130,956 research outputs found

    Time domain simulations of dynamic river networks

    Get PDF
    The problem of simulating a river network is considered. A river network is considered to comprise of rivers, dams/lakes as well as weirs. We suggest a numerical approach with specific features that enable the correct representation of these assets. For each river the flow of water is described by the shallow water equations which is a system of hyperbolic partial differential equations and at the junctions of the rivers, suitable coupling conditions, viewed as interior boundary conditions are used to couple the dynamics. A different model for the dams is also presented. Numerical test cases are presented which show that the model is able to reproduce the expected dynamics of the system. Other aspects of the modelling such as rainfall, run-off, overflow/flooding, evaporation, absorption/seepage, bed-slopes, bed friction have not been incorporated in the model due to their specific nature

    Sound radiation in turbulent channel flows

    No full text
    Lighthill’s acoustic analogy is formulated for turbulent channel flow with pressure as the acoustic variable, and integrated over the channel width to produce a two-dimensional inhomogeneous wave equation. The equivalent sources consist of a dipole distribution related to the sum of the viscous shear stresses on the two walls, together with monopole and quadrupole distributions related to the unsteady turbulent dissipation and Reynolds stresses respectively. Using a rigid-boundary Green function, an expression is found for the power spectrum of the far-field pressure radiated per unit channel area. Direct numerical simulations (DNS) of turbulent plane Poiseuille and Couette flow have been performed in large computational domains in order to obtain good resolution of the low-wavenumber source behaviour. Analysis of the DNS databases for all sound radiation sources shows that their wavenumber–frequency spectra have non-zero limits at low wavenumber. The sound power per unit channel area radiated by the dipole distribution is proportional to Mach number squared, while the monopole and quadrupole contributions are proportional to the fourth power of Mach number. Below a particular Mach number determined by the frequency and radiation direction, the dipole radiation due to the wall shear stress dominates the far field. The quadrupole takes over at Mach numbers above about 0.1, while the monopole is always the smallest term. The resultant acoustic field at any point in the channel consists of a statistically diffuse assembly of plane waves, with spectrum limited by damping to a value that is independent of Mach number in the low-M limit

    Point absorber wave energy converters in regular and irregular waves with time domain analysis

    Get PDF
    A discrete control of latching is used to increase the bandwidth of the efficiency of the Wave Energy Converters (WEC) in regular and irregular seas. When latching control applied to WEC it increases the amplitude of the motion as well as absorbed power. It is assumed that the exciting force is known in the close future and that body is hold in position during the latching time. A heaving vertical-cylinder as a point-absorber WEC is used for the numerical prediction of the different parameters. The absorbed maximum power from the sea is achieved with a three-dimensional panel method using Neumann-Kelvin approximation in which the exact initial-boundary-value problem is linearized about a uniform flow, and recast as an integral equation using the transient free-surface Green function.The calculated response amplitude operator, absorbed power, relative capture width, and efficiency of vertical-cylinder compared with analytical results

    A one-parameter family of interpolating kernels for Smoothed Particle Hydrodynamics studies

    Full text link
    A set of interpolating functions of the type f(v)={(sin[v pi/2])/(v pi/2)}^n is analyzed in the context of the smoothed-particle hydrodynamics (SPH) technique. The behaviour of these kernels for several values of the parameter n has been studied either analytically as well as numerically in connection with several tests carried out in two dimensions. The main advantage of this kernel relies in its flexibility because for n=3 it is similar to the standard widely used cubic-spline, whereas for n>3 the interpolating function becomes more centrally condensed, being well suited to track discontinuities such as shock fronts and thermal waves.Comment: 36 pages, 12 figures (low-resolution), published in J.C.
    • …
    corecore