2, 3, or 4, i.e., it involves log()'s.

alpha is a double precision variable and must be set to the index of
the singularity at x = a.

beta is a double precision variable and must be set to the index of
the singularity -at x = b.

double sintegrate(double (*£) (double x),'double {*weight) (double x),
double a, double b, int n, int left_singularity,
int right_singularity, int with_log, double alpha, double beta);
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/* Author: Peter A. Padilla
Date: 9/21/95 : '
Summary: Implements the rumerical guadrature algorithm for weakly singula
. integrals as described in the references.

Ref: (1) H. Kaneko and Y. Xu, “Gauss-type quadrature for weakly singular
integrals and their application to Fredholm integral equations of
the second kind", Mathematics of Computations, Vol. 62, (1994),
739-753.

Calling symtax: See sintegrate.h
Notes:

The function sintegrate is the external interface to the code. No other
function needs to be made accessible to the outside world. If other -
interpolation polynomials are desired, then, the function legendre should
be modified to implement the appropriate interpolation functions and the
preprocessor constant K (line: “"#define K 2.0") should be set. accordingly.

*/
#include <math.h>

#include <stdio.h>
#include <stdlib.h>

[* e Do not changed below this line unless you know what your doing ----- */

#define K 2.0 /* DO NOT CHANGE, K is determined by the
interpolation function as described in the
paper */

/¥ - Function to generate a Partition ----- */

double * points{int n, double a, double b, double g, int flag)
{ int i; '
double t1;
double *res;

res = (double *) malloc(sizeof (double)* (n+l));

if (g !'= 0)
if {(flag == 0)
{ £t1 = (b-a)/pow{n,q): )
for (i=0; i<=n; i++) res[i] = a + tl*pow(i,q);
}
else
{ t1 = (b-a)/pow(n,q);
for (i=0; i<=n; i++) res[n-i] = b - tl*pow(i,q);
}
else
{ printf("Error: g = 0 not allowed.\n");
free(res);
exit(0);
} .
return(res) ;

[* ———— Function to generate the interpolation points. ----- */
double * inter_points(double p{], int n)

{

int i,73;

double eps;

double * tp;



eps = 1/sqrt(3.0);‘
tp = (double *) malloc(sizeof(double)*(2*n));

" for (i=0; i<n; i++)
{ 3 = 2*i;
tpl{il = pli]l + (pl[i+1] - pl[i])/2.0*(1.0-eps);
tplj+1] = plil + (pli+l] - pl[i])/2.0*(1.0+eps);
}
return{tp);
}

[* ————— Interpolatioﬁ Function, Corresponds to k = 2 in the paper ---~--

double legendre(double x, int j, int k, double * p) /* j=1..n */
{ .
double point;
double ret;

point = (2.0*x - p[j] - pli-11)/(p(3] - plj-11);
if ((point < -1.0) || (point >= 1.0)) return(0.0);
if (k == 1) ret = (1.0 - point*sqgrt(3))/2.0;

else if (k == 2) ret = (1.0 + point*sqgrt(3))/2.0;
else ret = 0.0;

return(ret) ;

[* ————— Gaussian Quadrature with three points. ----- */

double quad{(double (*f)}(), double a, double b, int j, int k, double * p)
{ .

double cl,c2,c3,x1,x2,x3,alpha,beta, Konst, temp, templ;
alpha = (b-a}/2.0;

beta = (b+a)/2.0;

Konst = alpha;

x1l = -sqQrt(15.0)/5.0;
x2 = 0.0;
x3 = -x1;
cl = 1.0/(3.0*pow({x3,2));
c2 = 2.0/3.0 * (3.0 - 1.0/pow({x3,2));
c3 = cl;
temp = Konst * {(cl * (*f)(alpha*xl+beta)*legendre(alpha*xl+beta,j,k,p) +
c2'* (*f)(alpha*x2+beta)*legendre(alpha*x2+beta,j, k,p) +
c3 * (*f) (alpha*x3+beta) *legendre(alpha*x3+beta,j k,p));
return (temp) ;
}
/* - sintegrate function ----- */
double sintegrate(double (*f) (), double (*weight) (),
double a, double b, int n, int left_singularity,
int right_singularity, int with_log, double alpha, double beta)
{

double g _alpha, q beta, .* grid, * gridl;

double * interpolation_grid, * interpolation _gridl, * coefs, * coefsl:;
double * wvals, value, * wvalsl, valuel;

int 1i,3j.k,index;

if (with_log == 0)
{
g _alpha = (2.0*K+1.0)/{alpha+1.0);
g beta = (2.0*K+1.0)/ (beta+1.0};

else
{



if (alpha >= 0)
g alpha = 2.0*K+1.0;
else
g alpha = (2.0*K+1.0)/(alpha+l.0):

if (beta >= 0)
g beta = 2.0*%K+1.0;
else
g beta = (2.0*K+1.0)/(beta+1.0);

}

if {left_singularity == 0) g_alpha
if (right_singularity == 0) q_beta

’

0
0;

[

0.
0.
if ({(g_alpha != 0.0) && (g _beta == 0.0})
{ . .

grid = points(n,a,b,q alpha,right_singularity);
interpolation_grid = inter_pointsi{grid,n);

coefs = (double *) malloc(sizeof (double)*(2*n));
vals = (double *) malloc (sizeof (double)*(2*n));
for (i=0; i<=2*n-1; i++) vals[i] = {*weight) (interpolation_grid[il);

for {i=1; i<=n; i++)
for (k=1; k<=2; k++)
{
index = 2 * {1 - 1) + k - 1;
coefs[index] = 0.0;
for (j=0; j<=n-1; j++)
coefs[index] = coefs[index] + quad(f, gridljl, grid{j+11, i, k, grid):
o)
value = 0.0;
for (i=0: i<=2*n-1; i++) value = value + coefs[i]*vals({i];
free({(void *) coefs); ‘
free((void *) vals);
free((void *) grid);
free((void *) interpolation_grid);
: }
else if {({g_alpha == 0.0) && {(g .beta != 0.0))
{
grid = points(n,a,b,q beta,right_singularity);
interpolation_grid = inter_points{grid,n):

coefs = (double *) malloc(sizeof (double)*(2*n));
vals = (double *) malloc(sizeof (double)*(2*n));
for (i=0; i<=2*n-1; i++) vals[i] = (*weight) (interpolation_grid[il):

for (i=1; i<=n; i++)
for (k=1; k<=2; k++)
{
index = 2 * (i - 1) + k - 1;
coefsfindex] = 0.0;
for (j=0; j<=n-1; j++)
coefs[index] = coefs[index] + quad(f, grid(jl, gridl(j+1], i, k, grid) ;
} .
value = 0.0;
for (i=0; i<=2*n-1; i++) value = value + coefs[i)*vals(il];
free((void *) coefs); :
free((void *) vals);
free{(void *) grid}; .
free{{void *) interpolation_grid);
} .
else if ((g_alpha !'= 0.0) && (g beta != 0.0))
{
double mid;

mid = {(a+b)/2.0;
grid = points{n,a,mid,q aipha,0);
gridl = points(n,mid,b,qg beta,hl);



interpolation_grid = inter points{(grid,n);
interpolation_gridl = inter_points{gridl,n);
coefs = (double *) malloc(sizeof (double)*(2*n));
coefsl = (double *) malloc{sizeof{double)*(2*n)):
vals = (double *) malloc(sizeof{double)*(2*n));
valsl = (double *) malloc(sizeof(double)*(2*n));
for (i=0; i<=2*n-1; i++)
{ vals[i] = (*weight) (interpolation_grid[i]);
valslli] = (*weight) (interpolation_gridl{i]);
} .
for (i=1; i<=n; i++)
for (k=1; k<=2; k++)
{
index = 2 * (i - 1) + k - 1;
coefsiindex] = 0.0;
coefsl{index] = 0.0;
for (§=0; j<=n-1; j++)
{
coefs[index] = coefs[index]+quad(f,grid(j},gridli+1i],1i,k,grid);
coefsl[index] = coefsl{index]+quad(f,gridl(j],gridl(j+1]1,1i,k,gridl);
}
}
value = 0.0;
valuel = 0.0;
for (i=0; i<=2*n-1; i++)
{ value = value + coefs[i]*vals(i};
valuel = valuel + coefsl[i]*valsl[i];
}
value += valuel;
free((void *) coefs);
free({(void *) vals):;
free({void *) grid);
free((void *) interpolation_grid);
free({(void *) coefsl):
free((void *) wvalsl);
free((void *) gridl);
free((void *) interpolation_gridl);
}
else if ((g_alpha == 0.0) && (g _beta == 0.0))
{
printf ("Internal Error: g == 0.\n");
exit(0); '
}

 return(value);

}
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Supérconvergence of Degenerate Kernel Method

The degenerate kernel method is a classical method for finding approximate solutions of the - -
second kind Fredholm integral equations (z ~ Kz = f in operator form). The basic principle
of the method is to approximate a kernel, a bivariate function, as a finite sum of univariate
functions. An advantage of the method lies in its simplicity, whereas its disadvantage lies in the
high cost of computations. If z,, denotes a degenerate kernel approximation, then by the iterate
of z,,, we mean z = [+ Kz,.

We discovered that the rate of convergence of the iterates of degenerate kernel approxi-
mations is determined by the method under which the kernel is decomposed. We proved and
demonstrated numerically that, when the decomposition is done as a least squares approxima-
tion or as an interpolation approximation using a certain set of interpolation points, then the
iterates converge twice as fast as the original degenerate kernel solutions provided that the kernel
is sufficiently smooth.

To reduce the high computational cost, we propose to introduce a class of wavelets for a
decomposition process. We expect to obtain a system of linear equations whose corresponding

matrix is sparse as opposed to the normal full matrix that we encounter in the degenerate kernel

method.
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SUPERCONVERGENCE OF DEGENEREATE KERNEL MWETHOD

H. Kaneko and P. Padilla

Abstract

In this paper, a general theory for the iterated operator approximation is developed. Some
of the known results on superconvergence of various iterated schemes can be formulated as
;special cases of our theory. The method is'then subsequently used to obtain some results on
the superconvergence of the iterated degenerate kernel method for the Fredholm equations

of the second kind and the Hammerstein equations.

1 Introduction

In this paper, we consider the Fredholm integral equation of the second kind

b |
2(t) — / k(t,8)a(s)ds = f(t) a<t<b (1.1)

and the Hammerstein equation

o))~ [ Ko sW(s,o(e)ds= ) a<t<h e

where k, f in (1.1) and (1.2) and % in (1.2) are known functions and in both cases z is the function
to be determined. A number of numerical methods are available for obtaining approximate
solutions of (1.1) and (1.2). It is well known that popularly used methods such as the Galerkin
method and the collocation method can be viewed as special cases of the pro_jection method.
The projecti_on method for the Fredholm integral equation of the second kind (11) can be
described as follows; Let X denote the Banach space of functions and {X.} a sequence of finite
dimensional subspaces of X that is essentially dense in X,-i.e. ¢/ U X,, = X where clS denotes

the closure of a set S. We denote a family of projections of X onto X, by {P.}. Now we define
Kaz(t) = / " k(t,5)z(s)ds  for each t € (a,b). (1.3)

Equation (1.1) can be written in operator form as
z = f+ Kz. (1.4)

Here z is assumed to be an element of X. The underlying principle that supports the projection

method is to seek an element z, € X, for which the residual r,, = f — (z,, — Kz,) disappears

1



under the projection P, -i.e. P,r, = 0 for each n. In the Galerkin method, the projection is
orthogonal. On the o;;her hand, in the collocation method, the projection is interpolatory. A
similar discussion for the projection method for the nonlinear Hammerstein equation (1.2) will
be left to the reader (see, e.g. [2] [3] [4] [8] [9])-

Let z, denote a numerical solution of equation (1.4). The (Sloan) iterated solution z,

corresponding to z,, is defined by

b - -
2'(2) = (1) + / k(1, 5)2n(s)ds. | (1.5)

In the Galerkin and the collocation solutions z,, it is known [6] that, under suitable conditions
on the kernel k£ and the forcing term f, their corresponding iterated solutions converge to z more
rapidly than z, does to z, a phenomenon commonly known as superconvergence. One of the
purposes of this paper is to develop a general iterated approximation scheme for equation (1.1).
This will be done in Section 2. The generality of the theory is demonstrated by showing that
the results on the superconvergence of the Galerkin and the collocation iterates examined by
Sloan et al are special cases of our iterated operator approximation scheme. We note that the
results obtained in [6) concerning the superconvergence of the iterated Galerkin and the iterated
collocation method have been recently generalized to hold for Hammerstein equa,tioh (1.2) [10]
[7]. Moreover, in these papers superconvergence of the iterated solutions for weakly singular
Hammerstein equations are also observed. It appears that these results on superconvergence of
the weakly singular equations are new even for the Fredhohﬂ equations.

Results obtained in Section 2 are subsequently used to establish the superconvergence of the
iterated degeﬂerate kernel method for equations (1.1) and (1.2). The degenerate kernel method
for solving equation (1.1) is discussed in [1] and that for equation (1.2) is discussed in [11]. It
turns out that the superconvergence of the iterated degenerate kernel method depends’ upon
the ways in which the kernel k in equations (1.1) and (1.2) are decomposed as a finite sum of
products of univariate functions. This will bevillustra.ted in detail in Section 3. In Section 4, the
iterated degenerate kernel method for Hammerstein equation (1.2) is discussed. Even though the
material in Section 4 does not have direct relation with the general theory presented in Section
1, we feel that it is appropriate to include it here since it extends the results of Section 3 as well
as those in [11]. Also included in Section 4 is 2 discussion on a computational consideration for
solving the system of nonlinear equations that must be solved in order to obtain the degenerate

kernel solution of (1.2). We make use of the devise introduced by Kumar and Sloan [12] to
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‘linearlize’ the system of nonlinear equations. That is, the integrals that must be evaluated
repeatedly at each stage of the iterations, when a conventional iterated scheme is employed, are
now evaluated only once at the beginning of computation.

Examples are provided in Sections 3 and 4 to demqnstfate our theory.

2 The Iterated Approximation for the Fredholm Iﬁtegral Equa-. -
tions of the Second Kind

In this section, we consider the Fredholm integral equation of the second kind given by (1.1).
We denote by Cla,b] the Banach space of all continuous functions defined on [a,b] equipped
with the uniform norm || - |l. Also we denote by L,[a,b], 1 < p < oo, the Banach space of
measurable functions whose pth power are integrable (1 < p < o0) or the space of essentially

bounded functions (p = o) on [a,b]. In equation (1.1), we assume that
f €Cla,b] (2.1)
and that, with ki(s) = k(t, s),
}1_15 /ab |ke(s) — kr(s)|ds =0  for each T € [a,b]. (2.2)

Under the condition (2.2), the linear operator K defined by (1.3) is a compact linear operator
of C[a, b] into Cla,b]. In order to establish a general iterated approximation scheme, we assume

that {K,} is a sequence of operators converging to K in operator norm. That is,
|| Kn — K|lp — 0 as n — oo for some 1 < p < 0. (2.3)

For each n > 1, we assume that we have an equation whose solution approximates the solution

of (1.4). We denote this approximating equation by

Ty = fn+ KnZp. (2.4)

For example, in the case of the projection method, equation (2.4) is identified by letting K, =
P.K and f, = P,f where P, is a projection of Cla,b] onto a finite dimensional subspace of
Cla,b]. In the case of the degenerate kernel method, K, denotes the finite rank separable

operator, -i.e. Kpz(t) = f: iy ai(t)bi(s)z(s)ds where {a;}7, is a linearly independent family



of functions and f,, = f for each n > 1. We define the iterated approximation corresponding to
(2.4) by . |
7, = f+ Kz,. (2.5)

As was indicated in Introduction, the iterated approximations for the Galerkin and for the
collocation methods exhibit, under suitable smoothness conditions on the kernel k and on the
forcing term f, the global superconvergence. It is not known, how;aver, that the similar ‘sup'er-‘
convergence result can be obtained for the iterated approximations for the degenerate kernel
method. We are now in a position to prove the main theorem of this section. Advantages of the
theory presented are twofold. First, it can be used to describe the superconvergence results of
Sloan et al mentioned as special cases of this theorem. Second, it can be used to establish the

superconvergence of the iterated degenerate kernel method. The latter will be done in Section

3.

Theorem 2.1 Consider equation (1.1) in a Banach space (X,11-I1)- We assume that 1 is not
an eigenvalue of K. Let z, and z! satisfy equations (2.4) and (2.5) respectively. Then, for

sufficiently large n, there ezists a constant ¢ > 0, independent of n, such that
llz = 2oll < e{l|K — Kall® + || K(K ~ Kn)zl| + | K ~ Kallllf - full + WK - f1) (26)
Proof: From (1.4) and (2.5), ‘
z -z, = K(z — z,). (2.1
Applying K on both sides of (1.4) and (2.4), we obtain
| Ko=Kf+ K’z T (28)
and ,
Kz, =KK,z,+ K f,. (2.9)
It follows from (2.8) and (2.9) that |

K(z—z,) = K2 — KKyan + K(f - fz)
= K(Kz — Kn2,) + Ko(Kz — Kz,) — Ko(Kz — K2) 4+ K(f — f)

= Kno(Kz — Kz,) + (K — Kp)(Kz — K2p) + K(K — Kn)zo + K(f = f)-
(2.10)



Since || K, — K|| — 0 as n — oo and (I — K)~? exists by assumption, we conclude [1] that

(I — K,)™! exists and uniformly bounded for sufficiently large n. Therefore,
K(z —z,) = (I - K,.)"Y{(K - Kp)(Kz — Kz.) + K(K — Kp)zn + K(f - fo)}.
Taking the norm on both sides,

I1K(z —za)ll < (T = En) UK — EallllEllllz = 2nll + 1K (K — Kn)zn|l
HIE (K — Ka)(z = za)ll + IK(f = fu)ll}

(2.11)
< = K) {20 KK = Enlillz — 2all + | K (K — Kn)zn|]
+HIE(f ~ fll}-
Since
z—2, =Kz—Kpzn+ f=fa
=Kz —Kpz4+ Kpz— Kpnzn+ f~ fa
we obtain
(I-Ku)z—z,) =Kz~ Kpz+ f— fu,

or

22, = - K) (K ~Kn)z+ f~ fa) (2.12)

From (2.11) and (2.12),

llz —zall = 1K(z — zn)ll |
< e{llK — Kallllz - zall + | K(K = Kn)zall + 1K (f = fu)ll}
< (K — Knl* + 1K = Knllllf = full + 1K (K = Kn)znll
+HIE(S = Fa)lI}-

This completes our proof. O
Corollary 2.2 For the iterated approzimation scheme (2.5), if fp = f for all n in (2.4), then
llz ~ 2ol < e{ll K = Kall* + | K(K — Kn)zall}-

In the next section, this corollary will be used to establish a superconvergence result for
the iterated degenerate kernel scheme. In order to see that Theorem 2.1 includes the results of
superconvegence of the iterated Galerkin and the iterated collocation schemes of Sloan et al [6], |

we need some definitions. First we let W, 1 < p < 0o, m nonnegative integer, denote the



Sobolev space of functions defined over [a,b]. Namely g € W;" if and only if g% € L,[a,b) for
k=0,1,...,m where g(") denotes the kth distributional derivative of g. Let

Mota=tg <t <---<tlh=b

be a partition of [a,b]. Let A = maxj<ica(t; — ti—1) and assume h — 0 as n — oo. Let v be
-an integer and r a positive integer such that 0 < v < r. Let §7, denote the space of splines '
of order 7 and continuity v, namely ¢, € S;, if and only if ¢, is 2 piecewise polynomial of h
degree < r — 1 on each [z;_,,z;] and has v — 1 continuous derivatives on (a,b). Let PS denote

an orthogonal projection of C[a,b] onto 57, .. In the Galerkin method, equation (2.4) becomes
28 - PCKzC = PCf (2.13)

-ie. K, = PPK and f, = PSf. The corresponding (Sloan) iteration approximation to (2.5) is
given by

28 = f 4+ KzC. (2.14)
If fe Wi, (m > 0), then there exists ¢, € 57, (0 <v < r) such that
1S = tally < b0 £l (2.15)

where c is a constant independent of n and ||fljmp = oo |f*)|, (see e.g. [13]). Under the

assumption of the quasiuniform mesh, -i.e.

h
- <e for each n,
miny <icn(ti — ti-1)
it can be shown that
sup || P ||z, -z, < c2. (2.16)

for some constant ¢,. Since

Wf =PI fll, =If = ¥n+ PE%n— PEfll,

(2.17)
| < A+ IPZIDNS = %nllps
from (2.15), (2.16) and (2.17), we obtain
S = PESllp < ek £l . (2.18)



Now let £(2) = f: k(t,s)z8(s)ds. Then

|K(K - Ka)aG()] = | [; Bt u){€(x) - PEE(u)}dul
(k- PEO) |
= |(ke — pn, € — Pqu)l for every ¢n € S:,n '
< |1ks = enllglié = PEElR,

(2.19)

where % + % = 1 with convention that if p = 1, then ¢ = oco. In (2.19), we have used 1;he.'
orthogonality in the th‘ird equality and the Holder inequality in the last step. If k; € W, then |
from (2.15) there exists ¢, € 57, such that ||k; — @afl; < ch“‘i“{"‘"}llkgm)llm,q. Finally from
(2.19) we obtain . '

1K (K = K7)z8l|oo < ch?™n{mr},

Similarly, we ca.ﬁ show that whenever f € W;",
IE(f = P Flloo < ch?mintmr}

and that
[|K — Knlloo < ch™.

Using the estimate (2.6), the above discussion leads us to the following corollary.

Corollary 2.3 (Graham, Joe and Sloan [ [6] : Theorem 4.1]) Let G and zG' denote the solutions
for (2.13) and (2.14) respectively. Suppose that k; € W* (0 < m < r) with lktllm,q bounded
independently of t and that f,£ € W] where £(t) = JPk(t,5)28(s)ds with z§. Then

iz — 2 [loo < ch?min{mr}
where ¢ is independent of n.
Now in the partition II,,, for each 1, we select {t,-,-};=1 such that
i1 Sty <tjp <<t <2y

Let PC denote the interpolatory projector of C[a,b] onto Sy, defined by PCx(t;;) = z(ti;) for

eachi=1,...,nand j =1,2,...,r. In the collocation method, equation (2.4) becomes

¢ - P°KzC = PCf (2.20)



-i.e. K, = PSK and f, = PS f. The corresponding iterated collocation solution is defined by

28 = f+ KaC. (2.21)

As in Corollary 2.3 of the iterated Galerkin method, to see that the iterated collocation
method of (2.21) is a special case of Theorem 2.1, we must examine the terms in the right side of
(2.6). The second term of (2.6) in this case is analyied as follows: Let y(t) = [ k(t, s)zC(s)ds.

'Then ' . ) |
K(K — Ka)z5(t) = (kuy— Ply)
(kt = @nts ¥ = PLY) + (@nts (T = P )y — 9n)) (2.22)
+(en,t, (I = PT)n)-
where @ns € 5%, and ¥, € SP,. Now arguing exactly as in the proof of theorem 4.2 [6], we
obtain

|E(K — Kp)aS|leo < ch?min{tmr}
where ¢ is a constant independent of n. The other terms in (2.6) can be bounded similarly.

Corollary 2.4 (Graham, Joe and Sloan [[6] :Theorem 4.2]) Let z$ and z$' be the solutions
of (2.20) and (2.21) respectively. Suppose f € Cla,b], z € W} (0 < I < 2r) and ks € WP
(0 < m < r), with ||k¢|lm,1 bounded independently of t. Then

”z _ zf;""oo S ch2min{l,r+m}.

where ¢ is independent of n.

3 The Iterated Degenerate Kernel Methods

The purpose of this section is to use Theorem 2.1, Corollary 2.2 in particular, to establish
superconvergence of the iterated degenera,tekernel method. A generalization to the iterated
degenerate kernel method for the Hammerstein equations will be done in Section 4.

.Consider equation (1.1). The degenerate kernel method for approximating the solution of

(1.1) requires us to approximate the kernel £ in (1.1) by some degenerate kernel whose general

form can be described as

ka(s:) = 33 asii(s)es() @31

i=13=1



where {¢;}%, is a set of linearly independent functions in C|a,b]. The operator K in (1.3) is
then approximated by a sequence of operators

Kay(t) = / ’ kult, s)y(s)ds. | (32)

a

Subsequently an approximate solution z, is found by solving

wl®) - [ kalbo)ea(o)s=f0)  asish (33

Equation (3.3) can be written as ,
n n Lh
2alt) = LY [ wiies(s)on(s)ds} = (1) a<t<h.
=1 j=1v2

If we put

n b |
a=Y [ wiei(@am(s)ds, (3.4)

j=1"¢
then z, can be written as

2alt) = f()+ 3 cigilt). (3.5)

i=1
Upon substituting (3.5) into (3.4), we obtain the following n X n system of linear equations for

c.
n n

b . n b 4
-3 oy / ais0i(s)pr(s)ds = 3 / aspi(s)f(s)ds  1<i<nm (3.6)

=1 j=1"¢ j=1"%
Finally, once these c;’s are found by solving (3.6), equation (3.5) gives the required approximate

solution for the degenerate kernel method. Equation (3.3) is written in operator form as

which is a special form of (2.4) with f, = f for all n. When the degenerate kernel solution
z, is iterated as in (2.5), an interesting question arises. The question is of course under what
conditions superconvergence of the iterates in this case is guaranteed. It is the purpose of this
section that we provide some answers to this question. It turns out that the superconvergence
of the degenerate kernel method hinges critically upon the ways that one decomposes the kernel
k in (3.1). Here we demonstrate two different methods that guarantee the superconvergence of
the iterates of the degenerate kernel method.

In the first method, we examine the least-squares approximation. For each positive integer
k, assume that a partition II; satisfies the quasiuniform condition (ref. Section 2)

h
T <
ming <i<n(ti — ti-1)

c for each k
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Let n denote the dimension of the spline space S, and B, Bs,..., By be the B-spline basis
for 57 As in Section 2, r and v are integers such that 0 < v < r. Assume that k,(t,s) is the

least-squares approximation of k(t,s),-i.e. assume that a;; in (3.1) are such that

/., / Jk(t,5) = 32 D 04 Bi(s) By(1) " dsds = min, / / lk(t,s) = S 3 bi Bi(s) B;(t)|dsdt.

i=1 j=1 i=1 j=1

We are now in a position to present the first theorem of this section.

Theorem 3.1 Let = be the solution of (1.1) and z,, the solution of (8.7) where (3.1) is defined B

by the least-squares approzimation. Assume that k € W3*([a,b] x [a,b]), 0 < m < 7, and
ks()z(-) € Wi([a,b] x [a,b])) for each s € [a,b],where 0 <1 < 7 and ky(t) = k(s,t). Then

flz = zzllo = O(R”)
with v = min{m + [,2m}.
Proof: Using corollary 2.2, we obtain
llz ~ 2o/l = O(h*™) + O(IK (K — Kn)znlloo)- (3.8)
Hence we only need to estimate the order of convergence of || K(K — Ky)Zn||co. Note that

|K(K — Ko)za ()] =1f2k(t,u) [Tk(t,8) — kn(u, )]za(s)dsdu]
= [ [P k(t, u)[k(u, s) — kn(u, 5)]Za(s)dsdul.
Let ¢4(u,s) = k(t,u)za(s) and let wn(u,s) = 377, 37—, bi; Bi(u)B;(s) be any element that is a

tensor product of B-splines. Then since k, is the least-squares approximation of &,
b o ‘ .

/ / en(u, 8)[k(u, 8) — kn(u,s)]ldsdu = 0,

therefore
b rb
KK = KaJoa®l =1 [ [ [01(8,9) = oal, )k(, ) = Ea(u,)}dsdu.

Applying the Cauchy-Schwartz inequality,

K (K - E)2(t)] < 16— @allallk - kalla

Here of course || - || denotes the L, norm defined on the space of bivariate functions Wa([a, b] x

[a,b]). Noting that ||k — kn|l2 = O(h™) and |9 — @n||2 = O(h!), (3.8) proves the desired result.
O
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The second method that produces superconvergence of the iterates of the degenerate kernel

solutions is based upon approximating k by interpolation. Let
Oy:ea=tg<ti < --<ty=b

be a partition of [a,b]. Let i = max;<i<n(¢; — ti-1) and assume as in Section 2 that h — 0 as
N = oo. Let &,6;,...,¢& be the zeros of the rth degree Legendre polynomial in [-1,1]. We
. shift these points to each subinterval [t;_1,%], ¢ = 1,2,..., N to obtain {T,-j};:l. Denote the - .
interpolation polynomials by ¢;;, -i.e.
ij(To,8) = L) =(eh) (3.9)
0 if (¢,7) # (a, 8)
An approximating degenerate kernel k,, (n = Nr) is now defined by
N r N r
kn(s,8) =D D D D k(Tij Ta,8)pis(8)Pap(t)- (3.10)
i=1 j=1a=1 f=1
Let the interpolation brojector of C([a,b] x [a,b]) into the tensor product space S, ® 2, be
denoted by P,. That is, | |
' Pk(s,1) = kn(s,1)
where k,, is defined in (3.10). Also let z1 denote the solution of equation (2.4) when K, possesses
the kernel k,, defined by (3.10) and zI' denote the corresponding iterate defined by (2.5). The
following theorem demonstrates the superconvergence of the iterated degenerate kernel method

when the kernel is decomposed by interpolation.

Theorem 3.2 Assume that in equation (1.1) k € W™([a,b] x[a,b]), 0 < m < 1, and k(-)za(-) €
Wi([a,b] x [a,8]), 0 < 1 < 2r, where ki(u) = k(t,u). Then

Iz - zL'|loo = O(RY), v = min{2m,r + [}.
Proof: As in the proof of Theorem 3.1, we need to estimate the error of || K(K — Kp)Znllco-
By taking ¢, € 5P, ® SP,, and ¥, € 53, ,, ® S, ., for each t € [a, b],
K(K - Kn)a(t) = [} k(t, ) [J[k(u,8) — kn(u, 5)]an(s)dsdu
= f: f: E(t, w)Zn(s)[E(x, s) — kn(u, s)]dsdu
= (k(w)zn(s), k(u, s) = kn(u, 5))
= (k(w)zn(s) — @n(u, 5), k{1, 8) - kn(u, 5)) .
+(()0ﬂ(u7 s), (I = Po)(k(u,s) — Pa(u, 3)) + (‘Pn(uv 8), (I - Pp)¥n(x, 3))

1



The rest of proof follows by an argument similar to the one give in the proof of theorem 4.2 of
Graham, Joe and Sloan [6]. A modification needed here however is to accomodate the bivariate
functions. An approximation of a bivariate function by an element from a space of tensor product
of finite dimensional univariate functions and it;s approximation power is well ducumented, -e.g.,

see [5]. O

4 The Iterated Degenerate Kernel Method for Hammerstein.' "

Equations

In this section, we extend the results of the previous section to obtain superconvergence of the
iterated degenerate kernel method for Hammerstein equation described in (1.2). We assume

throughout this section, unless stated otherwise, the following conditions on k, f and :
1. lim¢r ||kt — kr]|leo = 0, T € [a,b];
2. M =supy<sch f: [k(t, s)]dt < oo
3. f € Cla,b];

4. 9¥(t,z) is continuous in ¢ € [0,1] and Lipschitz continuous in z € (—o0,00), i.e., there

exists a constant C; > 0 for which
[(t, 21) — P(t, z2)| < Ci|z1 — 22|, for all zq,z2 € (—00,00);

5. the partial derivative 1/J(f"b) of 9 with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant C; > 0 such that
|92, 21) — ON(E, 25)| < Cala1 — 29, for all z1, 75 € (—00,00);  (1.2)

6. for z € C[0,1], ¥(.,z(.)), ¥(®V(.,z(.)) € Cla, b].

Additional assumptions will be given later as needed. A comprehensive study of the degenerate
kernel method for Hammerstein equations was made by Kaneko and Xu [11]. The degenerate
kernel method for Hammerstein equations consists of replacing K in (1.2) by k, of (3.1) and

approximating the solution z of equation (1.2) by z, which satisfies
b
O / ka(t, s)(s,za(s)) ds = f(f) a<t<b. (4.1)

12



Following analogously the development made in (3.5) and (3.6), for

j=1

LI
¢ = Z/a aijp;(8)¥(s, za(s))ds, (4.2)

T, can be written as

oalt) = 1)+ i) | (43)

t=1

Substituting (4.3) into (4.2), we obtain the following n nonlinear equations in n unknowns
Ci:° " "5 Cn;,

i = i baij‘Pj(S)w(s,f(S) + Xn:czw(s))ds, 1<i<n. (4.4)

j=1v¢ =1

Define
b
K¥a(t) = / k(2, s)o(s, =(s))ds
so that (1.2) can be written as
2 - KUz = . | (4.5)
Similarly we write equation (4.1) as -

z,— K,¥z,=f (4.6)

The iterated solution z;, is now obtained by
2 = f+ KV, (4.7)
The Fréchet derivative of KV at ¢g is denoted and defined by
(KDY (o)(@)0) = [ KoYt ool s)el5)ds

with 12 denoting the first partial derivative of 9 with respect to the second variable. The
following theorem describes superconvergence phenomenon of z) to z. Here we assume that.
the decomposition (3.1) is done via interpolation (the second method described in the previous

section). The case of the least-squares approximation is similar and will be left to the reader to

supply the detail.

Theorem 4.1 Assume that in equation (1.2) k € Wi*([a, b]x[a,d]), 0 < m < 7, and ks(-)¥(:, z4(-)) €
W!([a,b] x {a,b]), 0 < | < 2r, where z,, is the solution of (4.6). Assume also that 1 is not an
eigenvalue (K'V)'(§) for each § between f + K,Vz, and f + K¥z. Then

lz — 21|l = O(A*), v =min{2m,r+1}.

13



Proof: From (4.5) and (4.6),
z-1z, =K¥z— KUz, (4.8)
Now

KVz — K¥z, = KY(f+ KVUz)— K¥(f + K,¥z,)
= (KU)Y(0(f + Kn¥zn) + (1 - 0)(f + K¥2z))(K¥z - K, Vz,)
forsome <6<1 |
= Ko(KVz — KoUz, + (K¥z - K¥z,) - (K¥z — K ¥z,)),

where Kg = (KUY (0(f + K, ¥z,) + (1 — 8)(f + K¥z)). Since 1 is not an eigenvalue of K for
each 0 € 8 < 1, we obtain

KUz — KUz, = (I - Kg) 'K¢(K — Kn)¥z,. (4.9)
Combining (4.8) and (4.9), and taking the norm on both sides, we obtain
2 = Zplleo < cllKp(K — Kn)¥en|loo-

Arguing as in the proof of Theorem 3.2, we obtain the desired result. O

Finally we consider a computational problem associated with (4.4). It is customary that
the system of nonlinear equations (4.4) is solved by an iterative scheme. For example, the fixed
point iteration scheme for (4.4) is to generate {cgk)}?___l for k > 1 by

n b n .
D = 3 / aii0i()0(s, F(8) + S cPa(s)ds, 1<i<n = (4.10)
j=1ve =1

At each step of iteration, the integrals in (4.10) must be computed since the integrands contain
the different values of cgk). To circumvent this difficulty. we propose the following device that
is originated from [12]. We let '

2p(t) = P(t, z4(1)) (4.11)
where z, is defined in (4.3). We have, assuming that k, takes the form of (3.1), |
n b n
() = 96 SO+ L aiiei(t) [ 0i()zm(s)ds). (4.12)
) ) 1=1 e g=1

The equation (4.12) can be solved by the collocation-type scheme that was developed by Kumar
and Sloan {12}. Namely let {n;}"; be n functions defined on [a, ] and let {¢;}7-, be n distinct
points for which

det(7:(1;)) # 0. @)

14



zn in (4.11) is now approximated in the form }°7_; @;n;. The a;’s can be found by solving the
following nonlinear equations. Note that the constants a;’s are moved out of the integrals. This
makes the repeated computations of the integrals unnecessary when the system of nonlinear
equations is to be solved by an iterated scheme. ‘
n n “n b n

S ami(te) = Ptk ft) + Y aijeilte) Y / 3" wi(s)m(s)ds). (4.14)

i=1 i=1 I=1 % =1 ‘ )
for1 <k < n Hwe denote A = [;(:)] and the right side of (4.14) by (&), then with
¥(&) = (¢i(@)) and alk) = (agk)), (4.14) may be solved by the fixed point iteration scheme that
can be described as

a®) = A~ 1g(alk-). (4.14)

5 Numerical Examples

In this section we present a numerical example using least-squares and interpolation to approx-
imate k(s,t). Let k(s,t) = e* and f(t).= 1 — 1==. Then, the computed errors for the least

squares method are shown in the following table.

. -Errors
n non-iterated iterated
3 00622970884 | 1.57623196E-05
4 .00356820367 | 4.97616686E-06
5 .00230562003 | 2.01950876E-06
convergence rate = 2 4
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PROJECT 4

HIDEAKI KANEKO, RICHARD D. NOREN and PETER A. PADILLA

Superconvergence of Collocation Method for Hammerstein Equations

The Hammerstein equation arises as a reformulation of a class of boundary value problems

with nonlinear boundary conditions. The collocation method is one of the widely used numerical’ B

methods to approximate the solution of such equations due to its reasonable computation cost.

We proved that the iterates of the collocation solutions for Hammerstein equation converge
faster than the original collocation solution, a phenomenon commonly known as a supercon-
vergence. This result extends the results obtained by Kaneko and Xu (Superconvergence of the
_ Iterated Galerkin Mathods for Hammerstein Equations -SIAM Jl. Num. Anal. June 1996 (to
appear)) concerning a similar outcome for the Galerkin method. The degree of improvement in

the rate of convergence depends upon the smoothness of the kernel involved.
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SUPERCONVERGENCE OF THE ITERATED COLLOCATION METHODS
FOR HAMMERSTEIN EQUATIONS

H. Kaneko, R. D. Noren and P A. Padilla

Abstract

In this paper, we analyse the iterated collocation method for Hammerstein equations with
smooth and weakly singular kernels. The paper expands the study which began in [14] con-
cerning the superconvergence of the iterated Galerkin method for Hammerstein equations.
We obtain in this paper a similar superconvergence result for the iterated collocation method
for Hammerstein equations. We also discuss the discrete collocation method for weakly sin-
gular Hammerstein equations. Some discrete collocation methods for Hammerstein equations

with smooth kernels were given previously in [3] and [18].

Key words: the iterated collocation method, the discrete collocation method, Hammerstein
equations with weakly singular kernels, superconvergence.

Mathematics Subject Classification (1990): 65B05, 45L10.

1 Introduction

In this paper, we investigate the superconvergence property of the iterated collocation methbd for
Hammerstein equations. In the recent.pa.per [14], the superconvergence of the iterated Galerkin
method for Hammerstein equations with smooth as well as weakly singular kernels was estab-
lished. The paper generalizes the previously reported results on the superconveigence of the
iterated Galerkin method for the Fredholm integral equations of the second kind [8], [9] [20]. A
more important contribution made in [14] Lies in the fact that the superconvergence result was
established under weaker assumptions (Theoreﬁl 3.3 [14]). The approach used in [14] to establish
the superconvergence of the iterated Galerkin method can easily be adopted to prove the results -
of Graham, Joe and Sloan [8], Joe [9] and Sloan [20] under weaker conditions imposed upon
the Fredholm equations. This will be demonstrated in Section 3. In Section 2, we review the
collocation method for Hammerstein equations as well as some necessary known results that will
be pertinent to the matreials in the ensuing sections. We recall that the collocation method for
weakly singular Hammerstein equations was discussed and some superconvergence results of the
numerical solutions at the collocation points were discovered by Kaneko, Noren and Xu in [11]. In
Section 3, the supererconvergence of the iterated collocation method for Hammerstein equations

is established. The results obtained there encompass Hammerstein equations with smooth as well



as weakly singular kernels. Finally, in Section 4, we discuss the discrete collocation method for
Hammerstein equations with weakly singular kernels. The result obtained in this section extends
the results of [3] and [18] which deals with the discrete collocation methods for Hammeratein
equafions with smooth kernels. Some examples are also included in this section.

We note that there have been several other research papers published in recent years that
describe various numerical methods for Hammerstein equations. A variant of Nystom method

was proposed by Lardy [19]. The degenerate kernel method was studied by Kaneko and Xu

*[16]. We point out that a superconvergence of the iterates of the degenerate kernel method was - .

recently observed when a decomposition of the kernel is done properly. This will be reported in
a future paper [17]. The reader who is interested in more information on numerical methods for

a wider class of nonlinear integral equations may find necessary materials in [2] and [5].

2 The Collocation Method

In this section, the collocation method for Hammerstein equations is presented. Some materials
from the approximation theory are also reviewed in this section to make the present paper self-

contained. We consider the following Hammerstein equation
1 .
=(t) - / k(t, s)p(s,=(s))ds = f(t), 0<t<1, (2
0

where k, f and ¢ are known functions and z is the function to be determined. Define ky(s) =
k(t,s) for t,s € [0,1] to be the ¢ section of k. We assume throughout this paper unless stated

otherwise, the following conditions on k, f and ¥:
1. limyeyr [|k: = Er]loo = 0y T €[0,1];
2. M = sup, [y |k(t, s)|ds < oo;
3. feClo,1}; |

4. (s, z)is continuous in s € [0,1] and Lipschitz continuous in z € (—o00, 00), i.e., there exists

a constant C; > 0 for which
hb(s,_ z1) — ¥(s,z2)| < Ci|z1 — 22|, for all 1,2 € (—00,00);

5. the partial derivative ¥(®1) of 9 with respect to the second variable exists and is Lipschitz

continuous, i.e., there exists a constant Cy > 0 such that

Id)(o’l)(t,xl) - z,b(o'l)(t,a;g)] < Calzy — z2|, for all 24, 23 € (—00,0); (2.2)



6. for = € C[0, 1], (., 2(.)), (., z(.)) € C[0,1].

We let .
(K¥)(z)(t) = /0 k(2, 8)9(s, z(s))ds.

With this notation, equation (2.1) takes the following operator form
z—-KVz = f. : . (2.3)

For any positive integer n, we let |
Mo :0=to <1 < oo < tncy < ta =1

be a partition of [0,1]. Let r and v be nonnegative integers satisfying 0 < v < r. Let Sy(Il,)

denote the space of splines of order r, continuity v, with knots at II,, that is
§7(IIn) = {z € C*[0,1} : 2|, 4;,) € Pr—1, foreach i =0,1,...,n -1}

where P,_; denotes the space of polynomials of degree < r — 1. For the collocation method, we
are interested in the cases v = 0 or 1. That is, it is posible to work with the space of piecewise
polynomials with no continuity at the knots or with the space of continuous piecewise polynomials
with no continuity requirement on the derivatives at the knots. We assume that the sequence of
partitions II,, of [0, 1] satisfies the condition that there exists a constant C' > 0, independent of

n, with the property:
max;<i<n(ti — ti-1)
min; ¢i<n(t; — ti-1)

In many cases, equation (2.1) possesses multiple solutions (see e.g. [16]). Hence, it is assumed

< C, for all n. (2.4)

for the remainder of this paper that we treat an isolated solution z¢ of (2.1). Let I; = (t;-3,1;)
for each i = 1,...,n. Then for v = 0, we let Ti1,Ti2, . - -» Tir e the Gaussian pdints (the zeros of

the rth degree Legendre polynomial on [—1, 1]) shifted to the interval I;. We define
Go={rn:1<i<n,1<j<r} (2.5)

The points in Gp give rise to the piecewise collocation method where no ;:ontinuity between
polynomials is assumed. This is the approach taken by Graham, Joe and Sloan [8]. Joe [9], on
the other hand, considered the continuous piecewise polynomial collocation method. His method
corresponds with taking v = 1. Here ';ve define the set G; of the collocation points to be the
set consisting of the knots along with the Labatto points (the zeros of the first derivative of the
r — 1th degree Legendre polynomial) shifted to the interval I;. Namely, let £,_; = 1 and for



1<1<r—2(r>3),let § denotes the Ith Labatto point. If |I;| denotes the length of I;, then

G'; contains
1 .
T(im1)(r=1)+l+1 = E(ti-l +1; 4+ 'Iil&), 1€i<n,1<i<r~L,andra=1=0 (2.6)

The analyses of [8] and [9] are very similar. We therefore confine ourselves to developing the
collocation method for Hammerstein equations that is analogous to the method of [8]. An
obvious extension to i:he continuous piecewise collocation method wﬂl be left to the reader. )
Define the interpolatory projection P, from C[0,1]+ S¥(II,) to §¥(II,) by requiring that, for N
z € C[0,1]+ S¥(1I,,),

Pux(rij) = #(ri;), forall 7; € Go. (2.7)
Then we have, for z € C[0,1] + S¥(II,) .

Pz -z, as n — 00 (2.8a)

and consequently
sup [Pl < e (2.8b)

The collocation equation corresponding to (2.3) can be written as

where z,, € SY(Il,). Now we let
Tz=f+K¥z
and
Twzy = P f+ P,KVz,

so that equations (2.3) and (2.9) can be written respectively as z = Tz and z, = Tozn. We

obtain;

Theorem 2.1 Let 2o € C[0,1] be an isolated solution of equation (2.3). Assume that 1 is not an
eigenvalue of the linear operator (KV)(zq), where (K¥)'(zo) denotes the Fréchet derivative of.
KV at zo. Then the collocation approzimation equation (2.9) has a unique solution z,, € B(zg,6)

for some 6 > 0 and for sufficiently large n. Moreover, there ezists a constant 0 < ¢ < 1,

independent of n, such that

Qrn

Qn
< |zn — < )
1 +q - "xﬂ zOHOO = 1= q7 (2 10)
where a,, = ||(I = T4(20))" Y (Tn(20) — T(20))||oo- Finally,
En(20) < ||2s — Zolloo < CEn(30), (2.11)

where C is a constant independent of n and E,(zo) = infuex, |20 — tljoo-

4



A proof is a straight application of Theorem 2 of Vainikko (23] and is demonstrated in the
proof of Theorem 2.1 [11]. We denote by W;*[0,1], 1 < p < 0o, the Sobolev space of functions ¢
whose m-th generalized derivative g(™) belongs to L,[0, 1]. The space W*[0, 1] is equipped with

the norm

m
lgllwg = > llg®ll,-
k=0

It is known from Demko [6] and De Vore.[7] that f0<v<r,1<p<Loo,m>0and z €W,
‘then for each n > 1, there exists u, € S¥(Il,) such that '

lle — unlly < Ch#llzlwe, (2.12)

where p = min{m,r} and b = max;<i<n(t; — ti-1). The inequality (2.12) when combined with

Theorem 2.1 yields the following theorem;

Theorem 2.2 Let zo be an isolated solution of equation (2.3) and let z, be the solution of
equation (2.9) in a neighborhood of zo. Assume that 1 is not an eigenvalue of (KV¥)'(zo). If
zo € W, then

| llzo — Znlleo = O(R*),
where p = min{l,r}. Ifzg € W:, (1 <p< o), then
lzo — 2nlleo = O(RY),
where v = min{l — 1,r}.

When the kernel k is of weakly singular type, namely if

k(t,s) = m(t, s)ga(t - 3]), (2.13)

where m € C*+1([0,1] x [0,1]) and

27l 0<axl
9a(8) = { ’ C(2.14)

logs, a=1.

then the solution zo of equation (2.3) does not, in general, belong to W,*. To better characterize
the regularity of the soution of (2.3) with weakly singular kernel, consider a finite set S in [0,1]
and define the function ws(t) = inf{|t — s| : s € S}. A function z is said to be of Type(a,k, 5),
for -1< a<0,if '

lz®)(t)] < Clws@®)]** t ¢ 5,

and for a > 0, if the above condition holds and = € Lip(a). Here Lip(a) = {z:|z(t) — z(s)| <
C|t — s|*}. It was proved by Kaneko, Noren and Xu [12] that if f is of T'ype(B, i, {0,1}), then
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a solution of equation (1.1) is of Type(y, #,{0,1}), where v = min{a, 3}. The optimal rate of
convergence of the collocation solution z, to zo can be recovered by selecting the knots that are
defined by

t; =(1/2)(2¢/n)?, 0<:<n/2

i= (/Dm0 i</ .15

ti=1—1,-, nf2<i<n,

" where g = 7/ denotes the index of singularity. Details can be found in [11].

3 The Iterated Collocation Method

The faster convergence of the iterated Galerkin method for the Fredholm integral equations of
the second kind compared to the Galerkin method was first observed by Sloan in [21] and [22].
On the other hand, the superconvergence of the iterated collocation method was studied in [8]

and [9]. Given the equation of the second kind
z—- Kz = f, (3.1)

where K is a compact operator on X = C[0,1] and z, f € X, the collocation approximation z,

is the solution of the following projection equation
Zn — P,Kz, = P,f. ' (3.2)

Here P, is the interpolatory projection of (2.7). The iterated collocation method obtains a

solution z}, by

zl = f+ Kz,. | " (3.3)
Under the assumption of |
|KP.~K||—-0 asn— oo - (3.4)
it can be shown that
lle = 21| < I = KP) 1K (= - Paz)] (35)

The assumption (3.4) is satisfied if X = Ly and P, is the orthogonal projection satisfying
||Prng — g]| — O for all g in the closure of the range of the adjoint K* of K since in this case
|KP, — K|| = ||P.K* - K *|. The results of Sloan were recently generalized to the iterated
Galerkin method for Hammerstein equations by Kaneko and Xu [14]. The main theorem of [14],
Theorem 3.3, that guarantees the superconvergence of the iterates was proved by making use of

the collectively compact operator theory.



The purpose of this section is to study the superconvergence of the iterated collocation

method. For the collocation solution z, of (2.9), we define
z;, = [+ KV¥z,. ' (3.6)

A standard argument shows that z] satisfies |
z, = f+ KUP,z],. (3.7a)
We denote the right side of (3.7a) by S,z;,, namely | | |
Snzy = f+ KU Pz, S | (3.70) |
We recall the following two lemmas from [14].

Lemma 3.1 Let zo € C[0,1] be an isolated solution of (2.3). Assume that 1 is not an eigenvalue

of (K¥)(zo). Then for sufficiently large n, the operators I —S! (zo) are invertible and there exists
a constant L > 0 such that

(I = S(20) oo < L, for sufficeintly large n.

Lemma 3.2 Let 29 € C[0,1] be an isolated solution of equation (2.3) and z, be the unique
solution of (2.9) in the sphere B(zo,61). Assume that 1 is not an eigenvalue of (K¥)'(zo). Then
for sufficiently large n, z!, defined by the iterated scheme (3.6) is the unigue solution of (3.7) in
the sphere B(zo,6). Moreover, there ezists a constant 0 < g < 1, independent of n, such fhat

Br
1+g

where B, = ||(I — §4(20))"Y[Sn(20) — T(z0)}|loo- Finally,

ﬂ
< lleh, = zolloo < 722,

flz7 — Zolleo < CEn(z0).

The definitions of § and 6; are described in [14]. Following the development made in [14], we
let '

B(s,9) = (s, %0) + V(5,30 + 0(y — 30))(v — W), (3.8)
where 6 := (s, yo,y) wWith 0 < 8 < 1. Also let
g(t’ $,%0,Y, 0) = k(ts 3)"1)(0'1)(51 Yo+ 0(y - yo))’
(Grz)(t) = /0 " o(t, s, Pazols), Paz(5), 0)2(s)ds,

and (Gz)(t) = [3 gi(s)z(s)ds, where gi(s) = k(t,3)(®V(s,zo(s)). Now we are ready to state
-and prove our main theorem of this paper. The proof is a combination of the idea used in [14]

(Theorem 3.3) and the one used in [8] (Theorem 4.2).
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Theorem 3.3 Let o € C[0,1] be an isolated solution of equation (2.3) and z,, be the unique
solution of (2.9) in the sphere B(zq,61). Let z}, be defined by the iterated scheme (3.7). Assume
that 1 is not an eigenvalue of (KW)(zo). Assume that zo € W] (0 < 1 £ 2r) and g: € W*
(0 <-'m, < r) with ||gi|lwy bounded independently of t. Then

lzo — z4}leo = O(AT), where v = min{l,r + m}.
Proof: From equations (2.3) and (3.7), we obtain
zo — 2z, = K(Vzg — Y P,zl) = K(¥zo — ¥Ppz0) + K(¥Pprzo — \Ianx;) (3.9). |
Using (3.8), the last term of (3.9) can be writtén as
K(¥ P,z — UP,z,)(t) = (GnPu(zo — 23,))(2).
Equation (3.9) tilen becomes
T - z! = K(¥zo — UP,z0) + GrnPr(z0 — 7). (3.10)
Using the Lipschitz condition (2.2) imposed on %), for z € C[0,1],
1(Ga2) - (Ga)lleo < C: P, /01 |k(2, 8)|dsl|z]loo(l| Przo — zplloo + || Pallollzy, = Zolloo)-
This shows that
1Gn ~ Gllw < MC3(|Puz0 — Zolleo + el ~ zolles) = 0 25 1 = c0.
Also, for each z € C[0,1],
s ((GP)0)~ (G0 = sup | [ o) Pus(s) = sls] < MM o o],

where

My = sup |9ON(2,20(2))| < +oo.
0<i<1

It follows that GP, — G pointwise in C[0,1]'as n — oo. Again since P, is uniformly bounded,
we have for each z € C|0, 1],

IGnPrz — Gz|loo < [|Gn = Gllool|Prlloo|lZ]loo + |G Prz — Gz|oo-

Thus, G, P, — G pointwise in C[0,1] as n — co. By Assumptions 2, 5, and 6, we see that there
exists a constant C' > 0 such that for all »

[$©1) (s, Pazo(8) + 8(Pozy(s) — Pazo(s)))] < Call Pazo — Zolleo + 8C2Pl|zh, — Tolleo + My < C.
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This implies that {G, P,} is a family of collectively compact operators. Since G = (K¥)/(zo) is
compact and (I — G)™? exists, it follows from the theory of collectively compact operators that
(I — GoP,)™ ! exists and is uniformly bounded for sufficiently large n. Now using (3.10), we see
that '

llzo - 2hlleo < CIIE (R0 — ¥ Pazo)]-

Hence we need to estimate || K(¥zo — ¥ P,%o)||. The following four inequalities are known (The- -
orem 4.2 [8]). Let ¥, € SP(Il,,) be such that '

S ll(mo = $u)Dllwpn(zy < chlizollws,  0< 5 <1, (3
t=1 .
jax 1P Nlwe ) < c||$ollwg, jiz0. - (3.12)

Also for each t € [0, 1], there exists ¢, € S2,(II,) such that

S M = en)llwray < ™ K,  0<j<m, (3.13)
i=1
max leitiwg < cKnmy 520, (3.14)

where Ky, = supgci<y l|ktllwp < oo. Now for t € [0,1] we have

- K(¥zo — ‘I’Pn?o)(t) = (gt.— PntsTo = Pnzo) + (@nt, (I — Pr)(To — ¥n))
+(Pnt> (I = Pa)ibn)-

Using equations (3.11)-(3‘.14) along with the arguments from (8] (p.362) we can show that each

(3.15)

of the three terms is bounded by ch” uniformly in t. This completes our proof. O

Orne way to establish the superconvergence of the iterated collocation method for the Fredholm
equation is to assume (3.4). In the context of the present discussion, (3.4) is equivalent to
assuming

I(E®) (zo)(I = Po)lciapllcc =0  asn — oo. (3.16)

Theorem 3.3 was thus proved under weaker assumptions. The idea used to prove Theorem 3.3
originates from [4] (section 6) in which the superconvergence of the iterated -collocation method
for the Fredholm equations was established by showing that {KP,} is a family of collectively
compact operators. ‘

Finally in this section, we investigate the superconvergence of the iterated collocation method
for weakly singular Hammerstein equation. Specifically, we consider equation (2.3) with kernel
given by (2.13) and (2.14). An enhancement in the rate of convergence is given in the following

theorem.



Theorem 3.4 Let zo € C[0,1] be an isolated solution of equation (2.3) and z, be the unigue
solution of (2.9) in the sphere B(zg,6,) with kernel defined by (2.13) and (2.14) and knots defined
by (2.15). Let z, be defined by the iterated scheme (3.7). Assume that 1 is not an eigenvalue of
(K¥®)(z0) and that HOV(., zo(-)) is of Type(a,r,{0,1}) for & > 0 whenever z¢ is of the same
type. Then

llzo — 2nlleo = O(AT*).

Proof: We follow the proof of Theorem 3.3 exactly the same way to (3.15), which is

K(Uzo — UP,zo)(t) = (9t — PntsTo — Przo) + (Pn,e, (I - Pn)(ivo — n))
_+(‘Pn,t’ (I- Pn)"/’n)-

The difference in superconvergence arises from the degree to which we may bound the first term.
As in Kaneko and Xu [14] (Theorem 3.6), using an argument similar to [15], it can be proved
that there exists u € §¥(II,) with knots II,, given by (2.15) such that ||g; — u|j; = O(h*). Here

h= maxls,-sn{:v; - x;_l}. Then

|(gt — @n,ts To — Przo)l < llgt ~ enellillzo — PrZolloo
= O(hetT).

The rest of proof follows in the same way as described in [8] (p.362).0

4 The Discrete Collocation Method for Weakly Singular Ham-

merstein Equations

Several papers have been written on the subject of the discrete collocation method. Joe [10]
gave an analysis of discrete collocation method for second kind Fredholm integral equations. A
discrete collocation-type method for Hammerstein equations was described by Kum-a.r in [18].
Most recently Atkinson and Flores [3] put together the general analysis of the discrete colloca-~
tion methods for nonlinear integral equations. In this section, we describe a discrete collocation
method for weakly singular Hammerstein equations. In the aforementioned papers [10, 18, 3],
their discussions are primarily concerned with integral equations with smooth kernels. Even
though, in principle, an analysis for the discrete collocation method for weakly singular Ham-
merstein equations is similar to the one given in [3], we feel that a detailed discussion on some
specific points pertinent to weakly singular equations, -e.g.,a selection of a particular quadrature
scheme and a convergence analysis etc, will be of great interest to practioners. OQur convergence

analysis of the discrete collocation method presented in this section is different from the one given
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in [3] in that it is based upon theorem 2 of Vainikko [23]. The idea of the quadrature used here
was recently developed by Kaneko and Xu [15] and a complete Fortran program based on the
idea is being developed by Kaneko and Padilla [13]. A particular case of the quadrature schemes

developed in [14] is concerned with an approximation of the integral

1= [ fa)is, (4.1)

where f € Type(a,2r,S) with @ > —1. For simplicity of demonstration, we assume S = {0}.

" We define ¢ = %’l_a:ll and a partition

Ta:Zo = 0,21 =0~ 7, z; = j9%,, ji=23,...,n (4.2)

Now we construct a piecewise polynomial S, of degree r — 1 by the following rule; S,(z) = 0,
T € [20,21) and S,(z) is the Lagrange polynomial of degree r — 1 interpolating f at {uy)};:l for
T € [%i,Zi+1), ¢ = 1,2,...,n — 2 and for z € [zp—1,2Z,]. Here {uy)}g.__l denote the zeros of the
rth degree Legendre polynomial transformed into [z;,Z+1). Our approximation process consists

of two stages. First, I ( f) is approximated by
. 1 n-1 Tit1
i) = / f@)z =3 / f(z)dz. (4.3)
z1 i=1 V%

Second, I(f) is approximated by I(5,) = f;l Sy(z)dz. A computation of I(S,) can be accom-
plished as follows; let s:[z;,z;41] — [~1,1] be defined by s = Zz—(@is1twi) 5o phat

Zit1—Ts
- 1 '
i(5)= [ Fys)as e
where iy
Fy(s)= Z %(%{-1 - zi)f(%(xiﬂ - zi)s + %(‘”Hl +z:)).
. i=1

If {u;:i=1,2...,7} denotes the zeros of the Legendre polynomial of degree r, then
5.(2) = L Fy(wh(e)
with /;(z) the fundamental Lagrange polynomial of degree r — 1 so that
i(S,) = ZT: w; Fr(u;), where w; = /11 li(z)dz. (4.5)
i=1 -
It was proved in [15] that
[I(f) = I(S:)] = O(n™?). - (46)

11



In this section, we examine equation (2.1) with the kernel k£ defined by (2.13) and (2.14). When
the knots are selected according to (2.15), as stated earlier, it was shown in [11] that the solution
z,, of the collocation equation (2.9) converges to the solution z of (2.1) in the rate that is optimal

to the degree of polynomials used. Specifically, z, must be found by solving

2n() ~ [ gall8d? - shm(uS?, o) (s, 2a(s))ds = ) (47)

where : = 0,1,...n—1and j=1,2,. .
The discrete collocation method for equation (2.1) is obtained when the integral in (4. 7) is
replaced by a numerical quadrature given in (4.5). Let k;;(s) = ga(lug-) - sl)m(ug-') ,8). Then

J& ga(lul) = s)ym(ul), syp(s, za(s))ds ~f0 ,,(s)zb(s,zn(s))ds

(4.8)
= fo + [ o kij(8)¥(s, zn(s))ds.

The integrals in the last expression of (4.8) represent two weakly singular integrals which can be
approximated to within O(n~?") order of accuracy by (4.5) by transforming them to [-1, 1] and
selecting the points in (4.2) appropriately.
Writing (4.7) as
Puzn — P.K ¥z, = P, f, (4.9)

we consider the approximation Z, to z, defined as the solution of
i’ﬂ = Qnin = PnKn‘pin + Pnf, (4.10)

where K, is the discrete collocation approximation to the intégrals in (4.8) described above.

We will use Theorem 2 of [23] to find a unique solution to (4.10) in some & neighborhood of z,,,
where n is sufficiently large. Clearly, Q,(z) = P, K, ¥'(z), where ¥/(z)[y](s) = %°1)(s, z(s))y(s).
For sufficiently large n, (4. 9).ha,s a unique solution in some é neighborhood of z. To see that
I - Q. (z,) is continuously invertible with {(I — Q}(z5))~ 1} 5 uniformly bounded, it is enough
to observe that {Q%(z,)}22, is collectively compact, and to do this we will show that

[ @n(zn)[2](2) — Qn(22)[z)(t) |=| PaKn¥'(z0)a(t) — PaKp W' (20)2(2') |- 0 (4.11)

as t — t/, for each z € C[0,1], [1]. Here N is some sufficiently large number.
If we show (4.11), then part (a) of Theorem 2 [23] is also verified. In order to verify part
(b) of Theorem 2 [23], we only need to establish (because of the uniform boundedness of {(1 —

Qn(z2))"1}52 ) that
| @u(z) — Qu(zn) lo< L || 2 — 24 Iloog Lé, (4.12)
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for some constant L, and

| @n(@n) = Ta(zs) ||— 0 as n — 0. ' (4.13)

Once this is done, Theorem 2 [23] applies yielding a unique solution Z, in some neighborhood

of z,, (for sufficiently large n) and
| 2n — &n ||< Létn < L || @n(2n) = Tnl2n) lleo - . ' (4.14)

(Here and throughout the remainder of the section, L denotes a generic constant, the exact -
value of which may differ at each occurance.) This inequality will be used to obtain the order of
convergence.

Considering (4.11), the right hand side is bounded by Ty + T3 + T3, where

Ty =| P KV (z)z(t) — P, KY' (2,)z(2t) |,
T, =| P, K% (z,)z(t) - PnK\F’(zn)z(ﬂ) R
Ty =| PuKn¥'(zn)a(t) — PaKn¥'(z,)a() | .

Let € > 0. Since {P,}3, is uniformly bounded, T3 + T3 < % by applying (4.6) with f(s) =
POV(s, z,,(s))z(s) and letting n be sufficiently large. For T, we have
Ty < M [} | k(t,s) — k(t,) | ds < M(S1 + S2),

where
1 .
51 = -/o gl s=11]) | m(t,s)—m(t',s) | ds
and |
1
Sa= [ 10alt =50 =ga1 ¥ = 51} | m(t',s) | ds.
but _
1
51 < sup | m(t,s)—m(t,s)] | galjt—s|)ds
0<s<1 0
<L sup | m(t,s)—m(t,s)|—0 as t =1,
0<s<1
and

Sy SLfylga(lt—s])=ga(lt'—s])|ds
B R O R R P PR
—0ast—t.

Hence (4.11) holds. For (4.12),

| @n(2) — Qnl@n) lloo=l| PuKn(¥'(2) - ¥'(z)) }IIS MC|lz -z, ||SME=g<1
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for 6 sufficiently small. Note that we have used the uniform boundedness of {F,},{K,} and
because ¥(%1)(s, y(s)) is locally Lipschitz, so is the operator
¥’ : C[0,1] = B(C[0,1],C][0,1]) (the space of bounded linear operators from C[0, 1] into C[0, 1]).

For (4.13), we have

1 @u(n)=Ta(n) lloo=l Pa(Enn— K¥20) < L | (K= K)¥(20) < L(Ra+Ro+Bs) (4.15)
where
By =l Ko W) Knb(20) [, B =) Kn(an)-K¥(as) I, By =l K¥(0)-K¥(a) |- (416)

But
Ry < L || ¥(zn) — ¥(0) IS CLL || 2n — 2o | (4.17)

because ¥ is a Lipschitz operator and {K,} is uniformly bounded, and also
R3 < M || ¥(z0) — ¥(za) IS C1M || 20 — 20 || - (4.18)

Finally,
Ry =0O(n~?r) (4.19)

by (4.6) using f(s) = ¥(z,zo(s)).
Thus Vainniikko’s Theorem yields a unique solution Z, for n sufficiently large and (4.14)
holds. Now (4.14) and (4.15) - (4.19) show that

| Zn = &n = O(n™?) , (4.20)

where f is the minimum of 2r and the order of convergence of || zo — z, ||, We summerize the

results obtained above in the following theorem:

Theorem 4.1 Let zo be an isolated solution of equation (2.3) and let z, be the solution of
equation (2.9) in a neighborhood of zo. Moreover, let Z,, be the solution of (4.10). Assume that
1 is not an eigenvalue of (KW) (o). If zo € W/, then

lzo — Zallo = O(R*),
where p = min{l, r}.. Ifzo € W) (1< p < ), then
w0 = &nlleo = O(h”),

where v = min{l — 1,7}.
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PROJECT 5

HIDEAKI KANEKO, RICHARD D. NOREN and PETER A. PADILLA
Singularity Preserving Galerkin Method for Hammerstein Equations With Logarithmic Ker-

nel

In the recent paper Singularity preserving Galerkin methods for weakly singular Fredholm
integral equations, JI. Int. Eqs. and Appl. 6 (1994) 303-334, Y. Cao and Y. Xu established the
Galerkin method for weakly singular Fredholm integral equations that preserves the singularity
of the solution. Their Galerkin method provides a numerical solution that is a linear combination
of a certain class of basis functions which includes elements that reflect the singularity of the
solution. The purpose of this paper is to extend the result of Cao and Xu and to establish
singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel.
First, a singularity expansion for the soultion of Hammerstein equation with logarithmic kernel
is given. Secondly, this singularity expansion is used to obtain the numerical Galerkin scheme
that preserveé the singularity of the solution.

An application is given to a Dirichlet problem with a certain class of nonlinear boundary

conditions. Numerical experiments are being performed.
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SINGULARITY PRESERVING GALERKIN METHOD FOR HAMMERSTEIN
EQUATIONS WITH LOGARITHMIC KERNEL

H. Kaneko, R. D. Noren and P. A. Padilla

Abstract

~ In arecent paper [3], Y. ‘Ca.o and Y. Xu established the Galerkin method for weakly singﬁ-
lar Fredholm integral equations that preserves the singularity of the solution. Their Galerkin
method provideé a numerical solution that is a linear combination of a certain class of basis
functions which includes elements that reflect the singularity of the solution. The purpose
of this paper is to extend the result of Cao and Xu and to establish singularity preserving
Galerkin method for Hammerstein equations with logarithmic kernel. An application is given

to a Dirichlet problem with nonlinear boundary condition.

Key words: Singularity preserving Galerkin method, Hammertein equations with logarithmic
kernel.

Mathematics Subject Classification (1990): 65B05, 45L10.

1 Introduction

In this paper, we are concerned with the problem of obtaining a numerical solution of weakly
singular Hammerstein ei;uations with logarithmic kernel by the Galerkin method that preserves
the singularity of the exact solution. N a.xﬁely we establish a method that generates an approxi-
mate solution in terms of a collection of basis functions some of which are comprised of singular
elements that reflect the characteristics of the singularity of the exact solution. The idea of the
method originates in the recent paper by Cao and Xu [3]. Cao and Xu studied the characteristics
of the singularities that are pertinent to solutions of the weakly singular Fredholm equations of
the second kind. Let C[0,1] denote the space of all continuous functions defined on [0, 1]. The
weakly singular Fredholm integral equations of the second kind can be described as

1
uo) - [ galls = thm(s, (0t = f(s),  0<s<1 (L)
where f € C[0, 1], m is sufficiently smooth and

ls=t]*, -1l<ax<,

ga(ls—t|) = { (12)

logls—t|, a=0,

where y is of course the function to be determined. It is well documented (see, e.g. [16],[13],[4],[20])
that the solutions of the equations described in (1.1) exhibit, in general, mild singularities even
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in the case of a smooth forcing term f. Here by “mild” singularities, we mean the singularities
in derivatives. The papers of Richter [13] and Graham [4] contain singularity expansions of the
solutions of equation (1.1) in the case of m(s,t) = 1. The results of Graham were recently
generalized by Cao and Xu for equation (1.1). Information concerning the type of singularities
that solutions have is useful when solving equation (1.1) numerically. In order to approximate
functions with mild singularities, many investigators utilized the important theorem of Rice [14]
. that gives an optimal order of approximation to such functions. Rice’s theorem is that of non-
linear approximation by splines using variable knots. Based upon this idea-of approximating
the solutions of equation (1.1) by splines defined on nonuniform knots, the collocation method,
the Galerkin method and the product-integration method were established for equation (1.1) by
Vainikko and Uba [21], by Graham [4] and by Schneider [17] respectively. A modified collocation
method was introduced in [12] which also uses the idea of Rice. Recently there has been some

considerable interest in the study of the following weakly singular Hammerstein equation:
1 :
¥(5) = [ galls = thm(s, O(t,u(®)dt = S(s), 05 <1 (13)

where f, m and g, are defined as in (1.1) and (1.2) and % is a known function. We will see in
Section 4 that equation similar to (1.3) arises naturally in connection with Dirichlet problem with
certain nonlinear boundary conditions. A study on the regularities of the solution y of equation
(1.3) is reported in [9], extending the results of [16]. Subsequently, Kaneko, Noren and Xu
used the regularity results to establish the collocation method for weakly singular Hammerstein
equations in [10]. The approximate solutions provided by these methods for equations (1.1)
and (1.3) are in the form of piecewise polynomials that are not always satisfactory as a tool
for approxima..ting functions with singularities. This observation is quite -evident in the areas of
finite element analysis. Hughes and Akin [6] list several problems (e.g. ‘upwind’ finite elements
for treating convection operators [5],[8],[7]; boundary-layer elements [1] etc.) in which the finite
element shape functions are constructed to include polynomials as well as singular functions.
Singular shape functions are introduced to the set of basis functions through asymptotic analysis
on the solution of the problem that is being considered. Tt should be pointed out that the
a.nq.lysis involved in the aforementioned papers on the finite element method is centered around
the colloca.tion method. The problems such as the choice for the extra collocation points for
singular basis elements or the rate of convergence are not addressed in these papers. It should
be pointed out that the location of additional collocation points for singular basis elements is
critical in detemining the rate of convergence of numerical solutions. A detailed discussion on

this subject can be found in [11]. A singularity preserving collocation method, because of the



reasons mentioned above, seems to be more difficult to establish.

In this paper, a singularity expansion for the solution of equation (1.3) with logarithmic
kernel is given. This extends the results in [9] and [3]. Only the logarithmic kernel is considered
here because of our primary interest in obtaining numerical solution of a Dirichlet problem
with nonlinear boundary condition as described in Section 4. It is a routine matter, however,
to establish, following the argument of Section 2, a singularity e)ipansion' for the solution of .
equation (1.3) with algebraic singularity. A detail is left to the reader. The paper is organized . -
as follows: in Section 2, we study the regularity property of the soultion of (1.3) and establish
its singularity expansion. The results obtained there generalize the results of 3] and [9]. The
singularity expansion is then utilized in Section 3 to achieve the singularity preserving Galerkin
method for equation (1.3). Finally, in Section 4, the singularity preserving Galerkin method is
applied to a class of Dirichlet problems with nonlinear boundary condition. Examples are also

included in this section.

2 Singularity Expansion for Weakly Singular Hammerstein Equa-

tions

In this section, we consider the following Ha.mmerstéin equation with logarithmic singularity,
()~ [ Togle — thm(s,yp(t, W)t = f(s), 0 s<1 (2.1)
(see (1.3) also). We let |
KUy(s) = /: log |s — t|m(s, t)(t, y(t))dt. (2.2)
Then equation (2.1) can be written in operator form as
Y- ‘K\I'y = f. (2.3)

Let H™ denote the Sobolev space H™[0,1] = {w : w{™ € L;[0,1]} equipped with the norm

N o\1/2 ) ‘
llullgn = (ZZ;O ||u(‘)||§) / where w describes the ith generalized derivative of w. We also-
let W = W, be the linear space spanned by the functions s'log’ s, (1 — s)'log?(1 — 8);4,j =

1,2,...,n— 1. Throughout the paper, we assume the following conditions:

m € C*([0,1] x [0,1]),n > 1, m € C([0,1] % [0,1]),n = 0. (2.4)

v e C*™YRxR) (2.5)



feWaH" : (2.6)
We define .
Ky(s) = /0 log |s — t|m(s,t)y(t)dt. (2.7)

Also let uy(s) = sPlog? s, and ua(s) = (1 — s)?log?(1 — s), where p,q > 1 are integers. First we

quote the following result (lemma 4.4(2)) from [3].

Lemma 2.1 Let f € H™ ! and assume m € C™*1([0,1] x [0,1]). Then,

n—1

(K f)(s) = Z [stj log s + d;(1 — s) log(1 — s)] + vn(s),

J=1

n-1 ¢+l n~1

(Ku1)(s) = Z Z ¢i;8' (log s)' + Z d;(1 = s) log(1 — ) + va(s),

j=pt1 i=1 =g+l

and
n-1 g¢+1 n-1

(Kug)(s) = Z E cij(l — s)j(log(l - s))i + Z djsj log s + vg(s).

j=p+1 i=1 j=q+1

Lemma 2.2 If u;(s) = sPlog?s,uz(s) = (1 — s)"log¥(1 — s), where p,q,r,u > 1 are integers,
then uyu, € W @ H™,

Proof: Expand u; in series about £ = 1 and u, about t =0 :

n(t) =TI G- + A, wd) = I et + (1),
= P(t) + f1(2) = Py(t) + fo(2)

where fl(k)(t): O((1 -ty *)neart =1, f is analytic at t = 1, and fl(k) ~ ugk)(t) - Pl(k)(O) as
t — 0+4; fz(k)(t) = O(t""*) near t = 0, f, is analytic at t = 0, and fék)(t) ~ ugk)(t) - Pék)(l) as
t—1".
Now UiUy = P1P2 + P1f2 + P2f1 + flfz. Clearly P1P2 isin H™. For flfz, we have

dr 7 2 (n\ iy, i

HAOR®) =Y (i)fl‘ {0V O}

1=0

Each term f() £*9(t),i = 0,1, ..., n satisfies

DA @ = o) = (1) - PA(0))E) — 0

as t — 0+.
Similarly



O 91) > 0ast — 1-. Thus fif, € C* C H™. For fyP, we have fi(t)Py(t) =
(u1(t) — Pi(2))Pa(t) = ur(t)Pa(t) — Pi(t)Pa(t). Since P, is a polynomial, u; € W, it is easy to
see that u1 P, € W @ H™ (see [[3],(4.7)]). So fiP, € H". Similarly f,P, € W@ H", and Lemma
2 has been verified. O

Lemma 2.3 A product of an H™ function with a function inWisin H"@W.

"Proof: Let g € H™ and let u; and u; be defined as before prior to Lemma 1. For gu; we write

wu(s)g(s) = im0 i+ploge 5 4 FIELs 4 g()(0)(s — 0)~1do
= Tl + .Fz.

Since T3 € W @ H™, we turn to T3 and write

" n m—k n n—
o =z;%mzk=o();;r[s log? s} L[ 9™ (0)(s — o)"~1do]

= iy The () Zx[57 og? sll(n — 1))...k] § ¢(0)(s — 0)*1do
457 log? sg(™(s).
But sPlog?s € L°5,g(") € L,[0,1] so (sPlog? s)g(")(s) € L2
For the terms

bule) = (5 10g? ] [ g (o) (s - )"V
0
we have, for some constant M and nonega.tive integer o
lba(s) | < MERE f3 | o) (o) | s+~1do
= Ms(—logs)*L 2 | ¢(0) | do.
But g™ € L,[0,1], so by Hardy’s inequality [15] (p. 72) L f5 | 9™)(¢) | do € L,[0,1]. Since
s(—logs)* € L™ it follows that b, € L1[0,1]. Hence £22 € L,[0,1], or T, € H", This proves
gu, e W H™.

The case for gus € W @ H™ is similar. O
Finally we need the following;: '

Lemma 2.4 The operator K¥ maps W @ H™ into W @ H™.

Proof: Lety=w+h, we W, h € H*. We use Taylor’s theorem in the form

k—O

¥(z) = Z ¢(k)(a)(z —a)f 4 = / (z — o)™ () do. (2.8)



Letting z = y(s) and a = h(s) allows us to write -

(KO)(y)(t) = Theo & fo log |t — 5| m(t, s)pF)(h(s))w(s) ds
+ar fol log |t — s | m(2, s) f;f((:)) ﬁ(“*l)(d)(y(s) — o)"dods (2.9)
=Y k=0 %Ak(t) + -,{—!B(t). ‘

By (3), ¥ (h(s)) € H™, k= 0,1, ...,n; and by expanding w(s)* v}ith the multinomial expan- - .
sion, it is clear that w(s)* is a sum of terms in W as well as terms of the form as”log? s(1 —_
s) log*(1 — s), p,q,r,u > 1 are integers. The constant, a, depends on p,q,r and u. Since

PF)(h(s)) € H™ and w(s)* € W @ H™, k=0, 1,...,n, it follows from Lemma 3 that
PE (h(s))w(s)* € W @ H™. (2.10)

By Lemma 1 and (2.10), we have
A €W @ H, (2.11)

For B(t), if we prove that
’ v(s) (n+1) n n
F-(s)sfh() P )(0)(y(s) - o)*do € W @ H™,

then, also by Lemma 1, B(t) = K[F](t) will be in W @ H™*!. This will complete the proof of
this lemma. First of all, suppose n > 1. We write 4

F'(s) = =p™(h(s))w(s)"h!(s)-

Since h € H",4p € C?t1 ("+1)(h(s)) € H™. By Lemmas 2 and 3, -9t (h(s))w(s)" €
H™ @ W. Since b’ € H™, it follows that —p(*tD(A(s))w(s)"h'(s) € H™! @W (Lemma
2), Since F' € H™1 @ W it is clear that F € H* @ W. Second, let » ='0. Then F(s) =
I3 #(0)do = %((s)) — $(h(s)) € Laf0,1] S W @ H°.

Thus '
B() e W H™. (2.12)

By (2.9), (2.11) and (2.12), it follows that KV maps W @ H™ into W & H™'. O

Using the lemmas which we proved above, we obtain the following main result of this section.

Theorem 2.5 Suppose the conditions. (2.4)-(2.6) hold and y is an isolated solution of (2.1).

Then there are constants a;; and b;;, for i,j = 1,2,...,n — 1, and there is a function v, in H"

such that

n-1n-1

y(t) = > ) laijt'log? t + bij(1 — ) log?(1 — )] + va(2). (2.13)

i=1 j=1



Proof: For n = 0, this follows from Lemma 4 with n = 0. Assume that the result holds
for n = k, that is, if f € H* @ Wy, then (2.13) holds with n = k. Say y = wi + vi, where
v € HM wp = Y5 T [aijt' log? ¢ + bij(1 - t) log? (1 — )]

Now consider the case n = k£ + 1 and supposé fe B g Wiy,

Since y = wi +v; we writey = KVy+ f = KY(wi+vk)+ f. From Lemma 1; K¥(wr+v) €
Wi @ H k+1_ The proof is complete. O

3 Singularity Preserving Galerkin Method

In this section, we establish the singularity preserving Galerkin method for equation (2.1). First
we recall the definition of the space of spline functions of order n. Define the partition of [0, 1] as

A: 0=t <t1 <. <lp <tp41=1.
Let

h =

= Jax 1(t‘ —~ti-1),

and assume h — 0 as k£ — oo0. Denote by II,, the set of polynomials of degree n — 1. Then the

space of splines of order n» with knots ¢;’s of multiplicity n — 1 — v is defined as
Sr=SpY(A)={seC"[0,1]: s|;, € 10,,},

where 0 < v < n—1and I; = (t;—1,t;) for i = 1,2,...,k+ 1. It is well known that the dimension
of S} is d = n(k+1)—k(1+v). S} is spanned by a basis consisting of B-splines {B,-};’zl. We let

Vr=W oS, ' (3.1)

and denote the orthogonal projection of L2[0,1] into V;* by P,? . The singularity preserving
Galerkin method for approximating the solution of equation (2.3) requires the solution y, € V;!

that satisfies the following equation:
v — PCK Wy, = PEf. (3.2)

More specifically, we need to find yr, in the form

n—1 n-1 d
ya(s) = D aijs'log’s+ Y Bii(1—s)'log(1—s)+ ) 1Bi(s) (3.3)
1,7=1 1,7=1 1=1



where {o;, Bi; 1772 =1 and {7:}¢.; are found by solving the following system of nonlinear equations:

:;__1_1 a;;(s'log? s, 5P log? s) + E"J__l Bi;((1 — s)'log?(1 — ), s log? 5)
—(K¥(rL =1 Qg st ' Jog? s + ZI‘J;II Bi;(1 — s)ilog?(1 — 5)), sP log? s)
= (f,sPlog?s) p,9g=1,2,...,n-1
e 0ij(s'log? s, (1~ s)Plog?(1 — 8)) + LT, Bis((1 - 5) log?(1 — 8), (1 - s)Plog(1 — 5))
—(K‘I’(Z; =1 st logJ s+ Z. =1 Bii(1 - s) logJ(l - 38)),(1-s) logq(l - s))
-(f,(1~—s)7’logq(1—s)) 7q=12...,n-1 '
?,;:11 a,,(s log’ s »Bp) + ,J=1 Bi;((1— s)t IOSJ(l - 8), p)
—(K®(T772, s’ log? s + TI7L, b j(1 — 8)'logi(1 - 8)), By)
={(f,B,) p=12,...,d
where (-,) denotes the usual inner product defined on L[0,1]. Now let P, be the orthogonal
projection of L[0, 1] into S7*. Then we have

Prv—v  forall v € Lyf0,1]. (3.4)

It is well known (e.g. [18]) that if g € H™, n > 0, then for each h > 0, there exists ¢ € S such
that

llg = llz < Ch™|\g||n, O @35)

where C' > 0 is a constant independent of h. By virtue of the fact that Pyu is the best L,

approximation of u from S}, we see 1mmed1a.te1y that
1Pau = uflz < |lu — ¢ulls < Ch™|lullgn, for all we H™. (3.6)
The following lemma from (3] is useful in the sequel.

Lemma 3.1 Let X be a Banach space. Suppose that Uy and U, are two subspaces of X with
Uy C U;. Assumethat P, : X — U, and P, : X — U, are linear operators. If P; is a projection,
then

lz = Pozlix < (14 ||Pflx)l|z — Prizlix for allz € X.
For convenience, we introduce opéra.tors T and T, by letting

Ty=f+ K¥y (3.7)

and

Thyn = PE f + PEK Wy, : (3.8)

8



so that equations (2.1) and (3.2) can be written respectively as y = Ty and y, = Thyr. The
following theorem guarantees the existence of a solution of the singularity preserving Galerkin

method (3.2) and describes the accuracy of its approximation.

Theorem 3.2 Let y € L[0,1] be an isolated solution of- equation (2.1). Assume that 1 is not
an eigenvalue of the linear operator (K¥)'(y), where (K¥)'(y) denotes the Fréchet derivative of
KV at y. Then the singularity preserving Galerkin approzimation equatioﬁ (3:2) has a uniqué
solution yp, such that ||y — yull2 < § for some § > 0 and for all 0 < h < ho for some ho > 0:

Moreover, there ezxists a constant 0 < q < 1, independent of h, such that

Op Qp
<My = wll, < 2, 3.9
1+q_|ly yhllz_l_q (3-9)

where ap, = ||(I = TL(y)) " Y(Tu(y) — T(¥))ll2- Finally, if y = w+v withw € W and v € H™, then

vy — wellz < Ch™||vl|E=, whenever 0 < h < hg, (3.10)

where C > 0 is a constant independent of h.

Proof: The existence of a unique solution y; of equation (3.2) and the inequalities in (3.7) can
be proved using Theorem 2 of Vainikko [19]. A detailed argument can be found in [10]. To get
(3.10), first we note from Lemma 3.1, for v € L,[0, 1],

- 1PFv = ollz < (1 + | PE )| Pav — olf2. (3.11)
Now, from (3.9),
ly—wllz <% .
= 221U = Th(@) " (Ta(w) - T@)l2
< CIPFKYy — Ky + P f ~ fllz
= ClIFZy - yllo- |
where C is independent of h. Using the uniform boundedness of {PF}, (3.11) and (3.12), we

(3.12)

obtain

lly — wnllz < CE™*||v|izn.
(m]

4 Nonlinear Boundary Value Problem

In this section, we consider the following Laplace’s equation with nonlinear boundary condition
in R%:
Au(P) =0, PeD

£2(P) =-#(P,u(P)+f(P),  PE&T=0D CBY

9



where D is a simply connected open region in R? with an open contour I' and np denotes the
exterior unit normal to I' at P. The functions f and 7 are given and we assume that f € C(I')
and 9 € C(I' x R). The solution u is to be found in C?(D)N CY(D). The function ¢ is assumed
to be continuous on I' x R. The problem (4.1) in the case of a closed smooth boundary I' was
considered by Atkinson and Chandler in [2]. They employed the method of piecewise polynomial
product integration and that of trigonometric product integration to approximate the solution
of (4.1). In the current problem in which I' describes a boundary that is open, one expects
logarithmic singularities in u at the two ends of the boundary. Now it is well known that, using.

Green’s representation formula for harmonic functions, the function u satisfies

W(P)= 5= [ U@ zploglP - Qlio(@)- - [ F(@)loglP - Qldo(@)  (42)

for all P € D. Using the boundary condition in (4.1) and letting P approach to a point of T, we

obtain

u(P)= 1 [ u(Q)gezlog|P— Qldo(Q) - ; Jr ¥(Q,u(Q))log| P — Qldo(Q)

_ (4.3)

= -1 1 f(Q)log|P - Q|do(Q), PE€T.
We denote the double layer operator by T,

1 ] |

To(P)= /F v(Q)5,-lo8IP - Qldo(Q),  PeT, . (4.4)

and the single layer operator by 5,
. | .
So(P)= -~ /F o(Q)log|P — Qldo(Q), PeT. | (4.5)

If we put Uv(P) = ¢(P,v(P)), P € T, then equation (4.3) can be written in operator form as
u—Tu+ S¥(u)=Sf. ’ (4.6)

Define the parametrization r(t) = (£(t),7(t)) for t € [0,1] and assume that r € C*°[0,1] and
|r'(t)] # 0 for t € [0,1]. The double layer operator and the single layer operator now become

respectively,

_ 1 [ (e)lE(s) — €] = E)in(s) — 0]
Oy R e ) e e o “n
for v € C[0,1] with the kernel having the value

E@n"() - 7)€" Q@)
2[(1)* + ()]

when s =t and

Sv(t) = —% /01 log |s — t|v(s)|r'(s)|ds. (4.8)

10



The kernel of T is well behaved whereas the kernel of S needs our scrutiny. As in [2], we write
Sv as
Sv(t)=— L[} v(s)|r'(s)|{log|t — s| +log|l — s +t| +log|l — t + s|}ds
1 r{s)—r{t
=% Jo v(s)Ir'(s)| log []s—tl(ll-(—.3+t)((l)i-t+s)] ds. :
Due to the fact that the double layer operator T contains infinitely differential kernel, using the

(4.9)

arguments to prove Lemma 2.4, we see that T' + S¥ maps W @ H™ into W @ H™*!. Hence we
.obtain the following result that parallels the results obtained in Theorem 2.5..

Theorem 4.1 Suppose the conditions (2.5) and (2.6) hold and u is an isolated solution of (4.6).
Then there are constants a;j and b;;, for i,j = 1,2,...,n — 1, and there is a function v, in H"

such that

n—1n-—1 -
y(&) = Y > [aijt log’ t+ bij(1 — 1) log?(1 — 1)] + va(2). . (4.10)
=1 j=1
Define
Tu=Tu—S¥(u)+Sf (4.11)

so that equation (4.6) can be written as
u=Tu. (4.12)
The singularity preserving Galerkin method is now described by
up — PETuy, + P,fsw(uh) = PSS (4.13)

where uj, € V* and PF is the orthogonal projection of L,[0, 1] into th as defined in the previous
section. By letting

Tou = PSTu~ PESU(u)+ PESF, ' (4.14)

equation (4.13) can be written as
up = T‘huh. | (4.15)
The following theorem guarantees the existence of the solution of equation (4.15) and describes

its accuracy as an approximation to u that is the soution of equation (4.12). A proof is an easy

exercise of modifying the argument given in the proof of theorem 2.1 [10], hence we omit it.

Theorem 4.2 Let u € L,[0,1] be an isolated solution of equation (4.6). Assume that 1 is not
an eigenvalue of the linear operator T + (§¥)(u). Then the singularity preserving Galerkin

approzimation equation (4.13) has a unique solution uy, such that ||u — usl|, < 6 for some 6 > 0

11



and for all0 < h < hg for some hg > 0. Moreover, there ezists a constant 0 < ¢ < 1, independent
of h, such that

Qap
e — <
1+q-—”u uh”2-—-1_q’

where oy, = |(1— T4(w))"Y(Th(y) - T(v))llo. Finally, if y = w4+ v with w € W and v € H", then

(4.16)

[lu = upll2 < Ch™||v||gn, whenever 0 < h < hy, (4.17)

where C > 0 is a constant independent of h.

12
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