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We explore the relationship between the Evans
function, transmission coefficient and Fredholm deter-
minant for systems of first-order linear differential
operators on the real line. The applications we have
in mind include linear stability problems associated
with travelling wave solutions to nonlinear partial
differential equations, for example reaction–diffusion
or solitary wave equations. The Evans function
and transmission coefficient, which are both finite
determinants, are natural tools for both analytic
and numerical determination of eigenvalues of such
linear operators. However, inverting the eigenvalue
problem by the free-state operator generates a natural
linear integral eigenvalue problem whose solvability
is determined through the corresponding infinite
Fredholm determinant. The relationship between all
three determinants has received a lot of recent
attention. We focus on the case when the underlying
Fredholm operator is a trace class perturbation of
the identity. Our new results include (i) clarification
of the sense in which the Evans function and
transmission coefficient are equivalent and (ii) proof
of the equivalence of the transmission coefficient and
Fredholm determinant, in particular in the case of
distinct far fields.

1. Introduction
Our goal is to establish the connection between the
Evans function, transmission coefficient and Fredholm
determinant associated with linear nth order eigenvalue
problems on R of the form

(∂ − A0 − V)Y = O.

Here, ∂ is the derivative operator ∂Y = Y′ and A0 : R ×
C �→ C

n×n and V : R �→ C
n×n are bounded multiplicative

operators. We suppose that V represents a perturbative
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potential function that decays to zero in the far field of the domain R, while A0 generates a
background or free state. It is constant in the far field though the limits are not necessarily
the same. We suppose further that A0 depends linearly on a spectral parameter λ ∈ C. Indeed,
large classes of eigenvalue problems can be couched in the form above. The problem is to
determine those values of λ, eigenvalues, for which suitable integrable solutions Y ∈ C

n exist to
the equation above. The Evans function and transmission coefficient are standard tools in this
endeavour. Away from the essential spectrum, and suitably scaled, they are analytic functions
of the spectral parameter λ whose zeros coincide with eigenvalues. The multiplicity of the zeros
coincide with the algebraic multiplicity of the eigenvalues. Modulo a non-zero scalar factor that
renders it domain independent, the Evans function is the determinant of the square matrix
whose left block is Y− and right block Y+. The columns of these two matrices are solutions
to the differential equation above that decay to zero exponentially fast in the left and right
far fields, respectively. The Evans function measures the ‘distance from intersection’ of the
subspaces spanned by the columns of Y− and Y+. The transmission coefficient which is also a
determinant, measures the degree to which the solutions Y−, that decay to zero in the left far
field, are orthogonal to the subspace that is orthogonal to the subspace of solutions that decays
to zero in the right far field. Unwrapping the two orthogonality conditions explains why the
Evans function and transmission coefficient are essentially equivalent. We assume away from the
essential spectrum (∂ − A0)−1 exists. Then our eigenvalue problem can be expressed in the form
(id − (∂ − A0)−1V)Y = O, or, with V = U|V| representing the polar decomposition of V and setting
φ := |V|1/2Y, in Birman–Schwinger form

(id − |V|1/2(∂ − A0)−1U|V|1/2)φ = O.

From this perspective, we again seek values of the spectral parameter λ ∈ C for which solutions
to this problem that decay to zero in the far field exist. The natural underlying Hilbert space is
L2(R; Cn). For the applications we have in mind, establishing that |V|1/2(∂ − A0)−1U|V|1/2 is a
Hilbert–Schmidt compact operator on this space is relatively straightforward. However, herein
we focus on the case when it is a trace class operator, i.e. a nuclear operator. With this property,
zeros of the Fredholm determinant of id − |V|1/2(∂ − A0)−1U|V|1/2 coincide with eigenvalues.
Thus, we come to the central issue. In what sense are the Evans function, transmission coefficient
and Fredholm determinant related? Let us briefly outline what has already been established.

The Evans function was first proposed by Evans [1], while Alexander et al. [2] established
it as a geometric tool for stability analysis. Subsequently, it has become a standard tool in
analytical and numerical studies of the stability of travelling waves; see the review papers
featuring the Evans function by Sandstede [3] and Kapitula [4]. The Evans function is also
called the miss-distance function [5]. It is also a generalization of the Wronskian and Jost
function. The transmission coefficient has it origins much further back in the mathematical
literature. Its connection to the Evans function, though trivial in the scalar case, can be found
in Swinton [6] and Bridges & Derks [7] for higher order problems. The Fredholm determinant for
determining the solvability of linear integral equations was introduced by Fredholm [8]. It has
been given recent impetus by Bornemann [9]. Its connection to the transmission coefficient goes
back to Jost & Pais [10]. Simon [11,12] computes the explicit relationship between the Fredholm
determinant and Wronskian for some example scalar Schrödinger operators; also see Kapitula &
Sandstede [13]. However, more generally, Gesztesy & Makarov [14] showed that for operators
with semi-separable kernels, their Fredholm and 2-modified Fredholm determinants can be
reduced to the determinant of finite rank operators, potentially useful for the evaluation of such
Fredholm determinants. Gesztesy et al. [15] then established the connection between the Evans
function and a 2-modified Fredholm determinant. They also gave a coordinate-free definition of
the Evans function as a ratio of the perturbed and unperturbed versions of the function. The
2-modified Fredholm determinant is relevant for their equivalence results as systems of first-
order operators generate operators |V|1/2(∂ − A0)−1U|V|1/2 which are Hilbert–Schmidt class and
in general not trace class. When such operators are trace class, the Fredholm determinant is the
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natural object in the equivalence result. Indeed, systems of Schrödinger operators represent an
explicit example [16, Section 4].

Our goal herein is to establish a unified picture of the relationship between the Evans function,
transmission coefficient and Fredholm determinant. We focus on those systems of first-order
operators for which |V|1/2(∂ − A0)−1U|V|1/2 is trace class and the matrix trace of the matrix
perturbation potential V is zero. By considering this subclass of first-order operators, we gain
a degree of clarity and directness. To begin with we assume A0 is constant, but in our final main
§7 we assume distinct far field limits for A0 which is therefore no longer constant. The free Evans
function and free transmission coefficients are the corresponding quantities associated with the
operator ∂ − A0. What we achieve in this paper is as follows, we:

(i) Provide practical tests to determine when |V|1/2(∂ − A0)−1U|V|1/2 is trace class. These
follow results in Simon [12, ch. 4] (see §3);

(ii) Show how two important classes of examples, systems of Schrödinger operators
and arbitrary order scalar operators, generate operators |V|1/2(∂ − A0)−1U|V|1/2 which
are trace class. We reveal how the trace class properties of this Birman–Schwinger
formulation naturally reduce to the trace class properties of the example operators
directly. These examples also demonstrate how many practical systems generate such
trace class operators, with the matrix trace of V also equal to zero (see §4);

(iii) Prove simply and directly that the ratio of the Evans function and free Evans function
equals the ratio of the transmission coefficient and free transmission coefficient. This
new insight clarifies their relationship and indicates a convenient rescaling of the state
variables that normalizes the free transmission coefficient to unity (see §5);

(iv) We show the matrix trace of the semi-separable kernels of Birman–Schwinger operators
|V|1/2(∂ − A0)−1U|V|1/2 are continuous along the diagonal, despite the fact the kernels
have a jump discontinuity there—this assumes the matrix trace of V is zero. Hence, we
can unambiguously define the trace of such operators. We then provide a simple and
direct proof that the scaled transmission coefficient equals the Fredholm determinant of
|V|1/2(∂ − A0)−1U|V|1/2, assuming it is trace class (see §6).

(v) Prove, for the case of distinct far fields, the scaled transmission coefficient equals the
Fredholm determinant with mild algebraic decay constraints on V (see §7).

Items (ii) to (v) above are a self-contained collection of new results. We bookend the sections
above with §§2 and 8. In §2, we provide preliminary results characterizing the spaces of trace class
and Hilbert–Schmidt class operators and their relation. We include some important inequalities
required in subsequent sections. In §8, we summarize our results, discuss conclusions we can
draw from them and outline possible future projects.

2. Characterizations
To be self-contained, we record a few basic facts on compact operators that we shall need.
We refer to Reed & Simon [17,18], Simon [12] and Gohberg et al. [19] for more details. Let
H denote a separable Hilbert space with unitary basis {ϕm}m≥1 and standard inner product
〈·, ·〉H. We use I∞ = I∞(H) to denote the set of compact operators in H. An operator K ∈ I∞ is
positive if 〈ϕ, Kϕ〉H ≥ 0 for all ϕ ∈ H. For any positive operator K, there is a unique operator

√
K

such that K = (√
K
)2. The adjoint operator K† to K is the unique operator such that 〈K†ϕ, ϕ〉H =

〈ϕ, Kϕ〉H for all ϕ ∈ H. The operator K†K is positive as 〈K†Kϕ, ϕ〉H = ‖Kϕ‖2
H

≥ 0. In particular, we
define |K| =

√
K†K. Lastly, there exists a unique unitary operator U such that K = U|K|. For any

operator K ∈ I∞, we define its trace by tr K :=∑
m≥1〈ϕm, Kϕm〉H. When it exists, the trace is linear

and independent of the unitary basis chosen. The Schatten–von Neumann classes of compact
operators Ip = Ip(H) for any p ≥ 1 are then defined as follows,

Ip := {K ∈ I∞ : tr |K|p < ∞}.
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The set Ip equipped with the norm ‖K‖p
Ip

:= tr |K|p is a Banach space. An operator K ∈ I∞ is trace
class if it belongs to I1 and Hilbert–Schmidt class if it belongs to I2. The latter class I2 is a Hilbert
space with inner product 〈K1, K2〉I2 := tr K†

1K2. A crucial property of the trace is that the trace of
a product composition, of any bounded operator with a trace class operator, is invariant to their
permutation. We can also characterize the Schatten–von Neumann classes of compact operators
Ip as follows. The eigenvalues {λm}m≥1 of any compact operator K ∈ I∞ are finite in number
away from the origin and the origin itself is the only possible accumulation point. The singular
values {sm}m≥1 of K ∈ I∞ are the eigenvalues of

√
K†K. Then we can equivalently characterize

tr Kp =∑
m≥1 λ

p
m and tr |K|p =∑

m≥1 sp
m. The former is bounded by the latter. There is a natural

ordering of the Schatten–von Neumann classes as follows: Ip ↪→ Iq for any p ≤ q. Fundamentally,
for any trace class operator K ∈ I1, the Fredholm determinant det1(id + εK) :=∏

m≥1(1 + ελm) is
entire in ε ∈ C. Using the relation det exp = exp tr, we can also characterize it (for p = 1) by

detp(id + εK) = exp
∑
�≥p

(−1)�−1

�
ε� tr K�.

When p is an integer greater than one, we define the p-modified or regularized Fredholm
determinants for compact operators K ∈ Ip by this last formula as well, knocking out the lower
order non-convergent traces. Three further results will prove very useful to us. First, if A, B ∈ I2,
then AB ∈ I1. Second, if A : H → H is a bounded operator and B ∈ I1, then AB ∈ I1 and BA ∈ I1.
This is the trace class ideal property. Third, if A : H → H is a bounded operator and B ∈ I2, then
AB ∈ I2 and BA ∈ I2. This is the Hilbert–Schmidt ideal property. Indeed, we have

‖AB‖I1 ≤ ‖A‖I2‖B‖I2 , ‖AB‖I1 ≤ ‖A‖op‖B‖I1 and ‖AB‖I2 ≤ ‖A‖op‖B‖I2 ,

which also hold for BA and where ‖ · ‖op denotes the operator norm. The proof of these three
results can be found for example in Conway [20, Section 18].

3. Practical tests
The natural setting we require, and which we assume hereafter, is the separable Hilbert space of
C

n-valued square integrable functions H = L2(R; Cn); see Reed & Simon [18, p. 121] for an example
basis. As we will be concerned with kernel functions, we also require the separable Hilbert space
L2(R2; Cn×n) with inner product, for any G, H ∈ L2(R2; Cn×n), given by

〈G, H〉L2(R2;Cn×n) :=
∫
R2

tr(G†(x; y)H(x; y)) dx dy.

The following fundamental lemma is proved in appendix A.

Lemma 3.1 (Hilbert–Schmidt class operators). The operator K ∈ I∞ is Hilbert–Schmidt if and only
if there is a function G ∈ L2(R2; Cn×n) such that

(Kϕ)(x) =
∫
R

G(x; y)ϕ(y) dy,

for all ϕ ∈ L2(R; Cn). In addition, we have ‖K‖I2 = ‖G‖L2(R2;Cn×n).

The Fourier transform of operators will play a key role in our analysis. We define the
Fourier transform L2(R; Cn) → L2(R; Cn) and inverse Fourier transform as the maps ϕ �→ ϕ̂ and
ϕ̂ �→ ϕ, respectively, given by ϕ̂(ξ ) := (2π )−1/2 ∫

R
ϕ(x) e−iξx dx and ϕ(x) := (2π )−1/2 ∫

R
ϕ̂(ξ ) eixξ dξ .

Suppose an operator K∗ : L2(R; Cn) → L2(R; Cn) is such that its Fourier transform K̂ = K̂(ξ )
acts multiplicatively in Fourier space, i.e. we have K̂∗ϕ = K̂ϕ̂, where the product K̂ϕ̂ is matrix
multiplication. Given any multiplicative operator K̂ = K̂(ξ ) in Fourier space with integral kernel
G in physical space, we think of K∗ as the map taking ϕ to the inverse Fourier transform of K̂ϕ̂, or
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equivalently, K∗ : ϕ �→ (2π )−1/2G ∗ ϕ, where G ∗ ϕ represents the convolution of G and ϕ. We note
that if H ∈ L2(R; Cn×n), then

((K∗H)ϕ)(x) = (2π )−1/2
∫
R

G(x − y)(Hϕ)(y) dy,

for all ϕ ∈ L2(R; Cn). Hence, the kernel of K∗H is (2π )−1/2G(x − y)H(y). We now prove the
following lemma which is the matrix version of a result given in Simon [12, ch. 4].

Lemma 3.2 (Practical test for Hilbert–Schmidt class). Suppose K̂, H ∈ L2(R; Cn×n) then
K∗H ∈ I2, and indeed we have

‖K∗H‖I2 ≤ (2π )−1/2‖K̂‖L2(R;Cn×n)‖H‖L2(R;Cn×n).

Proof. By direct computation, line by line we successively use the following results: (i) the
kernel of K∗H is (2π )−1/2G(x − y)H(y) and the trace of a product of two operators is invariant
to their permutation; (ii) the Cauchy–Bunyakovski–Schwarz inequality in the form tr A†B ≤
(tr A†A)1/2(tr B†B)1/2 for any two matrices A and B [21, p. 289]. We used this inequality with
A = G†G and B = HH† and also that tr(HH†)†HH† ≡ tr(H†H)†H†H; (iii) The sum of the squares
of singular values is less than the square of their sum, i.e. (tr A†A)1/2 ≤ tr(A†A)1/2; (iv) The Young
inequality; (v) That ‖tr G†G‖L1(R;C) = ‖G‖2

L2(R;Cn×n) and (vi) The Plancherel Theorem. The direct
computation is as follows:

‖K∗H‖2
I2

= 1
2π

∫
R2

tr((G†G)(x − y)(HH†)(y)) dy dx

≤ 1
2π

∫
R2

(tr((G†G)†(G†G))(x − y))1/2(tr((H†H)†(H†H))(y))1/2 dy dx

≤ 1
2π

∫
R2

(tr G†G)(x − y) · (tr H†H)(y) dy dx

≤ 1
2π

‖tr G†G‖L1(R;C)‖tr H†H‖L1(R;C)

= 1
2π

‖G‖2
L2(R;Cn×n)‖H‖2

L2(R;Cn×n)

= 1
2π

‖K̂‖2
L2(R;Cn×n)‖H‖2

L2(R;Cn×n). �

Lemma 3.2 provides us with a test to determine if a given bounded operator is of Hilbert–
Schmidt class. In practice, suppose we know the Fourier transform K̂ = K̂(ξ ) of an operator and
we have established it lies in L2(R; Cn×n). Further suppose J = J(x) and H = H(x) are bounded
multiplicative operators from L2(R; Cn) to L2(R; Cn) and J ∈ L∞(R; Cn×n) and H ∈ L2(R; Cn×n).
The kernel of JK∗H is (2π )−1/2J(x)G(x − y)H(y). The Hilbert–Schmidt ideal property ‖JK∗H‖I2 ≤
‖J‖op‖K∗H‖I2 and lemma 3.2 reveal that

‖JK∗H‖I2 ≤ (2π )−1/2‖J‖L∞(R;Cn×n)‖K̂‖L2(R;Cn×n)‖H‖L2(R;Cn×n).

We would like an analogous practical test of when an operator such as JK∗H from L2(R; Cn) to
L2(R; Cn) is of trace class. To achieve this, we require the two classical results mentioned above,
that the product of two Hilbert–Schmidt class operators is of trace class, and the trace class
ideal property. To establish that K∗H is trace class, for example where H = H(x) is a bounded
multiplicative operator and K∗ is the operator corresponding to K̂ = K̂(ξ ) in Fourier space, we
naturally require the stronger conditions K̂ ∈ L2

w(R; Cn×n) and H ∈ L2
w(R; Cn×n), i.e. in a weighted

square integrable space. More precisely we define

L2
w(R; Cn×n) := {F ∈ L2(R; Cn×n) : Fw ∈ L2(R; Cn×n)},

where the weight function w is defined via the map w : ξ �→ (1 + ξ2)1/2. The practical test takes the
following form, which is the matrix version of a result given in Reed & Simon [22, Appendix 2].
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Lemma 3.3 (Practical test for trace class). Suppose K̂, H ∈ L2
w(R; Cn×n) then K∗H ∈ I1, and there

exists a constant c > 0 such that

‖K∗H‖I1 ≤ c‖K̂‖L2
w(R;Cn×n)‖H‖L2

w(R;Cn×n).

Proof. We adapt the proof for the scalar case given in Reed & Simon [22, Appendix 2]. Using
the practical test for Hilbert–Schmidt class lemma 3.2 and that L2

w(R; Cn×n) ↪→ L2(R; Cn×n), our
assumptions on K̂ and H imply that K∗H is of Hilbert–Schmidt class and has integral kernel
(2π )−1/2G(x − y)H(y). We decompose K∗H = AB into the product of the two operators A and B
defined as follows, A := K∗(1 − ∂2)1/2w−1 and B := w(1 − ∂2)−1/2H, where w = w(x) is the weight
function. Then using ‖AB‖I1 ≤ ‖A‖I2‖B‖I2 and slightly adapting the proof of lemma 3.2 to take
into account that w = w(x) is scalar, we find

‖K∗H‖I1 = ‖(K∗(1 − ∂2)1/2w−1)(w(1 − ∂2)−1/2H)‖I1

≤ ‖K∗(1 − ∂2)1/2w−1‖I2‖w(1 − ∂2)−1/2H‖I2

≤ (2π )−1/2‖K̂w‖L2(R;Cn×n)‖w−1‖L2(R;R)‖w(1 − ∂2)−1/2H‖I2

= 2−1/2‖K̂‖L2
w(R;Cn×n)‖w(1 − ∂2)−1/2H‖I2 ,

as ‖w−1‖L2(R;R) = π1/2. Note in the expression K̂w in the penultimate line, w = w(ξ ) represents the
Fourier transform of (1 − ∂2)−1/2. The action of the operator (1 − ∂2)−1/2 is given by convolution
with a function G ∈ L2(R; R). In addition, as its Fourier transform w−1 = w−1(ξ ) is analytic
in the strip {ξ ∈ C : |Im(ξ )| < 1}, by the Paley–Wiener Theorem [18, Theorem IX.13] we also
know that Gε ∈ L2(R; R), where ε : x �→ exp(|x|/2). The kernel of the operator w(1 − ∂2)−1/2H is
(2π )−1/2w(x)G(x − y)H(y) and so

‖w(1 − ∂2)−1/2H‖2
I2

= 1
2π

∫
R

(∫
R

(1 + x2) G2(x − y) dx
)

(tr(H†H)(y)) dy.

Using
∫

R
(1 + x2) G2(x − y) dx ≤ ∫

R
(1 + 2x2 + 2y2)G2(x) dx ≤ c(1 + y2) for some constant c > 0 as

G, Gε ∈ L2(R; R), we find ‖w(1 − ∂2)−1/2H‖I2 ≤ c‖H‖L2
w(R;Cn×n). We now insert this into the

estimate above. �

The trace ideal property of I1 implies ‖JK∗H‖I1 ≤ ‖J‖op‖K∗H‖I1 and thus JK∗H is also trace
class for any bounded multiplicative operator J : L2(R; Cn) → L2(R; Cn) if K∗H is trace class.
We end this section with a trace formula and an immediate corollary. A proof is provided in
appendix B.

Lemma 3.4 (Trace formula). Given any integer � ≥ 2, suppose that K1, K2, . . . , K� are Hilbert–
Schmidt operators with canonical respective kernels G1, G2, . . . , G� in L2(R2; Cn×n). Then we have

tr K1K2 · · · K� = tr
∫
R�

G1(y1; y2)G2(y2; y3) · · · G�(y�; y1) dy� · · · dy1.

If K is trace class and its kernel G ∈ C
n×n is continuous on R

2, then tr K = tr
∫

R
G(x; x) dx.

Corollary 3.5 (Trace formula: separable kernel). If a Hilbert–Schmidt operator K has a separable
kernel G(x; y) = G1(x)G2(y) for all (x, y) ∈ R

2, then for any integer � ≥ 1, we have

tr K� = tr
(∫

R

G2(y)G1(y) dy
)�

.

Remark 3.6. Some additional comments on the material above are as follows: (i) the map K∗
above corresponds to the operator K(−i∇) in Reed & Simon [18, p. 57] and Simon [12, p. 37];
(ii) the sufficiency conditions in lemma 3.3 on K̂ and H can be weaker, for example a result of
Birmann–Solomajk requires they need only be in the space of �1-summable L2

w(Ik; Cn×n)-norms
of K̂ and H, where Ik is the unit interval with centre k ∈ Z—this space contains L2

w(R; Cn×n)—see
Simon [12, ch. 4] for more details. However, the sufficient conditions quoted above are adequate
for the applications we have in mind; (iii) the proof of the trace class lemma 3.3 for scalar operators
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by Reed & Simon [22, Appendix 2] is for any spatial dimension d, with weights wα and α > d/2;
and (iv) in the trace formula lemma 3.4, we relax the continuity condition on G in §6 and allow
G to have a jump across its diagonal—the formula for tr K remains meaningful as the kernels we
consider have continuous matrix traces along the diagonal; see also remark 6.3 where we discuss
results by Brislawn [23,24] for discontinuous kernels.

4. Examples
Anticipating our main result in §§6 and 7, we will be concerned with establishing whether
operators from L2(R; Cn) to L2(R; Cn) of the form |V|1/2(∂ − A0)−1U|V|1/2 are of trace class.
Here, A0 ∈ C

n×n is a constant matrix; V = V(x) is a bounded multiplicative matrix operator from
L2(R; Cn) to L2(R; Cn) and U = U(x) is the unitary matrix obtained from the polar decomposition
of V. As we saw in §3, the practical tests for Hilbert–Schmidt or trace class operators at our
disposal rely on testing the integrability properties of the multiplicative operator (iξ id − A0)−1

in Fourier space corresponding to the operator (∂ − A0)−1, as well as the integrability properties
of |V|1/2 and U|V|1/2. We assume in this section that the eigenvalues of A0 are non-zero and never
purely imaginary. Hence, the integrability properties of the operator (iξ id − A0)−1 rely on the rate
of its asymptotic decay as |ξ | → ∞. We observe (iξ id − A0)−1 is square integrable. We assume
hereafter that

V ∈ L1
w2 (R; Cn×n) ∩ L∞(R; Cn×n) ∩ C(R; Cn×n),

where C(R; Cn×n) represents the space of continuous C
n×n-valued matrix functions on R.

As L1
w2 (R; Cn×n) ∩ L∞(R; Cn×n) ↪→ L2

w(R; Cn×n) and L2
w(R; Cn×n) ↪→ L2(R; Cn×n), our functions

V are square integrable. We observe, using the unitary properties of U and that |V| is
selfadjoint, that ‖U|V|1/2‖2

L2(R;Cn×n) = ‖|V|‖L1(R;Cn×n). We thus deduce U|V|1/2 ∈ L2(R; Cn×n) as

L1
w2 (R; Cn×n) ↪→ L1(R; Cn×n). Further, |V|1/2 ∈ L∞(R; Cn×n) by assumption. Hence by the practical

test for Hilbert–Schmidt class lemma 3.2, and the immediate discussion after, the operator |V|1/2

(∂ − A0)−1U|V|1/2 is of Hilbert–Schmidt class.
Recall the sufficient conditions for |V|1/2(∂ − A0)−1U|V|1/2 to pass the practical test for

trace class lemma 3.3. These are first that |V|1/2 have bounded operator norm, and second
that U|V|1/2 ∈ L2

w(R; Cn×n) which is equivalent to |V|1/2 ∈ L2
w(R; Cn×n), which is equivalent to

V ∈ L1
w2 (R; Cn×n). These two conditions are satisfied by our assumptions on the potential function

stated above. However, the third condition is not satisfied as (iξ id − A0)−1 �∈ L2
w(R; Cn×n). Hence

in general, without further insight and knowledge, the operator |V|1/2(∂ − A0)−1U|V|1/2 fails the
practical test for trace class lemma 3.3. However, we now consider two examples of operators of
the form above which pass the practical test for trace class. This is achieved by taking advantage
of the structure of (∂ − A0)−1 and V, as will be apparent.

Example 4.1 (System of elliptic operators). Consider the coupled Schrödinger operator of
the form ∂2 − d0∂ − c0 − v, where c0 and d0 are constant square matrices and v is a matrix
potential on R. Such operators, for example, arise in the study of the linear stability of travelling
wave solutions to systems of nonlinear reaction–diffusion equations. Linearizing the system of
equations about the travelling wave in a co-moving frame and assuming an exponential time
dependence with growth λ (the spectral parameter) generates an eigenvalue problem of the form
(∂2 − d0∂ − c0 − v)u = λa−1

0 u for the eigenstates u. Here, a0 is the matrix of diffusion coefficients.
Replacing c0 + λa−1

0 → c0, the determination of eigenvalues reduces to finding the zeros of the
determinant of the operator above. In phase space, the first-order constant coefficient operator
corresponding to ∂2 − d0∂ − c0 and matrix potential V corresponding to v have the form

∂ − A0 =
(

∂ −id
−c0 ∂ − d0

)
and V =

(
O O
v O

)
,
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where O represents the zero matrix. The matrices |V|1/2 and U have the form

|V|1/2 =
(

|v|1/2 O
O O

)
and U =

(
O v|v|−1

v|v|−1 O

)
,

which can be verified by direct inspection. Additional direct calculation reveals that

|V|1/2(∂ − A0)−1U|V|1/2 =
(

|v|1/2[(∂ − A0)−1]1,2v|v|−1/2 O
O O

)
,

where [(∂ − A0)−1]1,2 represents the top right-hand square matrix block in (∂ − A0)−1 whose
dimensions are half those of (∂ − A0)−1 itself. In Fourier space, (∂ − A0)−1 here has the form

(iξ id − A0)−1 =
(

iξ id −id
−c0 iξ id − d0

)−1

.

Direct computation reveals [(iξ id − A0)−1]1,2 = ((iξ )2id − (iξ )d0 − c0)−1. This is the operator in
Fourier space corresponding to (∂2 − d0∂ − c0)−1 as expected. We observe that it is square
integrable with respect to the weight w as ((iξ )2id − (iξ )d0 − c0)−1(1 + ξ2)1/2 ∼ −ξ−1id as
ξ → ±∞. The trace class property of |V|1/2(∂ − A0)−1U|V|1/2 transfers to the trace class property
of |v|1/2[(∂ − A0)−1]1,2v|v|−1/2, and the properties we assume for V transfer to v, and vice versa.
Hence by the practical test for trace class lemma 3.3, |V|1/2(∂ − A0)−1U|V|1/2 is of trace class.

Example 4.2 (High-order scalar operator). Consider the scalar nth order linear operator given
by ∂n + an−1∂

n−1 + · · · + a1∂ + a0 + v, where the ai, i = 0, . . . , n − 1 are scalar constants and v is a
scalar potential function on R. If we rewrite this as a first-order system in phase space, then the
corresponding matrix potential V has the same form as that in the last example, with the only
non-zero entry being the lower left entry which is v; however, this is now the scalar entry in the
lower left position and the rest of the n × n matrix V has zero entries. Similarly, the matrices |V|1/2

and U have the same form as in the last example, but the entries shown are scalar with the rest
of the matrix entries being zero. Direct calculation reveals that the only non-zero entry in the
matrix operator |V|1/2(∂ − A0)−1U|V|1/2 is the top left scalar entry |v|1/2[(∂ − A0)−1]1,nv|v|−1/2,
where [(∂ − A0)−1]1,n represents the top right-hand scalar entry in the operator (∂ − A0)−1. Direct
calculation reveals the corresponding entry in the Fourier transform of (∂ − A0)−1 is given by
[(iξ id − A0)−1]1,n = ((iξ )n + (iξ )n−1an−1 + · · · + (iξ )a1 + a0)−1. This is square integrable in Fourier
space with respect to the weight w. Hence, as in the last example, by the practical test for trace
class lemma 3.3, the operator |V|1/2(∂ − A0)−1U|V|1/2 is trace class.

5. Evans function and transmission coefficient
Our main practical concern are eigenvalue problems associated with the stability of travelling
pulses. A wide class of such eigenvalue problems can be expressed in the following form on R:

(∂ − A0 − V)Y = O.

Here, A0 = A0(λ) is a constant C
n×n-valued matrix which depends linearly on the spectral

parameter λ ∈ C. The C
n×n-valued matrix function V = V(x) with x ∈ R represents a potential

perturbation. We assume throughout that V is w2-integrable, uniformly bounded and continuous,
exactly as outlined at the beginning of the last examples (§4). A comprehensive reference at
this stage for the present material is Sandstede [3]. Our goal is to determine the values of
λ for which the operator ∂ − A0 − V is not invertible, i.e. the spectrum of this operator. The
complement to the spectrum in C is the resolvent set. Specifically from the spectrum, we are
interested in determining the pure-point spectrum of this operator rather than its complement
the essential spectrum. To achieve this, we can construct determinant discriminants which are
analytic in the spectral parameter away from the essential spectrum and only zero at pure-
point spectrum values. Contour integration using such determinants in the spectral parameter
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plane then provides a global and local location strategy for the pure-point spectrum. We will
assume that away from the essential spectrum, the matrix A0 = A0(λ) is strictly hyperbolic; this is
characteristic of a wide class of travelling pulse stability problems. Hence away from the essential
spectrum, the eigenvalue equation above has an exponential dichotomy and the unbounded
operator ∂ − A0 − V is Fredholm with index zero. At pure-point spectrum values, the kernel of
∂ − A0 − V is non-trivial. The existence of the exponential dichotomy to the eigenvalue equation
above, and thus Fredholm property of ∂ − A0 − V, as well as the locale of the essential spectrum,
is determined by the classification of the solutions to the following associated constant coefficient
equation which does not exhibit a pure-point spectrum:

(∂ − A0)Y0 = O.

The existence of an exponential dichotomy to the eigenvalue equation (with potential V)
implies that there is a, say, k-dimensional subspace of solutions to the eigenvalue equation that
decays exponentially as x → −∞, and an (n − k)-dimensional subspace of solutions that decays
exponentially as x → +∞. We denote by Y− = Y−(x; λ) the C

n×k-valued function whose column
span coincides with the subspace decaying as x → −∞ and by Y+ = Y+(x; λ) the C

(n−k)×k-valued
function whose column span coincides with the subspace decaying as x → +∞. Corresponding
subspaces of commensurate dimension exist for the constant coefficient equation, we denote by
Y±

0 = Y±
0 (x; λ) the corresponding matrix valued functions whose columns span the respective

exponentially decaying subspaces. Asymptotically as x → ±∞, we have Y± ∼ Y±
0 .

From this perspective, the pure-point spectrum is determined by the values of λ ∈ C for which
the two subspaces spanned by the columns of Y− and Y+, intersect. In other words, a solution
to the eigenvalue problem exists that decays exponentially to zero in both far fields. This is
equivalent to the condition that the columns of Y− and Y+ are not linearly independent, and
a test for that is whether the determinant, of the n × n matrix whose columns are the columns
of Y− and Y+, is zero. This intersection property should be x-independent and by Liouville’s
Theorem an appropriate scalar factor achieves this. This is the Evans function, first introduced by
Evans [1]. A comprehensive study is provided in [2].

Definition 5.1 (Evans function). The Evans function is the λ-dependent complex scalar
quantity

exp
(

−tr A0(λ)x −
∫ x

0
tr V(y) dy

)
det(Y−(x; λ) Y+(x; λ).

The free Evans function is that corresponding to the constant coefficient operator ∂ − A0, i.e.
corresponding to the free state. If we replace Y± by Y±

0 and set V ≡ 0 in the Evans function, we
get the free Evans function defined as exp(−tr A0(λ)x) det( Y−

0 (x;λ) Y+
0 (x;λ) ).

Associated with the eigenvalue problem above is the adjoint eigenvalue problem given by
(∂ + A†

0 + V†)Z† = O or ∂Z + ZA0 + ZV = O, where Z† is C
n×1-valued and Z is C

1×n-valued. The
adjoint operator in L2(R; Cn) to ∂ − A0 − V is −∂ − A†

0 − V†. We denote by Z− = Z−(x; λ) and
Z+ = Z+(x; λ) the, respectively, C

(n−k)×n-valued and C
k×n-valued functions whose respective row

spans determine solution subspaces to the adjoint eigenvalue problem that decay exponentially
as x → −∞ and x → +∞. In addition, we denote by Z±

0 = Z±
0 (x; λ) the corresponding matrices for

the adjoint constant coefficient equation

∂Z0 + Z0A0 = O.

The solutions Y±
0 and Z±

0 to the constant coefficient problems above satisfy a diagonal relation
that will be helpful in our subsequent analysis.

Lemma 5.2 (Diagonal relation). The solutions Y±
0 and Z±

0 satisfy the relation(
Z+

0
Z−

0

)
(Y−

0 Y+
0 ) = D,

where D is a constant diagonal matrix with non-zero entries.
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Proof. Consider any pair of solutions Y0 ∈ C
n×1 and Z0 ∈ C

1×n to their respective constant
coefficient problems. Then we see ∂(Z0 Y0) = −Z0A0Y0 + Z0A0Y0 = O. Thus, Z0 Y0 is constant
on R. Each solution Y0 has the form U exp(μx), where μ is an eigenvalue and U ∈ C

n×1 a
corresponding right eigenvector of A0. By our strict hyperbolicity assumption, there are n
independent solutions, and k of the eigenvalues have a positive real part. Each solution Z0,
corresponding to an adjoint solution, has the form W exp(−νx), where ν is an eigenvalue and
W ∈ C

1×n a corresponding left eigenvector of A0. Classically, if μ �= ν then WU = 0, while if μ = ν

we have WU �= 0 [21, p. 405, 523]. �

With all this in hand, we can now motivate and define the transmission coefficient. Starting
with the Evans function, we find

exp
(

−tr A0(λ)x −
∫ x

0
tr V(y) dy

)
det(Y− Y+)

= exp
(

−tr A0(λ)x −
∫ x

0
tr V(y) dy

) det
(

(Y−
0 Y+

0 )
(

Z+
0

Z−
0

))
detl

((
Z+

0
Z−

0

)
(Y−

0 Y+
0 )
) det(Y− Y+)

= exp(−tr A0(λ)x) det(Y−
0 Y+

0 ) exp
(

−
∫ x

0
tr V(y) dy

) det
(

Z+
0 Y− Z+

0 Y+

Z−
0 Y− Z−

0 Y+

)
det

(
Z+

0 Y−
0 Z+

0 Y+
0

Z−
0 Y−

0 Z−
0 Y+

0

) .

Note that the first two factors on the right constitute the free Evans function which is x-
independent and λ-dependent. We could define a generalized transmission coefficient as the
product of the middle exponential term and the numerator in the ratio. The denominator would
correspond to a free generalized transmission coefficient. However, classically, we take the limit as
x → +∞ in these latter terms. The diagonal relation in lemma 5.2 in particular implies Z−

0 Y−
0 = O

and Z+
0 Y+

0 = O, and thus also that limx→+∞ Z+
0 Y+ = O. Hence the determinants in the ratio above

collapse as x → +∞ (using that the limit and determinant operations commute). Cancelling off
the determinant of Z−

0 Y+
0 which appears in both the numerator and denominator, we find

exp
(

−tr A0(λ)x −
∫ x

0
tr V(y) dy

)
det(Y− Y+)

≡ exp(−tr A0(λ)x) det(Y−
0 Y+

0 ) · lim
x→+∞ exp

(
−

∫ x

0
tr V(y) dy

)
det((Z+

0 Y−)(x; λ))

det((Z+
0 Y−

0 )(λ))
.

Note by the diagonal relation in lemma 5.2, the quantity Z+
0 Y−

0 is constant. For completeness, we
now define the transmission coefficient and free transmission coefficient.

Definition 5.3 (Transmission coefficient). This is defined as the λ-dependent complex scalar
quantity

lim
x→+∞ exp

(
−

∫ x

0
tr V(y) dy

)
det((Z+

0 Y−)(x; λ)).

The free transmission coefficient is simply the quantity det(Z+
0 Y−

0 (λ)).

The relation we derived above establishes that away from the essential spectrum the Evans
function can be decomposed as a product of the free Evans function and a ratio of the transmission
coefficient and free transmission coefficient. In other words, schematically, we have

Evans function
free Evans function

= transmission coefficient
free transmission coefficient

.

We end this section with three important observations. First, the solutions Y−
0 ∈ C

n×k, Y+
0 ∈

C
n×(n−k), Z−

0 ∈ C
k×n and Z+

0 ∈ C
(n−k)×n to the constant coefficient problems above have the

following explicit special forms. Let U− ∈ C
n×k and U+ ∈ C

n×(n−k) denote the matrices whose
columns are the eigenvectors of A0, respectively, corresponding to the k eigenvalues with positive
real part and the n − k eigenvalues with negative real part. Also let W− ∈ C

n×k and W+ ∈ C
n×(n−k)
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denote the matrices whose rows are the left eigenvectors of A0, respectively, corresponding to the
k eigenvalues with negative real part and the n − k eigenvalues with positive real part. Then we
have the identifications

(Y−
0 Y+

0 ) ≡ exp(A0x)(U− U+) ≡ (U− exp(Λ−x) U+ exp(Λ+x))

and (
Z+

0
Z−

0

)
≡
(

W+
W−

)
exp(−A0x) ≡

(
exp(−Λ−x)W+
exp(−Λ+x)W−

)
,

where Λ− and Λ+ denote the diagonal matrices of the eigenvalues of A0 with positive and
negative real parts, respectively.

Second, we can rescale the free state solutions Y±
0 and Z±

0 to the constant coefficient problems
so they satisfy some unitary relations that are helpful for our subsequent analysis. We choose to
rescale the adjoint solutions Z±

0 by rescaling W± as follows.

Definition 5.4 (Unitarily scaled solutions). Suppose D is the constant diagonal matrix from
the diagonal relations lemma 5.2. Let D− denote the upper k × k block of D and D+ the lower
(n − k) × (n − k) block. We define rescaled solutions Ŵ± and correspondingly Ẑ±

0 by

Ŵ± := D−1
∓ W± and Ẑ±

0 := D−1
∓ Z±

0 .

Note the solutions Ẑ±
0 have the same exponential form as Z±

0 , but with W± replaced by Ŵ±.
The nomination of Ẑ±

0 as unitarily scaled solutions is justified in the following.

Lemma 5.5 (Unitary relations). The solutions Y±
0 and Ẑ±

0 satisfy the unitary relations(
Ẑ+

0
Ẑ−

0

)
(Y−

0 Y+
0 ) = id and (Y−

0 Y+
0 )

(
Ẑ+

0
Ẑ−

0

)
= id.

These are generated by corresponding unitary relations satisfied by U± and Ŵ±.

Proof. From the proof of the diagonal relation lemma 5.2, we already know that(
W+
W−

)
(U− U+) =

(
D− O
O D+

)
.

Substituting W± = D∓Ŵ± into this relation generates the corresponding unitary relation for Ŵ±
and U±, i.e. with the identity matrix on the right. Hence the inverse of the n × n matrix (U− U+)
exists and is given by the corresponding n × n matrix with Ŵ+ and Ŵ− in the upper and lower
block positions, respectively, as shown above. The second unitary relation, with the order of
the two block matrices with Ŵ± and U± swapped round, now follows [21, p. 117]. The unitary
relations for Y±

0 and Ẑ±
0 now follow using their explicit exponential forms. �

Third, in the next section, the unitarily scaled solutions Ẑ±
0 are the natural choice for

constructing the Green’s kernel associated with (∂ − A0)−1. They are also natural for establishing
the equivalence between the transmission coefficient and corresponding Fredholm determinant,
as the corresponding free transmission coefficient is unity with these scaled solutions. Any result
we prove using the unitarily scaled solutions we can recover for the original solutions Z±

0 by
substituting the relation between the two. This is important, as an edifying feature of the Evans
function is that it is analytic in λ away from the essential spectrum and its zeros correspond to
eigenvalues of ∂ − A0 − V with coincident multitude. The solutions Y±

0 and Z±
0 can be chosen to

be analytic in λ from the start. The Evans function and free Evans function are independent of
the unitary rescaling as they are defined only using Y± and Y±

0 , respectively. And, as we should
expect, the ratio of the transmission coefficient and free transmission coefficient is also invariant
to the unitary rescaling. We return to these points in our Conclusion (§8).

Remark 5.6. Classically, the transmission coefficient is defined as follows. Consider the
solutions Y− ∼ Y−

0 as x → −∞ above. These are Jost solutions. Away from the essential spectrum,
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asymptotically as x → +∞ we have Y− ∼ Y−
0 a + Y+

0 b where the constant k × k and (n − k) ×
(n − k) matrices a = a(λ) and b = b(λ) are the transmission and reflection matrix coefficients,
respectively. For an element of the span of Y− to be an eigenfunction, we require it to be
asymptotically in the span of Y+

0 b or equivalently in the span of Y+
0 , as x → +∞. Or equivalently

in this limit, we require an element of the span of Y− to be orthogonal to the subspace of C
n that is

orthogonal to the subspace spanned by the columns of Y+
0 . In other words, we require an element

of the span of Y− to be orthogonal to the subspace spanned by the rows of Z+
0 . The existence of

a non-trivial linear combination of columns of Y− to be orthogonal to each row of Z+
0 amounts

to requiring det(Z+
0 Y−) to be zero in the limit. Modulo the constant non-zero exponential factor,

we define the transmission coefficient as this determinant. However we note, using the diagonal
relation lemma 5.2 we find Z+

0 Y− ∼ (Z+
0 Y−

0 )a. In other words, det(a(λ)) equals the ratio of the
transmission coefficient to the free coefficient above. For the classical example of the transmission
coefficient for the scalar Schrödinger operator see Kapitula & Sandstede [13], for which tr V ≡ 0.
They show in this case, the connection between the Evans function, transmission coefficient and
Fredholm determinant (in the following sections). Bridges & Derks [7] show the transmission
coefficient equals the Evans function up to a non-zero analytic factor.

6. Equivalence theorem
Our goal in this section is to show that the transmission coefficient equals the Fredholm
determinant for trace class operators, associated with eigenvalue problems on R of the form

(∂ − A0 − V)Y = O.

The setting is precisely that outlined in §5. Let us now specify which Fredholm determinant we
mean. We have already seen that away from the essential spectrum (∂ − A0)−1 exists. Hence our
eigenvalue problem can be expressed in the form

(id − (∂ − A0)−1V)Y = O.

As in §§4 and 5, we assume throughout the potential perturbation V is w2-integrable, uniformly
bounded and continuous on R. An equivalent formulation is that of Birman–Schwinger. If we use
the polar decomposition for V = U|V| and set φ := |V|1/2Y, we see

(id − (∂ − A0)−1V)Y = O

⇔ (id − (∂ − A0)−1U|V|1/2|V|1/2)Y = O

⇔ (|V|1/2 − |V|1/2(∂ − A0)−1U|V|1/2|V|1/2)Y = O

⇔ (id − |V|1/2(∂ − A0)−1U|V|1/2)φ = O.

Here, |V|1/2(∂ − A0)−1U|V|1/2 is the Birman–Schwinger operator as considered in §4. To proceed,
we establish Green’s kernel corresponding to |V|1/2(∂ − A0)−1U|V|1/2. Suppose (∂ − A0)−1 has a
representation

(∂ − A0)−1 : ϕ(x) �→
∫
R

G(x; y)ϕ(y) dy,

for some function G ∈ L2(R2; Cn×n), which in this context here without loss of generality, we will
also assume is continuously differentiable everywhere except along the diagonal y = x. Note
that G also depends on λ through A0 = A0(λ). However, we suppress the dependence on λ in
all the relevant variables for the moment. Classical theory implies that we require G = G(x; y)
to satisfy the pair of differential equations ∂xG − A0G = δ(x − y)id and −∂yG − GA0 = δ(x − y)id.
Two formal calculations that can retrospectively be made rigorous reveal this is the correct
prescription for G = G(x; y). First, we observe (∂x − A0)

∫
G(x; y)ϕ(y) dy = ∫

δ(x − y)ϕ(y) dy = ϕ(x).
Second, we observe

∫
G(x; y)(∂y − A0)ϕ(y) dy = ∫

(−∂yG(x; y) − G(x; y)A0))ϕ(y) dy = ϕ(x). We know
the solutions to the equations for Green’s function away from the diagonal already. Indeed,
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Green’s function G = G(x; y) with the correct decay properties in the far field is given by the
following semi-separable form which can be confirmed by direct substitution,

G(x; y) :=
{

−Y−
0 (x)Ẑ+

0 (y), x ≤ y,

Y+
0 (x)Ẑ−

0 (y), x > y.

The second relation of the unitary relations in lemma 5.5 is equivalent to Y−
0 Ẑ+

0 + Y+
0 Ẑ−

0 = id.
The unitarily scaled solutions Ẑ±

0 in Green’s kernel thus guarantee the natural jump condition
G(x+; x) − G(x−; x) = id across the diagonal y = x is satisfied.

Remark 6.1. The solutions Y±
0 and Ẑ±

0 have simple exponential forms as indicated at the end
of §5. Indeed using these, we can express G in the form G = G(x − y), consistent with the kernel
result for Hilbert–Schmidt operators stated prior to the practical test for Hilbert–Schmidt class
lemma 3.2. Indeed, we note that Y±

0 (x)Ẑ∓
0 (y) ≡ U± exp(Λ±(x − y))Ŵ∓.

Green’s kernel corresponding to |V|1/2(∂ − A0)−1U|V|1/2 has the semi-separable form
|V(x)|1/2G(x; y)U(y)|V(y)|1/2. Upon closer inspection, the unitary relation Y−

0 Ẑ+
0 + Y+

0 Ẑ−
0 = id

implies that the diagonal elements of the Green’s kernel matrix G = G(x; y) have a unit jump at the
diagonal y = x, while the off-diagonal elements are continuous. In addition, the unitary relation
implies that along the diagonal y = x, we have

|V(x)|1/2Y−
0 Ẑ+

0 U(x)|V(x)|1/2 + |V(x)|1/2Y+
0 Ẑ−

0 U(x)|V(x)|1/2 = |V(x)|1/2U(x)|V(x)|1/2

⇒ tr |V(x)|1/2Y−
0 Ẑ+

0 U(x)|V(x)|1/2 + tr |V(x)|1/2Y+
0 Ẑ−

0 U(x)|V(x)|1/2 = tr V(x).

Hence, if assume tr V ≡ 0, then along the diagonal y = x, we have

−tr |V(x)|1/2Y−
0 Ẑ+

0 U(x)|V(x)|1/2 = tr |V(x)|1/2Y+
0 Ẑ−

0 U(x)|V(x)|1/2,

and thus the matrix trace of the kernel |V(x)|1/2G(x; y)U(y)|V(y)|1/2 is continuous at the diagonal
y = x. We can thus unambiguously define the trace of |V|1/2(∂ − A0)−1U|V|1/2.

Definition 6.2 (Trace for discontinuous kernels). For potential peturbations V which are
w2-integrable, uniformly bounded and continuous on R and with tr V ≡ 0, we define the trace
of the linear operator |V|1/2(∂ − A0)−1U|V|1/2, for which (∂ − A0)−1 has a kernel with a jump
along the diagonal, by

tr(|V|1/2(∂ − A0)−1U|V|1/2) := tr
∫
R

(−|V(x)|1/2Y−
0 (x)Ẑ+

0 (x)U(x)|V(x)|1/2) dx.

Remark 6.3. We note the following: (i) consider the examples of trace class operators in
§4. Green’s kernels corresponding to |V|1/2(∂ − A0)−1U|V|1/2 are given by |v(x)|1/2G12(x; y)v(y)
|v(y)|−1/2 and |v(x)|1/2G1n(x; y)v(y)|v(y)|−1/2 in the first and second examples, respectively. They
both involve the off-diagonal elements of G only and hence these kernels are continuous; (ii) by
analogous arguments to those above, if tr V ≡ 0, then along the diagonal y = x the matrix trace
of the kernel G(x; y)V(y) corresponding to (∂ − A0)−1V is also continuous. Indeed, using the
invariance of the trace to the order of the product of two operators, the matrix traces of G(x; y)V(y)
and |V(x)|1/2G(x; y)U(y)|V(y)|1/2 are equal along the diagonal y = x; (iii) consider the scalar
Schrödinger operator ∂2 − c0 − v which is a special case of both examples in §4. Re-writing it as a
first-order operator and focusing on (∂ − A0)−1V, we observe if G = G(x − y) is the 2 × 2 Green’s
kernel corresponding to (∂ − A0)−1, then Green’s kernel corresponding to (∂ − A0)−1V is the 2 × 2
matrix whose left column contains G12v and G22v and whose right column is zero. The Fourier
transforms of G12 and G22 are Ĝ12(ξ ) = −(ξ2 − c0)−1 and Ĝ22 = −iξ (ξ2 − c0)−1. We note Ĝ12 is
square integrable with respect to the weight function w, but Ĝ12 is not. Indeed, they are explicitly
given by G12(x) = (π/2c0)1/2 exp(−c1/2

0 |x|) and G22(x) = (π/2c0)1/2∂x exp(−c1/2
0 |x|). From Gohberg

et al. [19, p. 244], we have the following result for scalar separable integral operators whose kernel
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functions either side of the diagonal y = x are continuous, up to and including the diagonal. If
the operator is trace class, then the kernel function is continuous on R

2. Our results in (i) for the
corresponding Birman–Schwinger operator are consistent with this. Further, as the scalar operator
corresponding to G22 has a jump along the diagonal y = x, we conclude it cannot be trace class;
and (iv) Brislawn [23,24] has shown how to define the trace of a trace class operator with a kernel
that is only square integrable and thus not necessarily continuous. This is achieved by averaging
on cubes via the Hardy–Littlewood maximal function. In particular, the plain Volterra operator on
L2([0, 1]; R) with kernel equal to 1 below the diagonal and 0 above, has trace equal to 1

2 . However,
it has singular values given by 2/(π (2n + 1)) and thus is not trace class [23, Example 3.2].

We now establish the main result of this section, our equivalence theorem. Before we
state and prove it, we require the following key lemma. It concerns the solutions Y− of the
eigenvalue problem (∂ − A0 − V)Y = O whose column span coincides with the subspace of
solutions decaying as x → −∞. Indeed, the crucial insight is that by the variation of constants
formula, the solutions Y− satisfy the Volterra integral equation

Y− = Y−
0 +

∫ x

−∞
exp(A0(x − y))V(y)Y−(y) dy.

Lemma 6.4 (Volterra integral equation). Assume tr V ≡ 0 and A0 and V = V(x) satisfy the
conditions stated above. Let J denote the integral operator with kernel H(x − y)|V(x)|1/2 exp(A0
(x − y))U(y)|V(y)|1/2, where H = H(x) is the Heaviside step function. First, if we set φ− := |V|1/2Y− and
φ−

0 := |V|1/2Y−
0 , then Y− solves the eigenvalue problem (∂ − A0 − V)Y = O with Y− ∼ Y−

0 as x → −∞
if and only if φ− satisfies

φ− = φ−
0 + Jφ−.

Equivalently we have φ−
0 = (id − J)φ−. Second, an equivalent expression for the kernel for J is given by

H(x − y)(φ−
0 (x)Ẑ+

0 (y) + φ+
0 (x)Ẑ−

0 (y))U(y)|V(y)|1/2, where φ+
0 := |V|1/2Y+

0 .

Proof. Preceding the lemma, we already established that Y− satisfies the Volterra integral
equation shown if and only if Y− solves the eigenvalue problem (∂ − A0 − V)Y = O with Y− ∼ Y−

0
as x → −∞. To show Y− satisfies the Volterra integral equation preceding the lemma if and only
if φ− satisfies the Volterra integral equation shown in the lemma, follows by premultiplying the
Volterra integral equation for Y− by |V(x)|1/2 and using the definition of φ−. The equivalence of
the kernels follows from the unitary relation U−Ŵ+ + U+Ŵ− = id and that Y±

0 (x) = exp(A0x)U±

and Ẑ±
0 (y) = Ŵ± exp(−A0y). �

Theorem 6.5 (Equivalence). Assume the operator |V|1/2(∂ − A0)−1U|V|1/2 is trace class, tr V ≡ 0
and A0 and V = V(x) satisfy the conditions stated above. Then the transmission coefficient for the
eigenvalue problem (∂ − A0 − V)Y = O and Fredholm determinant of id − |V|1/2(∂ − A0)−1U|V|1/2 are
equal:

lim
x→+∞ det((Ẑ+

0 Y−)(x)) = det1(id − |V|1/2(∂ − A0)−1U|V|1/2).

Proof. First, we focus on the transmission coefficient. As we have ∂Y− = (A0 + V)Y− and ∂Ẑ+
0 =

−Ẑ+
0 A0, the product rule implies ∂(Ẑ+

0 Y−) = Ẑ+
0 VY−. Using the unitary relations in lemma 5.5,

we know limx→−∞(Ẑ+
0 Y−)(x) = id and hence

lim
x→+∞ det((Ẑ+

0 Y−)(x)) = det
(

id +
∫
R

(Ẑ+
0 VY−)(y) dy

)
.

We can also establish this result by premultiplying the integral equation for Y− by Ẑ+
0 , using the

unitary relations, and then applying the commutable operations of large x limit and determinant.
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Second, we focus on the Fredholm determinant. The key observation is that we can
decompose the operator |V|1/2(∂ − A0)−1U|V|1/2 as follows. Direct computation using the kernel
|V(x)|1/2G(x; y)U(y)|V(y)|1/2, where G is the kernel corresponding to (∂ − A0)−1, reveals

|V|1/2(∂ − A0)−1U|V|1/2 = J − R,

where J is the Volterra integral operator given in the Volterra integral equation lemma 6.4 and R
is the integral operator with kernel given by

φ−
0 (x)Ẑ+

0 (y)U(y)|V(y)|1/2.

Note R has separable kernel and is thus a finite rank operator and trace class. As we have ‖J‖I1 ≤
‖|V|1/2(∂ − A0)−1U|V|1/2‖I1 + ‖R‖I1 and |V|1/2(∂ − A0)−1U|V|1/2 is trace class by assumption,
we deduce J is also trace class. Using the product decomposition id − J + R = (id − J)(id +
(id − J)−1R and provided J and (id − J)−1R) are trace class, we have

det1(id − J + R) = det1((id − J)(id + (id − J)−1R))

= det1(id − J) det1(id + (id − J)−1R).

As we see presently (id − J)−1R is trace class as it has a separable kernel.
Third, we compute det1(id − J). Using the relation det exp = exp tr, we have

log det1(id − J) = −
∑
�≥1

1
�

tr J�.

As J is a Volterra integral operator involving the Heaviside function, using the trace power
formula lemma 3.4, we observe that tr J� will involve an integral over R

� of an integrand with a
factor H(y1 − y2)H(y2 − y3) · · · H(y�−1 − y�)H(y� − 1) of a product of Heaviside functions. Hence
for all � ≥ 2, the quantity tr J� is zero as it is an integral of an integrand which is zero everywhere
except on a subset of �-dimensional measure zero. We also observe tr J = 0. This follows using the
unitary relation in lemma 5.5 and the assumption tr V ≡ 0 which imply the matrix trace of the
kernel of J is continuous on the diagonal. Hence, we deduce det1(id − J) = 1.

Fourth, we establish that (id − J)−1R is trace class and compute det1(id + (id − J)−1R). Using
that φ−

0 = (id − J)φ− from the Volterra integral equation lemma 6.4, we see

((id − J)−1(Rϕ))(x) = (id − J)−1φ−
0 (x)

∫
R

Ẑ+
0 (y)U(y)|V(y)|1/2ϕ(y) dy

= φ−(x)
∫
R

Ẑ+
0 (y)U(y)|V(y)|1/2ϕ(y) dy.

Hence, (id − J)−1R has separable kernel φ−(x)Ẑ+
0 (y)U(y)|V(y)|1/2 and is thus trace class. Then,

using the result for separable kernels in corollary 3.5, we find for any ε > 0 sufficiently small,

log det1(id + ε(id − J)−1R) =
∑
�≥1

(−1)�−1

�
ε� tr((id − J)−1R)�

=
∑
�≥1

(−1)�−1

�
ε� tr

(∫
R

Ẑ+
0 (y)U(y)|V(y)|1/2φ−(y) dy

)�

= log det
(

id + ε

∫
R

(Ẑ+
0 VY−)(y) dy

)
.

By analytic continuation, we can extend this result to ε = 1. Then removing the logarithms, this
equals our expression above for the transmission coefficient. �

Remark 6.6. We have the following observations on the results above: (i) at the core of the
equivalence theorem is, for solutions decaying in the far field, on one hand we have the Fredholm
determinant associated with the solvability of (id − J + R)φ = O, while on the other we have the
transmission coefficient associated with the solvability of (id − J)φ− = φ−

0 ; (ii) we note we have
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(∂ − A0)|V|−1/2J|V|1/2 = V and (∂ − A0)|V|−1/2R|V|1/2 = O; (iii) in essence, in the final calculation
in the proof of theorem 6.5, we demonstrate that the trace of any power of (id − J)−1R equals the
trace of the corresponding power of

∫
(Ẑ+

0 VY−)(y) dy. Hence, we could prove the equivalence of
the determinants using the Plemelj–Smithies formula for det1(id + ε(id − J)−1R) which is analytic
in C [25, Theorem 6.8]; (iv) as we can swap the order of two arguments under the trace, using
the trace formula lemma 3.4, we observe the traces of all powers of |V|1/2(∂ − A0)−1U|V|1/2 and
(∂ − A0)−1V coincide. Hence, the Fredholm determinants of the two operators coincide, assuming
the Fredholm determinant of id − (∂ − A0)−1V exists; (v) if tr V �= 0, then we need to include the
factor exp(−tr J) in the evaluation of the Fredholm determinant; (vi) the approach we used in the
proof of the equivalence theorem is based on the standard approach—decomposing the given
operator with semi-separable kernel into the sum of a Volterra and finite rank operators—which
is given in Gesztesy et al. [15] for Hilbert–Schmidt operators. They use results from Gesztesy &
Makarov [14], Gohberg et al. [26] and Gohberg et al. [19]; and (vii) Gesztesy et al. [15] do not
assume strict hyperbolicity which we have done to keep the arguments as succinct as possible.

7. Distinct far fields
Our goal in this section is to show that the equivalence of the transmission coefficient and
Fredholm determinant carries over to the case when the far field limits of the eigenvalue problem
(∂ − A0 − V)Y = O are distinct. The Evans function and transmission coefficient are well defined
in this instance with only minor modification to their construction in §5—which is the standard
approach. What underlies our approach here is that we decompose A0 + V in such a way that
A0 = A0(x) ensures the distinct far field limits are satisfied so V → O as x → ±∞. We assume this
decomposition in this section, as it also gives us the natural framework to show the equivalence
of the transmission coefficient and a Fredholm determinant with only a slight modification to
the arguments in §6. We also assume in each far field, A0 is constant and strictly hyperbolic,
with the same hyperbolic splitting (the number of eigenvalues with positive real parts, say k, and
negative real parts, consequently n − k). We can thus also assume V → O as x → ±∞. Further, we
assume both A0 and V are continuous and uniformly bounded. To construct the Evans function or
transmission coefficient, we do not need to perform this decomposition; however, the properties
we derive for the solutions of the equations

∂Y0 = A0Y0 and ∂Z0 = −Z0A0

are crucial to our equivalence proof. We now have two separate constant coefficient equations in
the far field corresponding to ∂Y0 = A0Y0. However as before in §5, given the identical hyperbolic
splitting of the two far field limits of A0, there is k-dimensional subspace of solutions that
decays exponentially as x → −∞, and an (n − k)-dimensional subspace of solutions that decays
exponentially as x → +∞. We suppose these subspaces are given by the column span of solutions
Y−

0 ∈ C
n×k and Y+

0 ∈ C
n×(n−k), respectively. For the adjoint equation ∂Z0 = −Z0A0, there exist

solutions collected as rows in the matrices Z−
0 ∈ C

(n−k)×n and Z+
0 ∈ C

k×n which decay as x → −∞
and x → +∞, respectively. Solutions of commensurate dimension Y± exist to the full problem
(∂ − A0 − V)Y = O such that Y± ∼ Y±

0 as x → ±∞.
We can recover the unitary relations of lemma 5.5 for Y±

0 and suitably defined scaled solutions
Ẑ±

0 despite distinct far fields. The diagonal relation for Y±
0 and Z±

0 becomes the following.

Lemma 7.1 (Diagonal block relation). The solutions Y±
0 and Z±

0 satisfy the relation(
Z+

0
Z−

0

)
(Y−

0 Y+
0 ) =

(
D− O
O D+

)
,

where D± are constant matrices.
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Proof. We observe, by direct computation for any pair of solutions Y0 ∈ C
n×1 and Z0 ∈ C

1×n,
that ∂(Z0Y0) = O and so Z0Y0 is constant. Asymptotically, we have Y−

0 ∼ exp(A0(−∞)x)U− and
Z−

0 ∼ W− exp(−A0(−∞)x) where the columns of U− and rows of W− are the right
and left eigenvectors of A0(−∞). Similarly, we have Y+

0 ∼ exp(A0(+∞)x)U+ and Z+
0 ∼

W+ exp(−A0(+∞)x) where the columns of U+ and rows of W+ are the right and left eigenvectors
of A0(+∞). Then using that W−U− = O and W+U+ = O, we conclude Z−

0 Y−
0 = O and Z+

0 Y+
0 = O.

The remaining constant matrices are thus Z+
0 Y−

0 = D− and Z−
0 Y+

0 = D+. �

Note that the constant matrices D± are in general no longer diagonal as Y−
0 and Z−

0 , and, Y+
0

and Z+
0 satisfy different asymptotic problems. We must keep in mind that Y±

0 and Z±
0 are the

solutions generated by A0 = A0(x). We assume the constant matrices Z+
0 Y−

0 = D− and Z−
0 Y+

0 = D+
are non-singular. Generically, this will be the case—see the discussion in §8. This guarantees
the free transmission coefficient is non-zero. Using the diagonal block relation lemma 7.1, it
guarantees the free Evans function is non-zero. This guarantees (∂ − A0)−1 exists (this was
automatic in the equal far field case under the strict hyperbolicity assumption on the constant
matrix A0). With this proviso, the block diagonal relation implies the framework we provided
in §5 for establishing the relation between the Evans function and the transmission coefficient
carries through essentially unchanged. We can mirror all the results in §5 up to and including
the schematic formula between the Evans function and transmission coefficient. Then again with
the same proviso, the scaled unitary solutions are defined as for the equal far field case in §5 by
Ŵ± := D−1

∓ W± and Ẑ±
0 := D−1

∓ Z±
0 .

Lemma 7.2 (Unitary relations reprise). Unitary relations for Y±
0 and Ẑ±

0 hold for distinct far fields.

Proof. Making the corresponding change of variables in the diagonal block relation above
generates the same diagonal block relation but with Ẑ±

0 in place of Z±
0 and the appropriate identity

matrices in place of D± on the right. The two matrices on the left of the new diagonal block relation
are then inverses of each other and the unitary relation in reverse order follows. �

The framework we provided in §6 for establishing the relation between the transmission
coefficient and the Fredholm determinant det1(id − |V|1/2(∂ − A0)−1U|V|1/2), where now
A0 = A0(x) carries through with only a couple of modifications which we now outline. Green’s
function G = G(x, y) associated with (∂ − A0)−1 has the same semi-separable form except that
Y±

0 and Ẑ±
0 are now the solutions generated by A0 = A0(x). Again the unitary relations imply

the jump condition for G across the diagonal line y = x is satisfied. If we assume tr V ≡ 0, then
the trace of |V|1/2(∂ − A0)−1U|V|1/2 or (∂ − A0)−1V is defined in the same way. The Volterra
integral equation φ− = φ−

0 + Jφ− of lemma 6.4 still applies but now only for J defined via the
kernel H(x − y)(φ−

0 (x)Z+
0 (y) + φ+

0 (x)Z−
0 (y))U(y)|V(y)|1/2. This requires independent proof which

does not rely on A0 being constant as follows. Direct computation using the unitary relations and
that (∂ − A0)Y±

0 = O reveals

(∂ − A0)(Y−
0 + |V|−1/2J|V|1/2Y−)(x)

= (∂ − A0)(|V|−1/2J|V|1/2Y−)(x)

= (∂ − A0)
∫ x

−∞
(Y−

0 (x)Ẑ+
0 (y) + Y+

0 (x)Ẑ−
0 (y))V(y)Y−(y) dy

= (Y−
0 (x)Ẑ+

0 (x) + Y+
0 (x)Ẑ−

0 (x))V(x)Y−(x)

= V(x)Y−(x).

Hence, if Y− = Y−
0 + |V|−1/2J|V|1/2Y−, we have just shown that (∂ − A0)Y− = VY−. Premulti-

plying this Volterra equation for Y− by |V|1/2 and using the definitions for φ− and φ−
0 gives the

result. The proof of the equivalence theorem 6.5 now follows step by step with the solutions Y±
0

and Ẑ±
0 those generated by A0 = A0(x). We summarize these conclusions as follows.
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Theorem 7.3 (Equivalence reprised). Assume ∂ − A0 is invertible, |V|1/2(∂ − A0)−1U|V|1/2 is
trace class, tr V ≡ 0, A0 = A0(x) and V = V(x) are both continuous and uniformly bounded and V = V(x)
is w2-integrable. Further assume in each far field A0 is constant and strictly hyperbolic, with the same
hyperbolic splitting, and V → O as x → ±∞. Then the transmission coefficient for the eigenvalue problem
(∂ − A0 − V)Y = O and Fredholm determinant of id − |V|1/2(∂ − A0)−1U|V|1/2 are equal.

8. Conclusion
We have established the equivalence of the Evans function and transmission coefficient for the
eigenvalue problem (∂ − A0 − V)Y = O, in the sense that the ratio of the Evans function to the
free Evans function is equal to the ratio of the transmission coefficient to the free transmission
coefficient. As we remarked at the end of §5, the Evans function and free Evans function are
invariant to the unitary rescaling, as is the ratio of the transmission coefficient to the free
transmission coefficient. Hence, the Fredholm determinant det1(id − |V|1/2(∂ − A0)−1U|V|1/2),
which equals the transmission coefficient with unitarily scaled solutions for which the free
transmission coefficient is unity, equals the ratio of the transmission coefficient to the free
transmission coefficient—whether the unitary scaling is used or not. These statements hold for
equal or distinct far fields. In other words, we have established that

Evans function
Free Evans function

= Transmission coefficient
Free transmission coefficient

= Fredholm determinant.

Let us now pull back our perspective to our original problem of determining values of λ ∈ C

for which there exist solutions to (∂ − A0 − V)Y = O where A0 = A0(x; λ) in general. The locale of
the essential spectrum is determined by the values of λ for which the far field limits of A0 are
no longer strictly hyperbolic—at least one eigenvalue of either limit becomes pure imaginary
characterizing the continuous spectrum or the hyperbolic splitting no longer matches. Away
from the essential spectrum, we must choose A0 = A0(x; λ) suitably so that (∂ − A0)−1 exists—
as mentioned previously this is not an issue in the equal far field case. Hence, away from
the essential spectrum, the free Evans function and free transmission coefficients are bounded
and non-zero. As the Evans function is analytic in that region, the product of the free Evans
function and the ratio of the transmission and free transmission coefficients is analytic there, as
well as the product of the free Evans function and the Fredholm determinant. Zeros of these
product quantities must thus coincide in this region. Those zeros coincide with pure point
eigenvalues with coincident multiplicity. We remark that for eigenvalue problems of the form
(∂ − A0 − V)Y = O that arise in the study of the stability of travelling waves, the origin is an
eigenvalue associated with translation invariance. In some cases, the origin is embedded in
the essential spectrum within which further analysis of all the discriminants above is required.
Some instructive explicit examples illustrating the relation, between the Evans function and
transmission coefficient can be found in Kapitula & Sandstede [13] and Kapitula [4], between
the transmission coefficient and Fredholm determinant can be found in Simon [12, p. 51] and
between the Evans function and 2-modified Fredholm determinant in Gesztesy et al. [15] and
Gesztesy et al. [16].

For the eigenvalue problem (∂ − A0 − V)Y = O where A0 = A0(x; λ) and λ ∈ C is the spectral
parameter, our interest surrounds families of operators ∂ − A0 − V parametrized by λ. For
example, the analyticity of the Evans function means we can conduct a global search for
eigenvalues via contour integration and the residue theorem in any subregion away from
the essential spectrum. Here, the family of operators consists of those associated with values
of λ parametrizing the boundary contour of the subregion. Hence the object of interest is a
determinant line bundle. See Quillen [27], Jost [28, Section 6.9], Deng & Nii [29] and Alexander
et al. [2] for constructions of such line bundles. In Alexander et al.’s line bundle construction,
the fibres are explicitly the Evans function. These constructions suggest we define, away from
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the essential spectrum, the determinant of the unbounded Fredholm operator ∂ − A0 − V by the
Evans function corresponding to the problem (∂ − A0 − V)Y = O, i.e. we set

det(∂ − A0 − V) := Evans function,

or for a coordinate-free definition, as the ratio of the Evans function to the free Evans function.
With the definition above, the determinant det(∂ − A0) is the free Evans function. And in this
paper, assuming tr V ≡ 0, we have established that

det(∂ − A0 − V) = det(∂ − A0) · det1(id − |V|1/2(∂ − A0)−1U|V|1/2,

representing the natural determinant multiplicative property for such operators. Elliptic
operators for which this does not hold, i.e. when there are multiplicative anomalies, is a research
field in itself with important applications in mathematical physics. Here, the zeta-regularized,
Quillen, Segal and regularized Fredholm determinants and their relations are studied. See
Quillen [27], Kontsevich & Vishik [30] and Scott & Wojciechowski [31] for more details.

Finally, in the study of the linear stability of travelling wave solutions to nonlinear partial
differential equations often numerical simulation is required in the search for eigenvalues.
Indeed, one of the main motivations for establishing the connection between the Evans
function and Fredholm determinant was the need to compute the stability of multidimensional
travelling waves (e.g. [32]). Gesztesy et al. [16, Section 4] established important convergence
results for suitable Galerkin approximations for the multidimensional problem. Humpherys &
Zumbrun [33], Ledoux et al. [34] and Ledoux et al. [35] have also designed numerical methods
for computing the Evans function for the multidimensional case. The computation of Fredholm
determinants also naturally arise in the computation of the Maslov index for linear symplectic
systems, in particular in the multi-dimensional case which relies on computing flows in the
Fredholm Lagrangian Grassmannian manifold [36,37]. Finally, a natural question to ask that
is still open is, as numerical tools, which of the Evans function, transmission coefficient,
Fredholm determinant or Galerkin-type direct projection methods has the optimal complexity?
See Karambal [38] for some results in this direction. A comprehensive study of this complexity
issue would be a useful follow-on project.
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Appendix A. Proof of the Hilbert–Schmidt class lemma
Proof. First, given K ∈ I∞, the existence of a kernel function G ∈ L2(R2; Cn×n) if and only if

K ∈ I2, follows from standard existence theory [17, p. 210]. Second, we prove the isometry
of the map G �→ K from L2(R2; Cn×n) to I2. Suppose the set of C

n-valued functions {ϕm}m≥1
are an unitary basis for L2(R; Cn). The set {ϕ� ⊗ ϕ†

m}�,m≥1 is a unitary basis for the Hilbert
space L2(R2; Cn×n). Hence for any G ∈ L2(R2; Cn×n), there exists a double sequence of constants
G�,m ∈ C

n×n whose trace is square-summable, such that G(x; y) =∑
�,m≥1 G�,mϕ�(x)ϕ†

m(y). By direct
calculation, we have

tr |K|2 =
∑
m≥1

〈ϕm, K†Kϕm〉L2(R;Cn)

=
∑
m≥1

〈Kϕm, Kϕm〉L2(R;Cn)
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=
∑
m≥1

∫
R

(Kϕm)†(x)(Kϕm)(x) dx

=
∑
m≥1

∫
R3

(G(x, ξ )ϕm(ξ ))†(G(x, η)ϕm(η)) dξ dη dx

=
∑
m≥1

∫
R3

ϕ†
m(ξ )G†(x, ξ )G(x, η)ϕm(η) dξ dη dx.

Using the expansion for G = G(x; y) above we find,

tr |K|2 =
∑

m,k,�,p,q≥1

∫
R3

ϕ†
m(ξ )(Gk,�ϕk(x)ϕ†

� (ξ ))†(Gp,qϕp(x)ϕ†
q (η))ϕm(η) dξ dη dx

=
∑

m,k,�,p,q≥1

∫
R3

ϕ†
m(ξ )ϕ�(ξ )ϕ†

k (x)G†
k,�Gp,qϕp(x)ϕ†

q (η)ϕm(η) dξ dη dx

=
∑

m,k,p≥1

∫
R

ϕ†
k (x)G†

k,mGp,mϕp(x) dx

= tr
∑

m,k,p,r≥1

∫
R2

ϕm(y)ϕ†
k (x)G†

k,mGp,rϕp(x)ϕ†
r (y) dx dy

= tr
∑

m,k,p,r≥1

∫
R2

(Gk,mϕk(x)ϕ†
m(y))†(Gp,rϕp(x)ϕ†

r (y)) dx dy

=
∫
R2

tr G†(x; y)G(x; y) dx dy

= ‖G‖2
L2(R2;Cn×n). �

Appendix B. Proof of the trace formula lemma
Proof. For any � ∈ N, suppose that K1, K2, . . . , K� are Hilbert–Schmidt operators with canonical

respective kernels G1, G2, . . . , G�. As in the proof of the Hilbert–Schmidt class lemma above, there
exists a double sequence of constants G(�)

p,m ∈ C
n×n whose trace is square-summable, such that

G�(x; y) =∑
p,m≥1 G(�)

p,mϕp(x)ϕ†
m(y). Then by direct computation, we see that

tr K1 · · · K� =
∑
m≥1

〈ϕm, K1 · · · K�ϕm〉L2(R;Cn)

=
∑
m≥1

∫
R

ϕ†
m(x)(K1 · · · K�ϕm)(x) dx

=
∑
m≥1

∫
R�+1

ϕ†
m(x)G1(x; y1)G2(y1; y2) · · · G�(y�−1; y�)ϕm(y�) dy� · · · dy1 dx

=
∑

m,p,q≥1

∫
R�+1

ϕ†
m(x)G1(x; y1) · · ·

· · · G�−1(y�−2; y�−1)G(�)
p,qϕp(y�−1)ϕ†

q (y�)ϕm(y�) dy� · · · dy1 dx

=
∑

m,p≥1

∫
R�

ϕ†
m(x)G1(x; y1) · · · G�−1(y�−2; y�−1)G(�)

p,mϕp(y�−1) dy�−1 · · · dy1 dx

= tr
∫
R�

∑
m,p≥1

G1(x; y1) · · · G�−1(y�−2; y�−1)G(�)
p,mϕp(y�−1)ϕ†

m(x) dy�−1 · · · dy1 dx
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= tr
∫
R�

G1(x; y1)G2(y1; y2) · · · G�−1(y�−2; y�−1)G�(y�−1; x) dy�−1 · · · dy1 dx

= tr
∫
R�

G1(y1; y2)G2(y2; y3) · · · G�−1(y�−1; y�)G�(y�; y1) dy� · · · dy1.

The proof for the case of a single trace class operator K with continuous kernel G exactly follows
the argument above with � = 1. �
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