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FINAL REPORT NCC1-213 (ODURF #152741) 

prepared by Hideaki Kaneko and Peter A. Padilla 

In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement 

with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the 

following five projects: 

1. A note on the finite element method with singular basis functions 

2, Numerical quadrature for weakly singular integrals 

3. Superconvergence of degenerate kernel method 

4. Superconvergence of the iterated collocation method for Hammersteion equations 

5. Singularity preserving Galerkin method for Hammerstein equations with logarithmic ker- 

nel. 

This final report consists of five papers describing these projects. Each project is preceeded 

by a brief abstract. The first author, Hideaki Kaneko, would like to thank Dr. Thomas Zang, 

Director of Division of Multidisciplinary Optimization at NASA Langley, for the financial support 

that he provided. 
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PROJECT 1 

HIDEAKI KANEKO and PETER A. PADILLA 

A Note on the Finite Element Method with Singular Basis Functions 

Recently there has been considerable interest in the finite element analysis that incorporates. 

singular element functions. A need for introducing some singular elements as part of basis ' 

functions in certain finite element analysis arises out of the following considerations. The solution 

of certain problems, such as a field problem, exhibits highly singular behavior due to geometric 

features of the spatial domain. It is thought that an incorporation of singular elements that 

emulate the solution with the standard polynomial elements may perhaps be desirable. In order 

to make the computations of the finite element method with singular elements more efficient, 

Hughes and Akin (The Finite Element Method, T.J.R. Hughes, Prentice Hall) established an 

algorithm for constructing interpolation functions that have the same interpolation properties 

of the Lagrange polynomials. 

. 

We pointed out in this research that the aforementioned algorithm of Hughes and Akin is 

sensitive to the locations of the interpolation points that correspond to the singular basis func- 

tions. Specifically, we demonstrated numerically that the rate of convergence of a finite element 

solution varies according to the locations of these points. A general theoretical explanation is 

provided for this variance in the rates of convergence. 

A further invesigation is required toward the establishment of mathematical theory that 

guarantees the optimal rate of convergence of a finite element method that uses singular functions 

as part of its basis. 
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A Note on the Finite Element Method with 

Singular Basis Functions 

Hideaki Kaneko * 

Department of Mathematics and Statistics 

Old Dominion University 

Norfolk, Virginia 23529-0077 

Peter A. Padilla 
Multidisciplinary Design and Optimization Branch 

N AS A-Langley Research Center 

MS-159 

Hampton, VA 23681 

Abstract 

In this note, we make a few comments concerning the paper of Hughes and Akin 131. First 

it is noted that algorithm reported in (31 to produce a new set of functions is subject to the 

location of collocation points. Second we make a note concerning the rate of convergence of 
numerical solutions of the finite element method with singular basis functions. 

'This author is partially supported by NASA under grant NCC1-213 
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1 Finite Element Method With Singular Basis Functions 

In the paper [3], Hughes and Akin made an interesting observation concerning the finite element 

analysis that incorporates singular element functions. A need for introducing some singular 

elements as part of basis functions in certain finite element analysis arises out of the following 

considerations. The solution of certain problems, such as a field problem [l], exhibits highly 

singular behavior due to geometric features of the spatial domain. On the other hand, in other . 

circumstances, the solution is overwhelmingly affected by the nature of loading and the problem 

of singularity can be ignored. To satisfy both situations just described, it is thought that 

an incorporation of singular elements that emulate the solution with the standard polynomial 

elements may perhaps be desirable. This is the point that was exploited in [3] by Hughes and 

Akin. In order to make the computations of the finite element method with singular elements 

more efficient, they consider the following algorithm for constructing interpolation functions. 

A construction of such algorithm was motivated by the idea that “it is of practical interest to 

develop techniques for systematically defining shape functions for singularity modeling (and for 

developing special elements in general), which circumvent the interpolation problem” ([4] p. 176). 

The algorithm that they developed go as follows: 

ALGORITHM Suppose that there are n shape furictions N,, a = 1,2,. . . , n which satisfy the 

interpolation property on the first m nodes rb, viz., Na(rb) = 6ab,  a ,b  = 1,2,. . .,m ( m  < n). 

Their idea here is to reshape Na’s so that the interpolation property is satisfied on all n nodes. 

The algorithm is given by 

Step 2 Na(r) + Na(T) - Na(Tm+l)Nm+l(r), a = 1727---,m 
Step 3 If m + 1 < n, replace m by m + 1 and repeat Steps 1 to 3. 

If m + 1 = n,stop. 

To demonstrate this algorithm, we borrow one of the examples from [4]. Let r1 = 0, r2 = 1 2 

and TQ = 1. The shape functions that we reconstruct are N I ( T )  = 1 - 2r, N ~ ( T )  = 2r and 

N ~ ( T )  = rn where cy representing some real number. Note that Na(rb) = &b, 1 5 a,b 5 2. An 
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application of the above algorithm gives 

Of course, the newly defined shape functions satisfy 
. .  

Na(?'b) = 1 5 U , b  5 3. (1) . 

What is not addressed in [3] [4] is that the algorithm is subject to the location of the interpolation 

points Tb, m+ 1 5 b 5 n. Clearly, step 1 of algorithm does not work if these interpolation poifits 

are such that 
m 

Nm+l(rm+l)  - Nm+l(T,)Na(Gn+l) = 0 (2) 
a=l 

Out of this observation, there seems to arise a profound and difficult problem in the area of 

approximation theory. The problem is important in that the success of the finite element method 

using the collocation scheme hinges on a resolution of this problem. To describe it, let W; denote 

the Sobolev space, 

Wpk = Wk' E 44-w 
where f ( k )  denote the kth generalized'derivative and R is a bounded region in R. The theory 

extends easily to higher dimensions. Now let U zi ~pan[N~]:=,+~. Also denote an approximation 

space by Sk. Here Sf is usually taken as the space of piecewise polynomials of degree k - 1 with 

length of each subinterval h. Our goal is to approximate each element of U @ W," by an element 

from U @ S,k by interpolation. That is, if St = span[N,]r=,, then for each f E U@ Wpk, we must 

find E U @ St that satisfies 

O(Tb)= f(rb) b =  1, ..., n. (3).  

Denote the interpolation projector of U @ W," to U @ S,k by Ph. Namely Ph is defined so that 

P/&f(S) = v(s) s f $2. (4) 

Notice that E': = Ph. In order to achieve a convergence by the collocation scheme in the finite 

element method, we must examine the following inequality. Here we assume that the number of 

singular basis functions, n - m, is fixed. 

ldet[Na(Tb)]l&l 2 E > 0 for d n. ( 5 )  
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This inequality is a necessary and sufficient condition for the algorithm of Hughes and Akin 

to work. It is important to remark at this point that the success of algorithm depends upon 

the existence of a solution to the interpolation problem (3) which in turn is equivalent to the 

condition (5). For each fixed index n (hence for fixed m) , it is not difficult to find n - m 

interpolation points rb, m + 1 I b I n, that correspond to the singular basis elements N,, 
m + 1 5 a 5 n for which the inequality in ( 5 )  is satisfied. What is difficult here is the question 

*of locating n - m points for as many singular elements for which condition (5)-is satisfied. The 

problem of finding n - rn interpolation points for singular basis functions that work for all n 

is currently under investigations. In the following section, we proceed our discussion of the 

finite element analysis assuming condition (5). The analysis will provide information concerning 

the rate of convergence of numerical solutions. Interpolation examples at the end of the section 

show that rates of convergence are quite sensitive to locations of interpolation points for singular 

elements. 

- 

2 Convergence Analysis 

When condition (5) is satistied, one can deduce the rate of convergence of the projector Ph to 

the identity operator I. As is well known -e.g., [4], the convergence rate of such interpolation 

projectors determine the rate of convergence of the finite element method that uses collocation 

scheme. The following theorem of Cao and Xu [2] is useful. We sketch a proof for completeness. 

Lemma 2.1 Let X be a Banach space. Assume that U1 and U2 are two subspaces of X with 

U1 C U2. Moreover assume that PI:  X -, U1 and P2: X -, U2 are linear operators. If P2 is a 

projection, then 

Proof: Let 2 E 

II. - p 2 4 x  L (1 + I I P 2 l l X ) l l ~  - Pl.llX for all x E X .  

X. We write 

2 - P2x = ( 2  - P I X )  + (PI2 - P22). 

Since P1z E U1 and Ul E U2, we have P2P1x = PIX. Hence, 

2 - P2x = 2 - PIX + P2P12 - P2x 

( I  - P2)(2 - P l Z ) .  = 

It follows that 
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0 Using lemma and a well known fact about the approximation power of piecewise polynomials 

of degree k - 1 to approximate elements in W,” [5], we see immediately that 

~ ~ 

n = 6  0.000843 7 

convergence exponent = 1.99 

Theorem 2.2 Assume that y = u + v with u E U and v E Wpk. Then I 

~ ~ 

0.0235540 

0.56 

where 1 5 p 5 00 and C is a constant. 

To demonstrate the sensitivity of the location of interpolation points for singular elements, 

consider the following interpolation problem. 

EXAMPLE: Let f(z) = f i  + d G  4- z2. We wish to approximate f over [0,1] by a,n 

element from UfBS;, where U = span[&, d z ] .  Let {z;}r=-, be the uniform partition of IO, 11 
defined by zj = i, i = 0,1,. . . , n and h = :. The interpolation points used to define an element 

from S i  are taken to be the zeros of the second degree Legendre polynomials transformed into 

[z;-1, z;] for i = 1,2,. . . , n. The following data shows that (a) when the interpolation points for 

the singular elements are taken to be tl = and t2 = 2 for each n, the convergence is O(h1I2), 

whereas (b) when t l  = $ and t2 = 1 - t l ,  then the convergence is of the order O(h2) .  

I interpolation point tl = I 1/2n I 115 I 
I n = 4  10.0513168 I 0.0513168 I 

Table 1. Error and convergence rate data for the example 
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PROJECT 2 

HIDEAKI KANEKO and PETER A. PADILLA 

Numerical Quadratures for Weakly Singular Integrals 

. In this report, a Fortran program for approximating weakly singular integrals is given. In 
particular, we are interested in approximating integrals of functions having algebraic or loga- 

rithmic end point singularities. Program is based upon the idea that was recently developed 

in the paper by Kaneko and Xu Gauss-type quadratures for weakly singular integrals and their 

application to Fredholm integral equations of the second kind- Mathematics of Computations, 

Vol. 62, (19941, 739-753. The idea of the quadrature scheme in the aforementioned paper is 

based upon the nonlinear splines approximation of weakly singular functions using a certain set 

of nonuniform knots that was originally developed by John Rice. 

The program developed here is useful for approximating solutions of weakly singular integral 

equations. This is demonstrated in Reports # 3 and # 4 in which the quadrature is used to 

approximate the solution of weakly singular Hammerstein equation that arises as a reformulation 

of the Dirichlet problem with a certain class of nonlinear boundary conditions. 
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Numerical Quadratures for Weakly Singular 

Integrals 

Hideaki Kaneko* 

Department of Mathematics and Stat istics 
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Abstract 

In this report, Fortran programs for approximating weakly singular integrals are given. 

In particular, we are interested in approximating integrals of functions having algebraic or 

logarithmic end point singularities. Programs are based upon the idea that was recently 

developed in the paper by Kaneko and Xu [l]. 

'This author is partially supported by NASA under grant NCC1-213 
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1 Theoretical Background 

Ln this report, we develop Fortran codes for Gauss-Legendre-type quadratures for weakly singular 

integrals. The idea of the quadratures was recently developed by Kaneko and Xu [l]. The integrals 

which we intend to approximate can be described in the form 

. .  
where f is a smooth function and w takes one of the following forms; 

1. 

2. 

3. 

4. 

(z - u)*(b - z)P 

(z - U),(b - z)PZog(z - u )  

(z - a)*@ - z)PZog(b - z) 

(z - a)"@ - z)PZog(z - u)Zog(b - z) 

where a,P > -1. To familiarize the reader with the basic theory that supports the current 

program, we s h d  consider the following problem. The reader who is interested in a more rigorous 

and broader development of the theory can find necessary materials in [l]. 

Consider 

I(f = / l  f(.>w(s)dz . (2) 
0 

where ~ ( z )  = z*, a > -1, -i.e., w belongs to type 1 above and f is a smooth function. Define 

the index of parameter that measures the degree of singularity by 

2k+ 1 q =  - 
a + l  

where k is a positive integer that corresponds to the degree k - 1 of polynomials used to approx- 

imate fw over [ O ,  11. In the case of the logarithmic singularity w(z) = log z, we set a = 0. A 

partition T, of [0,1] is defined according to the parameter a by 

(3) A,: to = 0 ,  tl = n-q, tj = j q t l ,  j = 2,3,. . . , n. 

The more severe the singularity of w is at 0, the closer tl  is to 0 .  In the ordinary Gauss-Legendre 

quadrature scheme to approximate the integral s,' f(z)dz, f is approximated by the polynomial 

s k  of degree k - 1 that interpolates f at the k points {z;}f=:=, where { ~ j } f ' ~  are k zeros of the 

kth degree Legendre polynomial transformed into [ O ,  11. The kth degree Legendre polynomial is 

described by 
1 dk 

2kk! dzk (z2 - qk, 2 E [-1,1]. -- 
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The quadrature then takes the form 
n 

i=l 

where 20;'s are weights for the quadratue. It is well known 12) that the error of the Gauss-Legendre 

quadrature is given by 

As evidenced by this formula for the error of the Gauss-Legendre quadrature, the scheme does . 

not provide an optimal degree of approximation when the integrand f is not sufficiently smooth. 

It is exactly this reason why we require some special treatment for approximating the integrals 

in (2) that produces an optimal convergence rate. To achieve this goal, in the current method, a 

piecewise polynomial s k  of degree k - 1 is constructed by the following rule; Sk(2)  = 0, z E [to, t l )  

and Sk(z) is the Lagrange polynomial of degree k - 1  interpolating f w  at {zj }j=l k for z E [ti,t;+l), 

i = 1,2, ..., n-2andforz E [2,-1,t,]. Here{zj }j=l k denotethezerosofthekthdegreeLegendre 

polynomial transformed into [ti, t ;+ l ) .  Over the first interval, because of the endpoint singularity 

of fw ,  formula (4) is not at our disposal. Dispite this, we are able to recover the optimal rate of 

convergence due to sufficiently small size of the first interval that was determined by the index q 

of singularity corresponding to fw. To describe, in a more detailed way, the error of the current 

quadrature scheme, let 

C denotes a generic constant whose value may change as it appears. For i 2 1 ,  by using (4), we 

obtain 
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The last equality was obtained using 

Combining local errors above, the total error of approximation Ek is given by 

n-1 

i d  

obtaining the optimal convergence rate of approximation. 
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/ *  Author: Peter A. padilla 

Smary: This program test the function sintegrate ability to integrate 
a function with weak singularities at both ends of the interval. 
The program calculates the integral in two ways, first we 
calculate the value by using sintegrate ability to automatically 
split the interval into two sections, in the second method we 
split the interval manually and feed sintegrate the appropriate 
parameters for each half of the interval. 

* /  

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

#include "sintegrate.h" 

/ *  __--- Function Definitions ----- * /  

double one(doub1e x) 

return(l.0); 
1 

double fun(doub1e XI 
{ 

1 
return(log(1-x) *sqrt(x) I ; 

main(int argc, char argvr I 1 

double vl, v2, v3, v, (*gl) 0 ,  ( *92)  0; 
int n; 

/ *  Example 3.2 of ('1) * /  

n = 16; 

92 = &one; 

g1 = &fun; 

v = sintegrate(gl,g2, 0.0, 1.0, n, 1, 1, 1, 0.5, 0 . 0 ) ;  

printf ("Results: %g for n = %i\n",v,n) ; 

n = 24; 

92 = &one; 

gl = &fun; 

v = sintegrate(gl,g2, 0.0, 1.0, n, 1, 1, 1, 0.5, 0 . 0 ) ;  

printf ("Results: %g for n = %i\n",v,nI ; 

n = 28; 
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92 = &one; 

gl = &fun; 

printf("Resu1ts: %g for n = %i\n",v,n); 

exit(EX1T-SUCCESS); 
1 

. .  



/ *  Arguments: 

1) f is declared a pointer to a function that returns a double and takes 
a double as input. (double = double precisian). This pointer must 
be set to point to the weakly singular function for the interval in 
question, see test-driver-c for an example. 

2) weight is declared a pointer to a function that returns a double 
and takes a double as input. This pointer must be set to point to 
the smooth part of the kernel, see test-driver-c and test-driver-1.c 
for examples. 

31 a and b are the lower and upper bounds of the integration interval. 

4) n integer. Need I say more. 

'5) left-singularity is a flag, 0 if the singular point for the'interval 
is not at the left (point a) of the interval, 1 if it is. 

6 )  right-singularity is another flag. C a n  you guess how is defined? 

7) with-log i ~ '  anothsr flag. Set it to 1 if the function f is of types 
2, 3 ,  or 4 ,  i.e., it involves logO*s. 

8) alpha is a double precision variable and must be set to the index of 
the singularity at x = a. 

9) beta is a double precision variable and must be set to the index of 
the singularity at x = b. 

* /  

double sintegrate(doub1e (*f) (double x), double (*weight) (double XI ,  
double a, double b, int n, int left-singularity, 
int right-singularity, int with-log, double alpha, double beta); 
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/ *  Author: Peter A. Padilla 
Date: 9/21/95 
Summary: Implements the numerical quadrature algorithm for weakly singular 

integrals as described in the references. 

Ref: (1) H. Kaneko and Y. Xu, "Gauss-type quadrature for weakly singular 
integrals and their application to Fredholm integral equations of 
the second kind", Mathematics of Computations, Vol. 62, (1994), 
739-753. 

Calling symtax: See sintegrate-h 

Notes : 

The function sintegrate is the external interface to the code. No other 
functi,on needs to be made accessible to the outside world. If other . 
interpolation polynomials are desired, then, the function legendre should 
be modified to implement the appropriate interpolation functions and the 
preprocessor constant K (line: "#define K 2 . 0 " )  should be set accordingly. 

* /  

#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 

/ *  ----- Do not changed below this line unless you know what your doing ----- * /  

#define K 2.0 / *  DO NOT CHANGE, K is determined by the 
interpolation function as described in the 
paper * /  

/ *  ----- Function to generate a Partition ----- * /  

double * points(int n, double a, double b, double q, int flag) 
I int i; 
double tl ; 
double *res; 

res = (double * )  malloc(sizeof(double)*(n+l)); 

if (q ! =  0 )  
if (flag == 0 )  

tl = (b-a) /pow(n,q) ; 
for (i=O; i<=n; i++) res[il = a + tl*pow(i,q); 

I 
else 

{ tl = (b-a)/pow(n.q); 

1 

I printf("Error: q = 0 not allowed.\n"); 

for (i=O; i<=n; i++) res[n-i] = b - tl*pow(i,q); 

else 

free(res) ; 
exit (0) ; 

return (res) ; 
1 

/ *  ----- Function to generate the interpolation points. ----- * /  
double * intersoints(doub1e p11, int n) 
{ 
int i, j; 
double eps; 
double * tp; 



eps = l/sqrt(3.0): 

tp = (double * )  malloc(sizeof(double)*(2*n)): 

for (i=O; i<n; i++) 
{ j = 2*i: 
tpEj1 = p[il + (p[i+ll - p[il) /2.0* (1.O-eps); 
tp[j+ll = p[il + (p[i+ll - p[il) /2.0* (l.O+eps) : 

1 
return(tp1; 

1 

/ *  ----- Interpolation Function, Corresponds to k = 2 in the paper ----- * /  

, double legendre(doub1e x, int j, int k, double * p) / *  j=l..n * /  
{ 
double point; 
double ret; 

point = (2.0*x - p[jl - p[j-ll)/(p[jl - ~[j-ll); 
if ((point e -1.0) I I (point >= 1 - 0 1 )  return(0.0); 
if (k == 1) ret = (1.0 - point*sqrt(3))/2.0: 
else if (k == 2) ret = (1.0 + point*sqrt(3))/2.0: 
else ret = 0.0; 
return(ret1 : 

1 

/ *  ----- Gaussian Quadrature with three points. ----- * /  

double quad(doub1e (*f) 0 ,  double a, double b, int j, int k, double * p) 
i 
double cl, c2, c3 ,xl.,x2 ,x3 ,alpha, beta,Konst, temp, templ; 
alpha = (b-a)/2.0; 
beta = (b+a1/2.0; 
Konst = alpha: 
xl = -sqrt(15.0)/5.0: 
x2 = 0.0; 
x3 = -xl; 
cl = 1.0/(3.0*~0~(~3,2)): 
~2 = 2.0/3.0 * (3.0 - 1.0/~0~(~3,2)); 
c3 = cl; 
temp = Konst * (cl * (*f)(alpha*xl+beta)*legendre(alpha*xl+beta,j,k,p) + 

c2'* (*f) (alpha*x2+beta)*legendre(alpha*x2+beta,j,k,p) + 
c3 * (*f)(alpha*x3+beta)*legendre(alpha*x3+beta,j,k,p)); 

return (temp) ; 
1 

/ *  ----- sintegrate function ----- * /  

double sintegrate(doub1e (*f) 0 ,  double (*weight) 0 ,  
double a, double b, int n, int left-singularity, 
int right-singularity, int with-log, double alpha, double beta) 

{ 
double =alpha. =beta, . *  grid, * gridl; 
double * interpolation-grid, * interpolation-gridl, * coefs, * coefsl; 
double * vals, value, * valsl, valuel; 
int i, j , k, index; 

if (with-log == 0 )  
{ 
q-alpha = (2.O*K+l.O)/(alpha+l.O); 
%beta = (2.O*K+l.O)/(beta+l.O); 

1 
else 

{ 



if (alpha >= 0 )  

else 
=alpha = 2.0*K+1.0; 

=alpha = (2.0*K+1.0) / (alpha+l.O); 

if (beta >= 0) 

else 
=beta = 2.0*K+1.0; 

=beta = (2.0*K+l.O)/(beta+l.O); 

if (left-singularity == 0 )  =alpha = 0.0; 
if (right-singularity == 0 )  =beta = 0.0; 

if ((=alpha != 0.0)  && (=beta == 0 . 0 ) )  
{ 
grid = points(n,a,b,q_alpha,right-singularity); 
ifiterpolation-grid = intergoints(grid,n); 
coefs = (double * )  malloc(sizeof(double)*(2*n)); 
vals = (double * )  malloc(sizeof(double)*(2*n)); 
<or (i=@; i<=2*n-1; i++) vals[i] = !*weiuht) (interpolation-grid[il); 
for (i=l; i<=n; i++) 
for (k=l; k<=2; k++) 

{ 
index = 2 * (i - 1) + k - 1; 
coefs[indexl = 0.0;  
for (j=O; j<=n-l; j++) 
coefs [index] = coefs [index] + quad(f, grid[jl , grid[ j+ll , i, k, grid) ; 

I 
value = 0.0; 
for (i=O: i<=2*n-1; i++) value = value + coefs[il*vals[il; 
free( (void * )  coefs); 
free((void * )  vals); 
free( (void * )  grid) ; 
free((void * )  interpolation-grid); 

? 

{ 
else if ((=alpha == 0.0) && (%beta !=  0 . 0 ) )  

grid = points(n,a,b,q_beta,right-sinmlarity); 
interpolation-grid = intergoints(grid,n); 
coefs = (double * )  malloc(sizeof(double)*(2*n)); 
vals = (double * )  malloc(sizeof(doubLe)*(2*n)); 
for (i=O; i<=2*n-1; i++) vals[i] = (*weight) (interpolation-gridEi1 1 ; 
for (i=l; i<=n; i++) 
for (k=l; k<=2; k++) 

{ 
index = 2 * (i - 1) + k - 1; 
coefs[index] = 0.0; 
for ( j = O ;  j<=n-1; j++) 
coefs[index] = coefs[indexl + quad(f, gridijl, grid[j+ll, i, k, grid); 

1 
value = 0.0; 
for (i=O; i<=2*n-1; i++) value = value + coefs[il*vals[il; 
free( (void * )  coefs) ; 
free((v0i.d * I  vals); 
free( (void * i grid) ; 
free((void * )  interpolation-grid); 

1 

I 
else if ((palpha ! =  0 . 0 )  && (=beta ! =  0 . 0 ) )  

double mid; 

. .  



interpolation-grid = interooints(grid,n); 
interpolation-grid1 = intergoints(grid1,n); 
coefs = (double * )  malloc(sizeof(double)*(2*n)); 
coefsl = (double * )  malloc(sizeof(double)*(2*n)); 
vals = (double * )  malloc(sizeof(double)*(2*n)); 
valsl = (double * )  malloc(sizeof(double)*(2*n)); 
for (i=O; i<=2*n-1; i++) 

{ vals[i] = (*weight) (interpolation-grid[il) ; 

1 
valsl[i] = (*weight) (interpolation-gridl[il); 

for (i=l; i<=n; i++) 
for (k=l; k<=2; k++) 

{ 
index = 2 * (i - 1) + k - 1; 
coefs[indexl = 0.0; 
co,efsl[indexl = 0.0; 
for ( j = O ;  j<=n-1; j++) 

{ 
coefs[index] = coefs[indexl+quad(f,grid[jl,grid~~+ll,~,k,grid~; 
coefsl[index] = coefsl[indexl+quad(f,gridl~jl,gridl[j+ll,i,k,gridl~; 

1 
1 

value = 0.0; 
valuel = 0.0; 
for (i=O; i<=2*n-1; i++) 

{ value = value + coefs[il*valslil; 

1 
valuel = valuel + coefsl[il*valsl[il; 

value += valuel; 
free( (void * )  coefs) ; 
free((void * )  vals); 
free( (void * )  grid) ; 
free((void * )  interpolation-grid) ; 
free((void * )  coefsl); 
free( (void * )  valsl) ; 
free ( (void * )  gridl) ; 
free((void * )  interpolation-gridl); 

1 

{ 
else if ((%alpha == 0.0) && (%beta == 0.0)) 

printf("Interna1 Error: q == O.\n"); 
exit (0  1 ; 

1 

return (value) ; 
1 



PROJECT 3 

HIDEAKI KANEKO and PETER A. PADILLA 

Superconvergence of Degenerate Kernel Method 

. The degenerate kernel method is a classical method for finding approximate solutions of the 

second kind Fredholm integral equations (3 - K z  = f in operator form). The basic principle 

. 

of the method is to approximate a kernel, a bivariate function, as a finite sum of univariate 

functions. An advantage of the method lies in its simplicity, whereas its disadvantage lies in the 

high cost of computations. If z, denotes a degenerate kernel approximation, then by the iterate 

of z,, we mean zk = f + Kz,. 

We discovered that the rate of convergence of the iterates of degenerate kernel approxi- 

mations is determined by the method under which the kernel is decomposed. We proved and 

demonstrated numerically that, when the decomposition is done as a least squares approxima- 

tion or as an interpolation approximation using a certain set of interpolation points, then the 

iterates converge twice as fast as the original degenerate kernel solutions provided that the kernel 

is sufficiently smooth. 

To reduce the high computational cost, we propose to introduce a class of wavelets for a 

decomposition process. We expect to obtain a system of linear equations whose corresponding 

matrix is sparse as opposed to the normal full matrix that we encounter in the degenerate kernel 

method. 
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SUPERCONVERGENCE OF DEGENEREATE KERNEL MWETHOD 

H. Kaneko and P. Padilla 

Abstract 

In this paper, a general theory for the iterated operator approximation is developed. Some 

of the known results on superconvergence of various iterated schemes can be formulated as 

special cases of our theory. The method is’then subsequently used to obtain some results on 

the superconvergence of the iterated degenerate kernel method for the Fredholm equations 

of the second kind and the Hammerstein equations. 

1 Introduction 

In this paper, we consider the Fredholm integral equation of the second kind 

z ( t )  - J.” L(t,s)z(s)ds = f ( t )  a 5 t 5 b 

and the Hammerstein equation 

z ( t )  - J.” k(t ,s)$(s ,z(s))ds  = f ( t )  a 5 t 5 b (1-2) 

where k, f in (1.1) and (1.2) and -?,b in (1.2) are known functions and in both cases z is the function 

to be determined. A number of numerical methods are available for obtaining approximate 

solutions of (1.1) and (1.2). It is well known that popularly used methods such a5 the Galerkin 

method and the collocation method can be viewed as special cases of the projection method. 

The projection method for the Fredholm integral equation of the second kind (1.1) can be 

described as follows; Let X denote the Banach space of functions and {X,} a sequence of finite 

dimensional subspaces of X that is essentially dense in X, -i.e. cZ U X, = X where cZS denotes. 

the closure of a set S. We denote a family of projections of X onto X ,  by {P,}. Now we define 

K z ( t )  = k ( t ,  s)z(s)ds for each t E (a, b) .  (1.3) J.” 
Equation (1.1) can be written in operator form as 

Here z is assumed to be an element of X. The underlying principle that supports the projection 

method is to seek an element 2, E X n  for which the residual T,  f - (2, - K Z n )  disappears 
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under the projection P,, -Le. Pnr, = 0 for each n. In the Galerkin method, the projection is 

orthogonal. On the other hand, in the collocation method, the projection is interpolatory. A 

similar discussion for the projection method for the nonlinear Hammerstein equation (1.2) will 

be left to the reader (see, e.g. 121 131 141 [S] [9]). 

Let z, denote a numerical solution of equation (1.4). The (Sloan) iterated solution z: 

corresponding to z, is defined by 
b 

x : l ( t )  = f(t) + 1 k ( t ,  s)z,(s)ds. (1-5) 
a 

In the Galerkin and the collocation solutions z,, it is known [6] that, under suitable conditions 

on the kernel k and the forcing term f, their corresponding iterated solutions converge to 2 more 

rapidly than z, does to 2, a phenomenon commonly known as superconvergence. One of the 

purposes of this paper is to develop a general iterated approximation scheme for equation (1.1). 

This will be done in Section 2. The generality of the theory is demonstrated by showing that 

the results on the superconvergence of the Galerkin and the collocation iterates examined by 

Sloan et al are special cases of our iterated operator approximation scheme. We note that the 

results obtained in [S] concerning the superconvergence of the iterated Galerkin and the iterated 

collocation method have been recently generalized to hold for Hammerstein equation (1.2) [lo] 
171. Moreover, in these papers superconvergence of the iterated solutions for weakly singular 

Hammerstein equations are also observed. It appears that these results on superconvergence of 

the weakly singular equations are new even for the Fredholm equations. 

Results obtained in Section 2 are subsequently used to establish the superconvergence of the 

iterated degenerate kernel method for equations (1.1) and (1.2)- The degenerate kernel method 

for solving equation (1.1) is discussed in [l] and that for equation (1.2) is discussed in [ll]. It 

turns out that the superconvergence of the iterated degenerate kernel method depends" upon 

the ways in which the kernel k in equations (1.1) and (1.2) are decomposed as a finite sum of 

products of univariate functions. This will be illustrated in detail in Section 3. In Section 4, the 

iterated degenerate kernel method for Hammerstein equation (1.2) is discussed. Even though the 

material in Section 4 does not have direct relation with the general theory presented in Section 

1, we feel that it is appropriate to include it here since it extends the results of Section 3 as well 

as those in 1111. Also included in Section 4 is a discussion on a computational consideration for 

solving the system of nonlinear equations that must be solved in order to obtain the degenerate 

kernel solution of (1.2). We make use of the devise introduced by Kumar and Sloan [12] to 

2 



‘linearhe’ the system of nonlinear equations. That is, the integrals 

repeatedly at each stage of the iterations, when a conventional iterated 

now evaluated only once at the beginning of computation. 

that must be evaluated 

scheme is employed, are 

Examples are provided in Sections 3 and 4 to demonstrate our theory. 

2 The Iterated Approximation for the Fredholm Integral Equa- . 

tions of the Second Kind 

In this section, we consider the Fredholm integral equation of the second kind given by (1.1). 

We denote by C[u,b] the Banach space of all continuous functions defined on [a ,b]  equipped 

with the uniform norm ]I - /Irn. Also we denote by Lp[u,b] ,  1 5 p 5 DO, the Banach space of 

measurable functions whose pth power are integrable (1 5 p < 00) or the space of essentially 

bounded functions (p = m) on [u,b].  In equation ( l . l ) ,  we assume that 

and that, with kt(s)  = k ( t , s ) ,  

t-w lim J.” lkt(s> - k7(s)lds = 0 . for each T E [a, b] .  (2.2) 

Under the condition (2.2), the linear operator K defined by (1.3) is a compact linear operator 

of C[a, b] into C[a, b]. In order to  establish a general iterated approximation scheme, we assume 

that {Kn}  is a sequence of operators converging to K in operator norm. That is, 

For each n 2 1, we assume that we have an equation whose solution approximates the solution 

of (1.4). We denote this approximating equation by 

For example, in the case of the projection method, equation (2.4) is identified by letting K, = 

PnK and f, = Pnf where P, is a projection of C[u,b] onto a finite dimensional subspace of 

C[a,b]. In the case of the degenerate kernel method, Kn denotes the finite rank separable 

operator, -i.e. K,z(t) = J, a;(t)b;(s)z(s)ds where {ai}?==, is a linearly independent family b 
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of functions and f,, = f for each n 2 1. We define the iterated approximation corresponding to 

x'n = f + Kx,, .  

As was indicated in Introduction, the iterated approximations for the Galerkin and for the 

collocation methods exhibit, under suitable smoothness conditions on the kernel k and on the 

forcing term f, the global superconvergence. It is not known, however, that the similar super- 

convergence result can be obtained for the iterated approximations for the degenerate kernel 

method. We are now in a position to prove the main theorem of this section. Advantages of the 

theory presented are twofold. First, it can be used to describe the superconvergence results of 

Sloan et al mentioned as special cases of this theorem. Second, it can be used to establish the 

superconvergence of the iterated degenerate kernel method. The latter will be done in Section 

3. 

Theorem 2.1 Consider equation (1.1) in a Banach space ( X ,  11 - 11). We assume that 1 is not 

an eigenvalue of K .  Let x,, and x', satisfy equations (2.4) and (2.5) respectively. Then, for 

suficiently large n, there exists a constant c > 0 ,  independent of n, such that 

Proof: From (1.4) and (2.5), 
I 

2 - xn = K(2 - x,,). 

Applying K on both sides of (1.4) and (2.4), we obtain 

Kx = Kf + K2x 

It follows from (2.8) and (2.9) that 
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Since llKn - Kll -, 0 as n --+ 00 and (I - K)-l exists by assumption, we conclude 11) that 

(I - Kn)-l exists and uniformly bounded for sufficiently large n. Therefore, 

Taking the norm on both sides, 

Since 

(2.12) 

From (2.11) and (2.12), 

This completes our proof. 0 

Corollary 2.2 For the iterated approximation scheme (2.5), if f n  = f for all n in (2.4), then 

11. - x ~ I I  2 c{IIK - IcnI12 + IlK(K - Kn)xnII)- 

In the next section, this corollary will be used to establish a superconvergence result for 

the iterated degenerate kernel scheme. In order to see that Theorem 2.1 includes the results of 

superconvegence of the iterated Galerkin and the iterated collocation schemes of Sloan et al [6], 

we need some definitions. First we let WF, 1 5 p 5 00, m nonnegative integer, denote the 
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Sobolev space of functions defined over [a, b] .  Namely g E WT if and only if g ( k )  E &[a, b] for 

k = 0, 1, . . . , m where g ( k )  denotes the kth distributional derivative of 9. Let 

be a partition of [a,b].  Let h = r n a x ~ ~ ; ~ , ( t i  - ti-1) and assume h --+ 0 as n 4 00. Let v be 

an integer and T a positive integer such that 0 5 v < T .  Let S.",, denote the space of splines 

of order T and continuity v, namely q, E SFn if and only if (P, is a piecewise polynomial of 

degree 5 T - 1 on each [x; -1 ,  zi] and has v - 1 continuous derivatives on (a, b) .  Let P: denote 

an orthogonal projection of C[a, 61 onto SK,. In the Galerkin method, equation (2.4) becomes 

x,G - P,GKxZ = P,G f (2.13) 

-i.e. K ,  = PZK and fn = P Z j .  The corresponding (Sloan) iteration approximation to (2.5) is 

given by 

2:' = f + K x f .  (2.14) 

where c is a constant independent of n and Ilfllm,p = Cp=o Ilf@)lIp (see e.g. [13]). Under the 

assumption of the quasiuniform mesh, -Le. 

it can be shown that 

for some constant c2. Since 

(2.16) 

(2.17) 

(2.18) 
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Now let <(t) = S,b k(t,s)x:(s)ds. Then 

5 IIkt’ - VnIIqII< - P~<IIP* . 

where + $ = 1 with convention that if p = 1, then q = 00. In (2.19), we have used the: 

orthogonality in the third equality and the Holder inequality in the last step. If kt E W r ,  then . 

from (2.15) there exists vn E SKn such that Ilkt - vnllq 5 ch*n{m~‘}~~l;,(m)~~m,q. Finally from 

(2.19) we obtain 

IlK(K - Kn)xfllm 5 Ch2min{m7r’. 

Similarly, we can show that whenever f E Wp”, 

and that 

Using the estimate (2.6), the above discussion leads us to the following corollary. 

Corollary 2.3 (Graham, Joe and Sloan [[6] :Theorem 4.11) Let x: and x:‘ denote the solutions 

for (2.13) and (2.14) respectively. Suppose that kt E WF (0  5 m 5 r )  with Ilktllm,q bounded 

independently o f t  and that f,< E Wp“ where e(t) E s,b k( t , s )xz (s )ds  with x f .  .Then 

G’ .< Ch2min{m,t) Ilx-Xn llm - 

where c is independent of n. 

Now in the partition II,, for each i, we select {tjj}5=1 such that 

Let P c  denote the interpolatory projector of C[a,b] onto S:,n defined by Pzx( t i j )  = z(t i j)  for 

each i = 1,. . ., n and j = 1,2,. . . , T .  In the collocation method, equation (2.4) becomes 

x,c - P,CIlz,c = P,c f (2.20) 
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-i.e. K ,  = PZK and f, = Pzf. The corresponding iterated collocation solution is defined by 

2:' = f + KZE. (2.21) 

As in Corollary 2.3 of the iterated Galerkin method, to see that the iterated collocation 

method of (2.21) is a special case of Theorem 2.1, we must examine the terms in the right side of 

(2.6). The second term of (2.6) in this case is analyzed as follows: Let y ( t )  = J: k ( t ,  s )xz(s )ds .  

Then 
K ( K  - K,)x,C(t) = (kt, y - P'y) 

(kt  - vn,t, Y - P,"Y) + (pn,t, (1- ~,C)(Y - +n)> (2.22) 

+ ( v n , t ,  (1 - PZMn). 
0 where vn,t E Sm,n and $ J ~  E St,. Now arguing exactly as in the proof of theorem 4.2 [6], we 

obtain 

p(K - Kn)x~l loo  5 chZmin{l*m+r} 

where c is a constant independent of n. The other terms in (2.6) can be bounded similarly. 

Corollary 2.4 (Graham, Joe and Sloan [[6] :Theorem 4.21) Let x: and 2:' be the solutions 

of (2.20) and (2.21) respectively. Suppose f E C[a,b],  x f Wi (0  < 1 5 2 ~ )  and kt E W r  

(0 < m 5 T), with IIk&,,l bounded independently o f t .  Then 

where c is independent of n.  

3 The Iterated Degenerate Kernel Methods 

The purpose of this section is to use Theorem 2.1, Corollary 2.2 in particular, to establish 

superconvergence of the iterated degenerate kernel method. A generalization to the iterated 

degenerate kernel method for the Hammerstein equations will be done in Section 4. 

.Consider equation (1.1). The degenerate kernel method for approximating the solution of 

(1.1) requires u s  to approximate the kernel k in (1.1) by some degenerate kernel whose general 

form can be described as 
n n  
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where {cp;}T.l is a set of linearly independent functions in C[u,b].  The operator K in (1.3) is 

then approximated by a sequence of operators 

Subsequently an approximate solution x n  is found by solving 

Equation (3.3) can be written as 

If we put 

then x n  can be written as 
n 

z n ( t >  = f(t) + c iv i ( t ) *  (3.5) 
i= l  

Uponmbstituting (3.5) into (3.4), we obtain the following n x n system of linear equations for 

Cj .  

Finally, once these q ’ s  are found by solving (3.6), equation (3.5) gives the required approximate 

solution for the degenerate kernel method. Equation (3.3) is written in operator form as 

which is a special form of (2.4) with fa = f for all n. When the degenerate kernel solution 

z, is iterated as in (2.5), an interesting question arises. The question is of course under what 

conditions superconvergence of the iterates in this case is guaranteed. It is the purpose of this 

section that we provide some answers to this question. It turns out that the superconvergence 

of the degenerate kernel method hinges critically upon the ways that one decomposes the kernel 

k: in (3.1). Here we demonstrate two different methods that guarantee the superconvergence of 

the iterates of the degenerate kernel method. 

In the first method, we examine the least-squares approximation. For each positive integer 

k, assume that a partition n[k satisfies the quasiuniform condition (ref. Section 2) 

< c  foreachk 
h 

minl<i<n(ii - ti-1) 
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Let n denote the dimension of the spline space S:k and B1, B2,. . ., Bn be the B-spline basis 

for Sr”,k. As in Section 2, T and u are integers such that 0 5 u < T .  Assume that k, ( t , s )  is the 

least-squares approximation of k( t ,  s),-i.e. assume that ajj in (3.1) are such that 

We are now in a position to present the first theorem of this section. 

Theorem 3.1 Let x be the solution of (1.1) and xn the solution of (3.7) where (3.1) is defined 

by  the least-squares approximation. Assume that k E W . ( [ a , b ]  x [a ,b]) ,  0 5 m 5 T ,  and 

k , ( - ) z ( - )  E Wi([a,b] x [a ,b] ) )  for each s E [a,b],whereO 5 I 5 r and k,( t )  = k ( s , t ) .  Then 

with u = min{m + 1,2m). 

Proof: Using corollary 2.2, we obtain 

Hence we only need to estimate the order of convergence of IlK(K - Kn)xnllm. Note that 

therefore 
r h  rh  

Applying the Cauchy-Schwartz inequality, 

lK(K - Kn)~(t)l 5 Il+ - ~~nll2llk - knll~. 

Here of course 11 - 112 denotes the LZ norm defined on the space of bivariate functions Wi([a,  b] x 
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The second method that produces superconvergence of the iterates of the degenerate kernel 

solutions is based upon approximating k by interpolation. Let 

n[N : U = to < t i  < . * -  < tN = b 

be a partition of [u,b].  Let h = maxl+gv(t; - ti-1) and assume as in Section 2 that h + 0 as 

N +. 00. Let &,&,. . .,Ir be the zeros of the T t h  degree Legendre polynomial in [-1, 11. We 

. shift these points to each subinterval [ti-l,t;], i = 1,2,. . .,N to obtain {Tij)s=l. Denote the . 
interpolation polynomials by cpjj, -i.e. 

An approximating degenerate kernel k, (n = NT)  is now defined by 

(3.10) 

Let the interpolation projector of C([a, b] x [a, b ] )  into the tensor product space S:,, 8 S:,, be 

denoted by Pn. That is, 

Pnk(~7 t )  = k(s7 t )  

where k, is defined in (3.10). Also let zfl denote the solution of equation (2.4) when K, possesses 

the kernel k, defined by (3.10) and z:’ denote the corresponding iterate defined by (2.5). The 

following theorem demonstrates the superconvergence of the iterated degenerate kernel method 

when the kernel is decomposed by interpolation. 

Theorem 3.2 Assume that in equation (1.1,) k E W ~ ( [ a , b ] x [ a , b ] ) ,  0 < rn 5 ‘P, andk,(*)z , ( - )  E 

Wi([u,b] x [u ,b ] ) ,  0 < 15 2r, where kt(u) = k(t ,u) .  Then 
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The rest of proof follows by an argument similar to the one give in the proof of theorem 4.2 of 

Graham, Joe and Sloan [6]. A modification needed here ho r is to accomodate the bivariate 

functions. An approximation of a bivariate function by an element from a space of tensor product 

of finite dimensional univariate functions and its approximation power is well ducumented, -e.g., 

see [5]. CJ 

4 The Iterated Degenerate Kernel Method for Hammerstein 

Equations 

In this section, we extend the results of the previous section to obtain superconvergence of the 

iterated degenerate kernel method for Hammerstein equation described in (1.2). We assume 

throughout this section, unless stated otherwise, the following conditions on k, f and $: 

3. f E C[a,b]; 

4. $(t, z) is continuous in t E [0,1] and Lipschitz continuous in 2 E (-00, 00), i.e., there 

exists a constant C1 > 0 for which 

I+(t,zi) - $(t,22)1 I CiIzi - 221, for ~II Z1,z2 E (-00,00); 

5. the partial derivative $(a*b) of + with respect to the second variable exists and is Lipschitz 

continuous, Le., there exists a constant C2 > 0 such that 

~ $ ( ~ t ~ ) ( t ,  z1) - $('J)(t, z2)1 5 Czlzl - 221, for a~ 21,22 E (-00,00); (1.2) 

6. for z E C[O, 11, $(.,z(.)), $(',')(., z(.)) E C[a, b] .  

Additional assumptions will be given later as needed. A comprehensive study of the degenerate 

kernel method for Hammerstein equations was made by Kaneko and Xu [ll]. The degenerate 

kernel method for Hammerstein equations consists of replacing K in (1.2) by k, of (3.1) and 

approximating the solution z of equation (1.2) by 2, which satisfies 

Zn(t) - J." kn( t ,  S)$I(S, zn(s)) ds = j ( t >  a F t I b- ( 4 4  
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Following analogously the development made in (3.5) and (3.6), for 

x ,  can be written as 
n 

x n ( t )  = f(t) + C civi(t)- (4.3) 
i=l 

Substituting (4.3) into (4.2), we obtain the following n nonlinear equations 'in n unknowns 

Define 
b 

K Q x ( t )  / a k ( t ,  s)$(s, x ( s ) ) d s  

so that (1.2) can be written as 

x-KiPX= f. 

Similarly we write equation (4.1) as 

X, - K n @ x n  = f 

The iterated solution x; is now obtained by 

x', = f + KQx,. (4-7) 

The Frhchet derivative of KiP at cpo is denoted and defined by 

( K Q ) ' ( v o ) ( v ) ( t )  = j b  k( t ,  s)$'a(s? &ds))ds)ds 

with $2 denoting the first partial derivative of $ with respect to the second variable. The 

following theorem describes superconvergence phenomenon of x ;  to x .  Here we assume that 

the decomposition (3.1) is done via interpolation (the second method described in the previous 

section). The case of the least-squares approximation is similar and will be left to the reader to 

supply the detail. 

Theorem 4.1 Assume that in equation (1.2) k E Wr([u ,  b ]x [u ,  b]),  0 < m 5 T, and ks(-)$(-, x n ( - ) )  E 

Wi([a, b] x [a, b] ) ,  0 < 1 5 2r, where x n  is the solution of (4.6). Assume also that 1 is not an 

eigenvalue (KQ)'([) for each [ between f + KniPX, and f + KQx.  Then 
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Proof: From (4.5) and (4.6), 

x - X; = K ~ x  - KQxn- 

Now 

KQZ - K Q z n  = KQ( f  + K Q z )  - KQ(f  + ICnQZn) 

= (KQ)'(B(f + KnQZn) + (1 - B)(f + KQz))(IiQz - Kn!Pzn) 

for some0 5 B 5 1 

= Ke(KQz - KnPZn + ( K Q x  - KQz,) - ( K Q z  - K Q z ~ ) ) ,  

where Ks 

each 0 5 B 5 1, we obtain 

(KQ)'(B(f + KnQzn) + (1 - B ) ( f  + KQz) ) .  Since 1 is not an eigenvalue of KO for 

Combining (4.8) and (4.9), and taking the norm on both sides, we obtain 

Arguing as in the proof of Theorem 3.2, we obtain the desired result. 0 

Finally we consider a computational problem associated with (4.4). It is customary that 

the system of nonlinear equations (4.4) is solved by an iterative scheme. For example, the fixed 

point iteration scheme for (4.4) is to generate ( c ~ ' } ~ ! ~  for k 2 1 by 

At each step of iteration, the integrals in (4.10) must be computed since the integrands contain 

the different values of CY). To circumvent this difficulty. we propose the following device that 

is originated from [12]. We let . 

zn(t) = +(t, zn(t)) (4.11) 

where zn is defined in (4.3). We have, assuming that ICn takes the form of (3.1), 

n b n  
zn(t) = $(t ,  f ( t )  + aijvi(t) J vj(s)zn(s)ds)* (4.12) 

The equation (4.12) can be solved by the collocation-type scheme that was devdoped by Kumar 

and Sloan 1121. Namely let {~ ; }y=~ be n functions defined on [u,b] and let { t j } := l  be n distinct 

points for which 

i=l a j=1 

det(qi(tj)) # 0- (4.13) 
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.zn in (4.11) is now approximated in the form ajq j .  The aj’s can be found by solving the 

following nonlinear equations. Note that the constants aj’s are moved out of the integrals. This 

makes the repeated computations of the integrals unnecessary when the system of nonlinear 

equations is to be solved by an iterated scheme. 

3 

4 

5 

convergence rate M 

for 1 5 k 5 n. If we denote A E [qj(t;)]  and the right side of (4.14) by $ i ( E ) ,  then with . 

$ ( E )  3 ( $ i ( E ) )  and G (a!k)), (4.14) may be solved by the fixed point iteration scheme that 

.00622970884 1.576231963-05 

.00356820367 4.976166863-06 

.00230562003 2.019508763-06 

2 4 

(4.14) 

5 Numerical Examples 

In this section we present a numerical example using least-squares and interpolation to approx- 

imate k(s,t). Let k ( s , t )  = eat and f ( t )  = 1 - 7 Then, the computed errors for the least 

squares method are shown in the following table. 

I ~~ I Errors I 
I n I non-iterated I iterated I 
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PROJECT 4 

HIDEAKI KANEKO, RICHARD D. NOREN and PETER A. PADILLA 

Superconvergence of Collocation Method for Hammerstein Equations 

The Hammerstein equation arises as a reformulation of a class of boundary value problems 

with nonlinear boundary conditions. The collocation method is one of the widely used numerical 

methods to approximate the solution of such equations due to its reasonable computation cost. 

We proved that the iterates of the collocation solutions for Hammerstein equation converge 

faster than the original collocation solution, a phenomenon commonly known as a supercon- 

vergence. This result extends the results obtained by Kaneko and Xu (Superconvergence of the 

Itemted Galerkin Mathods for Hammerstein Equations -SIAM J1. Num. Anal. June 1996 (to 

appear)) concerning a similar outcome for the Galerkin method. The degree of improvement in 

the rate of convergence depends upon the smoothness of the kernel involved. 
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SUPERCONVERGENCE OF THE ITERATED COLLOCATION METHODS 

FOR HAMMERSTEIN EQUATIONS 

H. Kaneko, R. D. Noren and P. A. Padilla 

Abstract 

In this paper, we analyse the iterated collocation method for Hammerstein equations with 
smooth and weakly singular kernels. The paper expands the study which began in E141 con- 

cerning the superconvergence of the iterated Galerkin method for Hammerstein equations. 
We obtain in this paper a similar superconvergence result for the iterated collocation method 

for Hammerstein equations. We also discuss the discrete collocation method for weakly sin- 

gular Hammerstein equations. Some discrete collocation methods for Hammerstein equations 
with smooth kernels were given previously in [3] and [18]. 

, : 

Key words: the iterated collocation method, the discrete collocation method, Hammerstein 

equations with weakly singular kernels, superconvergence. 

Mathematics Subject Classification (1990): 65B05,45L10. 

1 Introduction 

In this paper, we investigate the superconvergence property of the iterated collocation method for 

Hammerstein equations. In the recent paper [14], the superconvergence of the iterated Galerkin 

method for Hammerstein equations with smooth as well as weakly singular kernels was estab- 

lished. The paper generalizes the previously reported results on the superconvergence of the 

iterated Galerkin method for the Fredholm integral equations of the second kind [8], [9] [20]. A 
more important contribution made in [14] lies in the fact that the superconvergence r.esult was 

established under weaker assumptions (Theorem 3.3 [14]). The approach used in 1141 to establish 

the superconvergence of the iterated Galerkin method can easily be adopted to prove the results 

of Graham, Joe and Sloan [8], Joe [9] and Sloan [20] under weaker conditions imposed upon 

the F'redholm equations. This will be demonstrated in Section 3. In Section 2, we review the 

collocation method for Hammerstein equations as well as some necessary known results that will 

be pertinent to the matreials in the ensuing sections. We recall that the collocation method for 

weakly singular Hammerstein equations was discussed and some superconvergence results of the 

numerical solutions at the collocation points were discovered by Kaneko, Noren and Xu in [ll]. In 
Section 3, the supererconvergence of the iterated collocation method for Hammerstein equations 

is established. The results obtained there encompass Hammerstein equations with smooth as well 
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as weakly singular kernels. Finally, in Section 4, we discuss the discrete collocation method for 

Hammerstein equations with weakly singular kernels. The result obtained in this section extends 

the results of [3] and [18] which deals with the discrete collocation methods for Hammeratein 

equations with smooth kernels. Some examples are also included in this section. 

We note that there have been several other research papers published in recent years that 

describe various numerical methods for Hammerstein equations. A variant of Nystom method 

was proposed by Lardy [19]. The degenerate kernel method was studied by Kaneko and Xu 

* [16]. We point out that a superconvergence of the iterates of the degenerate kernel method was 

recently observed when a decomposition of the kernel is done properly. This will be reported in 

a future paper [17]. The reader who is interested in more information on numerical methods for 

a wider class of nonlinear integral equations may find necessary materials in [2] and [5]. 

2 The Collocation Method 

In this section, the collocation method for Hammerstein equations is presented. Some materials 

from the approximation theory are also reviewed in this section to make the present paper self- 

contained. We consider the following Hammerstein equation 

where I C ,  f and 9 are known functions and x is the function to be determined. Define kt (s )  

IC(t,s) for t, s E [0,1] to be the t section of k. We assume throughout this paper unless stated 

otherwise, the following conditions on IC, f and 11,: 

1. limt-,, Itkt - k,llm = 0, E [O, 11; 

2. M E sup, s,' IIC(t,s)Jds < 00; 

3. f E C[O, 13; 

4. $(a, x) is continuous in s E [0,1] and Lipschitz continuous in x E (-00, oo), i.e., there exists 

a constant C1 > 0 for which 

5. the partial derivative t,h('*') of 11, with respect to the second variable exists and is Lipschitz 

continuous, i.e., there exists a constant Cz > 0 such that 
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6. for z E C[O, 13, +(., a ( . ) ) ,  + ( ' p l ) ( . ,  x(.)) E C[O, 13. 

We let 

( K W z ) ( t )  J' w 7  s)$(s, z(s))ds. 
0 

With this notation, equation (2.1) takes the following operator form 

2 - KQz = f. 

For any positive integer n, we let 

11, : 0 = to < tl < ... < t,-1 < t ,  = 1 

(2.3) . 

be a partition of [0,1]. Let T and u be nonnegative integers satisfying 0 5 u < T .  Let SF(&) 
denote the space of splines of order T ,  continuity u, with knots at Il,, that is 

S,V(II,) = {z E Cv[O, 13 : z{[ti,ti+ll E Pr-l, for each i = O,1, .  . ., n - 1) 

where Pr-l denotes the space of polynomials of degree 5 T - 1. For the collocation method, we 

are interested in the cases u = 0 or 1. That is, it is posible to work with the space of piecewise 

polynomials with no continuity at the knots or with the space of continuous piecewise polynomials 

with no continuity requirement on the derivatives at the knots. We assume that the sequence of 

partitions II, of [0,1] satisfies the condition that there exists a constant C > 0, independent of 

n, with the property: 

(2.4) 
mmlsisn(ti - t i -1 )  I c, for all n. 
& l l i l n ( t i  - t i - 1 )  

In many cases, equation (2.1) possesses multiple solutions (see e.g. [IS]). Hence, it is assumed 

for the remainder of this paper that we treat an isolated solution xo of (2.1). Let Ii = ( t j - 1 , t ; )  

for each i = 1,. . . , n. Then for u = 0, we let ~ i l ,  q2,. . . , T;, be the Gaussian points (the zeros of 

the rth degree Legendre polynomial on [-1,1]) shifted to the interval I;. We define * 

The points in Go give rise to the piecewise collocation method where no continuity between 

polynomials is assumed. This is the approach taken by Graham, Joe and Sloan [8]. Joe [9], on 

the other hand, considered the continuous piecewise polynomial collocation method. His method 

corresponds with taking u = 1. Here we define the set G1 of the collocation points to be the 

set consisting of the knots along with the Labatto points (the zeros of the first derivative of the 

T - l th  degree Legendre polynomial) shifted to the interval Ii. Namely, let &-I = 1 and for 
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1 5 1 5 T - 2 (r 2 3), let 6 denotes the lth Labatto point. If lI;l denotes the length of Ii, then 

G1 contains 

1 
q i -~ )+ l )+ l+ l  = s(t;-1 + ti + II;l&), 1 5 i 5 n, 1 5 1 5 T - 1, and 71 = to  = 0 (2.6) 

The analyses of [8] and [9] are very similar. We therefore confine ourselves to developing the 

collocation method for Hammerstein equations that is analogous to the method of [8]. An 
obvious extension to the continuous piecewise collocation method will be left to the reader. 

Define the interpolatory projection Pn from C[O, 11 + S,Y(l In) to S,Y(l In) by requiring that, for . .  

and consequently 

SUP llpnll < C. 
n 

The collocation equation corresponding to (2.3) can be written as 

(2.8b) 

where 2, E S:(IIn). Now we let 

. T x  zi f + KQx 

and 

T n x n  Pn f + P n K Q x n  
A 

so that equations (2.3) and (2.9) can be written respectively as x = T x  and 2, = T n x n .  We 

obtain; 

Theorem 2.1 Let xo E C[O, 11 be an isolated solution of equation (2.3). Assume that 1 is not an 

eigenvalue of the linear opemtor (KQ)’(xo),  where (KQ)’(xo) denotes the Frichet derivative of. 

K Q  at XO. Then the collocation approximation equation (2.9) has a unique solution x n  E B(x0 ,S )  

for some 6 > 0 and for suficiently large n. Moreover, there exists a constant 0 < q < 1, 

independent of n, such that 

(2.10) QIn QIn - F 11xn - xolloo F - l + q  1 - 9 ’  
where a n  E ll(I - TA(xo) ) - l (Tn(xo)  - T ( X O ) ) ~ ~ ~ .  Finally, 

where C is a constant independent of n and E n ( X 0 )  = infu~xn 11.0 - ulloo. 
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A proof is a straight application of Theorem 2 of Vainikko [23] and is demonstrated in the 

proof of Theorem 2.1 [ll]. We denote by WF[O, 11, 1 5 p 5 00, the Sobolev space of functions g 

whose m-th generalized derivative g(”) belongs to Lp[O, 11. The space WT[O, 11 is eqyipped with 

the norm 

It is known from Demko [SI and De Vore [7] that if 0 5 u < r ,  1 5 p 5 00, m 2 0 and x E Wp”, 
,then for each n 1 1, there exists 21, E Sr(Itn) such that 

where p = min{m,r} and h = maxl5isn(t; - ti-1). The inequality (2.12) when combined with 

Theorem 2.1 yields the following theorem; 

Theorem 2.2 Let xo be an isolated solution of equation (2.3) and let 2, be the solution of 

equation (2.9) in a neighborhood of XO. Assume that 1 is not an eigenvalue of (K!P)‘(xo). r f  

xo E W&,, then 

11x0 - xnlloo =. O(h’”)y 

where p = min{Z, r } .  I j  xo E Wi (1 5 p < eo), then 

where u = min(1- l,r}. 

When the kernel k: is of weakly singular type, namely if 

where m E C’”+l([O, 11 x [0,1]) and 

s-l, 0 < a  < 1, 

logs, a = 1. 
s&)= { (2.14) 

then the solution xo of equation (2.3) does not, in general, belong to WF. To better characterize 

the regularity of the soution of (2.3) with weakly singular kernel, consider a finite set S in [0,1] 

and define the function os(t) = inf{lt - 51 : s E S}. A function x is said to be of Type(a ,k ,S ) ,  

for -1 < a < 0, if 

lx‘k’(t)l 5 C[os(t)]a-k t 4 s, 
and for a > 0, if the above condition holds and x E Lip(a).  Here Lip(a) = {x: Ix(t )  - z(s)I 5 
Clt - slap). It was proved by Kaneko, Noren and Xu [12] that if f is of Type(P ,p ,  (0, l}), then 
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a solution of equation (1.1) is of T y p e ( r , p ,  (0, l}), where 7 = min{a, p}.  The optimal rate of 

convergence of the collocation solution xn to xo can be recovered by selecting the knots that are 

defined by 

(2.15) 

where q = r / y  denotes the index of singularity. Details can be found in Ill]. 

3 The Iterated Collocation Method 

The faster convergence of the iterated Galerkin method for the Fredholm integral equations of 

the second kind compared to the Galerkin method was first observed by Sloan in [21] and [22]. 

On the other hand, the superconvergence of the iterated collocation method was studied in [8] 

and [9]. Given the equation of the second kind 

x - K x =  f, (3-1) 

where K is a compact operator on X E C[O, 11 and x, f E X, the collocation approximation Zn 

is the solution of the following projection equation 

Here Pn is the interpolatory projection of (2.7). The iterated collocation method obtains a 

solution x: by 

Z; = f + Kx,. (3.3) 

Under the assumption of 

IlKPn - Kll + O as + 00 (3.4) 

The assumption (3.4) is satisfied if X = Lz and Pn is the orthogonal projection satisfying 

IlPng - gll + 0 for a l l  g in the closure of the range of the adjoint K* of K since in this case 

IIKPn - Kll = llPnK* - K*ll. The results of Sloan were recently generalized to the iterated 

Galerkin method for Hammerstein equations by Kaneko and Xu [14]. The main theorem of [14], 

Theorem 3.3, that guarantees the superconvergence of the iterates was proved by making use of 

the collectively compact operator theory. 
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The purpose of this section is to study the superconvergence of the iterated collocation 

method. For the collocation solution xn of (2.9), we define 

xk = f + K\E'xn. 

A standard argument shows that xk satisfies 

X ;  = f + KqPnx',. 

We denote the right side of (3.7a) by Snxk, namely 

We recall the following two lemmas from [14]. 

Lemma 3.1 Let xo E C[O, 13 be an isolated solution of (2.3). Assume that 1 is not an eigenvalue 

of ( K  q)'(xo). Then for sufficiently large n, the opemtors I - SL( xo) are invertible and there exists 

a constant L > 0 such that 

Lemma 3.2 Let xo E C[O,l] be an isolated solution of equation (2.3) and xn be the unique 

solution of (2.9) in the sphere B(xo,61). Assume that 1 is not an eigenvalue of (K\E')'(xo). Then 

for suficiently large n, x; defined by the itemted scheme (3.6) is the unique solution of (3.7) in 

the sphere B(x0,S). Moreover, there ezists a constant 0 < q < 1, independent of n, such that 

The definitions of 6 and 61 are described in f141. Following the development made in [14], we 

let 

?% Y )  = w, Yo) + 1D(O")(S, 'yo + @(Y - Yo))(Y - Yo) ,  (3-8) 

where 6 := 6 ( s ,  yo, y )  with 0 < 6 < 1. Also let 

(Gnz)(t) = J' g(t, 3, pnxo(s), pnxk(s), e)x(s)ds, 
0 

and (Gx) ( t )  = s,' gt(s)x(s)ds, where gt(s) = k ( t , ~ ) ? , b ( ~ - ~ ) ( s , x o ( s ) ) .  Now we are ready to state 

and prove our main theorem of this paper. The proof is a combination of the idea used in [14] 

(Theorem 3.3) and the one used in [8] (Theorem 4.2). 

7 



Theorem 3.3 Let to E C[O, 11 be an isolated solution of equation (2.3) and x, be the unique 

solution of (2.9) in the sphere B(zo,S1). Let x: be defined by the iterated scheme (3.7). Assume 

that 1 is not an eigenvalue of (K!@)’(zo). Assume that 20 E Wf (0 < I 5 2r) and gt E WT 

(0 < m 5 r )  with ligtllwr bounded independently o f t .  Then 

11.0 - zklloo = O(h7), where 7 = min(1, r + m}. 

Proof: From equations (2.3) and (3.7), we obtain 

zo - z:, = K(@zo - !@P,zk) = K ( @ z o  - @P,zo) + K(@P,xo - I P n Z L ) .  (3-9) 

Using (3.8), the last term of (3.9) can be written as 

(3.10) 

Equation (3.9) then becomes 

20 - z:, = K(@Q - @Pnzo) + G,P,(zO - z;). 

Using the Lipschitz condition (2.2) imposed on $(Of1 ) ,  for z E C[O, 11, 
1 

II(Gnz) - (Gz)llm 5 C2 O l t l l  SUP J 0 l~( t ,s)IdsI l~l l~( l IP,zo - zoIIoo + IIPnIImIIzL - zoII00). 

This shows that 

where 

M, = sup I$‘O*l’(t,zo(t))l < +oo. 
O<t<l 

It follows that GP, --+ G pointwise in C[O,l] as n -+ 00. Again since P, is uniformly bounded, 

we have for each z E C[O, 11, 

Thus, G,P, + G pointwise in C[O, 11 as n -+ 00. By Assumptions 2,5, and 6, we see that there 

exists a constant C > 0 such that for all n 
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This implies that {GnPn) is a family of collectively compact operators. Since G = (Kq)’(zo) is 
compact and (I - G)-’ exists, it follows from the theory of collectively compact operators that 

(I - GnPn)-l  exists and is uniformly bounded for sufficiently large n. Now using (3.10), we see 

that 

11.0 - 2LIlcm I clle(*z~ - *PnZo)ll. 

Hence we need to estimate (IK(!i!zo - QPnZo)ll. The following four inequalities are known (The- 

orem 4.2 [SI). Let & E Sf(&)  be such that 

(3.11) 

(3.12) 

Also for each t E [0,1], there exists Vn,t E Sk(I in)  such that 

(3.14) 

Using equations (3.11)-(3.14) along with the arguments from [SI (p.362) we can show that each 

of the three terms is bounded by chr uniformly in t. This completes our proof. 0 

One way to establish the superconvergence of the iterated collocation method for the Fredholm 

equation is to assume (3.4). In the context of the present discussion, (3.4) is equivalent to 

assuming 

lI(Kq)‘(so>(l- ~n)lC[o,b]llOo --+ 0 as n --* 00- (3.16) 

Theorem 3.3 was thus proved under weaker assumptions. The idea used to prove Theorem 3.3 

originates from [4] (section 6) in which the superconvergence of the iterated -collocation method 

for the Fredholm equations was established by showing that { K P , }  is a family of collectively 

compact operators. 

Finally in this section, we investigate the superconvergence of the iterated collocation method 

for weakly singular Hammerstein equation. Specifically, we consider equation (2.3) with kernel 

given by (2.13) and (2.14). An enhancement in the rate of convergence is given in the following 

theorem. 
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Theorem 3.4 Let xo E C[O,l] be an isolated solution of equation (2.3) and x, be the unique 

solution of (2.9) in the sphere B(xo,61) with kernel defined by (2.13) and (2.14) and knots defined 

by (2.15). Let x', be defined by the iterated scheme (3.7). Assume that 1 is not an eigenvalue of 

(K\E')'(xo) and that +(Oy1)(., XO(-)) is ofType(cu, T ,  {0,1}) for cy > 0 whenever xo is of the same 

type. Then 

11.0 - x;lloo = O(h'+'*). 

. .  Proof: We follow the proof of Theorem 3.3 exactly the same way to (3.15), which is 

K(\E'Xo - \E' .hxo)( t )  = (st - (Pn,t, xo - K X O )  + ((Pn,t, (1 - EL)(xo - &)) 

+('Pn,t, (1 - &)ha). 
The difference in superconvergence arises from the degree to which we may bound the first term. 

As in Kaneko and Xu [14] (Theorem 3.6), using an argument similar to [15], it can be proved 

that there exists u E Sr(lI,) with knots II, given by (2.15) such that llgt - u111 = O ( h P ) .  Here 

h = maxllil,(q - x;-1}. Then 

The rest of proof follows in the same way as described in [8] (p.362).0 

4 The Discrete Collocation Method for Weakly Singular Harn- 
merstein Equations 

Several papers have been written on the subject of the discrete collocation method. Joe [lo] 
gave an analysis of discrete collocation method for second kind Fredholm integral equations. A 
discrete collocation-type method for Hammerstein equations was described by Kumar in [18]. 

Most recently Atkinson and Flores [3] put together the general analysis of the discrete colloca- 

tion methods for nonlinear integral equations. In this section, we describe a discrete collocation 

method for weakly singular Hammerstein equations. Zn the aforementioned papers [lo, 18, 31, 

their discussions are primarily concerned with integral equations with smooth kernels. Even 

though, in principle, an analysis for the discrete collocation method for weakly singular Ham- 
merstein equations is similar to the one given in 131, we feel that a detailed discussion on some 

specific points pertinent to weakly singular equations, -e.g.,a selection of a particular quadrature 

scheme and a convergence analysis etc, will be of great interest to practioners. Our convergence 

analysis of the discrete collocation method presented in this section is different from the one given 
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in [3] in that it is based upon theorem 2 of Vainikko [23]. The idea of the quadrature used here 

was recently developed by Kaneko and Xu [15] and a complete Fortran program based on the 

idea is being developed by Kaneko and Padilla [13]. A particular case of the quadrature schemes 

developed in [14] is concerned with an approximation of the integral 

(4.1) 

where f E Type(a,2r,S) with a > -1. For simplicity of demonstration, we assume S = (0). 

' We define q = 9 and a partition 

A,:XO = O , x 1  = n-',zj = jq t l ,  j = 2,3 ,..., n. (4.2) 

Now we construct a piecewise polynomial S, of degree r - 1 by the following rule; ST(.) = 0, 
for 

z E [z;, z;+l), i = 1,2,. . , n - 2 and for x E [%,+I, z,]. Here (UY'>~=~ denote the zeros of the 

r th  degree Legendre polynomial transformed into [z;, %;+I). Our approximation process consists 

of two stages. First, I ( f )  is approximated by 

x E [Q, z1) and S,(z) is the Lagrange polynomial of degree r - 1 interpolating f at {uj  ( i )  }j=l r 

Second, f(f) is approximated by f (S , )  = J:l S,(z)dz. A computation of f ( S r )  can be accom- 

plished as follows; let s: [ ~ j , ~ i + l ]  -+ [-1,1] be defined by s = so that 22- 2% l+Z,) L+:zi 

where 

If {u;: i = 1,2.  . . , r }  denotes the zeros of the Legendre polynomial of degree T ,  then 

with Z;(z) the fundamental Lagrange polynomial of degree r - 1 so that 

It was proved in [15] that 

I I ( ~ )  - f(s,)l= O(n-2r).  
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In this section, we examine equation (2.1) with the kernel k defined by (2.13) and (2.14). When 

the knots are selected according to (2.15), as stated earlier, it was shown in [ll] that the solution 

xn  of the collocation equation (2.9) converges to the solution x of (2.1) in the rate that is optimal 

to the degree of polynomials used. Specifically, Z n  must be found by solving 

wherei=O,l ,  ... n - l a n d  j = 1 , 2  ,... r .  

replaced by a numerical quadrature given in (4.5). Let ki j ( s )  G ga(lzcY) - s1)n(uy', s). Then 

The discrete collocation method for equation (2.1) is obtained when the integral in (4.7) is 

The integrals in the last expression of (4.8) represent two weakly singular integrals which can be 

approximated to within O ( T Z - ~ ~ )  order of accuracy by (4.5) by transforming them to [-1,13 and 

selecting the points in (4.2) appropriately. 

Writing (4.7) as 
Pnxn - PnKlDxn = Pn f, (4.9) 

we consider the approximation f n  to xn  defined as the solution of 

where Kn is the discrete collocation approximation to the integrals in (4.8) described above. 

We will use Theorem 2 of [23] to find a unique solution to (4.10) in some 6 neighborhood of x n ,  

where n is sufficiently large. Clearly, Qk(z) = PnKnlD'(x), where Q'(z)[y](s) = $'~')(s, z(?))y(s). 

For sufficiently large n, (4.9) has a unique solution in some 6 neighborhood of 2. To see that 

I- QL(zn) is continuously invertible with {(I - Q ~ ( Z ~ ) ) - ' ) : = ~  uniformly bounded, it is enough 

to observe that { Q L ( z ~ ) } F = ~  is collectively compact, and to do this we will show that 

as t --t t', for each x E C[O, I], [l]. Here N is some sufficiently large number. 

If we show (4.11), then part (a) of Theorem 2 [23] is also verified. In order to verify part 

(b) of Theorem 2 [23], we only need to'establish (because of the uniform boundedness of {(I - 
Qn( xn))-'};=N) that 

12 
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(4.13) 

Once this is done, Theorem 2 [23] applies yielding a unique solution F, in some neighborhood 

of x, (for sufficiently large n) and 

11 xn - 2, Ili L& I L I1 Q n ( ~ z )  - Tn(xn). lloo (4.14) . 

(Here and throughout the remainder of the section, L denotes a generic constant, the exact * 

value of which may differ at each occurance.) This inequality will be used to obtain the order of 

convergence. 

Considering (4.11), the right hand side is bounded by TI + 2'2 + T3, where 

Let E > 0. Since {Pn}p=l is uniformly bounded, 2'1 + T3 < $ by applying (4.6) with f(s) = 

$(o*l)(s,z,(s))x(s) and letting n be sufficiently large. For T2 we have 

T2 I M JJ I k(t ,  s) - k ( f ,  s) I ds I M(SI+ s2), 

where 

and 

but 

- < L sup I m ( t , s )  - m(t',s) I-+ 0 as t --+ t', 

s,' i 9a(l t - I) - S"(l t' - s I) I ds 

O<S<l 

and 
s2 5 

= "(1 a tQ - (t')" 1 + I (1 - t)" - (1 - t')& I +$ I t - t' I*} 
+ o  as t 4 t ' .  

Hence (4.11) holds. For (4.12), 
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for 6 sufficiently small. Note that we have used the uniform boundedness of {Pn},  {K , }  and 

because !P(Otl)(s, y(s)) is locally Lipschitz, so is the operator 

!PI : C[O, 11 + B(C[O, 11, C[O, 11) (the space of bounded linear operators from C[O, 11 into C[O, 11). 

For (4.13), we have 

because 9 is a Lipschitz operator and (K,}  is uniformly bounded, and also 

Finally, 

R2 = o(n-2r)  (4.19) 

by (4.6) using f(s) = @(Z,ZO(~)). 

Thus Vainniikko’s Theorem yields a unique solution Z n  for n sufficiently large and (4.14) 

holds. Now (4.14) and (4.15) - (4.19) show that 

where p is the. minimum of 27- and the order of convergence of 11 zo - x, 11. We summerize the 

results obtained above in the following theorem: 

Theorem 4.1 Let xo be an isolated solution of equation (2.3) and let x n  be the solution of 

equation (2.9) in a neighborhood of 20. Moreover, let Zn be the solution of ($10). Assume that 

1 is not an eigenvalue of (K@)’(xo). If xo E WL, then 

where v = min(1- 1, r } .  
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PROJECT 5 

HIDEAKI KANEKO, RICHARD D. NOREN and PETER A. PADILLA 

Singularity Preserving Galerkin Method for Hammerstein Equations With Logarithmic Ker- 

nel 

In the recent paper Singularity preserving Galerkin methods for weakly singular Fredholm 

integral equations, Jl. Int. Eqs. and Appl. 6 (1994) 303-334, Y. Cao and Y. Xu established the 

Galerkin method for weakly singular Fredholm integral equations that preserves the singularity 

of the solution. Their Galerkin method provides a numerical solution that is a linear combination 

of a certain class of basis functions which includes elements that reflect the singularity of the 

solution. The purpose of this paper is to extend the result of Cao and Xu and to establish 

singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. 

First, a singularity expansion for the soultion of Hammerstein equation with logarithmic kernel 

is given. Secondly, this singularity expansion is used to obtain the numerical Galerkin scheme 

that preserves the singularity of the solution. 

An application is given to a Dirichlet problem with a certain class of nonlinear boundary 

conditions. Numerical experiments axe being performed. 
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SINGULARITY PRESERVING GALERKIN METHOD FOR HAMMERSTEIN 

EQUATIONS WITH LOGARITHMIC KERNEL 

H. Kaneko, R. D. Noren and P. A. Padilla 

Abstract 

In a recent paper [3], Y. Cao and Y. Xu established the Galerkin'method for weakly singu- 

lar Fredholm integral equations that preserves the singularity of the solution. Their Galerkin 

method provides a numerical solution that is a linear combination of a certain class of basis 

functions which includes elements that reflect the singularity of the solution. The purpose 

of this paper is to extend the result of Cao and Xu and to establish singularity preserving 

Galerkin method for Hammerstein equations with logarithmic kernel. An application is given 

to a Dirichlet problem with nonlinear boundary condition. 

' . , 

Key words: Singularity preserving Galerkin method, Hammertein equations with logarithmic 

kernel. 

Mathematics Subject Classification (1990): 65B05,45LlO. 

1 Introduction 

In this paper, we are concerned with .the problem of obtaining a numerical solution of weakly 

singular Hammerstein equations with logarithmic kernel by the Galerkin method that preserves 

the singularity of the exact solution. Namely we establish a method that generates an approxi- 

mate solution in terms of a collection of basis functions some of which are comprised of singular 

elements that reflect the characteristics of the singularity of the exact solution. The idea of the 

method originates in the recent paper by Czto and Xu [3]. Cao and Xu studied the characteristics 

of the singularities that are pertinent to solutions of the weakly singular Fredholm equations of 

the second kind. Let C[O, 11 denote the space of all continuous functions defined on [O, 13. The 

weakly singular Redholm integral equations of the second kind can be described as 

JO 

where f E C[O, 11, m is sufficiently smooth and 

where y is of course the function to be determined. It is well documented (see, e.g. [16],[13],[4],[20]) 

that the solutions of the equations described in (1.1) exhibit, in general, mild singularities even 
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in the case of a smooth forcing term f .  Here by “mild” singularities, we mean the singularities 

in derivatives. The papers of Richter [13] and Graham [4] contain singularity expansions of the 

solutions of equation (1.1) in the case of m(s,t) E 1. The results of Graham were recently 

generalized by Cao and Xu for equation (1.1). Information concerning the type of singularities 

that solutions have is useful when solving equation (1.1) numerically. In order to approximate 

functions with mild singularities, many investigators utilized the important theorem of Rice [14] 

, that gives an optimal order of approximation to such functions. Rice’s theorem is that of non- 

linear approximation by splines using variable knots. Based upon this idea of approximating 

the solutions of equation (1.1) by splines defined on nonuniform knots, the collocation method, 

the Galerkin method and the product-integration method were established for equation (1.1) by 

Vainikko and Uba [21], by Graham [4] and by Schneider [17] respectively. A modified collocation 

method was introduced in [12] which also uses the idea of Rice. Recently there has been some 

considerable interest in the study of the following weakly singular Hammerstein equation: 

O j s L l  

where f, m and ga are defined as in (1.1) and (1.2) and $ is a known function. We will see in 

Section 4 that equation similar to (1.3) arises naturally in connection with Dirichlet problem with 

certain nonlinear boundary conditions. A study on the regularities of the solution y of equation 

(1.3) is reported in [9], extending the results of [lS]. Subsequently, Kaneko, Noren and Xu 

used the regularity results to establish the collocation method for weakly singular Hammerstein 

equations in [lo]. The approximate solutions provided by these methods for equations (1.1) 

and (1.3) are in the form of piecewise polynomials that are not always satisfactory as a tool 

for approximating functions with singularities. This observation is quite evident in the areas of 

finite element analysis. Hughes and Akin [6] list several problems (e.g. ‘upwind’ finite elements 

for treating convection operators [5],[8],[7]; boundary-layer elements [l] etc.) in which the finite 

element shape functions are constructed to include polynomials as well as singular functions. 

Singular shape functions are introduced to the set of basis functions through asymptotic analysis 

on the solution of the problem that is being considered. It should be pointed out that the 

analysis involved in the aforementioned papers on the finite element method is centered around 

the collocation method. The problems such as the choice for the extra collocation points for 

singular basis elements or the rate of convergence are not addressed in these papers. It should 

be pointed out that the location of additional collocation points for singular basis elements is 

critical in detemining the rate of convergence of numerical solutions. A detailed discussion on 

this subject can be found in [ll]. A singularity preserving collocation method, because of the 
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reasons mentioned above, seems to be more difficult to establish. 

In this paper, a singularity expansion for the solution of equation (1.3) with logarithmic 

kernel is given. This extends the results in [9] and [3]. Only the logarithmic kernel is considered 

here because of our primary interest in obtaining numerical solution of a Dirichlet problem 

with nonlinear boundary condition as described in Section 4. It is a routine matter, however, 

to establish, following the argument of Section 2, a singularity expansion for the solution of. 

equation (1.3) with algebraic singularity. A detail is left to the reader. The paper is organized. 

as follows: in Section 2, we study the regularity property of the soultion of (1.3) and establish 

its singularity expansion. The results obtained there generalize the results of [3] and [9]. The 

singularity expansion is then utilized in Section 3 to achieve the singularity preserving Galerkin 

method for equation (1.3). Finally, in Section 4, the singularity preserving Galerkin method is 

applied to a class of Dirichlet problems with nonlinear boundary condition. Examples are also 

included in this section. 

2 Singularity Expansion for Weakly Singular Hammerstein Equa- 

t ions 

In this section, we consider the following Hammerstein equation with logarithmic singularity, 

Then equation (2.1) can be written in operator form as 

y-K@y= f. 

Let Hn denote the Sobolev space Hn[O, 11 = {w : E Lz[O, 11) equipped with the norm 

[lullp = (Cr=ollu(i)ll:) where di) describes the ith generalized derivative of w. We dso 
let W = Wn be the linear space spanned by the functions si logj s, (1 - s)j log3( 1 - s); i , j  = 
1,2, ..., n - 1. Throughout the paper, we assume the following conditions: 

112 

m E c ~ ~ ( [ o ,  1.1 x [o, I]), n 2 I, m E c'([o, 11 x [o, I]), n = 0. 

'$ E C2"+l(R x R) 
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We define 
1 

Ky(s) = 1 log 1s - tlm(s,t)y(t)dt. 

Also let u1(s) = sPlogq s, and u2(s) = (1 - s)Plogq(l - s), where p , q  2 1 are integers. First we 

quote the following result (lemma 4.4(2)) from [3]. 

Lemma 2.1 Let f E Hn-' and assume rn E Cn+'([0, 11 x [0,1]). Then, . ,  

and 

Lemma 2.2 If q ( s )  = ~ p l 0 g 9  s, 4 s )  = (1 - s)*logU(1 - s), where p , q ,  T,  u 2 1 are integers, 

then 111112 E W @ A". 

Proof: Expand 211 in series about t = 1 and 262 about t = 0 : 

~ l ( t )  = bj(1- t)' + j l ( t ) ,  ~ 2 ( t )  = ~~~~  it' + j2(t) ,  

&(t) + fl(t) = ?2(t) + f2 ( t )  

where fjk'(t) = 0 ( ( 1  - t )n-k) near t = 1, f 1  is analytic at t = 1, and f j k )  N $'(t) - P?(O) as 

t + O+; fJk'(t) = O(tn-k) near t = 0,f i  is analytic at t = 0, and f j k ) ( t )  N uf'(t) - Pik'(l) as 
t + 1-. 

Now '111112 = P1P2 + P1f2 + P2f1 + f 1 f 2 .  Clearly PIP' is in Hn. For f & ,  we have 

Each term ff)(t)fp-i)(t), i = 0, 1, ..., n satisfies 

as t --+ o+. 
Similarly 
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ff)(t)fin-i)(t) + 0 as t -, 1-. Thus f1f2 E C" 5 H". For f1P2 we have f1(t)P2(t) = 

(ul( t )  - Pl(t))Pz(t) = ul(t)Pz(t) - P~(t)Pz(t). Since P2 is a polynomial, u1 E W, it is easy to 

see that qP2 E W @ H" (see [[3], (4.7)]). So f1P2 E H". Similarly f2P1 f W @ H",  and Lemma 

2 has been verified. 0 

Lemma 2.3 A product of an R" function with a function in W is in H" @ W. 

Since TI E W @ H", we turn to T2 and write 

For the terms 

1' dk 
d s  bn(s )  X [S*~O~'S]  ~(")(v)(s - a ) k - l d o  

we have, for some constant M and nonegative integer a 

But g(") E L2[0, 11, so by Hardy's inequality [15] (p. 72) 5 J; I g(")(a) I d o  E &[O, 11. Since 

E L2[0,1], or T' E H", This proves s(-logs)" E L" it follows that b, E L2[0,1]. Hence 

gu1 E w @ H". 
The case for gu2 E W @ Hn is similar. 0 

Finally we need the following: 

Lemma 2.4 The opemtor K!€! maps W @ Hn into W @ Hn+l. 

Proof: Let y = 20 + h, w E W, h E 19". We use Taylor's theorem in the form 
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Letting z = y(s) and a = h(s) allows us to write. 

By (3), $ ~ ( ~ ) ( h ( s ) )  E H", k = 0, 1, ..., n,  and by expanding with the multinomial expan- 

sion, it is clear that ~ ( s ) '  is a sum of terms in W as well as terms of the form asplogq s ( l  - , . 

s)'log"(l - s), p , q , ~ , u  2 1 are integers. The constant, a, depends on p , q , r  and u. Since 

$(')(h(s))  E A" and w(s)' E W @ A", k = 0, 1, ..., n, it follows from Lemma 3 that 

Tp(h(s))w(s)' E W @ A". (2.10) 

By Lemma 1 and (2.10), we have 

Ak E W @ A"+'. (2.11) 

For B( t ) ,  if we prove that 

F(s)  E 4:; $(n+l)(~)(y(~) - a)"da E W @ H", 

then, also by Lemma 1, B(t )  = K [ F ] ( t )  will be in W @ An+'. This will complete the proof of 

this lemma. First of all, suppose n >_ 1. We write ' 

F'( 5 )  = ++1) (h( s))w(s)"h'(s). 

Since h E Hn,$ E C2"+l,$J("+l)(h(s)) E e". By Lemmas 2 and 3, -$("+')(h(s))w(s)" E 

An @ W .  Since h' E An-1, it follows that -t,b(n+l)(h(s))w(s)"h'(s) E H"-l $W (Lemma 

2). Since I" E H"-' @ W it is clear that F E Hn @ W .  Second, let n = 0. Then F ( s )  = 

sit;,' = $(Y(s)) - $(h(s))  E L 2 [ o ,  11 E @ Ho* 
Thus 

B(t)  E W @ H". (2.12) 

By (2.9), (2.11) and (2.12), it follows that K!l! maps W @ A" into W @ H"+'. 0 

Using the lemmas which we proved above, we obtain the following main result of this section. 

Theorem 2.5 Suppose the conditions. (2.4)-(2.6) hold and y is an isolated solution of (2.1). 

Then there are constants a;j and bjj, for i ,  j = 1,2, ..., n - 1, and there is a function v, in H" 
such that 

n-1 n-1 

y ( t )  = X[aijt '  log' t + b i j ( 1 -  t)' 10g3( 1 - t ) ]  + un(t). (2.13) 
i=l j=1 
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Proof: For n = 0, this follows from Lemma 4 with n = 0. Assume that the result holds 

for n = k, that is, if f E Elk 63 W k ,  then (2.13) holds with n = k. Say y = W k  + vk, where 

Vk f H h ,  wk = ~ ~ ~ ~ [ a i j t '  log' t + b;j( 1 - t)' log'( 1 - t ) ] .  

Now consider the case n = k + 1 and suppose f E Hk+' 63 Wk+l. 

Since y = wk+'uk we write y = K'Qy+f = Kilik(Wk+Vk)+f. From Lemma 1,1iq(wk+vk) E 

Wk+l @ ITk+'. The proof is complete. 17 

3 Singularity Preserving Galerkin Method 

In this section, we establish the singularity preserving Galerkin method for equation (2.1). First 

we recall the definition of the space of spline functions of order n. Define the partition of [O, 11 as 

Let 

h = (ti - t;-1), I<a<k+l 
and assume h --.) 0 as k 4 00. Denote by IIn the set of polynomials of degree n - 1. Then the 

space of splines of order n with knots ti's of multiplicity n - 1 - u is defined as 

SE = Si'"(A) = {s E Cy[O,l] : siri E II,,}, 

where 0 5 v 5 n - 1 and 1; = (ti-1, t i )  for i = 1,2, ..., k + 1. It is well known that the dimension 

of St  is d = n(k + 1) - 6(1+ u). St  is spanned by a basis consisting of B-splines We let 

v; z w 63 s,n ( 3 4  

and denote the orthogonal projection of Lz[O,l] into V t  by P f .  The singularity preserving 

Galerkin method for approximating the solution of equation (2.3) requires the solution Yh E V; 

that satisfies the following equation: 

More specifically, we need to find yh in the form 
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where {aij, /3ij}z;il and (7i}bl are found by solving the following system of nonlinear equations: 

where (-,.) denotes the usual inner product defined on L2[0,1]. Now let Ph be the orthogonal 

projection of L2[0, 11 into S i .  Then we have 

It is well known (e.g. [IS]) that if g E H", n 2 0, then for each h > 0, there exists 4 h  E St such 

that 

11s - h 1 1 2  5 chnllgIIHn, (3.5) 

where C > 0 is a constant independent of h. By virtue of the fact that Phu is the best L2 

approximation of u from Si,  we see immediately that 

The following lemma from [3] is useful in the sequel. 

Lemma 3.1 Let X be a Banach space. Suppose that U1 and U2 are two subspaces of X with 

Ui E U2. Assume that Pi : X -+ U1 and P2 : X --+ U2 are linear openztors. If P2 is a projection, 

then 

II. - p 2 4 x  5 (1 + IIP2llx)llz - Szllx for all z E X. 

For convenience, we introduce operators T and Tn by letting 

T y =  f +KQy 
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so that equations (2.1) and (3.2) can be written respectively as y = f'y and Yh = Thyh. The 

following theorem guarantees the existence of a solution of the singularity preserving Galerkin 

method (3.2) and describes the accuracy of its approximation. 

Theorem 3.2 Let y E L2[0, 11 be an isolated solution of equation (2.1). Assume that 1 is not 

an eigenvalue of the linear operator (K!P)'(y), where (KQ)'(y) denotes the Frkchet derivative of 

K!P at y. Then the singularity presenting Galerkin approximation equation (3.2) has a unique . 

solution yh such that ]ly - yh112 '< 6 for some 6 > 0 and for all 0 < h < ho for some ho > 0:  

Moreover, there exists a constant 0 < q < 1, independent of h, such that 

where ah E Il(1- T;(y))-'(Th(y) - f'(y))llz. Finally, if y = w + v with w E W and v 6 H", then 

where C > 0 is a constant independent of h. 

Proof: The existence of a unique solution yh of equation (3.2) and the inequalities in (3.7) can 

be proved using Theorem 2 of Vainikko [19]. A detailed argument can be found in [lo]. To get 

(3.10), first we note from Lemma 3.1, for v E &[O, 11, 

- IIPf. - 412 I (1 + IIP~112)IlPh. - 4 2 .  (3.11) 

Now, from (3.9), 

llY - Yh112 5 

(3.12) = &IW - q z ( Y ) ) - l ( w Y )  - f(Y))112 
L CIIPfK*y - K@Y + Pff - f 112 
= GllPhGY - Yll2. 

where C is independent of h. Using the uniform boundedness of {P,"], (3.11) and (3.12), we 

obtain 

!I?/ - ?/hi12 5 ChnllvllHn- 

0 

4 Nonlinear Boundary Value Problem 

In this section, we consider the following Laplace's equation with nonlinear boundary condition 

in R2: 
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where D is a simply connected open region in with an open contour I' and np denotes the 

exterior unit normal to I' at P. The functions f and $ are given and we assume that f E C(r) 
and $ E C(l7 x R). The solution u is to be found in C 2 ( D )  f l  C'(D). The function $ is assumed 

to be continuous on I' x R. The problem (4.1) in the case of a closed smooth boundary I' was 

considered by Atkinson and Chandler in [2]. They employed the method of piecewise polynomial 

product integration and that of trigonometric product integration to approximate the solution . 
of (4.1). In the current problem in which I' describes a boundary that is open, one expects. . 
logarithmic singularities in u at the two ends of the boundary. Now it is well known that, using. 

Green's representation formula for harmonic functions, the function u satisfies 

for a3l P E D. Using the boundary condition in (4.1) and letting P approach to a point of I', we 

obtain 

. (4.4) 

and the single layer operator by S, 

Sv(P) = -- I v(Q)loglP - &Ida(&>, P E r. (4.5) r r  
If we put @v(P) = $(P,v(P)), P E I', then equation (4.3)can be written in operator form as 

u - TU + S ~ ( U )  = Sf. (4.6) 

Define the parametrization ~ ( t )  = ( [ ( t ) ,q ( t ) )  for t E [0,1] and assume that T E Cw[O,l] and 

Ir'(t)l # 0 for t E [0, 11. The double layer operator and the single layer operator now become 

for v E C[O, 11 with the kernel having the value 

when s = t and 
1 '  Sv(t)  = -- log Is - tlo(s)lr'(s)lds. 
* O  

(4.8) 
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The kernel of T is well behaved whereas the kernel of S needs our scrutiny. As in [2], we write 

s v  as 

Due to the fact that the double layer operator T contains infinitely differential kernel, using the 

arguments to prove Lemma 2.4, we see that T + S q  maps W @ EI" into W @ Iln+l. Hence we 

, obtain the following result that parallels the results obtained in Theorem 2.5.. 

Theorem 4.1 Suppose the conditions (2.5) and (2.6) hold and u is an isolated solution of (4.6). 

Then there are constants a;j and bjj, for i ,  j = 1,2, ..., n - 1, and there is a function vn in H" 
such that 

n-1 n-1 
y ( t )  = C[aiit'logjt+b~j(l-t)'logj(l-t)] +Vn(t). (4.10) 

Define 

5% = T u  - Sq(u )  + Sf (4.11) 

so that equation (4.6) can be written as 

- 
u = Tu. (4.12) 

The singularity preserving Galerkin method is now described by 

where U h  E V z  and Pz is the orthogonal projection of &[O,  11 into Vc as defined in the previous 

section. By letting 

fhu p,fTu - pfsq(U) + p,fs f, (4.14) 

equation (4.13) can be written as 
- 

U h  = Thuh. (4.15) 

The following theorem guarantees the existence of the solution of equation (4.15) and describes 

its accuracy as an approximation to u that is the soution of equation (4.12). A proof is an easy 

exercise of modifying the argument given in the proof of theorem 2.1 [lo], hence we omit it. 

Theorem 4.2 Let u E L2[0,1] be an isolated solution of equation (4.6). Assume that 1 is not 

an eigenvalue of the linear operator T + (S!P)'(u). Then the singularity preserving Galerkin 

approzimation equation (4.13) has a unique solution U h  such that IIu - < 6 for some 6 > 0 
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and for all 0 < h < ho for some ho > 0 .  Moreover, there exists a constant 0 < q < 1, independent 

of h, such that 

(4.16) 

where ah z Il(1- f 'A(t~))-~(Th(y) - f(y))112. FinaZly, if y = 'w + 21 with w E W and v E IT", then 

where C > 0 is a constant independent of h. 
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