589 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation consists of two parts that focus on two interrelated areas of Applied Mathematics. The first part explores fundamental properties and applications of functions with values in L-spaces. The second part is connected to Approximation Theory and dives deeper into the analysis of functions with values in specific classes of L-spaces (in particular, L-spaces of sets). In the first project devoted to the theory and numerical methods for the solution of integral equations, we explore linear Volterra and Fredholm integral equations for functions with values in L-spaces (which are generalizations of set-valued and fuzzy-valued functions). In this study, we prove the existence and uniqueness of the solution for such equations, suggest algorithms for finding approximate solutions, and study their convergence. The exploration of these equations is of great importance given the wide variety of their applications in biology (population modeling), physics (heat conduction), and engineering (feedback systems), among others. We extend the aforementioned results of existence and uniqueness to nonlinear equations. In addition, we study the dependence of solutions of such equations on variations in the data. In order to be able to better analyze the convergence of the suggested algorithms for the solutions of integral equations, we develop new results on the approximation of functions with values in L-spaces by adapted linear positive operators (Bernstein, Schoenberg, modified Schoenberg operators, and piecewise linear interpolation). The second project is devoted to problems of interpolation by generalized polynomials and splines for functions whose values lie in a specific L-space, namely a space of sets. Because the structure of such a space is richer than the structure of a general L-space, we have additional tools available (e.g., the support function of a set) which allow us to obtain deeper results for the approximation and interpolation of set-valued functions. We are working on defining various methods of approximation based on the support function of a set. Questions related to error estimates of the approximation of set-valued functions by those novel methods are also investigated

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs

    Evans function and Fredholm determinants

    Get PDF
    We explore the relationship between the Evans function, transmission coefficient and Fredholm determinant for systems of first order linear differential operators on the real line. The applications we have in mind include linear stability problems associated with travelling wave solutions to nonlinear partial differential equations, for example reaction-diffusion or solitary wave equations. The Evans function and transmission coefficient, which are both finite determinants, are natural tools for both analytic and numerical determination of eigenvalues of such linear operators. However, inverting the eigenvalue problem by the free state operator generates a natural linear integral eigenvalue problem whose solvability is determined through the corresponding infinite Fredholm determinant. The relationship between all three determinants has received a lot of recent attention. We focus on the case when the underlying Fredholm operator is a trace class perturbation of the identity. Our new results include: (i) clarification of the sense in which the Evans function and transmission coefficient are equivalent; and (ii) proof of the equivalence of the transmission coefficient and Fredholm determinant, in particular in the case of distinct far fields.Comment: 26 page

    Hägusad teist liiki integraalvõrrandid

    Get PDF
    Käesolevas doktoritöös on uuritud hägusaid teist liiki integraalvõrrandeid. Need võrrandid sisaldavad hägusaid funktsioone, s.t. funktsioone, mille väärtused on hägusad arvud. Me tõestasime tulemuse sileda tuumaga hägusate Volterra integraalvõrrandite lahendite sileduse kohta. Kui integraalvõrrandi tuum muudab märki, siis integraalvõrrandi lahend pole üldiselt sile. Nende võrrandite lahendamiseks me vaatlesime kollokatsioonimeetodit tükiti lineaarsete ja tükiti konstantsete funktsioonide ruumis. Kasutades lahendi sileduse tulemusi tõestasime meetodite koonduvuskiiruse. Me vaatlesime ka nõrgalt singulaarse tuumaga hägusaid Volterra integraalvõrrandeid. Uurisime lahendi olemasolu, ühesust, siledust ja hägusust. Ülesande ligikaudseks lahendamiseks kasutasime kollokatsioonimeetodit tükiti polünoomide ruumis. Tõestasime meetodite koonduvuskiiruse ning uurisime lähislahendi hägusust. Nii analüüs kui ka numbrilised eksperimendid näitavad, et gradueeritud võrke kasutades saame parema koonduvuskiiruse kui ühtlase võrgu korral. Teist liiki hägusate Fredholmi integraalvõrrandite lahendamiseks pakkusime uue lahendusmeetodi, mis põhineb kõigi võrrandis esinevate funktsioonide lähendamisel Tšebõšovi polünoomidega. Uurisime nii täpse kui ka ligikaudse lahendi olemasolu ja ühesust. Tõestasime meetodi koonduvuse ja lähislahendi hägususe.In this thesis we investigated fuzzy integral equations of the second kind. These equations contain fuzzy functions, i.e. functions whose values are fuzzy numbers. We proved a regularity result for solution of fuzzy Volterra integral equations with smooth kernels. If the kernel changes sign, then the solution is not smooth in general. We proposed collocation method with triangular and rectangular basis functions for solving these equations. Using the regularity result we estimated the order of convergence of these methods. We also investigated fuzzy Volterra integral equations with weakly singular kernels. The existence, regularity and the fuzziness of the exact solution is studied. Collocation methods on discontinuous piecewise polynomial spaces are proposed. A convergence analysis is given. The fuzziness of the approximate solution is investigated. Both the analysis and numerical methods show that graded mesh is better than uniform mesh for these problems. We proposed a new numerical method for solving fuzzy Fredholm integral equations of the second kind. This method is based on approximation of all functions involved by Chebyshev polynomials. We analyzed the existence and uniqueness of both exact and approximate fuzzy solutions. We proved the convergence and fuzziness of the approximate solution.https://www.ester.ee/record=b539569
    corecore