7,543 research outputs found

    Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends

    Get PDF
    Bipolar Plate design is one of the most active research fields in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) development. Bipolar Plates are key components for ensuring an appropriate water management within the cell, preventing flooding and enhancing the cell operation at high current densities. This work presents a literature review covering bipolar plate designs based on nature or biological structures such as fractals, leaves or lungs. Biological inspiration comes from the fact that fluid distribution systems found in plants and animals such as leaves, blood vessels, or lungs perform their functions (mostly the same functions that are required for bipolar plates) with a remarkable efficiency, after millions of years of natural evolution. Such biomimetic designs have been explored to date with success, but it is generally acknowledged that biomimetic designs have not yet achieved their full potential. Many biomimetic designs have been derived using computer simulation tools, in particular Computational Fluid Dynamics (CFD) so that the use of CFD is included in the review. A detailed review including performance benchmarking, time line evolution, challenges and proposals, as well as manufacturing issues is discussed.Ministerio de Ciencia, Innovación y Universidades ENE2017-91159-EXPMinisterio de Economía y Competitividad UNSE15-CE296

    Challenges and progress on the modelling of entropy generation in porous media: a review

    Get PDF
    Depending upon the ultimate design, the use of porous media in thermal and chemical systems can provide significant operational advantages, including helping to maintain a uniform temperature distribution, increasing the heat transfer rate, controlling reaction rates, and improving heat flux absorption. For this reason, numerous experimental and numerical investigations have been performed on thermal and chemical systems that utilize various types of porous materials. Recently, previous thermal analyses of porous materials embedded in channels or cavities have been re-evaluated using a local thermal non-equilibrium (LTNE) modelling technique. Consequently, the second law analyses of these systems using the LTNE method have been a point of focus in a number of more recent investigations. This has resulted in a series of investigations in various porous systems, and comparisons of the results obtained from traditional local thermal equilibrium (LTE) and the more recent LTNE modelling approach. Moreover, the rapid development and deployment of micro-manufacturing techniques have resulted in an increase in manufacturing flexibility that has made the use of these materials much easier for many micro-thermal and chemical system applications, including emerging energy-related fields such as micro-reactors, micro-combustors, solar thermal collectors and many others. The result is a renewed interest in the thermal performance and the exergetic analysis of these porous thermochemical systems. This current investigation reviews the recent developments of the second law investigations and analyses in thermal and chemical problems in porous media. The effects of various parameters on the entropy generation in these systems are discussed, with particular attention given to the influence of local thermodynamic equilibrium and non-equilibrium upon the second law performance of these systems. This discussion is then followed by a review of the mathematical methods that have been used for simulations. Finally, conclusions and recommendations regarding the unexplored systems and the areas in the greatest need of further investigations are summarized

    Distributed and Lumped Parameter Models for Fuel Cells

    Get PDF
    The chapter presents a review of modeling techniques for three types of fuel cells that are gaining industrial importance, namely, polymer electrolyte membrane (PEMFC), direct methanol (DMFC), and solid oxide (SOFC) fuel cells (FCs). The models presented are both multidimensional, suitable for investigating distributions, gradients, and inhomogeneities inside the cells, and zero-dimensional, which allows for fast analyses of overall performance and can be easily interfaced with or embedded in other numerical tools, for example, for studying the interaction with static converters needed to control the electric power flow. Thermal dependence is considered in all models. Some special numerical approaches are presented, which allow facing specific problems. An example is the Proper Generalized Decomposition (PDG) that allows overcoming the challenges arising from the extreme aspect ratio of the thin electrolyte separating anode and cathode. The use of numerical modeling as part of identification techniques, particularly by means of stochastic optimization approaches, for extracting the material parameters from multiple in situ measurements is also discussed and examples are given. Merits and demerits of the different models are discussed

    Experimental and modeling studies of a micro direct methanol fuel cell

    Get PDF
    The Direct Methanol Fuel Cell (DMFC) has attracted much attention due to its potential applications as a power source for transportation and portable electronic devices. Based on the advantages of the scaling laws, miniaturization promises higher efficiency and performance of power generating devices and the MicroDMFC is therefore an emergent technology. In this work, a set of experiences with a MicroDMFC of 2.25 cm2 active area are performed in order to investigate the effect of important operating parameters. Maximum power density achieved was 32.6 mW/cm2 using 4M mehanol concentration at room temperature. Polarization curves are compared with mathematical model simulations in order to achieve a better understanding of how parameters affect performance. The one-dimensional model used in this work takes in account coupled heat and mass transfer, along with the electrochemical reactions occurring in a direct methanol fuel cell and was already developed and validated for DMFC in previous work [1-3]. The model is also used to predict some important parameters to analyze fuel cell performance, such as water transport coefficient and methanol crossover. This easy to implement simplified model is suitable for use in real-time MicroDMFC simulations

    Modeling and simulation of micro direct methanol Fuel Cells

    Get PDF
    Fuel cells have unique technological attributes: efficiency, absence of moving parts and low emissions. The Direct Methanol Fuel Cell (DMFC) has attracted much attention due to its potential applications as a power source for transportation and portable electronic devices. With the advance of micromachining technologies, miniaturization of power sources became one of the trends of evolution of research in this area. Based on the advantages of the scaling laws, miniaturization promises higher efficiency and performance of power generating devices, so, MicroDMFC is an emergent technology. Models play an important role in fuel cell development since they facilitate a better understanding of parameters affecting the performance of fuel cells. In this work, a steady state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in a fuel cell, already developed and validated for DMFC in [1-3], is used to predict Micro DMFC performance. The model takes in account all relevant phenomena occurring in a DMFC. Polarization curves predicted by the model are compared with experimental data existing in literature and the model shows good agreement, mainly for lower current densities. The model is used to predict some important parameters to analyze fuel cell performance, such as water transport coefficient and leakage current density. This easily to implement simplified model is suitable for use in real-time MicroDMFC simulations

    Heat Transfer in Micro Direct Methanol Fuel Cell

    Get PDF

    Study On Production Process of Biodiesel from Rubber Seed (Hevea Brasiliensis) by In Situ Transesterification Method with Alkaline Catalyzed

    Get PDF
    Biodiesel is methyl or ethyl fatty acids generated from vegetable oils (edible and non edible) or animal fats. Production of biodiesel from rubber seeds by in situ alkaline catalyzed method from non edible raw materials with a major goal for alternative fuels was studied. The objective of this research is to investigate the influence of reaction time, concentration of alkaline catalyst and ratio raw materials : methanol to the production of biodiesel. The first stage was carried out in order to get reaction time based on the density and viscosity of mixture. In this process, KOH 0.5% (w/v) was used as catalyst with the ratio rubber seed to methanol (1:2). Experiments followed by process with catalyst concentration variation in range 0.1-1% (w/v) and ratio rubber seed to methanol in range 1:1.5-1:3. Research method included, the preparation of samples, biodiesel production, biodiesel separation, and biodiesel characterization include density, viscosity, GC analysis, acid value and Iodine number. The results show that operation time for biodiesel production by using in situ method with alkaline catalyzed was 120 minutes and maximum yield of Fatty Acid Methyl Ester (FAME) was obtained at 52.86%. Keywords: Biodiesel, rubber seed, in situ, (trans) esterification, Fatty Acid Methyl Ester (FAME)

    Study of the Potential of Electrified Powertrains with Dual-Fuel Combustion to Achieve the 2025 Emissions Targets in Heavy-Duty Applications

    Full text link
    [ES] El transporte de personas, así como de carga ha evolucionado y crecido tremendamente en los últimos años. El desarrollo tecnológico debió ser adaptado a las diferentes medidas gubernamentales en términos de control de emisiones contaminantes. Desde el acuerdo de Paris en 2015 para mantener el crecimiento de la temperatura global por debajo de 1.5oC, se han impuesto también límites para las emisiones de CO2 por parte de vehículos de carretera. Para el sector del transporte pesado, se han impuesto límites de flota de 15% para 2025 y 30% para 2030 de reducción del CO2 con respecto a 2019. Por lo tanto, esta doble restricción de muy bajos niveles de emisiones contaminantes, así como de gases de efecto invernadero hacen que el sector del transporte este ante un gran desafío tecnológico. En 2022, el transporte de carga tiene un 99% de vehículos propulsados a motor de combustión interna con Diesel como combustible y sin ningún tipo de ayuda eléctrica en el sistema de propulsión. Los límites de emisiones contaminantes como Euro 6 son alcanzados con complejos sistemas de postratamiento que además agregan el consumo de Urea. Trabajos previos en la bibliografía, así como sistemas prototipo han demostrado que es posible alcanzar los objetivos de emisiones contaminantes con métodos avanzados de control de la combustión y así disminuyendo la complejidad del post tratamiento en la salida de gases. Con mayor éxito, el concepto de Reactivity Controlled Combustion Ignition puede alcanzar valores por debajo de Euro 6 con eficiencia similar a la combustión de Diesel. Sin embargo, no soluciona los problemas de emisiones de CO2. Por otro lado, en vehículos de pasajeros fue demostrado con suceso la aplicación de motores eléctricos en el sistema de propulsión para mejorar la eficiencia global del vehículo. El caso extremo son los vehículos puramente electicos donde se alcanza eficiencias por arriba del 70% contra 35% de los vehículos no electrificados. Sin embargo, limitaciones de autonomía, tiempo de carga y la no clara reducción global de la contaminación debido a las emisiones de la energía de la red eléctrica y la contaminación de las baterías de ion-litio hacen que este sistema de propulsión este bajo discusión. Para los vehículos con algún grado de electrificación, las emisiones de gases contaminantes siguen siendo un problema como para el caso no electrificado. Por lo tanto, esta tesis doctoral aborda el problema de emisiones contaminantes, así como de CO2 combinado modos avanzados de combustión con sistemas de propulsión electrificado. La aplicación de estas tecnologías se centra en el sector del transporte de carretera pesado. En particular, un camión de 18 toneladas de carga máxima que originalmente en 2022 equipa un motor seis cilindros de 8 litros con combustión convencional Diesel. El presente trabajo utiliza herramientas experimentales como son medidas en banco motor, así como en carretera para alimentar y validar modelos numéricos de motor, sistema de postratamiento, así como de vehículo. Este último es el punto central del trabajo ya que permite abordar sistemas como el mild hybrid, full hybrid y plug-in hybrid. Calibración de motor experimental dedicada a sistemas de propulsión hibrido es presentada con combustibles sintéticos y/o para llegar a los límites de Euro 7.[CA] El transport de persones, així com de càrrega ha evolucionat i crescut tremendament en els últims anys. El desenvolupament tecnològic degué ser adaptat a les diferents mesures governamentals en termes de control d'emissions contaminants. Des de l'acord de Paris en 2015 per a mantindre el creixement de la temperatura global per davall de 1.5oC, s'han imposat també límits per a les emissions de CO¿ per part de vehicles de carretera. Per al sector del transport pesat, s'han imposat limites de flota de 15% per a 2025 i 30% per a 2030 de reducció del CO¿ respecte a 2019. Per tant, aquesta doble restricció de molt baixos nivells d'emissions contaminants, així com de gasos d'efecte d'hivernacle fan que el sector del transport aquest davant un gran desafiament tecnològic. En 2022, el transport de càrrega té un 99% de vehicles propulsats a motor de combustió interna amb Dièsel com a combustible i sense cap mena d'ajuda elèctrica en el sistema de propulsió. Els limites d'emissions contaminants com a Euro 6 són aconseguits amb complexos sistemes de posttractament que a més agreguen el consum d'Urea. Treballs previs en la bibliografia, així com sistemes prototip han demostrat que és possible aconseguir els objectius d'emissions contaminants amb mètodes avançats de control de la combustió i així disminuint la complexitat del post tractament en l'eixida de gasos. Amb major èxit, el concepte de Reactivity Controlled Combustion Ignition pot aconseguir valors per davall d'Euro 6 amb eficiència similar a la combustió de Dièsel. No obstant això, no soluciona els problemes d'emissions de CO¿. D'altra banda, en vehicles de passatgers va ser demostrat amb succés l'aplicació de motors elèctrics en el sistema de propulsió per a millorar l'eficiència global del vehicle. El cas extrem són els vehicles purament electicos on s'aconsegueix eficiències per dalt del 70% contra 35% dels vehicles no electrificats. No obstant això, limitacions d'autonomia, temps de càrrega i la no clara reducció global de la contaminació a causa de les emissions de l'energia de la xarxa elèctrica i la contaminació de les bateries d'ió-liti fan que aquest sistema de propulsió aquest baix discussió. Per als vehicles amb algun grau d'electrificació, les emissions de gasos contaminants continuen sent un problema com per al cas no electrificat. Per tant, aquesta tesi doctoral aborda el problema d'emissions contaminants, així com de CO¿ combinat maneres avançades de combustió amb sistemes de propulsió electrificat. L'aplicació d'aquestes tecnologies se centra en el sector del transport de carretera pesat. En particular, un camió de 18 tones de càrrega màxima que originalment en 2022 equipa un motor sis cilindres de 8 litres amb combustió convencional Dièsel. El present treball utilitza eines experimentals com són mesures en banc motor, així com en carretera per a alimentar i validar models numèrics de motor, sistema de posttractament, així com de vehicle. Est ultime és el punt central del treball ja que permet abordar sistemes com el mild hybrid, full *hybrid i plug-in hybrid. Calibratge de motor experimental dedicada a sistemes de propulsió hibride és presentada amb combustibles sintètics i/o per a arribar als límits d'Euro 7.[EN] The transport of people, as well as cargo, has evolved and grown tremendously over the recent years. Technological development had to be adapted to the different government measures for controlling polluting emissions. Since the Paris agreement in 2015 limits have also been imposed on the CO2 emissions from road vehicles to keep global temperature growth below 1.5oC. For the heavy transport sector, fleet limits of 15% for 2025 and 30% for 2030 CO2 reduction have been introduced with respect to the limits of 2019. Therefore, the current restriction of very low levels of polluting emissions, as well as greenhouse gases, makes the transport sector face a great technological challenge. In 2021, 99% of freight transport was powered by an internal combustion engine with Diesel as fuel and without any type of electrical assistance in the propulsion system. Moreover, polluting emission limits such as the Euro 6 are achieved with complex post-treatment systems that also add to the consumption of Urea. Previous research and prototype systems have shown that it is possible to achieve polluting emission targets with advanced combustion control methods, thus reducing the complexity of post-treatment in the exhaust gas. With greater success, the concept of Reactivity Controlled Combustion Ignition can reach values below the Euro 6 with similar efficiency to Diesel combustion. Unfortunately, it does not solve the CO2 emission problems. On the other hand, in passenger vehicles, the application of electric motors in the propulsion system has been shown to successfully improve the overall efficiency of the vehicle. The extreme case is the purely electric vehicles, where efficiencies above 70% are achieved against 35% of the non-electrified vehicles. However, limitations of vehicle range, charging time, payload reduction and an unclear overall reduction in greenhouse emissions bring this propulsion system under discussion. For vehicles with some degree of electrification, polluting gas emissions continue to be a problem as for the non-electrified case. Therefore, this doctoral Thesis addresses the problem of polluting emissions and CO2 combined with advanced modes of combustion with electrified propulsion systems. The application of these technologies focuses on the heavy road transport sector. In particular, an 18-ton maximum load truck that originally was equipped with an 8-liter six-cylinder engine with conventional Diesel combustion. The present work uses experimental tools such as measurements on the engine bench as well as on the road to feed and validate numerical models of the engine, after-treatment system, and the vehicle. The latter is the central point of the work since it allows addressing systems such as mild hybrid, full hybrid, and plug-in hybrid. Experimental engine calibration dedicated to hybrid propulsion systems is presented with synthetic fuels in order to reach the limits of the Euro 7.This Doctoral Thesis has been partially supported by the Universitat Politècnica de València through the predoctoral contract of the author (Subprograma 2), which is included within the framework of Programa de Apoyo para la Investigación y Desarrollo (PAID)Martínez Boggio, SD. (2022). Study of the Potential of Electrified Powertrains with Dual-Fuel Combustion to Achieve the 2025 Emissions Targets in Heavy-Duty Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18883
    corecore