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In this paper, an approach is presented to study multiple scattering by periodically 

arranged obstacles in the 3D finite-difference time-domain (FDTD) method. The 

computational efficiency is improved by applying period boundary conditions; in this way 

multiple passages through the zone with scattering objects can be modeled. This method is 

exemplified by modeling sound propagation through foliage. Leaves are modeled as 

bending plates with damped vibrations. The separation of the incident wave and reflected 

wave is realized in frequency domain by using the least squares method. The energy 

attenuation obtained by propagation through this scattering medium can be calculated 

based on the cross power spectral density of pressure and velocity in the propagation 

direction. Finally, the method has been used to quantify the effect of different foliage 

properties on sound propagation through them. 

 

1 INTRODUCTION 

 

Studies on the interaction between sound and vegetation are mainly based on measurements. 

Often, many effects are observed simultaneously, making it difficult to gain knowledge on 

specific phenomena. Especially the importance of the interaction between leaves and sound 

waves remain a question. Scattering is expected to be the main effect, but also leaf vibrations
1, 2

 

and (viscous) damping near the surface of leaves have been measured. Their relative importance 

is not known. 

Therefore, elaborating on numerical techniques is interesting. With numerical simulations, 

different effects can be more easily singled out. In order to numerically simulate the interaction 

between sound and plant leaves, 3D models are needed. Furthermore, since effects are expected 

to become important at wavelengths shorter than the dimensions of the leaves, fine numerical 

                                                 
a)

 email:  lei.ding@intec.ugent.be 
b)

 email:  timothy.van.renterghem@intec.ugent.be 
c)

 email:  dick.botteldooren@intec.ugent.be 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55729167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


discretizations are mandatory. As a result, this leads to a high computational cost. Especially the 

memory requirement is a major bottleneck with the FDTD technique that will be used in this 

study. 

The use of periodic/cyclic boundaries is a possibility to limit the computational cost. Only a 

small vegetation volume is considered, where sound passes through a number of times. In this 

explicitly modeled volume, only a few leaves are placed, representing a realistic leaf area density. 

The total propagation time will then define the width of the vegetation zone. A drawback of this 

approach is that randomness in orientation and spacing of leaves cannot be considered. 

Wave reflection and scattering, and also energy dissipation caused by viscosity and 

structural damping, are captured by the FDTD model presented in this paper. In order to quantify 

transmission, the incident wave and reflected wave must be separated, which will be done in 

frequency domain. Finally, the transmitted amount of energy can be calculated, which could lead 

to improved engineering models. 

 

2 NUMERICAL MODEL 

 

2.1 Governing equations 

   

In between the scattering objects (leafs) lossless isentropic sound propagation is assumed 

leading to the linearized continuity equation and momentum equation: 
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where p  is the pressure; 0  is the mass density of the medium; c  is the speed of sound in the 

medium; and V


 is the particle velocity vector. Close to the objects viscosity (and thermal 

conductivity) cannot be ignored since viscous energy decay in the boundary layer at the surface of 

the leaves is one of the mechanisms causing sound attenuation
1
. As in Ref.

3
 a time-domain 

approximation for a viscous boundary layer near an infinitely extended flat surface will be used. The 

viscosity adds an additional term (in frequency domain) to the linearized momentum equations in the 

directions which are parallel to the leaf surface plane:  
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where velocity is averaged over a layer of thickness d ;  is the viscosity of air;  is the 

angular frequency and j is imaginary unit. 

The vibration of a leaf is modeled as a vibrating thin plate
4.

 The viscoelastic damping 

accompanying the leaf vibration can be included by employing the generalized Maxwell model, 

which has been used by Antoine et al.
5, 6

. The leaf is approximated by a homogeneous plate 

having the shape of the leaf since taking into account the structural fine structure of the leave is 

beyond reach of the discretization. The bending wave can propagate in the two in-plane 

directions. Assuming that the plate is orthogonal to the x-direction, the velocity equation can be 

written as 
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where m  is the surface density of the plate material; h  is the thickness of the plate; xpv  is the 

plate velocity vector component in the x-direction; LR  denotes the viscous damping associated to 

the bending process; 0  denotes the bending and twisting moments per unit thickness;  denotes 

the viscoelastic damping during the bending of leaf and it can be described by the generalized 

Maxwell model (see Eqn. (6) ~ (7)). 

Assuming that the leaf is isotropic, the bending and twisting moments in Eqn. (4) can be 

formulated as 
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where D  is the bending stiffness; w  is the displacement component in x  direction and its time 

derivative is the velocity xpv . 

The damping term  in Eqn. (4) can be formulated as 
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where nR  and ns  are the viscoelastic damping parameters, which can be determined by data-

fitting with measurement results. 

 

2.2 Finite-difference Time-domain Method 

 

In this paper, the finite-difference time-domain method (FDTD) is used to solve the set of 

equations presented in the previous section. The staggered grid organization, both in space and 

time, as suggested in Ref.
7
, is considered. A leap-frog scheme is used to update acoustic pressure 

and velocity components over time. For this specific scheme, the following notations are 

commonly used to represent the discrete pressures and velocity components in unbounded air 
ldt
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where dx , dy , and dz  are the spatial discretization steps in three directions and dt  denotes the 

time discretization step. The acoustic pressure is always updated at times ldt  and the velocity 

components at times dtl 5.0 .  

The updating equation for velocity parallel to boundaries, v , is adapted to include the effect of 

the viscous boundary layer. The square root of  dependence in Eqn. (3) is hereby approximated by 

a ratio of polynomials of order m and n in frequency domain. Eventually, this leads to the adapted 

FDTD update equation: 
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where d  is the grid step in the direction orthogonal to the leaf plane;  denotes the directions 

parallel to the leaf surface; and  is the dynamic viscosity. For the simulations in this paper, m  and 

n are chosen equal to 2. The values for ka and ib  are the same as those used by Bockstael et al.
8
: 

10a , 871.11a , 87213.02a , 02.3910b , 2.7691b , 2.3782b . Note that for the special 



case 10a , and other coefficients equal to 0, Eqn. (9) reduces to the discretized form of Eqn. (2). 

On the bending leaf, plate velocities follow a similar numerical discretization scheme as the 

particle velocities in air. The bending and twisting moments 0  are discretized in a grid 

collocated with the velocities in space and collocated with the pressures in time. 

 

2.3 Cyclic Boundaries 

 

Instead of simulating the whole vegetation volume, only a small cubic box is considered and 

multiple passages through this volume are modeled. For this, the concept of cyclic boundary 

condition is used: outgoing values on one boundary will be used as the ingoing values in the next 

time step at the other side of the simulation domain. For example, on the boundaries 1xx  and 

Nxx , the pressure equation and the velocity equation in x-direction can be written as 
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This periodic extension introduces periodicity in the leaf placement which will lead to special 

effects of periodic structure but these will occur mainly below the frequencies of interest if the 

basic simulation cell is kept large enough.  

Most applications of FDTD assume a spatially localized sound source. Because of the cyclic 

boundary, such a source would also be periodically extended which is not desired. Hence we opt for 

a plane wave as a starting field. To minimize numerical dispersion the initial plane wave is chosen to 

propagate along the diagonal of the cubic box. The initial values for pressures and velocities are 

Gaussian modulated sine waves both in space and time. The center plane of the Gaussian pulse must 

be chosen carefully in order to make the pressure and velocities on the edge of this cubic box match 

the pressure and velocities on the edge of its adjacent cubic boxes. The initial wave fields are 

therefore centered at three planes as shown in Fig. 1. 

 

2.4 Wave Separation Approach 
 

During the time-stepping, the amplitude of the plane wave propagating in the incident direction 

will be reduced because of scattering and dissipation. In order to quantify these effects this plane 

wave has to be separated out of the total field. For this, the velocities and the pressures on the three 

planes orthogonal to the diagonal propagation shown in Fig. 1 are recorded and the least-square-

method
9
 is used to separate the wave fields. 

The waves in a 3D-problem can be written as 
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where  is the angular frequency; tzyxs nnn ,,,  is the signals in time domain and ŝ  is its 

corresponding frequency spectrum, which can be locally approximated by  
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where incA  denote the amplitude of the wave propagating in the original diagonal direction; and 

refA , 1B , 2B , 1C  and 2C  denote the amplitudes of scattered waves in three directions. One of the 



three directions, nnn zyxu ,,  is parallel to the diagonal direction and the other two directions, 

nnn zyxv ,,  and nnn zyxw ,, , are orthogonal to the diagonal direction. These coefficients can be 

found for each point on the planes orthogonal to the propagation direction shown in Fig. 1 based on 

the recorded data at m  neighboring measurement points (one of them lying outside the plane) by 

minimizing the quadratic error  
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In order to find the minimum value, the derivatives to these coefficients are set equal to 0. As a result, 

a linear system of equations can be constructed which must be solved. 

 The procedure described above is applied to the pressure field and to the u -component of the 

velocity field uV –  where in the latter case the B and C terms can be assumed zero. The cross power 

spectrum density is used to denote the energy or intensity propagating in the original plane direction 

u , and it is given by 

incuincI VPS ,

*
,                                                          (15) 

where incP  and incuV ,  are the frequency spectrum of the pressure and velocity propagating 

forwards in the diagonal direction; and the * in the superscript denotes the complex conjugate. 

Finally, intensity is calculated on all points and averaged over the plane. 

 

3 NUMERICAL CALCULATIONS 
 

The size of the unit cubic box in the simulation has dimension 0.3m×0.3×m0.3m. The cell size is 

0.01m×0.01m×0.01m and the time step is chosen to make the Courant number equal to 1. Three 

types of leaves, namely Prunus Laurocerasus, Tilia and Prunus Serrulata, are considered. The size 

(width×length) of the Prunus Laurocerasus leaf, Tilia and Prunus Serrulata is 8cm×16cm, 

12.1cm×13.1cm and 7.5cm×12cm, respectively. Their corresponding leaf areas are approximately 

1.01×10
-2

m
2
, 1.36×10

-2
m

2
 and 0.69×10

-2
m

2
; and the leaf surface density is 271 g/m

2
, 104 g/m

2
 and 

185 g/m
2
. For each type of vegetation, a calculation was made with 1, 2 or 3 leaves placed in this 

cubic box. The simulation with 1 leaf corresponds to a leaf area density (LAD) of 0.374m
-1

 for 

Prunus Laurocerasus, 0.504m
-1

 for Tilia and 0.255 m
-1

 for Prunus Serrulata.  

The bending stiffness of the leaf can be calculated by the following equation
4
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where D  is the bending stiffness for a beam; E  is the Young's modulus; h  is the leaf thickness; and 

 is the Poisson's ratio. Published work by Takami Saito et al.
10 

suggests that the Young's modulus of 

the leaves from Quercus glauca and Quercus serrata plants are in the range of 200-800 MPa. Other 

work suggests that the Poisson's ratio of an isotropic leaf specimen can be taken close to 0.25
11

. The 

thickness of the leaf has the order of magnitude of 0.0005m. Based on these values, the bending 

stiffness can be estimated and in this paper it is assumed to be 0.0025N·m for all leaves. The 

damping terms during the leaf vibration have the same values as the spruce wood
5, 6

. 

In order to present the sound transmission loss through the foliage, the (dimensionless) approach 

presented by Aylor
12

 is used. The excess attenuation EAdivided by the square root of the product of 

LAD and the breadth/width of the vegetation L , is show as a function of ka , where k is the wave 

number and a  is the typical leaf width. This way of representing was shown to be independent of 

species when looking at sound transmission through reeds and corn
12

. 



 

4 RESULTS AND DISCUSSION 

  

Because of the presence of the leaves, scattering and dissipation will lead to transmission 

loss. Fig. 2~Fig. 4 show the decrease in intensity of the plane wave when it propagates through 

an area filled with Prunus Laurocerasus, Tilia, or Prunus Serrulata leaves. For the results at 

4000Hz, the decrease in intensity is enhanced with propagated distance, when compared to the 

results in 2000Hz. 2 or 3 leaves attenuate more energy than 1 leaf because of stronger 

backscattering and higher energy dissipation. Initially, the attenuation is stronger than linear 

while after some propagation distance the attenuation is less than linear. The latter is due to 

multiple scattering resulting in part of the waves returning to the initial direction. 

Fig. 5~Fig. 7 show the attenuation normalized by leaf area density and the length of the 

propagation path. These curves show a similar behaviour as in the measurements performed by 

Aylor
12

. Furthermore, the values obtained have the same order of magnitude. The dimensionless 

transmission loss values still depend on the number of leaves (or LAD), in constrast to Ref.
12

. 

Note however that the LAD is much smaller in the current simulations. The current approach is 

expected to become invalid above ka=10~15. Besides, Fig. 7 shows that at low frequency the 

excess attenuation is negative, which can be attributed to the fact that the current wave separation 

approach is not valid at low frequencies. 

Further work is needed to validate the current approach, and parameter studies will be 

performed to reveal the relevant leaf parameters as for their noise reducing potential. 
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Fig. 1 - Diagram showing the three planes on which the wave fields are centered. 

 

Fig. 2 -  Plane sound wave attenuation in Prunus Laurocerasus. The left figure shows the results 

at 2000Hz and the right one at 4000Hz. 

 

Fig. 3 -  Plane sound wave attenuation in Tilia. The left figure shows the results at 2000Hz and 

the right one at 4000Hz. 



 

Fig. 4 -  Plane sound wave attenuation in Prunus Serrulata. The left figure shows the results at 

2000Hz and the right one at 4000Hz. 
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Fig. 5 - Normalized Excess attenuation for the leaf of Prunus Laurocerasus. 
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Fig. 6 - Normalized Excess attenuation for the leaf of Tilia. 
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Fig. 7 - Normalized Excess attenuation for the leaf of Prunus Serrulata. 

 

 


