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ABSTRACT

This dissertation consists of two parts that focus on two interrelated areas of Applied

Mathematics. The first part explores fundamental properties and applications of functions

with values in L-spaces. The second part is connected to Approximation Theory and dives

deeper into the analysis of functions with values in specific classes of L-spaces (in particular,

L-spaces of sets).

In the first project devoted to the theory and numerical methods for the solution of

integral equations, we explore linear Volterra and Fredholm integral equations for functions

with values in L-spaces (which are generalizations of set-valued and fuzzy-valued functions).

In this study, we prove the existence and uniqueness of the solution for such equations,

suggest algorithms for finding approximate solutions, and study their convergence. The

exploration of these equations is of great importance given the wide variety of their ap-

plications in biology (population modeling), physics (heat conduction), and engineering

(feedback systems), among others. We extend the aforementioned results of existence and

uniqueness to nonlinear equations. In addition, we study the dependence of solutions of such

equations on variations in the data. In order to be able to better analyze the convergence of

the suggested algorithms for the solutions of integral equations, we develop new results on

the approximation of functions with values in L-spaces by adapted linear positive operators

(Bernstein, Schoenberg, modified Schoenberg operators, and piecewise linear interpolation).

The second project is devoted to problems of interpolation by generalized polynomials

and splines for functions whose values lie in a specific L-space, namely a space of sets.

Because the structure of such a space is richer than the structure of a general L-space,

we have additional tools available (e.g., the support function of a set) which allow us to

obtain deeper results for the approximation and interpolation of set-valued functions. We

are working on defining various methods of approximation based on the support function

of a set. Questions related to error estimates of the approximation of set-valued functions

by those novel methods are also investigated.



To the memory of my grandfather P. Movchan
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CHAPTER 1

INTRODUCTION

This dissertation is devoted to the development of some topics of numerical analysis

in L-spaces. This gives a unified approach to the numerical solution of various problems

connected with set-valued and fuzzy-valued functions. In particular, we consider problems of

approximation of functions with values in L-spaces and obtain error estimates for quadrature

formulas. We prove also theorems of existence and uniqueness of solution of linear and

nonlinear integral equations and we study in detail questions of the numerical solution of

linear integral equations for such functions.

In the second chapter of this dissertation, we describe some applications of set-valued

and fuzzy-valued functions and give the main definitions related to spaces of sets and fuzzy

sets.

The third chapter is devoted to the development of a calculus of functions with values

in L-spaces. We present here definitions and examples of L-spaces. Further we define

the Hukuhara type difference and derivative and investigate their properties. Finally, we

describe the Riemannian integral and its main properties for functions with values in L-

space.

Chapter 4 is devoted to methods of an approximate solution of linear Fredholm and

Volterra integral equations for functions with values in L-spaces. In that chapter, we obtain

estimations of the error in a piecewise linear approximation and the error of quadrature

formulas. We also describe collocation and quadrature formula methods for the solution of

such equations and perform the convergence analysis for the proposed methods. We also

obtain estimates of the rate of convergence of these algorithms. To do this, we essentially use

the results on the approximation theory and the theory of quadrature formulas developed

in the third chapter. In addition we illustrate our results with some numerical examples.

In Chapter 5, we study nonlinear Fredholm and Volterra integral equations. We prove

theorems of existence and uniqueness of their solutions and investigate the data dependence

of their solutions.

We perform the adaptation of classical approximation operators to the case of functions
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with values in L-spaces in Chapter 6. In particular, we consider the adaptation of Bernstein,

Schoenberg, and modified Schoenberg operators. These classic operators can be used to

construct methods for solving integral equations and for the analysis of their convergence.

Finally, in Chapter 7, we consider some problems of approximation of set-valued func-

tions. In the spaces of sets, we have additional tools available (e.g., the support function of

a set) which allow us to obtain deeper results for the approximation and interpolation of

set-valued functions. The results presented here can be applied to the numerical analysis

of the various problems connected to set-valued functions. We illustrate this with some

examples.



CHAPTER 2

SET-VALUED AND FUZZY-VALUED

FUNCTIONS

In this chapter, we present some applications of set-valued and fuzzy-valued functions.

We also list here definitions of basic concepts related to set-valued and fuzzy-valued func-

tions.

2.1 Applications of set-valued and fuzzy-valued functions

In many applied fields, we are not able to require maps to be single-valued. A wide

variety of questions which range from social and economic sciences to physical and biological

sciences lead to functions with values that are sets in finite or infinite dimensional spaces,

or that are fuzzy sets. The need for set-valued maps was recognized and they were first

investigated during the first three decades of the 20th century (see [55], [20], [44]), but for

a long time, they were mainly considered a generalization for its own sake of the ordinary

function case, because of a lack of motivating applications. The rapid development of the

field first occurred during the 1960s (see [39], [51], [53]) due to the many new questions

that arose in other fields of science and that required mathematical analysis. This need of

the concept of set-valued mappings in applied fields helped overcome pure treatment of this

new branch of mathematics and maintains a constant development of it nowadays due to

more and more new questions that involve set-valued analysis (for example decision-making

problems see [23] and [33]).

As the name suggests, a set-valued function is a function whose values are sets instead

of numbers. One can form an arithmetic of sets and an associated calculus of set-valued

functions that parallels in part ordinary arithmetic and calculus, but that also exhibits some

significant differences. There is now a large body of literature devoted to set-valued maps

(see for example [37], [38], [8] and references therein). If one wants to take into account

uncertainties, modeling errors, disturbances, etc., one is led naturally to set-valued maps

and inclusions. Also, set-valued maps arise when we wish to treat a problem qualitatively,

by looking for solutions common to a set of data that share the same qualitative properties
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with applications in qualitative physics (branch of Artificial Intelligence). Another area

where set-valued functions are very useful is control theory with the first contributions made

by Wazewski and Filippov in the early sixties and a wide variety of modern applications

nowadays. Motivation to use set-valued functions comes also from problems with constraints

and mathematical programming as well as from optimization problems for which the solution

is not unique (see [40]).

More examples of modern applications that involve set-valued maps include 3-D printing

and 3-D scanning, image processing, game theory, biomathematics, and economic analysis

(problems of competitive equilibrium, mean demand, coalition production economies). In

econometric applications, respondents may report a salary bracket instead of the exact

salary or the profit of a firm may be intentionally converted to an interval to ensure

anonymity. These are only a few of a wide range of problems where set-valued maps arise.

The idea of a fuzzy set was first proposed by Lotfi Zadeh (see [68]) in the 1960s as

a way of handling uncertainty that is due to inaccuracy or indeterminacy rather then to

randomness (see [27] and references therein). The basic idea is that each element x ∈ X is

assigned a membership grade u(x) taking values in [0, 1], with u(x) = 1 corresponding to

full membership, u(x) = 0 to non-membership, and 0 < u(x) < 1 to partial membership.

The function u itself is often used synonymously for the fuzzy set. Fuzzy-valued functions

and fuzzy logic are widely used nowadays in a great range of problems. We name a few

here.

We start with applications in biology. One-sided fuzzy numbers are used in mathematical

models for the spread of infectious diseases with a rate of contact that varies seasonally

(see [19]). One-sided fuzzy numbers form a particular case of fuzzy numbers (for example

right-sided fuzzy numbers are those numbers that are at least x and no more than y). In

[19], right-sided numbers represent a real description of the number of infected individuals

with infectious disease such as grippe. The reason to use fuzzy numbers rather than regular

numbers here is that the real number of infected individuals is greater than the number of

registered infectious individuals, but does not exceed a reasonable proportion in the whole

population. This approach can be used regarding any other medical statistic when the

number of actual cases is greater than those registered by the authorities. In this model, a

Volterra integral equation (delay integral equation) is used.

There are many other biological application of fuzzy sets. For instance, [49] presents

a method for incorporating fuzzy-set-based spatial relations in registering temporal mam-

mogram pairs. Breast cancer is the most common cancer among women and its early
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detection is the key to reducing mortality. The most effective method of detection is

intensive monitoring and in many countries, women are advised to take a mammogram every

two years after a certain age. Those images are kept for future reference and radiologists

compare a current mammogram with a previous one to detect any medically relevant

changes. Extracting such information by computer programs has not been very successful

so far due to the problem of identifying objects in one image with the matching objects

in the other image. Differences in equipment, positioning of the breast, natural changes of

the breast over time, and finally the fact that a mammograph is a 2D projection of a 3D

object all cause difficulties in reading and comparing those images. In the above-mentioned

article the authors propose using fuzzy-set-based spatial relation representation for which

the breast boundary can provide a global reference.

Fuzzy logic is also used in models that involve uncertainty. For example, in [52], an

interval fuzzy logic controller is proposed to consider daily meals as distribution which is

imposed to diabetic system. The method proposed by the authors’ is shown to control the

glucose level in those patients effectively.

Another example of the application of fuzzy sets is the problem of decision making. The

authors of [23] claim that many organizational tasks such as budget plans, policies, etc.,

frequently involve group discussions and meetings. Moreover, research in social psychology

shows that decisions made in groups are more effective than those made by individuals.

By using fuzzy preference relations to represent the opinions of the decision makers, the

authors of [23] develop a concept of a specific (granular) fuzzy relation that offers the

required flexibility in models to increase the level of agreement within the group. Moreover,

fuzzy logic is also used in models that, for example, compute the power of political groups

(for example in the European Parliament, see [33]).

Fuzzy logic also provides an effective framework for Recommendation Systems whose

number has been growing rapidly since the development of the internet and e-commerce.

Recommender Systems provide a rating or a preference for each user, but what if you are

undecided about what you want to buy? The work in [64] suggests a model for discovering

user preferences from item characteristics.

Another practical example of the use of fuzzy-logic models is proposed in the paper [24].

Because the amount of fuel consumption for transport jet aircrafts constitutes a large part

of operational costs, the airlines constantly look for a practical method to reduce fuel usage

within the constrains of accomplishing the mission. The above-mentioned work discusses the

problem of enhancing fuel efficiency for commercial transports. Finally, various applications
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of fuzzy sets and fuzzy logic to economics are discussed, for example in [35], [42], and [69].

Many applied problems can be formulated in the form of integral equations. Those

equations can also be obtained by reformulating partial or ordinary differential equations.

Thus, the study of those equations and methods of finding their solutions is very useful. In

this work, we choose to explore Fredholm and Volterra integral equations because of their

wide applicability. Fredholm integral equations are used in image and signal processing,

astronomy, geophysics, mathematical economics, etc.; Volterra integral equations are of

great importance in population dynamics and demography, infection propagation models,

heat transfer problems, potential theory, and actuarial mathematics. We consider set and

fuzzy integral equations from a common point of view, as integral equations for functions

with values in L-spaces. Some results are new also for specific cases of sets and fuzzy sets.

2.2 The spaces of sets

We present here necessary definitions and facts related to the space of nonempty compact

subsets of the space Rm and set-valued functions.

Definition 1 A set-valued function F is a mapping with values that are sets.

Denote by K(Rn) the set of all compact, nonempty subsets of the space Rn. Also denote

by Kc(Rn) the set of all compact, convex, nonempty subsets of the space Rn.

Let A,B ∈ K(Rn), α ∈ R. Then

A+B := {x+ y : x ∈ A, y ∈ B}, αA := {αx : x ∈ A}.

A+B is called the Minkowski sum of sets A and B.

Example. See an example of a Minkowski sum of two sets in Figure 2.1.

If A and B are sets of only one number, their Minkowski sum is the usual sum of two

numbers. It they are vectors, it is a regular vector sum. In general, as opposite to the case

of numbers, no additive inverse exist. Furthermore, A + B = A + C does not imply that

B = C.

Figure 2.1: Minkowski sum of two sets.
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While,

λ(A+B) = λA+ λB

for any sets A,B ∈ K(Rn) and any λ ∈ R, the second distributive law

(λ+ µ)A = λA+ µA

holds only for A ∈ Kc(Rn) and λ, µ ≥ 0. A generalization of the last property can be proved

by induction; thus, if A is convex and λ1, λ2, ..., λn ≥ 0

(λ1 + λ2 + ...+ λn)A = λ1A+ λ2A+ ...+ λnA.

Example. If A = {1, 2}, we have A+A = {2, 3, 4} and therefore, A+A 6= 2A.

Definition 2 The convex hull, denoted by coA, of a set A ⊂ K(Rn) is the set of all elements

of the form
r∑
i=1

λiai, where r ≥ 2, ai ∈ A, λi ∈ R, λi ≥ 0 for i = 1, ..., r, and
r∑
i=1

λi = 1.

The convex hull has the following properties

co (µA) = µ coA, ∀µ ∈ R, A ⊂ K(Rn),

co (A+B) = coA+ coB, ∀A,B ⊂ K(Rn).

Definition 3 The Hausdorff distance δH(A,B) between A,B ∈ K(Rn) is defined by the

following relation

δH(A,B) = max

{
sup
x∈A

inf
y∈B
|x− y|, sup

x∈B
inf
y∈A
|x− y|

}
,

where | · | is the Euclidian norm in Rn.

See Figure 2.2 for an example.

It is well known that all metric conditions hold for δH . K(Rn) and Kc(Rn) are complete

metric spaces with this metric.

Besides the usual properties of the metric, δH (A,B) has the following properties

Figure 2.2: Hausdorff distance.
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1. δH (λA, λB) = λδH (A,B) , ∀λ > 0, ∀A,B ∈ K(Rn);

2. δH (A+B,C +D) ≤ δH (A,C) + δH (B,D) , ∀A, B, C, D ∈ K(Rn);

3. δH(co A, co B) ≤ δH(A,B), ∀A,B ∈ K(Rn);

4. δH(αA, βA) ≤ |α− β|‖A‖, ∀α, β ∈ R,∀A ∈ Kc(Rn),

where ‖A‖ := δH(A, {θ}) (here θ = (0, . . . , 0) – null element of the space Rn).

One can find proofs of all properties presented above in [60] and [61].

2.2.1 Difference of two sets

Since the spaces K(Rn) and Kc(Rn) are not linear and therefore, in general, there is no

inverse element, we cannot define a difference in these spaces as

A−B := A+ (−1)B.

However, the ability to take a difference is often very important and there exist various

other ways to define the concept of a difference of two sets. We give here the definition of

the Hukuhara difference since we will use only this notion throughout this work (for more

definitions of the difference see, for example, [58]). The notion of Hukuhara differences

between sets was introduced by Hukuhara in [39].

Definition 4 We say that an element C ∈ X is the Hukuhara difference of the sets A,B ∈

X, if

A = B + C.

If such C exists, then this C is unique. We denote this difference by

C = A
h
−B.

One can find properties of Hukuhara difference, for example, in [58].

2.2.2 Derivative of a set-valued function

Because there exist various ways to define difference for set-valued functions, there also

exist various ways to define derivatives of such functions. All of them have their advantages

and disadvantages. For this work, we consider the approach that was proposed by Hukuhara

in [39].
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Definition 5 Let f(t) : [a, b]→ K(Rn). If t ∈ (a, b), and for all small enough h > 0 there

exist differences

f(t+ h)
h
− f(t) and f(t)

h
− f(t− h),

and both limits exist and are equal to each other

lim
h→0+

f(t+ h)
h
− f(t)

h
= lim

h→0+

f(t)
h
− f(t− h)

h

then the function f has the Hukuhara derivative DHf(t) at point t (if t = a or t = b, then

there exists only one limit) and

DHf(t) = lim
h→0+

f(t+ h)
h
− f(t)

h
.

One can find properties of Hukuhara derivative for example in [58] or [39] (also see references

therein).

2.2.3 Integral of a set-valued function

There exist various definitions of the integral of a set-valued function (see for example

[61], [51], [9], [59]). In particular, there exists an analog of the Riemann integral.

The Riemann-Minkowski sum of f is defined in the following way. Let P = {x0, x1, ..., xn},

0 = x0 < x1 < ... < xn = 1, be some partition of the interval [0, 1]. We set ∆xi = xi−xi−1,

λ(P ) = max{|∆xi| : i = 1, ..., n}, and ξ = {ξ1, ..., ξn}, ξi = [xi−1, xi], i = 1, ..., n. The

Riemann-Minkowski sum of f relative to the pair (P, ξ) is defined as

σ(f ; (P, ξ)) :=

n∑
i=1

∆xif(ξi).

We define the standard base λ(P )→ 0 in the set of all pairs (P, ξ) as follows:

λ(P )→ 0 := {Bε}ε>0, Bε := {(P, ξ) : λ(P ) < ε}.

A function f is integrable in the Riemann-Minkowski sense if (see [51], [59]) there exists an

element I(f) ∈ K(Rn) such that

δ(σ(f ; (P, ξ)), I(f))→ 0 as λ(P )→ 0.

However, one of the most flexible and convenient definitions is the definition of the Aumann’s

integral.
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The Aumann’s integral of set-valued function F : [a, b]→ K(Rn) is defined as the set of

all integrals of integrable selections (see Figure 2.3) of function F :

I(F ) =

b∫
a

F (x)dx :=


b∫
a

φ(x)dx : φ(x) ∈ F (x) a. e., φ is integrable


If the function F : [a, b]→ K(Rn) is measurable (see definition in [6] or [8]) and the function

δH(F (·), θ) is integrable, then the Aumann’s integral exists and has the following properties:

1.
b∫
a
F (x)dx ∈ Kc(Rn),

2.

b∫
a

co(F (x))dx =

b∫
a

F (x)dx,

3.

b∫
a

(λF (x) + µG(x))dx = λ

b∫
a

F (x)dx+ µ

b∫
a

G(x)dx ∀λ, µ ∈ R,

4. δH

 b∫
a

F (x)dx,

b∫
a

G(x)dx

 ≤ b∫
a

δH(F (x), G(x))dx,

It is proved in [59] that the Riemann-Minkowski integral for any continuous and bounded

set-valued function exists and coincides with Aumann integral.

2.3 Spaces of fuzzy sets

Fuzzy sets are a generalization of ordinary (or crisp) sets that have only non-membership

and full membership possibilities (see [27] for details). Any crisp subset A of a fuzzy

set X can be identified with a fuzzy set on X by the following characteristic function

u(x) : X → [0, 1]

u(x) =

{
0 if x /∈ A
1 if x ∈ A.

Example. Figure 2.4 shows the characteristic function of the interval [1, 2].

Figure 2.3: Integrable selections
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Figure 2.4: The fuzzy set [1, 2]

Example. A simple example for a non-crisp set is the function u : R→ [0, 1] with

u(x) =


0 if x ≤ 1
1
99(x− 1) if 1 < x ≤ 100

1 if 100 < x

that provides one of the choices of a membership function of a fuzzy set of real numbers

x� 1 (see Figure 2.5).

Let us make this notion more precise. Consider (see, e.g., [27]) the class of fuzzy sets

En consisting of functions u : Rn → [0, 1] such that

1. u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;

2. u is fuzzy convex, i.e., for any x, y ∈ Rn and 0 ≤ λ ≤ 1,

u(λx+ (1− λ)y) ≥ min{u(x), u(y)};

3. u is upper semicontinuous;

4. the closure of {x ∈ Rn : u(x) > 0}, denoted by [u]0, is compact.

We will need the following notion of an α-level set.

Figure 2.5: The fuzzy set of real numbers x� 1.
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Definition 6 For each 0 < α ≤ 1, the α-level set [u]α of a fuzzy set u is defined as

[u]α = {x ∈ Rn : u(x) ≥ α}.

Example. Figure 2.6 shows the 0.7 level set of a given fuzzy set.

The addition u+v and scalar multiplication cu, c ∈ R\{0}, on En are defined, in terms

of α-level sets, by

[u+ v]α = [u]α + [v]α, [cu]α = c[u]α for each 0 < α ≤ 1

(see Figure 2.7).

Define also 0 · u by the equality [0 · u]α = {θ} (here θ = (0, ..., 0) ∈ Rn).

There are many different ways to define a metric for fuzzy sets (see for example [27]).

One of the possible metrics in En is defined in the following way

dp(u, v) =

(∫ 1

0
δ([u]α, [v]α)pdα

)1/p

, 1 ≤ p <∞.

Then the space (En, dp) is (see [27, Theorem 3]) a complete separable metric space.

Figure 2.6: The 0.7 level set of a fuzzy set.

Figure 2.7: Sum of two fuzzy sets.



CHAPTER 3

CALCULUS OF FUNCTIONS WITH

VALUES IN L-SPACES

In this chapter, we introduce the definition of L-spaces that encompass the spaces of

sets and fuzzy sets described above. We also develop a calculus for functions with values in

L-spaces.

3.1 L-spaces: definition and examples

The following definition was introduced by Vahrameev in [65]:

Definition 7 A complete separable metric space X with metric δ is said to be an L – space

if in X, operations of addition of elements and their multiplication with real numbers are

defined, and the following axioms are satisfied:

Axiom 1. ∀x, y ∈ X x+ y = y + x;

Axiom 2. ∀x, y, z ∈ X x+ (y + z) = (x+ y) + z;

Axiom 3. ∃θ ∈ X ∀x ∈ X x+ θ = x (where θ is called a zero element in X);

Axiom 4. ∀x, y ∈ X λ ∈ R λ(x+ y) = λx+ λy;

Axiom 5. ∀x ∈ X λ, µ ∈ R λ(µx) = (λµ)x;

Axiom 6. ∀x ∈ X 1 · x = x, 0 · x = θ;

Axiom 7. ∀x, y ∈ X λ ∈ R δ(λx, λy) = |λ|δ(x, y);

Axiom 8. ∀x, y, u, v ∈ X δ(x+ y, u+ v) ≤ δ(x, u) + δ(y, v).

Examples of L-spaces:

1. The spaces (K(Rn), δH) and (Kc(Rn), δH) are complete, separable metric spaces (see

[30]) and since the Axioms 1-8 hold, these spaces are L-spaces.

2. The space (En, dp) is a complete separable metric space and, since Axioms 1-8 hold,

an L-space.

3. Any real Banach space (Y, ‖ · ‖Y ) endowed with the metric δ(x, y) = ‖x − y‖Y is an

L-space.
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4. The set of all closed bounded subsets of a given Banach space, endowed with the

Hausdorff metric, is an L-space.

Let X be a Banach space. Denote by Ω(X) the space of nonempty closed bounded

subsets of X. The operation of addition of elements of Ω(X) we define as

A+B = {a+ b : a ∈ A, b ∈ B}

(A denotes the closure of the set A), and the multiplication of a real number α and

the set A we define as

α ·A = {α · a : a ∈ A}.

In the space Ω(X), we define the Hausdorf metric as usual:

∀A,B ∈ Ω(X) hΩ(A,B) = inf{r ≥ 0 : A ⊂ B + Sr(θ), B ⊂ A+ Sr(θ)},

where Sr(θ) is the closed ball of radius r and centered at the point θ ∈ X in the space

X. It is clear that the space (Ω(X), hΩ) as well as its subspace (Ωconv(X), hΩ) that

consist of nonempty, closed, bounded subsets of the space X are L-spaces.

If X = Rm, then the elements of the spaces (Ω(X), hΩ) and (Ωconv(X), hΩ) are

compact sets.

5. The set X is called a quasilinear space (see [6]), if we can define in it a relation

of partial order ≤, and operations of algebraic addition and multiplication by real

numbers such that for any elements x, y, z, v ∈ X and for any real numbers α, β the

following conditions hold:

(a) x ≤ x;

(b) x ≤ y and y ≤ z imply that x ≤ z;

(c) if x ≤ y and y ≤ x, then x = y;

(d) x+ y = y + x;

(e) x+ (y + z) = (x+ y) + z;

(f) ∃ θ ∈ X, such that x+ θ = x;

(g) α(βx) = (αβ)x;

(h) α(x+ y) = αx+ αy;

(i) 1 · x = x;
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(j) 0 · x = θ;

(k) (α+ β)x ≤ αx+ βx;

(l) x ≤ y and z ≤ v imply that x+ z ≤ y + v;

(m) if x ≤ y, then αx ≤ αy.

Let X be a quasilinear space. A real-valued function ‖ · ‖X : X → R is called a norm,

if the following conditions hold

(a) ‖x‖X > 0, if x 6= θ;

(b) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X ;

(c) ‖αx‖X = |α| · ‖x‖X ;

(d) if x ≤ y, then ‖x‖X ≤ ‖y‖X ;

(e) if for any ε > 0 exists such an element xε ∈ X, that x ≤ y + xε and ‖xε‖ ≤ ε,

then x ≤ y.

A quasilinear space X endowed with a norm is called a quasilinear normed space.

Next let X be quasilinear normed space. Define on X the Hausdorff metric by the

following equality

hX(x, y) = inf{r ≤ 0 : x ≤ y + ar1, y ≤ x+ ar2, ‖ari ‖X ≤ r}.

Any quasilinear normed space X with the above-defined Hausdorff metric that is a

complete separable metric space is an L-space. For example, the spaces (Ω(X), hΩ)

and (Ωconv(X), hΩ) defined above in example 3 are quasilinear normed spaces and

L-spaces.

6. The structure of L-spaces arises naturally in some spaces of mappings with values in

L-spaces. For example, let a compact topological space T and L-space X be given.

By C(T,X) we denote the space of all continuous mappings f : T → X. Operations

of addition and multiplication by real numbers are defined in C(T,X) in the standard

way. The metric in C(T,X) is defined by the relation

hC(T,X)(f1, f2) := max
t∈T

hX(f1(t), f2(t))

It is clear that (C(T,X), hC(T,X)) is an L-space.
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3.2 Hukuhara type difference and its properties

As we already mentioned, the notion of the Hukuhara difference of two sets was in-

troduced by Hukuhara in [39]. Here we generalize it as the Hukuhara type difference for

elements in L-spaces.

Definition 8 We say that an element z ∈ X is the Hukuhara type difference of

elements x, y ∈ X, if x = y + z.

We denote this difference by z = x
h
− y.

The following properties of Hukuhara difference of sets are known (see for ex. [58]). We

will show similar properties for a general case of Hukuhara type diference in L-spaces.

Suppose X consists only of convex elements. Let x, y, u, v ∈ X. The Hukuhara type

difference has the following properties

1. If x
h
− u and y

h
− v exist, then (x+ y)

h
− (u+ v) exists and the following equality holds

(x+ y)
h
− (u+ v) =

(
x
h
− u
)

+

(
y
h
− v
)
. (3.1)

In particular,

(x+ y)
h
− x = y. (3.2)

Proof. Let x
h
− u = a. That implies that x = u + a. Let also y

h
− v = b and then

y = v + b. Therefore,

x+ y = u+ a+ v + b or x+ y = u+ v + a+ b.

Thus,

(x+ y)
h
− (u+ v) = a+ b

or

(x+ y)
h
− (u+ v) =

(
x
h
− u
)

+

(
y
h
− v
)
. �

2. If the Hukuhara type difference x
h
− y exists it is unique.

Proof. Let x
h
− y = z1 and let also x

h
− y = z2. Then x = y + z1 and using Property

(3.2) we have

(y + z1)
h
− y = z2

z1 = z2. �
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3. If x
h
− y, v

h
− u, and y

h
− v exist, then(
x
h
− u
)

h
−
(
y
h
− v
)

=

(
x
h
− y
)

+

(
v
h
− u
)
. (3.3)

Proof. Let x
h
− y = a. This implies that x = y + a. Let also v

h
− u = b which implies

that v = u + b. Moreover, let y
h
− v = c, then y = v + c. Therefore, x = v + c + a.

According to property (3.1)

x
h
− u =

(
(v + c+ a)

h
− u
)

=

(
v
h
− u
)

+ c+ a.

Since y
h
− v = c and using property (3.1) again we have(

x
h
− u
)

h
−
(
y
h
− v
)

=

((
v
h
− u
)

+ c+ a

)
h
− c

=

(
v
h
− u
)

+ a =

(
v
h
− u
)

+

(
x
h
− y
)
. �

4. If (x+ u)
h
− v exist, then

x+

(
u
h
− v
)

= (x+ u)
h
− v (3.4)

Proof. Let u
h
− v = c, then u = v + c. And therefore, due to the property (3.2)

(x+ u)
h
− v = (x+ v + c)

h
− v

= (v + x+ c)
h
− v = x+ c = x+

(
u
h
− v
)
. �

5. If y
h
− v and

(
x
h
− u
)

h
−
(
y
h
− v
)

exist, then

(
x
h
− u
)

h
−
(
y
h
− v
)

=

(
x
h
− y
)

h
−
(
u
h
− v
)
. (3.5)

Proof. Let

(
x
h
− y
)

h
−
(
u
h
− v
)

= a. Let also y
h
− v = b, and thus y = v + b. Then

x
h
− y = a+

(
u
h
− v
)
,

x
h
− (b+ v) = a+

(
u
h
− v
)
,

x = b+ v + a+

(
u
h
− v
)
.



18

Thus, due to the properties (3.2) and (3.4), we have(
x
h
− u
)

h
−
(
y
h
− v
)

=

((
b+ v + a+

(
u
h
− v
))

h
− u
)

h
− b

=

(
v + a+

(
u
h
− v
))

h
− u =

(
(v + a+ u)

h
− v
)

h
− u

= (a+ u)
h
− u = a. �

6. If x
h
− u, x

h
− v and v

h
− u exist, then

x
h
− u =

(
x
h
− v
)

+

(
v
h
− u
)

(3.6)

Proof. Using property (3.3), we have(
x
h
− v
)

+

(
v
h
− u
)

=

(
x
h
− u
)

h
−
(
v
h
− v
)

= x
h
− u. �

7. If x
h
− y exist, then for any number α

αx
h
− αy = α

(
x
h
− y
)
. (3.7)

Proof. Let x
h
− y = z, then x = z + y and αx = αz + αy. �

8. If x
h
− y exists, then

δ (x, y) ≤ δ
(
x
h
− y, θ

)
. (3.8)

Moreover, if space X is such that for any x, y, z ∈ X

δ (x+ z, y + z) = δ (x, y) , (3.9)

then

δ (x, y) = δ

(
x
h
− y, θ

)
. (3.10)

Proof. Let x
h
− y = a, and therefore x = y + a. Then using Axiom 8, we have

δ (x, y) = δ(x+ a, x) ≤ δ (a, θ) .

Thus, (3.8) is proved. In order to prove (3.10), we need to show that

δ

(
x
h
− y, θ

)
≤ δ (x, y) .

We have using (3.9) and obvious equality

(
x
h
− y
)

+ y = x that

δ

(
x
h
− y, θ

)
= δ

((
x
h
− y
)

+ y, y

)
= δ (x, y) . �
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9. If x
h
− u, y

h
− v exist and property (3.9) holds, then

δ

(
x
h
− u, y

h
− v
)
≤ δ (x, y) + δ (u, v) . (3.11)

Proof. We have due to the properties (3.9) and (3.4) and Axiom 8

δ

(
x
h
− u, y

h
− v
)

= δ

((
x
h
− u
)

+ u,

(
y
h
− v
)

+ u

)

= δ

(
x,

(
y
h
− v
)

+ u

)
= δ

(
x, (y + u)

h
− v
)

= δ

(
x+ v,

(
(y + u)

h
− v
)

+ v

)
= δ(x+ v, y + u) ≤ δ(x, y) + δ(v, u). �

3.3 Limits of functions in L-spaces

1. Suppose the functions f(t) and g(t) have limits when t→ t0. Moreover lim
t→t0

f(t) = x,

lim
t→t0

g(t) = y. Then

lim
t→t0

(f(t) + g(t))→ x+ y.

Proof. We have

δ(f(u) + g(u), x+ y) ≤ δ(f(u), x) + δ(g(u), y).

By assumption, both terms go to zero when t→ t0 and this proves what we need. �

2. Let two functions be given f : [a, b]→ X and g : [a, b]→ R. If each of these functions

has a limit when t→ t0, and moreover lim
t→t0

f(t) = x, lim
t→t0

g(t) = c. Then

lim
t→t0

f(t)g(t) = cx.

Proof. We have

δ(f(t)g(t), xc) ≤ δ(f(t)g(t), xg(t)) + δ(xg(t), xc)

≤ |g(t)|δ(f(t), x) + |g(t)− c|δ(x, θ).

Both terms in the right-hand side of inequality go to zero, when t→ t0. �
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3. If for any t close enough to t0 there exists f(t)
h
− g(t) and

lim
t→t0

f(t) = a, lim
t→t0

g(t) = b,

then lim
t→t0

(
f(t)

h
− g(t)

)
exists and

lim
t→t0

(
f(t)

h
− g(t)

)
= a

h
− b. (3.12)

Proof.

δ

(
f(t′)

h
− g(t′), f(t′′)

h
− g(t′′)

)
≤ δ

(
f(t′), f(t′′)

)
+ δ

(
g(t′), g(t′′)

)
.

Therefore, due to existence of limits of f(t) and g(t) for t → t0, for t′ and t′′ close

enough to t0, the right side is less than ε (ε - arbitrary, fixed, positive number). Here we

use the Cauchy criterion. Then for f(t)
h
− g(t), the conditions of the Cauchy criterion

for the existence of a limit as t→ t0 hold. Now we show that lim
t→t0

(
f(t)

h
− g(t)

)
= a

h
−b.

Let ∆(t) = f(t)
h
− g(t). Then

f(t) = g(t) + ∆(t) (3.13)

For t → t0, we have f(t) → a, g(t) → b and let c be a limit of ∆(t) when t → t0 (its

existence we just proved). Taking the limit when t→ t0 in (3.13), we have a = b+ c,

and therefore c = a
h
− b. �

3.4 Hukuhara type derivative and its properties

In this section, we define the Hukuhara type derivative of a function with values in an

L-space f : [a, b]→ X, and prove necessary properties connected with this notion.

Definition 9 If t ∈ (a, b), and for all small enough h > 0 there exist differences

f(t+ h)
h
− f(t) and f(t)

h
− f(t− h),

and both limits exist and are equal to each other

lim
h→0+

f(t+ h)
h
− f(t)

h
= lim

h→0+

f(t)
h
− f(t− h)

h

then the function has a Hukuhara type derivative DHf(t) at the point t (if t = a or t = b,

then there exists only one limit) and

DHf(t) = lim
h→0+

f(t+ h)
h
− f(t)

h
.
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3.4.1 Derivative of a sum

Lemma 1 If we have functions f(t) and g(t) with values in L-spaces that have Hukuhara

type derivatives, then the derivative of a sum exists and

DH (f(t) + g(t)) = DHf(t) +DHg(t). (3.14)

Proof. By definition, the following two limits have to exist and be equal to each other and

the derivative

DH (f(t) + g(t)) = lim
h→0+

(f(t+ h) + g(t+ h))
h
− (f(t) + g(t))

h

= lim
h→0+

(f(t) + g(t))
h
− (f(t− h) + g(t− h))

h
.

According to the property (3.1), we can write

lim
h→0+

(f(t+ h) + g(t+ h))
h
− (f(t) + g(t))

h

= lim
h→0+

(
f(t+ h)

h
− f(t)

)
+

(
g(t+ h)

h
− g(t)

)
h

= lim
h→0+

(
f(t+ h)

h
− f(t)

)
h

+ lim
h→0+

(
g(t+ h)

h
− g(t)

)
h

.

Similarly, we have

lim
h→0+

(f(t) + g(t))
h
− (f(t− h) + g(t− h))

h

= lim
h→0+

(
f(t)

h
− f(t− h)

)
+

(
g(t)

h
− g(t− h)

)
h

= lim
h→0+

(
f(t)

h
− f(t− h)

)
h

+ lim
h→0+

(
g(t)

h
− g(t− h)

)
h

.

Therefore, the property (3.14) holds. �

3.4.2 Derivative of Hukuhara type difference

Lemma 2 If we have functions f(t) and g(t) with values in L-spaces that have Hukuhara

type derivatives, and their difference f(t)
h
− g(t) has a Hukuhara type derivative, and differ-

ence of the derivatives exists, then

DH

(
f(t)

h
− g(t)

)
= DHf(t)

h
−DHg(t). (3.15)
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Proof. By definition, the following two limits have to exist and be equal to each other and

the derivative

DH

(
f(t)

h
− g(t)

)
= lim

h→0+

(
f(t+ h)

h
− g(t+ h)

)
h
−
(
f(t)

h
− g(t)

)
h

= lim
h→0+

(
f(t)

h
− g(t)

)
h
−
(
f(t− h)

h
− g(t− h)

)
h

.

According to the properties (3.5) and (3.12), we can write

lim
h→0+

(
f(t+ h)

h
− g(t+ h)

)
h
−
(
f(t)

h
− g(t)

)
h

= lim
h→0+

(
f(t+ h)

h
− f(t)

)
h
−
(
g(t+ h)

h
− g(t)

)
h

= lim
h→0+

(
f(t+ h)

h
− f(t)

)
h

h
− lim
h→0+

(
g(t+ h)

h
− g(t)

)
h

.

Similarly, we have

lim
h→0+

(
f(t)

h
− g(t)

)
h
−
(
f(t− h)

h
− g(t− h)

)
h

= lim
h→0+

(
f(t)

h
− f(t− h)

)
h
−
(
g(t)

h
− g(t− h)

)
h

= lim
h→0+

(
f(t)

h
− f(t− h)

)
h

h
− lim
h→0+

(
g(t)

h
− g(t− h)

)
h

.

Therefore, the property (3.15) holds. �

3.4.3 The chain rule

Lemma 3 Let f : [a, b] → X have a Hukuhara type derivative DHf on the interval [a, b].

Let also ϕ : [c, d] → [a, b] be a strictly increasing real-valued function, differentiable at any

point on [c, d]. Then f ◦ ϕ has a Hukuhara type derivative DH at every point on [c, d] and

DH(f ◦ ϕ)(t) = DHf(ϕ(t))ϕ′(t). (3.16)
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Proof. Consider

lim
h→0+

f(ϕ(t+ h))− f(ϕ(t))

h
= lim

h→0+

f(ϕ(t+ h))
h
− f(ϕ(t))

ϕ(t+ h)− ϕ(t)
· ϕ(t+ h)− ϕ(t)

h

 .

Next,

lim
h→0+

f(ϕ(t+ h))
h
− f(ϕ(t))

ϕ(t+ h)− ϕ(t)
· ϕ(t+ h)− ϕ(t)

h

= lim
h→0+

f(ϕ(t+ h))
h
− f(ϕ(t))

ϕ(t+ h)− ϕ(t)

 · lim
h→0+

(
ϕ(t+ h)− ϕ(t)

h

)
= DHf(ϕ(t))ϕ′(t).

Similarly, we can show that

lim
h→0+

f(ϕ(t))− f(ϕ(t− h))

h

= lim
h→0+

f(ϕ(t))
h
− f(ϕ(t− h))

ϕ(t)− ϕ(t− h)

 · lim
h→0+

(
ϕ(t)− ϕ(t− h)

h

)
= DHf(ϕ(t))ϕ′(t)

And therefore,

DH(f ◦ ϕ)(t) = DHf(ϕ(t))ϕ′(t). �

3.4.4 Derivative of a product of a real-valued function and function
with values in an L-space

Lemma 4 Let a real-valued function f(t) (differentiable, nonnegative, and nondecreasing)

and a differentiable in Hukuhara sense function F (t) with convex values in L-space be given.

Then the following formula for the derivative of such product holds

DH(fF )(t) = f ′(t)F (t) + f(t)DHF (t). (3.17)

Proof. Using property (3.6) of the Hukuhara type difference, we can write

f(t+ h)F (t+ h)
h
− f(t)F (t)

=

(
f(t+ h)F (t+ h)

h
− f(t)F (t+ h)

)
+

(
f(t)F (t+ h)

h
− f(t)F (t)

)
Since we assumed function f to be nondecreasing

f(t+ h)F (t+ h)
h
− f(t)F (t+ h) = (f(t+ h)− f(t))F (t+ h).

Moreover,

lim
h→0+

f(t+ h)F (t+ h)
h
− f(t)F (t+ h)

h
= lim

h→0+

f(t+ h)− f(t)

h
F (t+ h) = f ′(t)F (t).
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Since F (t + h)
h
− F (t) is defined, and due to the property (3.7) of the Hukuhara type

difference, we have

f(t)F (t+ h)
h
− f(t)F (t) = f(t)

(
F (t+ h)

h
− F (t)

)
.

Therefore,

lim
h→0+

f(t)F (t+ h)
h
− f(t)F (t)

h
= lim

h→0+
f(t)

F (t+ h)
h
− F (t)

h
= f(t)DHF (t).

Similarly, we can show that

f(t)F (t)
h
− f(t− h)F (t− h)

=

(
f(t)F (t)

h
− f(t− h)F (t)

)
+

(
f(t− h)F (t)

h
− f(t− h)F (t− h)

)
and

lim
h→0+

f(t)F (t)
h
− f(t− h)F (t)

h
= lim

h→0+

f(t)− f(t− h)

h
F (t) = f ′(t)F (t).

Finally,

lim
h→0+

f(t− h)F (t)
h
− f(t− h)F (t− h)

h

= lim
h→0+

f(t− h)
F (t)

h
− F (t− h)

h
= f(t)DHF (t).

Thus, we have proved the desired formula for the derivative of a product. �

3.5 Integral of functions with values in L-spaces

We start with the following notion of convex elements in L-spaces:

Definition 10 An element x ∈ X is convex if

λx+ µx = (λ+ µ)x ∀ λ, µ ≥ 0.

Remark 1 Note that if the element x is convex, then it follows from Axioms 7 and 8 that

∀λ, µ ∈ R

δ(λx, µx) ≤ |λ− µ|δ(x, θ). (3.18)

We denote as Xc the set of all convex elements of a given L-space X.

Remark 2 Note that Xc is a closed subset of X.
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We need the definition of a convexifying operator (see [65]) which we give in a somewhat

modified form.

Definition 11 Let X be an L-space. The operator P : X → Xc is called a convexifying

operator if

1. ∀x, y ∈ X δ(P (x), P (y)) ≤ δ(x, y);

2. P ◦ P = P ;

3. P (αx+ βy) = αP (x) + βP (y), ∀x, y ∈ X, α, β ∈ R.

Examples of convexifying operators:

1. The identity operator in the space Kc(Rn) is a convexifying operator.

2. The operator, that on the space K(Rn) is defined by the formula P (A) = co (A), is a

convexifying operator. Here by the co (A), we denote the convex hull of a set A.

3. The identity operator in the space (En, dp) is a convexifying operator.

Below we discuss an L-space X with some fixed convexifying operator P . For any x ∈ X,

we will use the notation x̃ = Px. If all elements of an L-space X are convex in the sense of

Definition 10, then we choose the identity operator as the convexifying operator.

Next we define the Riemannian integral for a function f : [a, b] → X, where X is an

L-space. We again follow Vahrameev [65] for this purpose. Let f̃(t) := f̃(t).

Definition 12 The mapping f : [a, b]→ X is called weakly bounded, if

δ(θ, f̃(t)) ≤ const

and weakly continuous, if f̃ : [a, b]→ X is continuous.

Remark 3 Note that if a function f : [a, b]→ X is continuous, then f is weakly continuous.

If all elements x ∈ X are convex (i.e., P = Id), then the concepts of continuity and weak

continuity coincide.

Next we introduce the notion of a stepwise mapping from [a, b] to an L-space X.

Definition 13 The mapping f : [a, b] → X is called stepwise, if there exists a set

{xk}nk=1 ⊂ X and a partition a = t0 < t1 < ... < tn = b of the interval [a, b], such

that f̃(t) = x̃k for tk−1 < t < tk.
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Definition 14 The Riemannian integral of a stepwise mapping f : [a, b] → X is defined

as ∫ b

a
f(t)dt =

n∑
k=1

(tk − tk−1)x̃k.

Definition 15 We say that a weakly bounded mapping f : [a, b] → X is integrable in the

Riemannian sense if there exists a sequence {fk} of stepwise mappings from [a, b] to X,

such that ∫ ∗
δ
(
f̃(t), f̃k(t)

)
dt→ 0, as k →∞, (3.19)

where
∫ ∗

is a regular Riemannian integral for real-valued functions.

It follows from (3.19) that the sequence
{∫ b

a fk(t)dt
}

is a Cauchy sequence and thus, we

can use the following definition.

Definition 16 Let f : [a, b]→ X be integrable in the Riemannian sense and let {fk} be a

sequence of stepwise mappings such that (3.19) holds. Then the Riemannian integral of

f is the limit ∫ b

a
f(t)dt = lim

k→∞

∫ b

a
fk(t)dt.

As described in [65], the Riemannian integral for a function f : [a, b]→ X has the following

properties:

1. If f and g are integrable, then for any α, β ∈ R, the linear combination αf + βg is

integrable, and moreover∫ b

a
(αf(t) + βg(t))dt = α

∫ b

a
f(t)dt+ β

∫ b

a
g(t)dt.

2. If f and g are integrable, then the function t→ δ
(
f̃(t), g̃(t)

)
is integrable and

δ

(∫ b

a
f(t)dt,

∫ b

a
g(t)dt

)
≤
∫ b

a
δ
(
f̃(t), g̃(t)

)
dt.

3. If f is integrable, then f̃ = Pf is also integrable and∫ b

a
f(t)dt = P

∫ b

a
f(t)dt =

∫ b

a
f̃(t)dt.

4. If f is integrable on [a, b], and a ≤ c ≤ b, then function f is integrable on [a, c] and

[c, b] and ∫ b

a
f(t)dt =

∫ c

a
f(t)dt+

∫ b

c
f(t)dt.



27

The following theorem (see [65], [6]) guarantees that we can consider the integrals which

arise below as Riemannian integrals.

Theorem 1 A weakly bounded mapping f : [a, b] → X is integrable in the Riemannian

sense if and only if it is weakly continuous almost everywhere on [a, b].

Remark 4 Note that for the set-valued case, the above-defined integral coincides with the

Aumann integral. If a function f : [a, b] → X is continuous, then f is weakly continuous.

If all elements x ∈ X are convex (i.e., P = Id), then the concepts of continuity and weak

continuity coincide.

The following analog of the fundamental theorem of Calculus holds:

Theorem 2 For any function F : [a, b] → Xc that has a continuous Hukuhara type

derivative on [a, b], the following equality holds

F (t) = F (a) +

∫ t

a
DHF (s)ds, t ∈ [a, b].

Proof. For any continuous function f : [a, b]→ Xc and any m ∈ Xc, we can define

F (t) =

∫ t

a
f(s)ds+m, m ∈ Xc. (3.20)

Next we find DHF (t). It follows from (3.20) and Property 4 of the integral that for t ∈ [a, b),

and h > 0 small enough, the difference F (t+ h)
h
− F (t) is defined and

F (t+ h)
h
− F (t) =

∫ t+h

t
f(s)ds.

We consider

δ

(
1

h

∫ t+h

t
f(s)ds, f(t)

)
= δ

(
1

h

∫ t+h

t
f(s)ds,

1

h

∫ t+h

t
f(t)ds

)

≤ 1

h

∫ t+h

t
δ(f(s), f(t))ds.

Set ε > 0. Since f is continuous at the point t, there exist σ > 0, such that for s ∈ (t, t+σ),

we have δ(f(s), f(t)) < ε. This implies that for h < σ, we have

δ

(
1

h

∫ t+h

t
f(s)ds, f(t)

)
≤ 1

h

∫ t+h

t
εds = ε

which proves the equality

lim
h→0+

1

h

∫ t+h

t
f(s)ds = f(t). (3.21)
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Similarly,

lim
h→0+

F (t)
h
− F (t− h)

h
= lim

h→0+

1

h

∫ t

t−h
f(s)ds = f(t).

Thus, DHF (t) = f(t).

From (3.20), we have that

F (t) = m+

∫ t

a
DHF (s)ds = F (a) +

∫ t

a
DHF (s)ds. �

We continue with properties of integrals in L-spaces, and next we describe the integration

by parts formula for such integrals.

3.5.1 Integration by parts formula

Lemma 5 Let a real-valued function f(t) (differentiable, nonnegative, and nondecreasing)

and a differentiable in the Hukuhara sense function F (t) with convex values in an L-space

be given. Then the following integration by parts formula holds

∫ b

a
f ′(t)F (t)dt =

(
f(b)F (b)

h
− f(a)F (a)

)
h
−
∫ b

a
f(t)DHF (t)dt. (3.22)

Proof. In the previous section, we have proved that under our assumptions, the following

formula holds

DH(fF )(t) = f ′(t)F (t) + f(t)DHF (t).

Therefore, ∫ b

a
DH(fF )(t)dt =

∫ b

a
f ′(t)F (t)dt+

∫ b

a
f(t)DHF (t)dt

and since, ∫ b

a
DH(fF )(t)dt = f(b)F (b)

h
− f(a)F (a),

the integration by parts formula (3.22) holds. �

3.5.2 Change of variable formula

Lemma 6 Let f : [a, b]→ X have a Hukuhara type derivative DHf on the interval [a, b] .

Let also ϕ : [c, d] → [a, b] be an increasing real-valued function, differentiable at any point

on [c, d]. Then ∫ d

c
f(ϕ(t))ϕ′(t)dt =

∫ b

a
f(x)dx. (3.23)
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Proof. Denote F (x) =
∫ x
a f(u)du. Let also x = ϕ(t) and ϕ(c) = a, ϕ(d) = b. Then we

have

F (ϕ(t)) =

∫ ϕ(t)

a
f(u)du.

From the cain rule (3.16), we get

DH(F ◦ ϕ)(t) = DHF (ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t).

Consequently,∫ d

c
f(ϕ(t))ϕ′(t)dt = F (ϕ(t))|dc = F (b)

h
− F (a) =

∫ b

a
f(x)dx. �

3.5.3 Derivative of an integral with a variable upper limit

Lemma 7 Let f ∈ C([a, b], Xc). Then

DH

(∫ x

a
f(t)dt

)
= f(x), x ∈ [a, b]. (3.24)

Proof. We have

DH

(∫ x

a
f(t)dt

)
= lim

h→0+

1

h

(∫ x+h

a
f(t)dt

h
−
∫ x

a
f(t)dt

)

= lim
h→0+

1

h

((∫ x

a
f(t)dt+

∫ x+h

x
f(t)dt

)
h
−
∫ x

a
f(t)dt

)
= lim

h→0+

1

h

∫ x+h

x
f(t)dt = f(x).

Similarly, we can show that

DH

(∫ x

a
f(t)dt

)
= lim

h→0+

1

h

(∫ x

a
f(t)dt

h
−
∫ x−h

a
f(t)dt

)

= lim
h→0+

1

h

((∫ x−h

a
f(t)dt+

∫ x

x−h
f(t)dt

)
h
−
∫ x−h

a
f(t)dt

)
= lim

h→0+

1

h

∫ x

x−h
f(t)dt = f(x). �



CHAPTER 4

APPROXIMATE SOLUTION OF LINEAR

INTEGRAL EQUATIONS IN L-SPACES

In this chapter, we consider linear Volterra and Fredholm integral equations for functions

with values in L-spaces. This includes corresponding problems for set-valued functions,

fuzzy-valued functions, and many others. We prove theorems of existence and uniqueness

of the solution for such equations and suggest some algorithms for finding approximate

solutions. We get initial results in the approximation of functions with values in L-spaces

by piecewise linear functions and we also get error estimates of trapezoidal quadrature

formulas. For known results on approximation and quadrature formulas for set-valued and

fuzzy-valued functions, we refer the reader to [3], [10], [11], [12], [14], [16], [30], [47], [54],

[66] and references therein. We use the results on piecewise linear approximation and error

estimates of quadrature formulas on convergence analysis.

4.1 Introduction

Fredholm and Volterra integral equations for single valued functions form a classic

subject in pure and applied mathematics. Such integral equations have many important

applications in biology (e.g., population dynamics, demography, and infection propagation),

mathematical economics, actuarial mathematics, physics (e.g., astronomy and geophysics),

and engineering (image and signal processing) (see, for example, [25], [48], [36], [34], and the

references therein). At the same time, a wide variety of questions lead to integral equations

for functions with values that are compact and convex sets in finite or infinite dimensional

spaces, or that are fuzzy sets (see [26], [19], [1], [46], [63], [56], [57], [17], [67]).

Despite the large number of papers devoted to numerical methods for the solution

of integral equations, we do not know of any work connected with methods of finding

approximate solution of integral equations for functions with values in the space of sets or

fuzzy sets of dimensions that are greater than one. One of the purposes of this work is to

fill this gap. We show that some existing methods for the solution of real-valued integral

equations can be adapted to the solution of integral equations in L-spaces. These are
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methods that have relatively low order of accuracy (such as a collocation method based on

”piecewise linear” interpolation and a quadrature formula method based on the trapezoidal

rule). Attempts to adapt methods of higher accuracy to solutions of integral equations in

L-spaces meet difficulties, because approximation theory and quadrature formulas theory

for functions with values in L-spaces are not sufficiently developed yet.

4.2 Piecewise linear approximation and errors of
quadrature formulas

As usual, denote by C[a, b] the space of continuous functions f : [a, b] → R with the

norm ||f ||C[a,b] = max{|f(t)| : t ∈ [a, b]}. Let X be an L-space. Denote by C([a, b], X) the

set of all continuous functions ϕ : [a, b] −→ X. This set endowed with the metric

ρ(ϕ,ψ) = max
t∈[a,b]

δ(ϕ(t), ψ(t)) = ‖δ(ϕ(t), ψ(t))‖C([a,b])

is a complete metric space (see, e.g., [6]).

For a function f ∈ C([a, b], X) we define the modulus of continuity by

ω(f, t) = sup
t′,t′′∈[a,b]
|t′−t′′|≤t

δ(f(t′), f(t′′)), t ∈ [0, b− a].

Note that ω(f, t)→ 0, as t→ 0.

If

ω(f, t) ≤Mt (4.1)

then we say that the function f satisfies the Lipschitz condition with constant M .

Denote by ω∗(f, t) the least concave majorant of the function ω(f, t). It is well known

(see [43]) that the following inequalities hold

ω(f, t) ≤ ω∗(f, t) ≤ 2ω(f, t).

It will be convenient for us to give an estimation of approximation in terms of a function

ω∗(f, t).

4.2.1 Piecewise-linear interpolation

Define an operator PN that assigns to a function f ∈ C([a, b], X) the function

PN [f ](t) =
N∑
k=0

f(tk)lk(t), (4.2)

where tk = a+ k b−aN , k = 0, 1, ..., N , and

l0(t) :=

{
(t1 − t)/(t1 − t0) if t ∈ [t0, t1]

0 else,
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lk(t) =


(t− tk−1)/(tk − tk−1) if t ∈ [tk−1, tk]

(tk+1 − t)/(tk+1 − tk) if t ∈ [tk, tk+1]

0 else,

(4.3)

lN (t) :=

{
(t− tN−1)/(tN − tN−1) if t ∈ [tN−1, tN ]

0 else.

Theorem 3 If f ∈ C([a, b], Xc), then

ρ(f, PN [f ]) ≤ ω
(
f,
b− a
N

)
. (4.4)

Moreover, for t ∈ [tk−1, tk], k = 1, 2, ..., N

δ(f(t), PN [f ](t)) ≤ ω∗
(
f, 2

(t− tk−1)(tk − t)
tk − tk−1

)
, (4.5)

and therefore,

ρ(f, PN [f ]) ≤ ω∗
(
f,
b− a
2N

)
. (4.6)

If ω(f, t) ≤Mt, t ≥ 0, then

ρ(f, PN [f ]) ≤M b− a
2N

. (4.7)

Proof. For t ∈ [tk−1, tk],

PN [f ](t) =
tk − t

tk − tk−1
f(tk−1) +

t− tk−1

tk − tk−1
f(tk).

Consequently, using Axiom 8 and Axiom 7 of an L-space, we have

δ(f(t), PN [f ](t))

= δ

(
tk − t

tk − tk−1
f(t) +

t− tk−1

tk − tk−1
f(t),

tk − t
tk − tk−1

f(tk−1) +
t− tk−1

tk − tk−1
f(tk)

)
≤ tk − t
tk − tk−1

δ(f(t), f(tk−1)) +
t− tk−1

tk − tk−1
δ(f(t), f(tk)) (4.8)

≤ tk − t
tk − tk−1

ω(f, t− tk−1) +
t− tk−1

tk − tk−1
ω(f, tk − t) ≤ ω

(
f,
b− a
n

)
.

Therefore,

δ(f(t), PN [f ](t)) ≤ ω
(
f,
b− a
N

)
and

ρ(f, PN [f ]) ≤ ω
(
f,
b− a
N

)
.

The inequality (4.4) is proved. Using (4.8) and applying Jensen’s inequality, we have

δ(f(t), PN [f ](t)) ≤ tk − t
tk − tk−1

ω∗(f, t− tk−1) +
t− tk−1

tk − tk−1
ω∗(f, tk − t)

≤ ω∗
(
f, 2

(tk − t)(t− tk−1)

tk − tk−1

)
.

The inequality (4.5) is proved. Inequalities (4.6) and (4.7) are now obvious. �
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The following theorem gives an estimate of the error of approximation by piecewise-linear

functions for such f that DHf(t) ∈ C([a, b], X).

Theorem 4 Suppose the function f : [a, b]→ Xc has the Hukuhara type derivative DHf(t)

on the interval [a, b]. Then if DHf ∈ C([a, b], Xc), we have for any k = 1, 2, ..., N and any

t ∈ [tk−1, tk]

δ(f(t), PN [f ](t)) ≤ 2
(tk − t)(t− tk−1)

(tk − tk−1)2

∫ b−a
2N

0
ω(DHf, 2u)du, (4.9)

and

ρ(f, PN [f ]) ≤ 1

2

∫ b−a
2N

0
ω(DHf, 2u)du. (4.10)

In particular, if DHf satisfies the Lipschitz condition with constant M , then

ρ (f, PN [f ]) ≤ M(b− a)2

8N2
. (4.11)

Proof. For t ∈ [tk−1, tk] using Theorem 2, we have

δ(f(t), PN [f ](t)) = δ

(
tk − t

tk − tk−1

(
f(tk−1) +

∫ t

tk−1

DHf(u)du

)
+

t− tk−1

tk − tk−1
f(t),

tk − t
tk − tk−1

f(tk−1) +
t− tk−1

tk − tk−1

(
f(t) +

∫ tk

t
DHf(u)du

))

≤ δ

(
tk − t

tk − tk−1

∫ t

tk−1

DHf(u)du,
t− tk−1

tk − tk−1

∫ tk

t
DHf(v)dv

)

= δ

(
tk − t

tk − tk−1

∫ t

tk−1

DHf(u)du,
tk − t

tk − tk−1

∫ t

tk−1

DHf

(
t− tk
t− tk−1

u+
tk − tk−1

t− tk−1
t

)
du

)

≤ tk − t
tk − tk−1

∫ t

tk−1

δ

(
DHf(u), DHf

(
t− tk
t− tk−1

u+
tk − tk−1

t− tk−1
t

))
du

≤ tk − t
tk − tk−1

∫ t

tk−1

ω

(
DHf,

t− tk
t− tk−1

u+
tk − tk−1

t− tk−1
t− u

)
du

=
tk − t

tk − tk−1

∫ t

tk−1

ω

(
DHf,

(tk − tk−1)

t− tk−1
(t− u)

)
du

= 2
(tk − t)(t− tk−1)

(tk − tk−1)2

∫ b−a
2N

0
ω(DHf, 2u)du.

Inequality (4.9) is proved. Inequality (4.10) holds since
(tk−t)(t−tk−1)

(tk−tk−1)2
≤ 1

4 . Inequality (4.11)

now is obvious. �
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4.2.2 Estimation of the remainder of a trapezoidal quadrature formula

Next we obtain an estimation of the remainder of the trapezoidal quadrature formula∫ b

a
f(t)dt ≈ b− a

N

(
1

2
f̃(t0) +

N−1∑
k=1

f̃(tk) +
1

2
f̃(tN )

)
, tk = a+ k

b− a
N

, k = 0, ..., N.

Such estimates are well known for real-valued functions (see, for example, [21, ch. 4]).

For f ∈ C([a, b], X) set

RN (f) = δ

(∫ b

a
f(t)dt,

b− a
N

(
1

2
f̃(t0) +

N−1∑
k=1

f̃(tk) +
1

2
f̃(tN )

))
. (4.12)

Note that∫ b

a
PN [f ](t)dt =

∫ b

a
PN [f̃ ](t)dt =

b− a
N

(
1

2
f̃(t0) +

N−1∑
k=1

f̃(tk) +
1

2
f̃(tN )

)
.

Therefore,

RN (f) = δ

(∫ b

a
f̃(t)dt,

∫ b

a
PN [f̃ ](t)dt

)
≤
∫ b

a
δ(f̃(t), PN [f̃ ](t))dt

≤ max
a≤t≤b

δ(f̃(t), PN [f̃ ](t))(b− a) = (b− a)ρ(f̃ , PN [f̃ ]).

Note also that due to the Property 1 of a convexifying operator, we have that for any

function f ∈ C([a, b], X):

ω(f̃ , t) ≤ ω(f, t), t ∈ [0, b− a].

Therefore, from Theorems 3 and 4, we have

Theorem 5 Let f ∈ C([a, b], X). Then

RN (f) ≤ (b− a)ω

(
f,
b− a
N

)
.

If f satisfies the Lipschitz condition (4.1) with constant M , then

RN (f) ≤ M(b− a)2

N
.

If function f is such that f̃ has continuous derivative DH f̃ on [a, b], then

RN (f) ≤ b− a
2

∫ b−a
2N

0
ω(DH f̃ , 2u)du.

In particular, if DH f̃ satisfies the condition of (4.1), then

RN (f) ≤ M(b− a)3

8N2
.
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4.3 Existence and uniqueness of the solution of linear
integral equations

In this section, we prove theorems of existence and uniqueness of the solution of linear

Fredholm and Volterra integral equations for functions with values in L-spaces. We show

that the well-known methods of proving theorems of existence and uniqueness of solutions

of integral equations for numerical functions can be adapted to the case of functions with

values in L-spaces. There also exist many works on the theory of these integral equations for

set-valued and fuzzy-valued functions (see, for example, [63], [56], [57], [26] and references

therein).

4.3.1 Fredholm equation

We consider the Fredholm equation of the second kind

ϕ(t) = λ

∫ b

a
K(t, s)ϕ(s)ds+ f(t), (4.13)

where ϕ : [a, b] → X is the unknown function, f : [a, b] → X is a known continuous

function, the kernel K(t, s) (t, s ∈ [a, b]) is a known real-valued function, λ is a fixed

parameter.

Theorem 6 Let f ∈ C([a, b], X). Suppose the kernel K(t, s) of the equation (4.13) satisfies

the following conditions

1. K(t, s) is bounded, i.e., |K(t, s)| ≤M for all t, s ∈ [a, b];

2. K(t, s) is continuous at every point (t, s) ∈ [a, b]× [a, b] where t 6= s.

Then for any λ such that |λ| < 1
M(b−a) , the equation (4.13) has a unique solution ϕ ∈

C([a, b], X).

Proof. Consider the operator A : C([a, b], X)→ C([a, b], X) defined by

Aϕ(t) = λ

∫ b

a
K(t, s)ϕ(s)ds+ f(t), ϕ ∈ C([a, b], X).

We prove first that under the conditions on the K(t, s), this operator maps C([a, b], X) into

C([a, b], X). For this, it is enough to show that the operator

Bϕ(t) :=

∫ b

a
K(t, s)ϕ(s)ds

maps C([a, b], X) into C([a, b], X). In order to do it, consider δ(Bϕ(t′), Bϕ(t′′)), where

a ≤ t′ < t′′ ≤ b. We have
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δ(Bϕ(t′), Bϕ(t′′)) = δ

(∫ b

a
K(t′, s)ϕ(s)ds,

∫ b

a
K(t′′, s)ϕ(s)ds

)

= δ

(∫ b

a
K(t′, s)ϕ̃(s)ds,

∫ b

a
K(t′′, s)ϕ̃(s)ds

)

≤
∫ b

a
δ(K(t′, s)ϕ̃(s),K(t′′, s)ϕ̃(s))ds.

From the above inequality, using property (3.18), we obtain

δ(Bϕ(t′), Bϕ(t′′)) ≤
∫ b

a
|K(t′, s)−K(t′′, s)|δ(ϕ̃(s), θ)ds

≤ max
s∈[a,b]

δ(ϕ̃(s), θ)

∫ b

a
|K(t′, s)−K(t′′, s)|ds

= ρ(ϕ̃(·), θ)
∫ b

a
|K(t′, s)−K(t′′, s)|ds.

If K(t, s) satisfies conditions 1 and 2, then for any ε > 0, there exists σ > 0 such that

∀t′, t′′ ∈ [a, b]

(
|t′ − t′′| < σ ⇒

∫ b

a
|K(t′, s)−K(t′′, s)|ds < ε

)
.

From this and the above estimate, it follows that the function Bϕ(t) is uniformly continuous,

and therefore, Bϕ(t) ∈ C([a, b], X).

Next we show that the operator A is a contractive operator. We have

δ(Aϕ(t), Aψ(t)) = δ

(
λ

∫ b

a
K(t, s)ϕ(s)ds+ f(t), λ

∫ b

a
K(t, s)ψ(s)ds+ f(t)

)

≤ |λ|δ
(∫ b

a
K(t, s)ϕ(s)ds,

∫ b

a
K(t, s)ψ(s)ds

)

≤ |λ|
∫ b

a
|K(t, s)|δ(ϕ(s), ψ(s))ds

≤ |λ|
∫ b

a
|K(t, s)|ds max

s∈[a,b]
δ(ϕ(s), ψ(s))

≤ |λ|M(b− a)ρ(ϕ(·), ψ(·)).

Thus,

ρ(Aϕ(·), Aψ(·)) ≤ |λ|M(b− a)ρ(ϕ(·), ψ(·)).

The above inequality means that the mapping A is contractive if |λ| < 1
M(b−a) . This

contractive mapping has a unique fixed point which implies that the equation (4.13) has a

unique solution in the space C([a, b], X). �
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4.3.2 Volterra equation

We consider now the Volterra integral equation

ϕ(t) =

∫ t

a
K(t, s)ϕ(s)ds+ f(t), (4.14)

where ϕ : [a, b]→ X is again an unknown function, and f : [a, b]→ X is a known continuous

function. The kernel K(t, s) is a known real-valued function defined for (t, s) ∈ [a, b]× [a, b]

such that s ≤ t. Below we assume that K(t, s) is defined on all square [a, b] × [a, b], and

K(t, s) = 0, if s > t.

Since a Volterra integral equation is a particular case of a Fredholm integral equation,

we can use Theorem 6 to guarantee existence and uniqueness of the solution of the equation

(4.14) for the kernel K(t, s) such that M < 1
b−a . However, for Volterra equations, we can

prove the following more general theorem without the restriction on M .

Theorem 7 Let K(t, s) be continuous in the domain {(t, s) ∈ [a, b] × [a, b] : s ≤ t} and

let f ∈ C([a, b], X). Then the equation (4.14) has a unique solution ϕ ∈ C([a, b], X).

Proof. To prove this theorem, we adopt the method known for Volterra equations for

real-valued functions (see, e.g., [41]).

Consider the operator A : C([a, b], X)→ C([a, b], X) defined by

Aϕ(t) =

∫ t

a
K(t, s)ϕ(s)ds+ f(t).

Since equation (4.14) is a particular case of equation (4.13), it is clear that this operator

maps the space C([a, b], X) into C([a, b], X).

We prove that some integer power of this operator is a contractive operator.

We need to introduce some additional notations. Let

K1(t, s) = K(t, s), KN (t, s) =

∫ b

a
KN−1(t, u)K(u, s)du, N ∈ N, N > 1.

Note that if |K(t, s)| ≤M , then (see [41, p. 449])

|KN (t, s)| ≤ MN (b− a)N−1

(N − 1)!
. (4.15)

It is easily seen that for any N ∈ N,

ANϕ(t) =

∫ b

a
KN (t, s)ϕ(s)ds+

∫ b

a

N−1∑
k=1

KN−k(t, s)f(s)ds+ f(t). (4.16)

Using (4.16) and (4.15) we obtain

δ(ANϕ(t), ANψ(t)) ≤ δ
(∫ t

a
KN (t, s)ϕ(s)ds,

∫ t

a
KN (t, s)ψ(s)ds

)
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≤
∫ t

a
δ (KN (t, s)ϕ(s),KN (t, s)ψ(s)) ds

≤
∫ t

a
|KN (t, s)|δ(ϕ(s), ψ(s))ds ≤ MN (b− a)N

(N − 1)!
max
a≤s≤b

δ(ϕ(s), ψ(s)).

Therefore,

ρ(ANϕ,ANψ) ≤ MN (b− a)N

(N − 1)!
ρ(ϕ,ψ).

If N is sufficiently large, then (b−a)N

(N−1)!M
N < 1. Fix such an N . We have shown that the

operator AN is contractive. Using the generalized contractive mapping principle (see [41,

ch. 9]), we obtain that A has a unique fixed point and that therefore, the equation (4.14)

has a unique solution ϕ ∈ C([a, b], X). �

4.4 Algorithms for approximate solution

In this section, we describe algorithms for the approximate solution of linear Fredholm

and Volterra integral equations for functions with values in L-spaces.

We adopt well-known methods for integral equations for real-valued functions, specif-

ically a collocation method (see, for example, [7, ch. 3]) in Section 4.4.1 and 4.4.2, and

quadrature formula methods (see [7], [48]) in Section 4.4.3.

4.4.1 Fredholm equation

We start with the Fredholm integral equation (4.13). Let n ∈ N. Choose a set of knots

a = t0 < t1 < ... < tn = b and a set of continuous real-valued functions γ0, γ1, ..., γn defined

in [a, b]. Suppose that these functions satisfy the following interpolation conditions

γk(tj) = δk,j , j, k = 0, 1, ..., n.

Note that we can use cardinal Lagrange interpolation polynomials as well as cardinal

interpolation splines as such functions. For example, we can take γk(t) = lk(t), where

lk(t) is defined by (4.3), tk = a+ k b−an .

We look for a solution of (4.13) in the form

ϕn(t) =
n∑
k=0

ϕkγk(t), ϕk ∈ X, k = 0, 1, ..., n. (4.17)

Substituting it in the equation (4.13) and setting t = tj gives

ϕj = λ
n∑
k=0

ϕ̃k

∫ b

a
K(tj , s)γk(s)ds+ fj , j = 0, 1, ..., n, (4.18)

where f(tj) = fj .
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Set ajk =
∫ b
a K(tj , s)γk(s)ds.

The system can be rewritten in the form

ϕj = fj + λ
n∑
k=0

ϕ̃kajk, j = 0, 1, ..., n. (4.19)

Due to the problems related to the existence of differences, the only promising method of

solving this system of equations is apparently the method of successive approximations.

Under some additional assumptions, we can solve this system by this method. We illustrate

this in detail for γk(t) = lk(t), k = 0, 1, ..., n.

Choose an initial approximation {x0, ..., xn} to the solution of this system (4.19). For

j = 0, 1, ..., n set

x0
j = xj , xm+1

j = fj + λ
n∑
k=0

x̃mk ajk, m = 0, 1, ... .

Let

Xn+1 = X × . . .×X︸ ︷︷ ︸
n+1 times

.

Consider the operator B : Xn+1 → Xn+1, which is defined according to the rule

yj = fj + λ
n∑
k=0

xkajk, j = 0, 1, ..., n.

Let a metric in the space Xn+1 be defined by

ρ ((x0, ..., xn), (y0, ..., yn)) :=
n∑
j=0

δ(xj , yj).

With this metric, the space Xn+1 is complete.

We have

ρ(B(x0, ..., xn), B(y0, ..., yn)) =

n∑
j=0

δ

(
fj + λ

n∑
k=0

x̃kajk, fj + λ
n∑
k=0

ỹkajk

)

≤
n∑
j=0

δ

(
λ

n∑
k=0

x̃kajk, λ

n∑
k=0

ỹkajk

)

≤ |λ|
n∑
j=0

n∑
k=0

δ(x̃j , ỹj)|ajk| ≤ |λ|
n∑
j=0

δ(xj , yj)

n∑
k=0

|ajk|

≤ |λ|M(b− a)ρ ((x0, ..., xn), (y0, ..., yn)) .
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The last inequality holds since
n∑
k=0

|ajk| ≤
n∑
k=0

∫ b

a
|K(tj , s)|lk(s)ds ≤M

∫ b

a

n∑
k=0

lk(s)ds = M(b− a).

Therefore, if |λ| < 1
M(b−a) , the operator B is contractive, and consequently, the sequence

{(xm0 , ..., xmn )}∞m=0 converges to the solution (ϕ0, ..., ϕn) of the system (4.19) as m→∞.

The function of the form (4.17) where {ϕ0, ..., ϕn} is the solution of the system (4.19)

is our approximation of the solution of the equation (4.13).

4.4.2 Volterra equation

Because Volterra Equations can be considered as a special case of Fredholm Equations,

the method described in the preceding section can be applied for their solution. However,

in the case of X = Xc and supp γk(t) ⊂ [tk−1, tk+1], the resulting linear system becomes

triangular and can be solved explicitly, and rather simply (here suppγ(t) is the support of

a function γ(t)).

Consider the Volterra Equation (4.14) under the assumption that K(t, s) is nonnegative.

As before, we look for a solution of the form (4.17).

As above, let

ajk =

∫ tj

a
K(tj , s)γk(s)ds.

Assume that γk(t) ≥ 0, k = 0, 1, ..., n. Then ajk ≥ 0 if k ≤ j and ajk = 0 if k > j.

Substituting (4.17) in (4.14) and evaluating at tj gives the triangular system

ϕj =

j∑
k=0

ajkϕk + fj , j = 0, 1, . . . , n,

that define ϕ0, ..., ϕn. This system can be rewritten as

ϕj
h
− ajjϕj =

j−1∑
k=0

ϕkajk + fj .

We assume that functions γk(t) are uniformly bounded (in n) and n is sufficiently large so

that

0 ≤ ajj < 1 for j = 0, 1, . . . , n.

With that assumption and using the fact that ϕj are convex, we obtain

ϕj
h
− ajjϕj = (1− ajj)ϕj .

Thus, we obtain the explicit recursion

ϕ0 = f0, ϕj =
1

1− ajj

(
j−1∑
k=0

ϕkajk + fj

)
, j = 1, 2, . . . , n. (4.20)
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4.4.3 Nyström method for Fredholm equations

Consider again the Fredholm equation (4.13). For real-valued functions, the following

approach to finding an approximate solution of such equations is well known (see, for

example, [7, ch. 4]).

Let a quadrature formula be given:∫ b

a
g(s)ds ≈

n∑
j=1

pj g̃(tj), g ∈ C([a, b], X),

where a ≤ t1 < t2 < ... < tn ≤ b, pj ∈ R.

Using this quadrature formula, we approximate the integral in (4.13) and obtain a new

equation:

ϕ(t) = λ

n∑
j=1

pjK(t, tj)ϕ̃(tj) + f(t). (4.21)

Evaluate (4.21) at tk, k = 1, 2, ..., n:

ϕ(tk) = λ

n∑
j=1

pjK(tk, tj)ϕ̃(tj) + f(tk).

This is the system of equations with unknown ϕ(tk) = ϕk, which we rewrite in the form

ϕk = λ
n∑
j=1

bkjϕ̃j + fnk , j = 1, 2, ..., n, (4.22)

where bkj = pjK(tk, tj).

Under some additional assumptions, we can solve (4.22) using the method of consecutive

approximations, analogously to the solution of the system (4.19).

The solution ϕ1, ..., ϕn of the system (4.22) we can use as approximate values of the

solution of the equation (4.13) at points t1, ..., tn.

4.4.4 Nyström method for Volterra equations

Consider now the Volterra equation (4.14). We describe a quadrature formulas method

for the approximate solution of the linear Volterra equation (4.14) based on the trapezoidal

rule. We assume that kernelK(t, s) is nonnegative. Since we can consider Volterra equations

as a particular case of Fredholm equations, the method described in Section 4.4.3 can be

applied and for their solutions too. However, if we assume that all elements of the space X

are convex, we can obtain an explicit solution of our system.

For simplicity, let a = 0, b = 1, ti = i/n, i = 0, 1, ..., n.
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Once we apply the trapezoidal rule for the approximate calculation of the integral∫ tk

0
K(tk, s)ϕ(s)ds

in (4.14) and evaluate the resulting relation at t = tk, k = 1, ..., n we obtain the following

ϕk = fk +
1

n

{
1

2
K(tk, t0)ϕ0 +

k−1∑
i=1

K(tk, ti)ϕi +
1

2
K(tk, tk)ϕk

}
, k = 1, 2, ..., n,

(here
0∑
i=1

:= 0) with ϕ0 = f0.

Set 1
nK(tk, ti) = cki and note that for n large enough, we have 0 ≤ cki < 1. We obtain

the following explicit recursive formula that is analogous to (4.20):

ϕ0 = f0, ϕj =
1

1− 1
2cjj

(
1

2
cj0ϕ0 +

j−1∑
i=1

cjiϕi + fj

)
, j = 1, 2, ..., n.

It seems possible to use for the approximate solution of Volterra type equations, as well as

for Fredholm type equations (for functions with values in L-spaces), quadrature formulas

of higher accuracy (see, for example, [48, ch.7]). An analysis of such methods requires

additional tools that have not yet been developed for functions with values in L-spaces, and

even for set-valued functions.

4.5 Convergence and error analysis

In Sections 4.5.1 and 4.5.2, we assume that all elements of the space X are convex.

4.5.1 Convergence of collocation algorithm for Fredholm equations

Recall that in Section 4.4.1 the elements ϕ0, ..., ϕn were defined as a solution of the

system (4.19). As approximate solution of the Fredholm equation (4.13) we consider the

function (4.17) with γk = lk.

Theorem 8 Let K(t, s) and f(t) satisfy the condition of Theorem 6, and |λ| < 1
M(b−a) .

Let ϕ(t) be the solution of the equation (4.13) and let ϕn(t), n ∈ N be defined by (4.17).

Then

ρ(ϕ,ϕn) = max
a≤t≤b

δ(ϕ(t), ϕn(t))→ 0, as n→∞. (4.23)

If for any s ∈ [a, b] the kernel K(t, s) satisfies the Lipschitz condition (for t) with a

constant M1, that does not depend on s, and f(t) satisfies in [a, b] the Lipschitz condition

with constant M2, then there exists a constant C1 such that for any n

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ C1

n
. (4.24)
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Moreover, if for any s ∈ [a, b] the kernel K(t, s) is continuously differentiable with respect

to t, and ∂K(t,s)
∂t satisfies the Lipschitz condition with constant M3 that does not depend on

s, f(t) has a Hukuhara type derivative DHf(t) in [a, b] and DHf(t) satisfies the Lipschitz

condition (4.1) with constant M4, then there exists a constant C2 such that for any n

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ C2

n2
. (4.25)

Proof. Recall that the operator PN [f ](t) is defined by (4.2). Using (4.17) and (4.18), we

have

Pn[ϕn](t) = λPn

[
n∑
k=0

ϕk

∫ b

a
K(t, s)lk(s)ds

]
(t) + Pn[f ](t)

= λ
n∑
j=0

(
n∑
k=0

ϕk

∫ b

a
K(tj , s)lk(s)ds

)
lj(t) + Pn[f ](t)

= λ

∫ b

a

 n∑
j=0

K(tj , s)lj(t)

 n∑
k=0

ϕklk(s)ds+ Pn[f ](t)

= λ

∫ b

a
Pn,t[K](t, s)ϕn(s)ds+ Pn[f ](t),

where

Pn,t[K](t, s) =
n∑
j=0

K(tj , s)lj(t).

Since Pn[ϕn](t) = ϕn(t) (the piecewise linear function that interpolates a piecewise linear

function at the knots coincides with the interpolated function), we obtain that the function

ϕn(t) solves the following equation

ϕn(t) = λ

∫ b

a
Pn,t[K](t, s)ϕn(s)ds+ Pn[f ](t). (4.26)

Let ϕ(t) be the solution of the equation (4.13) and let ϕn(t) solve equation (4.26). We

estimate the distance between ϕn and ϕ. We have

δ(ϕ(t), ϕn(t)) ≤ |λ|δ
(∫ b

a
K(t, s)ϕ(s)ds,

∫ b

a
Pn,t[K](t, s)ϕn(s)ds

)
+ δ(f(t), Pn[f ](t))

≤ |λ|δ
(∫ b

a
K(t, s)ϕ(s)ds,

∫ b

a
Pn,t[K](t, s)ϕ(s)ds

)
+

+|λ|δ
(∫ b

a
Pn,t[K](t, s)ϕ(s)ds,

∫ b

a
Pn,t[K](t, s)ϕn(s)ds

)
+ δ(f(t), Pn[f ](t)).

Therefore,

max
a≤t≤b

δ(ϕ(t), ϕn(t))
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≤ |λ| max
a≤t≤b

δ

(∫ b

a
Pn,t[K](t, s)ϕ(s)ds,

∫ b

a
Pn,t[K](t, s)ϕn(s)ds

)
+

+|λ| max
a≤t≤b

δ

(∫ b

a
K(t, s)ϕ(s)ds,

∫ b

a
Pn,t[K](t, s)ϕ(s)ds

)
+ max
a≤t≤b

δ(f(t), Pn[f ](t))

≤ |λ| max
a≤t≤b

∫ b

a
|Pn,t[K](t, s)|δ(ϕ(s), ϕn(s))ds

+|λ| max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|δ(ϕ(s), θ)ds+ max

a≤t≤b
δ(f(t), Pn[f ](t)).

Note that if |K(t, s)| ≤M , then |Pn,t[K](t, s)| ≤M as well. Therefore,

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ |λ|M(b− a) max
a≤t≤b

δ(ϕ(t), ϕn(t))

+|λ| max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|ds max

a≤t≤b
δ(ϕ(t), θ)

+ max
a≤t≤b

δ(f(t), Pn[f ](t)).

From the estimation above, we obtain that if |λ| < 1
M(b−a) , then

(1− |λ|M(b− a)) max
a≤t≤b

δ(ϕ(t), ϕn(t)) (4.27)

≤ |λ| max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|ds max

a≤s≤b
δ(ϕ(s), θ) + max

a≤t≤b
δ(f(t), Pn[f ](t)).

It is easily seen that

max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|ds −→ 0, as n→∞. (4.28)

We also have (see Theorem 3),

max
a≤t≤b

δ(f(t), Pn[f ](t))→ 0, as n→∞.

From the last two relations and from (4.27), we see that

ρ(ϕ,ϕn) = max
a≤t≤b

δ(f(t), Pn[f ](t))→ 0, as n→∞.

We have proved the relation (4.23). Next we prove the relation (4.24).
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Suppose that for any s ∈ [a, b], the kernel K(t, s) satisfies the Lipschitz condition (for

t) with a constant M1 that does not depend on s. It follows from the real-valued analog of

Theorem 3 that

max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|ds ≤ (b− a)2

2n
M1. (4.29)

If f(t) satisfies in [a, b] the Lipschitz condition with constant M2, then it follows from

Theorem 3 that

max
a≤t≤b

δ(f(t), Pn[f ](t)) ≤ M2(b− a)

2n
. (4.30)

Using (4.29) and (4.30), we obtain from (4.27) that there exists a constant C1 such that

for any n

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ C1

n
.

We have proved the relation (4.24).

Suppose now that for any s ∈ [a, b], the kernel K(t, s) is continuously differentiable with

respect to t, and ∂K(t, s)/∂t satisfies the Lipschitz condition with constant M3 that does

not depend on s, then (see, e.g., [7, p.60])

max
a≤t≤b

∫ b

a
|K(t, s)− Pn,t[K](t, s)|ds ≤ M3(b− a)3

8n2
. (4.31)

If the Hukuhara type derivative of f(t) satisfies the Lipschitz condition (4.1) with constant

M4, then due to Theorem 3,

max
a≤t≤b

δ(f(t), Pn[f ](t)) ≤ M4(b− a)2

8n2
. (4.32)

Using (4.31) and (4.32), we obtain from (4.27) that there exists a constant C2 such that for

any n

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ C2

n2
.

We have proved the relation (4.25). �

4.5.2 Convergence of collocation algorithm for Volterra equation

Since a Volterra equation is a particular case of a Fredholm equation, we can apply the

first statement of Theorem 8 to obtain the convergence of the method presented in Section

4.4.2 under the assumption M < 1/(b − a). However, in the case of a Volterra equation

with a nonnegative kernel, we can eliminate the restriction. We obtain
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Theorem 9 Let the kernel K(t, s) of the equation (4.14) be nonnegative and continuous,

and suppose K(t, s) ≤ M in the domain 0 ≤ s ≤ t ≤ b. Let ϕ(t) be the solution of the

equation (4.14) and let ϕn(t), n ∈ N, be the approximate solution (4.17). Then

ρ(ϕ,ϕn) = max
a≤t≤b

δ(ϕ(t), ϕn(t))→ 0, as n→∞.

If in addition the kernel K(t, s) satisfies the Lipschitz condition with constant G1 in t for

any s in the domain a ≤ s ≤ t ≤ b, and f(t) satisfies the Lipschitz condition with constant

G2 in [a, b], then there exists a constant G3 such that for any n ∈ N

1

2
max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ G3

n
. (4.33)

Proof. We use notations from the previous section, taking into account that K(t, s) = 0 if

s > t and λ = 1. As in Section 4.5.1, we have that ϕ(t) and ϕn(t) satisfy (4.13) and (4.26).

We would like to estimate the distance between ϕn and ϕ. Set

Pn,t;N [K](t, s) := (Pn,t[K])N (t, s).

Since max
a≤t,s≤b

|Pn,t[K](t, s)| ≤ max
a≤t,s≤b

|K(t, s)| we have

|Pn,t;N [K](t, s)| ≤MN (b− a)N . (4.34)

Consider the operators

Aϕ(t) =
∫ b
a K(t, s)ϕ(s)ds+ f(t), ϕ ∈ C([a, b], X),

Anϕ(t) =
∫ b
a Pn,t[K](t, s)ϕ(s)ds+ Pn[f ](t), ϕ ∈ C([a, b], X).

Let ANϕ(t) be defined by (4.16) and let

ANn ϕ(t) =

∫ b

a
Pn,t;N [K](t, s)ϕ(s)ds+

∫ b

a

N−1∑
k=1

Pn,t;N−k[K](t, s)Pn[f ](s)ds+ Pn[f ](t).

Since ϕ is a fixed point of the operator A, then ϕ is a fixed point of operator AN , for all N .

Therefore, ϕ satisfies the equation

ϕ(t) =

∫ b

a
KN (t, s)ϕ(s)ds+

∫ b

a

N−1∑
k=1

KN−k(t, s)f(s)ds+ f(t). (4.35)

Similarly (since ϕn is a fixed point of the operator An),

ϕn(t) =

∫ b

a
Pn,t;N [K](t, s)ϕn(s)ds+

∫ b

a

N−1∑
k=1

Pn,t;N−k[K](t, s)Pn[f ](s)ds+ Pn[f ](t). (4.36)
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Next we estimate δ(ϕ(t), ϕn(t)). Using (4.35) and (4.36), we have:

max
a≤t≤b

δ(ϕ(t), ϕn(t)) ≤ max
a≤t≤b

∫ b

a
δ(KN (t, s)ϕ(s), Pn,t;N [K](t, s)ϕn(s))ds (4.37)

+

N−1∑
k=1

max
a≤t≤b

∫ b

a
δ(KN−k(t, s)f(s), Pn,t;N−k[K](t, s)Pn[f ](s))ds

+ max
a≤t≤b

δ(f(t), Pn[f ](t))

=: ∆N +
N−1∑
k=1

∆N−k + ∆0.

For ∆N , we have

∆N = max
a≤t≤b

∫ b

a
δ(KN (t, s)ϕ(s), Pn,t;N [K](t, s)ϕn(s))ds

≤ max
a≤t≤b

∫ b

a
δ(KN (t, s)ϕ(s),KN (t, s)ϕn(s))ds

+ max
a≤t≤b

∫ b

a
δ(KN (t, s)ϕn(s), Pn,t;N [K](t, s)ϕn(s))ds

≤ max
a≤t≤b

∫ b

a
KN (t, s)δ(ϕ(s), ϕn(s))ds

+ max
a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|δ(ϕn(s), θ)ds.

Using (4.15), we obtain

max
a≤t≤b

∫ b

a
KN (t, s)δ(ϕ(s), ϕn(s))ds ≤ MN (b− a)N−1

(N − 1)!
(b− a) max

a≤t≤b
δ(ϕ(t), ϕn(t))

≤ 1

2
max
a≤t≤b

δ(ϕ(t), ϕn(t)),

if N is sufficiently large. We fix such an N below. Therefore, we obtain

∆N ≤
1

2
ρ(ϕ,ϕn) + max

a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|dsρ(ϕn, θ) (4.38)

Let us estimate ∆N−k. Using (4.15), we have for k = 1, 2, ..., N − 1

∆N−k ≤ max
a≤t≤b

∫ b

a
δ(KN−k(t, s)f(s),KN−k(t, s)Pn[f ](s))ds

+ max
a≤t≤b

∫ b

a
δ(KN−k(t, s)Pn[f ](s), Pn,t;N−k[K](t, s)Pn[f ](s))ds

≤ max
a≤t≤b

∫ b

a
KN−k(t, s)δ(f(s), Pn[f ](s))ds
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+ max
a≤t≤b

∫ b

a
|KN−k(t, s)− Pn,t;N−k[K](t, s)|δ(Pn[f ](s), θ)ds

≤ MN−k(b− a)N−k

(N − 1− k)!
max
a≤s≤b

δ(f(s), Pn[f ](s))

+ max
a≤t≤b

∫ b

a
|KN−k(t, s)− Pn,t;N−k[K](t, s)|ds max

a≤s≤b
δ(Pn[f ](s), θ).

Thus, for k = 1, 2, ..., N − 1,

∆N−k ≤
MN−k(b− a)N−k

(N − 1− k)!
∆0 (4.39)

+ max
a≤t≤b

∫ b

a
|KN−k(t, s)− Pn,t;N−k[K](t, s)|dsρ(Pn[f ], θ).

The following statment is easy to prove by induction.

For any N , there exists a constant CN > 0 (independent on n), such that

max
a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|ds ≤ CN max

a≤u≤b

∫ b

a
|K(u, s)− Pn,t[K](u, s)|ds. (4.40)

Also, the sequences {ρ(ϕn, θ)} and {ρ(Pn[f ], θ)} are bounded. From this and from the

relations (4.37), (4.38), (4.39) and (4.40), it follows that there exist constants C ′, C ′′ > 0

such that

1

2
ρ(ϕ,ϕn) ≤ C ′∆0 + C ′′ max

a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|ds, ∆0 = ρ(Pn[f ], f). (4.41)

If the kernel K(t, s) of the equation (4.14) is nonnegative, continuous, and K(t, s) ≤M

in the domain 0 ≤ s ≤ t ≤ b, then

max
a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|ds→ 0, as n→∞. (4.42)

If the kernel K(t, s) satisfies the Lipschitz condition with constant G1 in t for any s in the

domain a ≤ s ≤ t ≤ b, then there exists a constant G4 such that for any n ∈ N

max
a≤t≤b

∫ b

a
|KN (t, s)− Pn,t;N [K](t, s)|ds ≤ G4

n
. (4.43)

Now the statement of the Theorem 14 follows from Theorem 3 and relations (4.41), (4.42),

and (4.43). �

4.5.3 Error analysis for quadrature methods

We present here only a theorem that gives an error analysis of the method based on

trapezoidal quadrature formula for approximate solution of Fredholm equation.
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Let ϕ(t) be an exact solution of the equation (4.13) and let ϕnj , j = 0, 1, ..., n be such

that

ϕnj = λ
b− a
n

[
1

2
K(tj , t0)ϕ̃n0 +

n−1∑
i=1

K(tj , ti)ϕ̃
n
i +

1

2
K(tj , tn)ϕ̃nn

]
+ f(tj).

Set εn = max
0≤j≤n

δ(ϕ(tj), ϕ
n
j ).

Theorem 10 1. Let K(t, s) and f(t) be continuous, |K(t, s)| ≤M in the domain [a, b]×

[a, b] and |λ| < 1
M(b−a) . Then

εn → 0, as n→∞. (4.44)

2. If for any s ∈ [a, b] the kernel K(t, s) satisfies the Lipschitz condition (for t) with

a constant M1, that does not depend on s, and f(t) satisfies in [a, b] the Lipschitz

condition with constant M2, then there exists a constant C1 such that for any n

εn ≤
C1

n
. (4.45)

Proof. It is obvious that there exists a constant C2 > 0 such that

εn ≤ C2 max
t
Rn(K(t, ·)ϕ(·))

(definition of Rn(K(t, ·)ϕ(·)) see in (4.12)). If K(t, s) and f(t) satisfy the condition of the

statement 1 of the theorem, then ϕ(t) as well as K(t, ·)ϕ(·) are continuous.

IfK(t, s) and f(t) satisfy the condition of the statement 2 of the theorem, thenK(t, ·)ϕ(·)

satisfies in [a, b] the Lipschitz condition with some constant M3.

Now the statements of Theorem 10 follow from Theorem 5. �

4.6 Numerical examples

In this section, we discuss some numerical examples for set-valued functions, i.e., func-

tions with values in L-space of convex, compact subsets of Rn: Kc(Rn). We used MATLAB

to implement the algorithm for the approximate solution of integral equations presented in

Section 4.4.

Example 1. We consider first an initial value problem

DHX = λ(t)X +A(t), X(a) = X0,

where DHX is the Hukuhara derivative (see [39]), λ(·) : [a, b] → R+ and A(·) : [a, b] →

Kc(Rn) are continuous functions, X0 ∈ Kc(Rn).



50

This initial value problem can be rewritten in the form of the Volterra integral equation

X(t) =

∫ t

a
λ(s)X(s)ds+ F (t), where F (t) = X0 +

∫ t

a
A(s)ds. (4.46)

It is well known (see for example [58]) that the solution of this equation has the form

X(t) = e
∫ t
a λ(s)ds

(
X0 +

∫ t

a
A(s)e−

∫ s
a λ(τ)dτds

)
.

We consider the equation (4.46) with λ(s) = s and

F (t) = [−1, t]× [0, 1] = [−1, 0]× [0, 1] + [0, t]× {0}, t ∈ [0, 1].

The exact solution of the equation (4.46) is

X(t) =

[
−et2/2,

∫ t

0
e(t2−s2)/2ds

]
×
[
0, et

2/2
]
.

We plot (see Figure 4.1) the Hausdorff distance between the exact solution and the approx-

imate solution. The time-step is 1/50.

Example 2. Here we consider the Volterra integral equation (4.14) with a = 0, b = 1.

Let K(t, s) = ts and

f(t) =

[
0,

1

2 + t
+ 2t ln

2 + t

2
− t2

]
×
[
0,

1

3 + t
+ 3t ln

3 + t

3
− t2

]
.

The exact solution is ϕ(t) =
[
0, 1

2+t

]
×
[
0, 1

3+t

]
, t ∈ [0, 1]. We plot the Hausdorff distance

Figure 4.1: The Hausdorff distance between exact solution and approximate solution
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(the error) between the exact solution and the solution obtained by both collocation and

quadrature algorithms that were described in Sections 4.4.2 and 4.4.4. The time-step is

1/14.

As one can see from the corresponding picture (see Figure 4.2a), the collocation method

gives a better approximation then the quadrature method in this case.

Example 3. Let K(t, s) = e−s, t ∈ [0, 1] in the equation (4.14) and

f(t) =
[
0, et(1 + α cos t)− t− α sin t

]
×
[
0, et(1 + α sin t)− t+ α cos t− α

]
.

(a) Example 2. Kernel K(t, s) = ts

(b) Example 3. Kernel K(t, s) = e−s

Figure 4.2: Example of quadrature and collocation algorithms for Volterra Equations
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The exact solution has the following form: ϕ(t) =
[
0, et(1 + α cos t)

]
×
[
0, et(1 + α sin t)

]
.

This is the example of the problem for which quadrature method gives better approximation

than collocation method (see Figure 4.2b).

Example 4. This is the example of approximate solution of Fredholm equation (4.13)

with a = 0, b = 1, λ = 1 by the collocation algorithm. We use a kernel K(t, s) = e−(t+s)

and

f(t) = [0, et + 1− (2− 1/e)e−t]× [0, 1− e−t(1− 1/e)], t ∈ [0, 1].

The exact solution of the problem in this case is ϕ(t) =
[
0, et + 1

]
× [0, 1] and as it was in all

previous examples we plot the Hausdorff distance (the error) between the exact solution and

the solution obtained by described in Section 4.4.1 algorithm, though here to plot results

we use a logarithmic scale for the y-axis (see Figure 4.3a). We plot error for 8, 16, 32, and

64 knots.

Example 5. This is another example of a collocation algorithm for the Fredholm

Equation. This time we use a kernel K(t, s) = s sin4(3t) and

f(t) =

[
0, 1− 1

2
sin4(3t)

]
×
[
0, 1 + t− 5

6
sin4(3t)

]
, t ∈ [0, 1].

The exact solution has the form ϕ(t) = [0, 1]× [0, 1 + t]. Results for 8, 16, and 32 knots are

shown on Figure 4.3b.

4.7 Discussion

We have shown that many principles and concepts governing single valued integral

equations transfer to the more general case of functions with values in L-spaces, particularly

for set-valued functions, and functions whose values are fuzzy sets. The algorithms we

discussed adopt the collocation method for the approximate solution of integral equations

and use ”piecewise-linear” functions. These algorithms converge at the rate of O(1/n) if

the functions defining the problem have smoothness of order 1, and converge at the rate

of O(1/n2) if the functions have smoothness of order 2. In future work, we hope to obtain

methods of the approximate solution of integral equations that will use alternative methods

of approximation and will converge faster for functions of greater smoothness. We also

plan to investigate the solution of more general, nonlinear integro-differential equations, and

integral and differential equation problems involving functions of more than one independent

variable, with values in L-spaces.
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(a) Example 4. Kernel K(t, s) = s sin4(3t). Error for 8, 16, 32, and
64 knots.

(b) Example 5. Kernel K(t, s) = e−(t+s). Error for 8, 16, and 32
knots.

Figure 4.3: Examples of a collocation algorithm for Fredholm Equation. Note we use here
logarithmic scale for the y-axis.



CHAPTER 5

NONLINEAR INTEGRAL EQUATIONS IN

L-SPACES

In this chapter, we consider nonlinear integral equations of Fredholm and Volterra type

with respect to functions having values in L-spaces.

x(t) = f(t) + λ

∫ b

a
g(t, s, x(s))ds Fredholm Equation

and

x(t) = f(t) +

∫ t

a
g(t, s, x(s))ds Volterra Equation.

We prove for these equations theorems of existence and uniqueness of their solutions and

investigate data dependence of their solutions. Our results generalize the results of I. Tişe

[63] for the case of X = Kc(Rn) and f(t) = A, A ∈ Kc(Rn).

5.1 Theorems of existence and uniqueness

5.1.1 Fredholm equation

Consider the set Y = [a, b] × [a, b] × X. In the space Y , introduce a metric assuming

that for points y = (t, s, x) and y′ = (t′, s′, x′) from Y

d(x, y) = |t− t′|+ |s− s′|+ δ(x, x′).

Consider the Fredholm integral equation

x(t) = f(t) + λ

∫ b

a
g(t, s, x(s))ds, (5.1)

where f : [a, b]→ X and g : Y → X are known functions, λ is a fixed real parameter and

x : [a, b]→ X is an unknown function.

Theorem 11 Suppose the function f(t) is continuous on [a, b] and the function g(t, s, x)

satisfies the following conditions

1. g is weakly continuous on Y , so the function g̃ : Y → Xc is continuous;
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2. There exists a constant K such that for any (t, s) ∈ [a, b]×[a, b], the function g̃ satisfies

the Lipschitz condition with constant K > 0 on the variable x, so ∀x′, x′′ ∈ X

δ
(
g̃(t, s, x′), g̃(t, s, x′′)

)
≤ Kδ(x′, x′′). (5.2)

Then if |λ| < 1
K(b−a) , the equation (5.1) has a unique solution x ∈ C([a, b], X).

Proof. Denote by C([a, b], X) the space of continuous functions x : [a, b]→ X. Introduce

in this space a metric

ρ(x, y) = max
t∈[a,b]

δ(x(t), y(t)).

It is known (see, for example, [6]) that the obtained space is complete and separable.

We consider an operator A on the space C([a, b], X) defined by

Ax(t) := f(t) + λ

∫ b

a
g(t, s, x(s))ds. (5.3)

Next we show that ∀x ∈ C([a, b], X) Ax ∈ C([a, b], X). For this, it is enough to prove

continuity of the operator

Bx(t) =

∫ b

a
g(t, s, x(s))ds.

Let the function x be given. Consider a set

M = {(t, s, x(s)) : t, s ∈ [a, b]} ⊂ Y.

Due to the continuity of the function x, this set is a compact subset of the space Y . The

restriction of the function g̃ on M is a continuous function on M and thus is uniformly

continuous.

Take an arbitrary ε > 0 and choose η > 0 such that

(d((t, s, x(s)), (t′, s′, x(s′))) < η)⇒ (5.4)

δ(g̃(t, s, x(s)), g̃(t′, s′, x(s′))) <
ε

b− a
.

Estimate

δ(Bx(t′), Bx(t′′)) = δ

(∫ b

a
g̃(t′, s, x(s))ds,

∫ b

a
g̃(t′′, s, x(s))ds

)
≤
∫ b

a
δ(g̃(t′, s, x(s)), g̃(t′′, s, x(s)))ds.

Taking into account (5.4), we have that if |t′ − t′′| < η, then

δ(Bx(t′), Bx(t′′)) < ε.

Therefore, the function Bx(t) is continuous.
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Next we show that with |λ| < 1
K(b−a) the operator A is contractive. We have

ρ(Ax,Ay) = max
t∈[a,b]

δ(Ax(t), Ay(t))

= max
t∈[a,b]

δ

(
f(t) + λ

∫ b

a
g(t, s, x(s))ds, f(t) + λ

∫ b

a
g(t, s, y(s))ds

)

≤ max
t∈[a,b]

δ

(
λ

∫ b

a
g̃(t, s, x(s))ds, λ

∫ b

a
g̃(t, s, y(s))ds

)

≤ |λ| max
t∈[a,b]

∫ b

a
δ(g̃(t, s, x(s)), g̃(t, s, y(s)))ds.

Due to the second condition of the Theorem 11 ∀t, s:

δ(g̃(t, s, x(s)), g̃(t, s, y(s))) ≤ Kδ(x(s), y(s)).

Therefore,

ρ(Ax,Ay) ≤ |λ|
∫ b

a
Kδ(x(s), y(s))ds

≤ |λ|K max
s∈[a,b]

δ(x(s), y(s))

∫ b

a
ds

= |λ|K(b− a)ρ(x, y).

If |λ| < 1
K(b−a) , then this operator is contractive and thus the equation (5.1) has a unique

solution.

Remark 5 Note that if the known function f(t) in (5.1) is convex-valued (f : [a, b]→ Xc),

then the solution of equation (5.1) also is convex-valued.

5.1.2 Volterra equation

Consider the set Y = [a, b] × [a, b] × X. The nonlinear Volterra integral equation has

the following form

x(t) = f(t) +

∫ t

a
g(t, s, x(s))ds, (5.5)

where x : [a, b] → X is an unknown function, g : Y → X is a known function, and

f : [a, b]→ X is a known function.

Theorem 12 Suppose the function f(t) is continuous on [a, b] and the function g(t, s, x)

satisfies the following conditions

1. g is weakly continuous on Y , so the function g̃ : Y → Xc is continuous.
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2. There exists a constant K such that for any (t, s) ∈ [a, b]×[a, b], the function g̃ satisfies

the Lipschitz condition (5.2) with a constant K on variable x.

Then the equation (5.5) has a unique solution x ∈ C([a, b], X).

Proof. Consider an operator A : C([a, b], X)→ C([a, b], X):

Ax(t) := f(t) +

∫ t

a
g(t, s, x(s))ds.

That fact that Ax ∈ C([a, b], X) if x ∈ C([a, b], X) can be derived similarly as in the previous

section.

We have

δ(Ax(t), Ay(t)) = δ

(
f(t) +

∫ t

a
g(t, s, x(s))ds, f(t) +

∫ t

a
g(t, s, y(s))ds

)

≤ δ
(∫ t

a
g(t, s, x(s))ds,

∫ t

a
g(t, s, y(s))ds

)
≤
∫ t

a
δ(g̃(t, s, x(s)), g̃(t, s, y(s)))ds.

Using the second condition of the Theorem 12, we obtain

δ(Ax(t), Ay(t)) ≤
∫ t

a
Kδ(x(s), y(s))ds ≤ K max

s∈[a,b]
δ(x(s), y(s))

∫ t

a
ds (5.6)

= K(t− a)ρ(x, y).

Therefore,

ρ(Ax,Ay) ≤ K(b− a)ρ(x, y),

and thus if b − a < 1
K , then this operator is contractive and on any interval [a, b], where

0 < b− a < 1
K the equation (5.5) has a unique solution.

We now prove by induction, that ∀n ≥ 1

δ(Anx(t), Any(t)) ≤ (t− a)n

n!
Knρ(x, y). (5.7)

Inequality (5.6) is the induction base case. Assume that

δ(An−1x(t), An−1y(t)) ≤ (t− a)n−1

(n− 1)!
Kn−1ρ(x, y).

Then,

δ(Anx(t), Any(t)) = δ

(
f(t) +

∫ t

a
g(t, s, An−1x(s))ds, f(t) +

∫ t

a
g(t, s, An−1y(s))ds

)
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≤ δ
(∫ t

a
g̃(t, s, An−1x(s))ds,

∫ t

a
g̃(t, s, An−1y(s))ds

)

≤
∫ t

a
δ
(
g̃(t, s, An−1x(s)), g̃(t, s, An−1y(s))

)
ds

≤
∫ t

a
Kδ
(
An−1x(s), An−1y(s)

)
ds

≤
∫ t

a
K

(s− a)n−1

(n− 1)!
Kn−1ρ(x, y)ds

=
Kn

(n− 1)!
ρ(x, y)

∫ t

a
(s− a)n−1ds =

(t− a)n

n!
Knρ(x, y).

Therefore, inequality (5.7) is proved. It implies that for any a < b and any n

ρ(Anx,Any) = max
a≤t≤b

δ(Anx(t), Any(t)) ≤ (b− a)n

n!
Knρ(x, y).

If n is sufficiently large, then (b−a)n

n! Kn < 1, and therefore An is a contractive operator.

Using the generalized contractive mapping principle (see [41, ch.2 §14]) we see that the

operator A has a unique fixed point. Thus, the equation (5.5) has a unique solution in the

space C([a, b], X). �

5.2 Initial and boundary value problems for differential
equations with Hukuhara type derivatives

Various problems in the theory of ordinary differential equations lead to systems of the

following form

ẋ(t) = A(t)x(t) + f(t, x(t)). (5.8)

For the case of real-valued functions in the system (5.8) x(t) is the vector-valued function in

Rn, A(t) is a square matrix of order n with real-valued entries, and f(t, x) is a vector-valued

function again with values in Rn, defined on some interval [a, b), b ≤ ∞.

If one is interested in proving the existence of (5.8), satisfying the given initial condition

x(a) = x0, x0 ∈ Rn, (5.9)

then the standard and more convenient approach is to rewrite this problem (5.8),(5.9) as

an integral equation with the same unknown function x(t). The obtained integral equation

is a Volterra integral equation of the second kind. On details of how to rewrite one form to

another, see [25]. For set- and fuzzy-valued cases, differential equations of such type were

actively studied in, for example, [46] and [45].
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Here we show that the analogous results for L-space also hold, e.g., the solution of the

initial value problem is also the solution of the Volterra integral equation.

We consider first the initial value problem in the following linear form

DHx(t) = A(t)x(t) + F (t), x(a) = x0, (5.10)

where A(t) is a real-valued function and F (t) is a function with values in an L-space. In

(5.10), we obtain, using the fundamental theorem of calculus

x(t)
h
− x0 =

∫ t

a
(A(s)x(s) + F (s))ds.

Further,

x(t) = x0 +

∫ t

a
A(s)x(s)ds+

∫ t

a
F (s)ds.

Finally, if we set x0 +
∫ t
a F (s)ds = f(t), we have

x(t) = f(t) +

∫ t

a
A(s)x(s)ds,

which is the same as Volterra integral equation form (4.14) that we considered earlier.

Now, we consider the initial value problem in the nonlinear form

DHx(t) = A(t)x(t) + F (t, x(t)), x(a) = x0, (5.11)

where A(t) is again a real-valued function, F (t, s) is a function of two variables with values

in L-space. We apply the fundamental theorem of calculus and have

x(t)
h
− x0 =

∫ t

a
(A(s)x(s) + F (s, x(s)))ds.

Set A(s)x(s) + F (s, x(s)) = g(s, x(s)), we have

x(t) = x0 +

∫ t

a
g(s, x(s))ds,

which is the same as nonlinear Volterra integral equation form (5.5).

Next we look for the relation between the boundary value problem and a Fredholm

integral equation. For the results in the case of systems of equations for real-valued

functions, see [25].

We consider the differential equation in the following form

DHx(t) = f(t, x(t)), (5.12)

where f(t, x(t)) is continuous mapping on [a, b] ×D, (D ⊂ X) with values in X (X is an

L-space). We assume x(t) to be convex for any t, continuously differentiable in Hukuhara
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sense function with values in L-space, and we look for solutions of the differential equation

(5.12) that satisfy ∫ b

a
x(t)P ′(t)dt =

∫ b

a
F (t, x(t))dt, (5.13)

where P (t) is a real-valued function which is differentiable, nonnegative, monotone, and

nondecreasing on the interval [a, b].

From (5.12), we obtain

x(t) = x(a) +

∫ t

a
f(s, x(s))ds, t ∈ [a, b]. (5.14)

Due to the conditions imposed above on the function P (t), we can apply the integration

by parts formula (3.22) to the left-hand side of (5.13), and it yields the relation∫ b

a
x(t)P ′(t)dt =

(
P (b)x(b)

h
− P (a)x(a)

)
h
−
∫ b

a
P (t)DHx(t)dt. (5.15)

If x(t) is a solution of (5.12), (5.13), then (5.15) leads to(
P (b)x(b)

h
− P (a)x(a)

)
h
−
∫ b

a
P (t)DHx(t)dt =

∫ b

a
F (t, x(t))dt. (5.16)

However,

x(b) = x(a) +

∫ b

a
f(t, x(t))dt

and if we substitute it into (5.16), we have(
P (b)

(
x(a) +

∫ b

a
f(t, x(t))dt

)
h
− P (a)x(a)

)
h
−
∫ b

a
P (t)DHx(t)dt =

∫ b

a
F (t, x(t))dt.

According to the property (3.4) of Hukuhara type difference and since x(a) is convex(
P (b)

∫ b

a
f(t, x(t))dt+ (P (b)− P (a))x(a)

)
h
−
∫ b

a
P (t)f(t, x(t))dt =

∫ b

a
F (t, x(t))dt.

According to the property (3.1) of Hukuhara type difference∫ b

a
P (b)f(t, x(t))dt

h
−
∫ b

a
P (t)f(t, x(t))dt+ (P (b)− P (a))x(a) =

∫ b

a
F (t, x(t))dt.

Furthermore,∫ b

a

(
P (b)f(t, x(t))

h
− P (t)f(t, x(t))

)
dt+ (P (b)− P (a))x(a) =

∫ b

a
F (t, x(t))dt,

and

(P (b)− P (a))x(a) =

∫ b

a
F (t, x(t))dt

h
−
∫ b

a

(
P (b)f(t, x(t))

h
− P (t)f(t, x(t))

)
dt.
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Next,

x(a) =
1

P (b)− P (a)

(∫ b

a
F (t, x(t))

h
−
(
P (b)f(t, x(t))

h
− P (t)f(t, x(t))

)
dt

)
.

Once we substitute the last equality in (5.14), we have

x(t) =

∫ b

a
G(t, s, x(s))ds, (5.17)

where

G(t, s, x(s)) =


1

P (b)−P (a)

(
F (t, x(t))

h
−
(
P (a)f(t, x(t))

h
− P (t)f(t, x(t))

))
if a ≤ s ≤ t

1
P (b)−P (a)

(
F (t, x(t))

h
−
(
P (b)f(t, x(t))

h
− P (t)f(t, x(t))

))
if t ≤ s ≤ b

(5.18)

Equation (5.17) is an integral equation of Fredholm type.

Note that with the method of approximate solution of integral equations, we have also

the method of approximate solution of the Cauchy problem and boundary value problem

for differential equation with Hukuhara type derivative.

5.3 Data dependence

In this section, we consider questions about the dependence of solutions of equations

(5.1) and (5.5) on perturbations of the given functions g(t, s, x) and f(t). These questions

were considered in [63] for set-valued functions. Upon receipt of the results, we use some of

the ideas from the work [63] for our more general setting.

Theorem 13 Consider the set Y = [a, b] × [a, b] ×X and let g1, g2 : Y → X be weakly

continuous. Consider also the following equations:

x(t) = f1(t) +

∫ b

a
g1(t, s, x(s))ds, (5.19)

and

y(t) = f2(t) +

∫ b

a
g2(t, s, y(s))ds. (5.20)

Suppose:

1. For any (t, s) ∈ [a, b]× [a, b] the function g̃1(t, s, x) satisfies Lipschitz condition (5.2)

on variable x and K(b− a) < 1. Denote by x∗(t) the unique solution of the equation

(5.19).

2. There exist η1, η2 > 0 such that δ(g̃1(t, s, x), g̃2(t, s, x)) ≤ η1 for all (t, s, x) ∈ [a, b] ×

[a, b]×X and ρ(f1(t), f2(t)) ≤ η2.
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3. There exists y∗(t) a solution of the equation (5.20).

Then

ρ(x∗, y∗) ≤ η2 + η1(b− a)

1−K(b− a)
.

Proof. We have

δ(x∗(t), y∗(t)) = δ

(
f1(t) +

∫ b

a
g̃1(t, s, x∗(s))ds, f2(t) +

∫ b

a
g̃2(t, s, y∗(s))ds

)

≤ δ
(∫ b

a
g̃1(t, s, x∗(s))ds,

∫ b

a
g̃2(t, s, y∗(s))ds

)
+ δ(f1(t), f2(t))

≤ δ
(∫ b

a
g̃1(t, s, x∗(s))ds,

∫ b

a
g̃1(t, s, y∗(s))ds

)
+δ

(∫ b

a
g̃1(t, s, y∗(s))ds,

∫ b

a
g̃2(t, s, y∗(s))ds

)
+ η2

≤
∫ b

a
δ(g̃1(t, s, x∗(s)), g̃1(t, s, y∗(s)))ds+

∫ b

a
δ(g̃1(t, s, y∗(s)), g̃2(t, s, y∗(s)))ds+ η2

≤
∫ b

a
Kδ(x∗(s), y∗(s))ds+

∫ b

a
η1ds+ η2.

By taking the maximum for t ∈ [a, b], we have:

ρ(x∗, y∗) ≤ max
t∈[a,b]

(
K

∫ b

a
δ(x∗(t), y∗(t))dt+ η1(b− a) + η2

)

= K max
t∈[a,b]

δ(x∗(t), y∗(t))

∫ b

a
dt+ η1(b− a) + η2

= K max
t∈[a,b]

δ(x∗(t), y∗(t))(b− a) + η1(b− a) + η2.

Therefore,

ρ(x∗, y∗) ≤ η2 + η1(b− a)

1−K(b− a)
. �

Consider now the question of data dependence for Volterra integral equations. We need

the following metric on C([a, b], X):

ρ∗(x, y) := max
t∈[a,b]

[δ(x(t), y(t))e−τ(t−a)], with arbitrary τ > 0.

The pair (C([a, b], X), ρ∗) forms a complete metric space.

It is easily seen that metrics ρ and ρ∗ satisfy the following inequalities

e−τ(b−a)ρ(x, y) ≤ ρ∗(x, y) ≤ ρ(x, y). (5.21)

We now prove the following theorem
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Theorem 14 Let Y = [a, b] × [a, b] × X and let g1, g2 : Y → X be weakly continuous.

Consider the following equations:

x(t) = f1(t) +

∫ t

a
g1(t, s, x(s))ds, (5.22)

and

y(t) = f2(t) +

∫ t

a
g2(t, s, y(s))ds. (5.23)

Suppose:

1. For any (t, s) ∈ [a, b] × [a, b] function g̃1(t, s, x) satisfies Lipschitz condition (5.2) on

variable x. (Denote by x∗(t) the unique solution of the equation (5.22).)

2. There exist η1, η2 > 0 such that δ(g̃1(t, s, x), g̃2(t, s, x)) ≤ η1 for all (t, s, x) ∈ [a, b] ×

[a, b]×X and ρ(f1(t), f2(t)) ≤ η2.

3. There exists y∗(t) a solution of the equation (5.23).

Then

ρ∗(x
∗, y∗) ≤ η2 + η1(b− a)

1− K
τ

e−τ(b−a) (where τ > K) (5.24)

and moreover

ρ(x∗, y∗) ≤ η2 + η1(b− a).

Proof. We estimate

δ(x∗(t), y∗(t)) = δ

(
f1(t) +

∫ t

a
g̃1(t, s, x∗(s))ds, f2(t) +

∫ t

a
g̃2(t, s, y∗(s))ds

)

≤ δ
(∫ t

a
g̃1(t, s, x∗(s))ds,

∫ t

a
g̃2(t, s, y∗(s))ds

)
+ δ(f1(t), f2(t))

≤ δ
(∫ t

a
g̃1(t, s, x∗(s))ds,

∫ t

a
g̃1(t, s, y∗(s))ds

)
+δ

(∫ t

a
g̃1(t, s, y∗(s))ds,

∫ t

a
g̃2(t, s, y∗(s))ds

)
+ η2

≤
∫ t

a
δ(g̃1(t, s, x∗(s)), g̃1(t, s, y∗(s)))ds+

∫ t

a
δ(g̃1(t, s, y∗(s)), g̃2(t, s, y∗(s)))ds+ η2

≤
∫ t

a
Kδ(x∗(s), y∗(s))e−τ(s−a)eτ(s−a)ds+

∫ t

a
η1ds+ η2.

By taking the maximum for t ∈ [a, b], we have:

max
t∈[a,b]

(δ(x∗(t), y∗(t))e−τ(t−a)eτ(t−a))
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≤ max
t∈[a,b]

(
K

∫ t

a
δ(x∗(s), y∗(s))e−τ(s−a)eτ(s−a)dt+

∫ t

a
η1ds+ η2

)
and, therefore,

ρ∗(x
∗, y∗)eτ(b−a) = Kρ∗(x

∗, y∗)

∫ t

a
eτ(s−a)ds+ η1(b− a) + η2

=
K

τ
ρ∗(x

∗, y∗)(eτ(t−a) − 1) + η1(b− a) + η2

≤ K

τ
ρ∗(x

∗, y∗)eτ(b−a) + η1(b− a) + η2.

From the derived inequality, for τ > K, we obtain

ρ∗(x
∗, y∗) ≤ η2 + η1(b− a)

1− K
τ

e−τ(b−a).

The inequality (5.24) is proved. Using the last inequality and (5.21), we have

ρ(x∗, y∗) ≤ eτ(b−a)ρ∗(x
∗, y∗) ≤ η2 + η1(b− a)

1− K
τ

.

Since this is true for any τ > K, we obtain

ρ(x∗, y∗) ≤ η2 + η1(b− a). �

5.4 Discussion

Along with equations (5.1) and (5.5), equations of the following form are interesting:

x(t) + λ

∫ b

a
g(t, s, x(s))ds = f(t), t ∈ [a, b], (5.25)

and

x(t) +

∫ t

a
g(t, s, x(s))ds = f(t), t ∈ [a, b]. (5.26)

Equations (5.25) and (5.26) are equivalent to equations (5.1) and (5.5), respectively, in the

case of real-valued functions, but not for functions with values in L-spaces.

Equations (5.25) and (5.26) are equivalent to equations

x(t) = f(t)
h
− λ

∫ b

a
g(t, s, x(s))ds, t ∈ [a, b],

and

x(t) = f(t)
h
−
∫ t

a
g(t, s, x(s))ds, t ∈ [a, b].

The fact that the Hukuhara type difference is not defined for all elements of the L-spaces

brings significant difficulties into the investigation of existence and uniqueness of the solu-

tions of these equations. We know only two references [56] and [57] in which theorems of

existence and uniqueness are proved for equations of the form (5.26) in the space Kc(Rn)

for the special case the f(t) ≡ a, where a is fixed element of Kc(Rn). We will study the

existence and uniqueness of solutions of (5.25) and (5.26) in future work.



CHAPTER 6

APPROXIMATION IN L-SPACES BY

CLASSICAL OPERATORS

In this chapter, we show how classical approximation operators (such as Bernstein,

Schoenberg and Modified Schoenberg Operator) can be adapted to functions with values in

L-spaces.

6.1 General definitions and estimations

Many classical approximation operators for real-valued functions are defined by the

following scheme. Let the set of functions λ = {λ0(t), ..., λN (t)} ⊂ C([0, 1]) be given, such

that λi(t) ≥ 0 and
N∑
i=0

λi(t) ≡ 1.

Let also the set of points ξ = {ξ0, ..., ξN} ⊂ [0, 1] be given. For each function f ∈ C[0, 1],

we define

Λλ,ξ[f ](t) =
N∑
k=0

f(ξk)λk(t). (6.1)

In this definition, function f ∈ C[0, 1] can be replaced by a function f ∈ C([0, 1], X). We get

the operator that is defined on the set of all continuous functions with values in L-spaces.

Thus, the definition (6.1) we use for both functions f ∈ C[0, 1] and for f ∈ C([0, 1], X).

The following theorem gives general estimation of approximation of the function f ∈

C([0, 1], Xc) by the operators of the form (6.1).

Theorem 15 Suppose that for the function g(t) = t

Λλ,ξ[g](t) ≡ t. (6.2)

Then for any function f ∈ C([0, 1], Xc) and for any t ∈ [0, 1], the following inequality holds

δ(f(t),Λλ,ξ[f ](t)) ≤ ω∗
(
f,
√

Λλ,ξ[(·)2](t)− t2
)
.
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Proof. We have

δ(f(t),Λλ,ξ[f ](t)) = δ

(
N∑
k=0

f(t)λk(t),
N∑
k=0

f(ξk)λk(t)

)

≤
N∑
k=0

δ(f(t), f(ξk))λk(t) ≤
N∑
k=0

ω∗(f, |t− ξk|)λk(t).

By using the fact that the function ω∗ and the square root are concave and using Jensen’s

inequality, we have

δ(f(t),Λλ,ξ[f ](t)) ≤ ω∗
(
f,

N∑
k=0

√
(t− ξk)2λk(t)

)

≤ ω∗
f,

√√√√ N∑
k=0

(t− ξk)2λk(t)



= ω∗

f,
√√√√ N∑

k=0

ξ2
kλk(t)− 2

N∑
k=0

tξkλk(t) + t2

 .

Due to (6.2)
N∑
k=0

ξkλk(t) = t,

and thus, we have

δ(f(t),Λλ,ξ[f ](t)) ≤ ω∗
(
f,
√

Λλ,ξ[(·)2](t)− t2
)
. �

6.2 Bernstein operator

Let now

λk(t) =

(
N

k

)
tk(1− t)N−k, ξk =

k

N
, k = 0, 1, ..., N.

We obtain the analog of the Bernstein Operator for functions with values in L-space

BN [f ](t) =
N∑
k=0

f

(
k

N

)(
N

k

)
tk(1− t)N−k.

For this operator, the conditions of the Theorem 15 hold.

Moreover,

BN [(·)2](t) =
t− t2

N
.

Thus, the following theorem holds.
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Theorem 16 For any f ∈ C([0, 1], Xc) and for any t ∈ [0, 1]

δ(f(t), BN [f ](t)) ≤ ω∗
(
f,

√
t(1− t)
N

)
,

and therefore,

ρ(f,BN [f ]) ≤ ω∗
(
f,

1

2
√
N

)
.

6.3 Schoenberg operator

For integers N, k > 0, we consider the sequence of knots ∆ = {tj}N+k
j=−k

t−k = ... = t0 = 0 < t1 < ... < tN = ... = tN+k = 1.

We denote

|∆| = max
j=−k,...,N+k−1

{tj+1 − tj}.

Let also,

ξj,k :=
tj+1 + ...+ tj+k

k
, −k ≤ j ≤ N − 1,

and

bj,k(t) := (tj+k+1 − tj)[tj , ..., tj+k+1](· − t)k+

be the normalized B-splines.

For f ∈ C([0, 1], Xc) let

SN,k[f ](t) =

N−1∑
j=−k

f(ξj,k)bj,k(t), 0 ≤ t < 1,

and

SN,k[f ](1) = lim
y↗1

SN,k[f ](y).

For real-valued functions, the operator SN,k was introduced by Schoenberg in 1965, see

[62].

The normalized B-splines form a partition of the unity

N−1∑
j=−k

bj,k(t) = 1,

and the Schoenberg operator reproduces linear functions(see [18], [50]), i.e.,

N−1∑
j=−k

ξj,kbj,k(t) = t.



68

For the function g(t) = t2, the error E(t) = SN,k[g](t)− g(t) satisfies ([18], [50])

0 ≤ E(t) =
N−1∑
j=−k

ξ2
j,kbj,k(t)− t2 ≤

(
min

{
1√
2k
,

√
k + 1

12
|∆|

})2

and besides that for N ≥ 1, k ≥ 1, t ∈ [0, 1], the following pointwise estimation holds (see

[18])

E(t) ≤
min{2t(1− t), kN }

N + k − 1
.

Taking into account Theorem 15, we obtain

Theorem 17 For any f ∈ C([0, 1], Xc)

δ(f(t), SN,k[f ](t)) ≤ ω∗
(
f,min

{
1√
2k
,

√
k + 1

12
|∆|

})

and for any t ∈ [0, 1]

δ(f(t), SN,k[f ](t)) ≤ ω∗
(
f,

min{2t(1− t), kN }
N + k − 1

)
.

6.4 Modified Schoenberg operator

Consider now a modification of a Schoenberg operator that we obtain when

tj =


0 if j = −k, ..., 0,
j
N if j = 1, ..., N,

1 if j = N + 1, ..., N + k

and ξjk = tj for j = −k, ..., N + k.

The obtained operator has the form

S̃N,k[f ](t) =

N−1∑
j=−k

f(tj)bj,k(t)

and

S̃N,k[f ](1) = lim
t↗1

S̃N,k[f ](t).

Next we get the estimation of the approximation by such an operator.

Theorem 18 For any f ∈ C([0, 1], Xc)

ρ
(
f, S̃N,k[f ]

)
≤ 2ω∗

(
f,
k + 1

2N

)
.



69

Proof. For any t ∈ [0, 1], we have

δ
(
f(t), S̃N,k[f ](t)

)
≤ δ (f(t), SN,k[f ](t)) + δ

(
SN,k[f ](t), S̃N,k[f ](t)

)
. (6.3)

Due to the definition of ξj,k for any j = −k, ..., N − 1 we have |tj − ξj,k| ≤ k+1
N . Thus,

δ
(
SN,k[f ](t), S̃N,k[f ](t)

)
≤ δ

N−1∑
j=−k

f(ξj,k)bj,k(t),
N−1∑
j=−k

f(tj)bj,k(t)



≤
N−1∑
j=−k

δ (f(ξj,k), f(tj)) bj,k(t) (6.4)

≤
N−1∑
j=−k

ω∗(f, |tj − ξj,k|)bj,k(t) ≤ ω∗
(
f,
k + 1

2N

)
.

We use Theorem 17 to estimate first term and inequality (6.4) to estimate second term at

(6.3). We have

δ (f(t), SN,k[f ](t)) ≤ ω∗
(
f,
k + 1

12

1

N

)
+ ω∗

(
f,
k + 1

2N

)

≤ 2ω∗
(
f,

1

2

k + 1

12
+

1

2

k + 1

2N

)
= 2ω∗

(
f,
k + 1

4N

(
1 +

1√
k + 1

√
3

))
≤ 2ω∗

(
f,
k + 1

2N

)
. �

6.5 Discussion

An adaptation of various classical approximation operators for the set-valued functions

was proposed by R.A. Vitale (positive linear operators and in particular Bernstein operator

were discussed in detail in [66]), Z. Artstein (piecewise linear approximation see in [5]),

and N. Dyn et al. (see [31] for results on approximations of set-valued functions based

on the metric average, [28] for functions with compact images, [29] on approximations

by metric linear operators). Set-valued approximation was also discussed in [54] and in

[30]. M. Mureşan in [54] considered convex and non-convex cases. For a convex case

(values of functions are convex), he presented results on the Bernstein approximation, Stone-

Weierstrass approximation theorem, and Korovkin-type approximation. In the non-convex

case, he showed results for metric Bernstein, Schoenberg, and interpolation operators, as

well as metric piecewise linear approximation. N. Dyn and coauthors in [30] considered

approximation methods of set-valued functions based on canonical representations and

Minkowski convex combinations, as well as methods based on metric average, metric linear
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combinations, and metric selections. Regarding similar results for the fuzzy positive linear

operators acting on fuzzy continuous functions (for example on fuzzy Bernstein operators),

see [3] and the references therein. A survey of main results in classical approximation theory

for fuzzy functions can be found in [32]; on Korovkin-type approximation, see [4] and [22].

Note also that for the Piecewise-linear interpolation discussed in Section 4.2.1, the

interpolant that is written in the form (4.2) is a special case of the operator of the form

(6.1). In the case a = 0 and b = 1, this operator satisfies conditions of the general Theorem

15. Moreover, if t ∈ [tk−1, tk], then

PN [(·)2](t)− t2 = (t− tk−1)(tk − t) =
(Nt− k + 1)(k −Nt)

N2
.

Therefore, we obtain the following theorem

Theorem 19 If f ∈ C([0, 1], Xc), then for t ∈ [tk−1, tk], k = 1, ..., N

δ(f(t), PN [f ](t)) ≤ ω∗
(
f,
√

(t− tk−1)(tk − t)
)

(6.5)

= ω∗

(
f,

√
(Nt− k + 1)(k −Nt)

N

)
,

and thus,

ρ(f, PN [f ]) ≤ ω∗
(
f,

1

2N

)
.

In particular, if f satisfies the Lipschitz condition (4.1) with constant M, then

ρ(f, PN [f ]) ≤ M

2N
. (6.6)

Remark 6 Estimation (4.5) in the case a = 0, b = 1 for t = (tk−1 + tk)/2 coincides with

estimation (6.5). But for the rest of t ∈ (tk−1, tk), the estimation (4.5) is better than (6.5).

Finally, we expect that ideas that were used for functions of single variable with values

in L-spaces in this work can be generalized to the case of functions of multivariables with

values in L-spaces.



CHAPTER 7

APPROXIMATION IN THE SPACES OF

SETS

This chapter is devoted to problems of approximation (in particular, interpolation) by

generalized polynomials and splines for functions whose values lie in a specific L-space,

namely a space of sets.

7.1 Introduction

Because the structures of spaces of sets are richer than the structure of general L-spaces,

we have additional tools in the former space (e.g., the support function of a set), which allows

us to obtain deeper results for the approximation and interpolation of set-valued functions.

We define several methods of approximation based on the concept of a support function

of a set. Using these extra tools, it is possible to define, for example, the notion of

interpolating polynomials. An early version of the definition of interpolating polynomials

was proposed by Lempio in 1995. One of the disadvantages of Lempios definition is the fact

that the values of such polynomials can be empty sets, which often makes the approach

inapplicable to practical problems. We propose ways to circumvent these disadvantages.

One of the approaches is to define interpolation polynomials in a modified way. Another is

to define and use generalized interpolating splines instead of polynomials.

These approximation technics can be used, for instance, for the recovery of 3D objects

using their cross-sections (with applications in tomography and image processing, among

others). In the process, many questions emerged that were related to the error estimations

of the approximation of set-valued functions by those novel methods.

7.2 Set-valued analog of linear operators

We define analogs of linear operators on the space C([a, b]) for the space C([a, b],Kc(Rn)).

We start with the definition of a support function.
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7.2.1 Support function

See the following definition of the support function and its properties for example in [8]

and [37]. Below (a, ξ) is the ordinary inner product in Rm and ||ξ|| =
√

(ξ, ξ).

Definition 17 The support function of the set A ∈ K(Rm) is the function defined on Rm

δ∗(ξ, A) := max
a∈A

(a, ξ), ξ ∈ Rm.

Support functions have the following properties:

1. δ∗(ξ, λA) = δ∗(λξ,A) = λδ∗(ξ, A), λ ≥ 0;

2. δ∗(ξ, A+B) = δ∗(ξ, A) + δ∗(ξ,B) A,B ∈ K(Rm);

3. (∀ξ ∈ Rm δ∗(ξ, A) ≤ δ∗(ξ,B)) ⇒ coA ⊂ coB;

4. ∀A,B ∈ Kc(Rm)(A = B)⇔ (∀ξ ∈ Rm δ∗(ξ, A) = δ∗(ξ,B));

5. If A ∈ Kc(Rn), then A = {z ∈ Rn : (ξ, z) ≤ δ∗(ξ, A), ∀ξ ∈ Rn} (see Figure 7.1);

6. ∀A,B ∈ Kc(Rm) δH(A,B) = sup
ξ∈Sm−1

|δ∗(ξ, A) − δ∗(ξ,B)|, (here Sm−1 is the unit

sphere in the space Rm);

7. ∀ξ ∈ Rn δ∗

(
ξ,

b∫
a
F (x)dx

)
=

b∫
a
δ∗(ξ, F (x))dx (here the integral is Aumann’s integral).

Figure 7.1: Set defined by half spaces
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7.2.2 Definition of extended operator

Let C[a, b] be the space of continuous functions f : [a, b]→ R with the norm

||f ||C[a,b] = max
t∈[a,b]

|f(t)|.

Denote by C([a, b],Kc(Rn)) the space of continuous set-valued functions

F : [a, b]→ Kc(Rn).

Let the linear bounded operator A : C[a, b]→ C[a, b] be given. Next we use this operator

A to define the operator

Ã : C([a, b],Kc(Rn))→ C([a, b],Kc(Rn)).

We now investigate the properties of this operator Ã.

Let function F ∈ C([a, b],Kc(Rn)) be given. For any ξ ∈ Rn, consider the following

function of variable t ∈ [a, b]

δ∗(ξ, F (t)) =: Fξ(t).

It is clear that for ∀ ξ Fξ ∈ C[a, b]. Once we apply the operator A to a function Fξ, we have

A[Fξ](t) = A[δ∗(ξ, F (·))](t).

For any t, we have a function defined on Rn

ξ → A[Fξ](t). (7.1)

This is a continuous, positively homogeneous, but not necessarily convex function.

Therefore, this function is not a support function of a convex set. Thus, if we try to

define operator Ã by the equality

Ã[F ](t) = {x ∈ Rn : (ξ, x) ≤ A[Fξ](t) ∀ξ ∈ Rn}, (7.2)

we meet some difficulties. For example, for some t, the set in the right side of (7.2) can be

an empty set (see for example [47]). Hence, it is very important to find criteria for when

A[Fξ](t) is convex.

Lemma 8 If the operator A is positive, then the function (7.1) is convex for ∀t ∈ [a, b].
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Proof. We have due to convexity of δ∗ and positivity of the operator A that

A[δ∗(αξ1 + (1− α)ξ2, F (·))] ≤ A[αδ∗(ξ1, F (t)) + (1− α)δ∗(ξ2, F (t))].

Since A is linear

A[αδ∗(ξ1, F (t)) + (1− α)δ∗(ξ2, F (t))] = αA[δ∗(ξ1, F (t))] + (1− α)A[δ∗(ξ2, F (t))]

= αA[Fξ1 ](t) + (1− α)A[Fξ2 ](t).

Thus,

A[Fαξ1+(1−α)ξ2 ](t) ≤ αA[Fξ1 ](t) + (1− α)A[Fξ2 ](t).

Therefore, for any positive operator, we have convexity on ξ.

Thus, the function (7.1) is positively homogeneous and convex on ξ. This implies that

(7.1) is a support function of some nonempty, convex set and we can naturally introduce

the next definition.

Definition 18

Ã[F ](t) := {z ∈ Rn : (ξ, z) ≤ A[Fξ](t), ∀ξ ∈ Rn}.

Further, since δ∗(ξ, Ã[F ](t)) = A[δ∗(ξ, F (·))](t), we have for positive operator A:

δh(F (t), Ã[F ](t)) = sup
ξ∈Sn−1

|δ∗(ξ, F (t))− δ∗(ξ, Ã[F ](t))|

= sup
ξ∈Sn−1

|δ∗(ξ, F (t))−A[δ∗(ξ, F (·))](t)|.

Therefore, the problem of finding error estimates for positive operators is reduced to the

problem of finding error estimates for real-valued functions.

If the operator A is not positive, we still can use Definition 18 and define

Ã[F ](t) := {z ∈ Rn : (ξ, z) ≤ A[δ∗(ξ, F (·))](t), ∀ξ ∈ Rn}.

However, in this case, operator Ã will be defined not for all functions F ∈ C([a, b],Rn) since

in this case A[Fξ](t) in general will not be convex on ξ and for some t the set Ã[F ](t) may

be empty.

We denote by D(Ã) a set of F such that Ã[F ](t) 6= ∅ ∀t ∈ [a, b]. Set D(Ã) we call the

domain of set-valued linear operator.
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7.2.3 Domain of set-valued linear operators

Let D(Ã) denote the domain of Ã. In this section, we study some of its properties.

Lemma 9 F, G ∈ D(A)⇒ F +G ∈ D(A)

Proof.

δ∗(ξ, F (t) +G(t)) = δ∗(ξ, F (t)) + δ∗(ξ,G(t))

Ã[F +G](t) := {z : (ξ, z) ≤ A[δ∗(ξ, F )] +A[δ(ξ,G(t))] ∀ξ}

∀z1 ∈ Ã[F ] =⇒ ∀z1 : (ξ, z1) ≤ A∗[δ∗(ξ, F (t))] ∀ξ

and

∀z2 ∈ Ã[G] =⇒ ∀z2 : (ξ, z2) ≤ A∗[δ∗(ξ,G(t))] ∀ξ.

Therefore,

z1 + z2 ∈ Ã[F +G](t).

This implies

Ã[F +G](t) ⊃ Ã[F ](t) + Ã[G](t).

The right-hand side is nonempty, and thus the left-hand side is nonempty too. �

Lemma 10 If α ≥ 0 and F ∈ D(A)⇒ αF ∈ D(A).

Proof. We have

Ã[αF ](t) = {z ∈ Rn : (ξ, z) ≤ A[δ∗(ξ, αF (·))](t)∀ξ ∈ Rn}

= {z ∈ Rn : (ξ, z) ≤ A[αδ∗(ξ, F (·))](t)∀ξ ∈ Rn}

= α{z ∈ Rn : (ξ, z) ≤ A[δ∗(ξ, F (·))](t)∀ξ ∈ Rn} = αÃ[F ](t). �

We now give sufficient conditions of F ∈ D(Ã).

If an operator is given, then for any F , define

ε(t) = ε(F, t) = sup
ξ∈Sn−1

|δ∗(ξ, F (t))−A(δ∗(ξ, F (t)))|.

The following Lemma was proved for interpolation polynomials by Lempio (see [47]).

Lemma 11 If F (t) ⊃ B(m(t), r(t)) and ε(t) < r(t), then Ã[F ](t) contains a ball with

radius r(t)− ε(t) and therefore Ã[F ](t) 6= ∅.
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Proof. Since B(m(t), r(t)) ⊂ F (t), then

δ∗(ξ,B(m(t), r(t))) = (ξ,m(t)) + r(t)||ξ|| ≤ δ∗(ξ, F (t)).

Since δ∗
(

ξ
||ξ|| , F (t)

)
≤ A

[
δ∗
(

ξ
||ξ|| , F (t)

)]
+ ε(t) we have

(ξ,m(t)) + r(t)||ξ|| ≤ ||ξ||δ∗
(

ξ

||ξ||
, F (t)

)

≤ ||ξ||
[
A

(
δ∗
(

ξ

||ξ||
, F (t)

)
+ ε(t)

)]
= A(δ∗(ξ, F (t))) + ε(t)||ξ||.

Therefore,

(ξ,m(t)) + (r(t)− ε(t))||ξ|| ≤ A[δ∗(ξ, F (t))].

And thus,

B(m(t), r(t)− ε(t)) ⊂ Ã[F (t)]. �

7.2.4 Properties of set-valued linear operators

Lemma 12 If the operator A is positive, then the operator Ã is monotone with respect to

inclusion, i.e., if for ∀t F (t) ⊂ G(t), it implies that for ∀t Ã[F ](t) ⊂ Ã[G](t).

Proof.We have that for ∀ξ and for ∀t

δ∗(ξ, F (t)) ≤ δ∗(ξ,G(t)).

Because the operator A is positive, we have

A[Fξ](t) ≤ A[Gξ](t).

Thus,

Ã[F ](t) := {z ∈ Rn : (ξ, z) ≤ A[Fξ](t), ∀ξ ∈ Rn}

⊂ {z ∈ Rn : (ξ, z) ≤ A[Gξ](t), ∀ξ ∈ Rn} = Ã[G](t). �

The following property is given for the particular case when A is an interpolation

operator.

Lemma 13 Interpolants are invariant under affine transformations.

Let points tj ∈ [a, b] be given. Consider F : [a, b]→ Kc(Rn). We now define ”interpolation

polynomial”.

Take the support function δ∗(ξ, F (t)). We can build for it a numerical interpolation

polynomial pN (ξ, t) that interpolates δ∗(ξ, F (t)) at points tj .
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Define

PN (t) := {z ∈ Rn : (ξ, z) ≤ pN (ξ, t) ∀ξ ∈ Rn}.

We also can consider

P̃N (t) := {z ∈ Rn : (ξ, z) ≤ pN (ξ, t) ∀ξ ∈ Sn},

but for our purposes, they are the same since we just need to normalize our function to

write it in terms of support function instead of support function.

Let an affine transformation L(x) = Ax + b from Rm → Rm be given, where A is

nonsingular matrix and b is a vector from Rm. Now take

(L ◦ F )(t) = L(F (t)) = A(F (t)) + b = {Ax+ b : x ∈ F (t)}

Find ”interpolation polynomial” for L◦F . For this, first, find support function for (L◦F )(t):

δ∗(ξ, A(F (t)) + b) = sup
z∈A(F (t))+b

(ξ, z) = sup
z=Ax+b,x∈F (t)

(ξ, z)

= sup
x∈F (t)

(ξ, Ax+ b) = sup
x∈F (t)

(ξ, Ax) + (ξ, b)

= sup
x∈F (t)

(A∗ξ, x) + (ξ, b) = δ∗(A∗ξ, F (t)) + (ξ, b).

Let qN (ξ, t) interpolate δ∗(A∗ξ, F (t)) + (ξ, b) at points tj . Note that

qN (ξ, t) = q′N (ξ, t) + (ξ, b),

where q′N (ξ, t) interpolate δ∗(A∗ξ, F (t)) and therefore q′N (ξ, t) = pN (A∗ξ, t).

Consider

QN (t) = {z ∈ Rm : (ξ, z) ≤ qN (ξ, t) ∀ξ ∈ Rm}

= {z ∈ Rm : (ξ, z) ≤ q′N (ξ, t) + (ξ, b) ∀ξ ∈ Rm}

= {z ∈ Rm : (ξ, z − b) ≤ q′N (ξ, t) ∀ξ ∈ Rm}

= {z ∈ Rm : (ξ, AA−1(z − b)) ≤ q′N (ξ, t) ∀ξ ∈ Rm}

= {z ∈ Rm : (A∗ξ, A−1(z − b)) ≤ q′N (ξ, t) ∀ξ ∈ Rm}.

Let w = A−1(z − b), z = Aw + b and

QN (t) = {Aw + b : (A∗ξ, w) ≤ q′N (ξ, t) ∀ξ ∈ Rm}

= {Aw + b : (A∗ξ, w) ≤ pN (A∗ξ, t) ∀ξ ∈ Rm}.

Hence,

QN (t) = {Aw + b : w ∈ Rm, (A∗ξ, w) ≤ pN (A∗ξ, t) ∀ξ ∈ Rm}

= {Aw + b : w ∈ Rm, (ξ, w) ≤ pN (ξ, t) ∀ξ ∈ Rm}

= A(PN (t)) + b = (L ◦ PN )(t).
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Question 1 Give a precise description of these set valued functions that are reproduced

(recovered) exactly.

Definition 19 Let X be a linear space and H a subspace of X. A linear operator Λ : X →

H is called a projector, if Λ2 = Λ, so ∀ x ∈ H Λ(x) = x.

Example. The operator that assigns to every continuous real-valued function f the

polynomial of degree less or equal then N , that interpolates f at N + 1 distinct points,

is a projector.

LetH ⊂ C[0, 1] be an arbitrary subspace that contains constants and let Λ : C[0, 1]→ H

be a projector. Choose in H an arbitrary finite set of nonnegative functions λ1(t), ..., λn(t)

(we can do this since H contains constants).

Now consider set-valued function

F (t) =
n∑
k=1

λk(t)Ak, (7.3)

where the Ak are arbitrary convex sets.

The operator Λ generates a set-valued operator according to the rule:

Given G : [0, 1] → Kc(Rm) for ∀ξ ∈ Sm−1 generate a real-valued function δ∗(ξ,G(t))

with variable t ∈ [0, 1].

Apply operator Λ to this function. Get p(ξ, t) = Λ(δ∗(ξ,G(·)))(t).

Define

PΛ(G; t) := {z ∈ Rm : (ξ, z) ≤ p(ξ, t) ∀ξ ∈ Sm−1}.

This is a convex set.

If for some t this set is nonempty, we can continue to work with it as Lempio did. In

general, to guarantee that PΛ(G, t) 6= ∅, additional assumptions are needed.

Lemma 14 For any G of the form (7.3) and any t

PΛ(G, t) = G(t).

Proof. For G(t) = F (t) in the form of (7.3), we have

δ∗(ξ, F (t)) = δ∗

(
ξ,

n∑
k=1

λk(t)Ak

)
=

n∑
k=1

λk(t)δ
∗(ξ, Ak),

since λk(t) are nonnegative.
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This implies

p(ξ, t) = Λ

(
n∑
k=1

λk(·)δ∗(ξ, Ak)

)
(t)

=
n∑
k=1

Λ(λk(·))(t)δ∗(ξ, Ak) =
n∑
k=1

λk(t)δ
∗(ξ, Ak) = δ∗(ξ, F (t)).

Therefore,

PΛ(F, t) = {z ∈ Rm : (ξ, z) ≤ p(ξ, t) ∀ξ ∈ Sm−1}

= {z ∈ Rm : (ξ, z) ≤ δ∗(ξ, F (t)) ∀ξ ∈ Sm−1} = F (t). �

Corollary 1 Let λ1(t), ..., λN+1(t) be an arbitrary set of nonnegative algebraic polynomials

of degree less or equal then N. Then the interpolation operator PN (t) reproduces any function

of the form

F (t) =
N+1∑
k=1

λk(t)Ak,

where Ak - arbitrary element of the space Kc(Rm). In particular, the interpolation operator

reproduces any ”algebraical polynomials”

F (x) =

N∑
k=0

xkAk

on the [0, 1].

7.3 Modified set-valued linear operator

In the event that for some t the set Ã[F ](t) is empty, we can use the following approach

to the construction of the operator that approximates a function F (t).

Instead of

Ã[F ](t) = {z ∈ Rn : (ξ, z) ≤ A[δ∗(ξ, F (·))](t) ∀ξ ∈ Sn−1}

we will consider and use the following

Ãε[F ](t) = {z ∈ Rn : (ξ, z) ≤ A[δ∗(ξ, F (·))](t) + ε(t) ∀ξ},

where

ε(t) = sup
||ξ||=1

|δ∗(ξ, F (t))−A[δ∗(ξ, F (·))](t)|.

We show that for ∀t

F (t) ⊂ Ãε[F ](t),

so that Ãε[F ](t) is necessarily nonempty.
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We have

F (t) = {z : (ξ, z) ≤ δ∗(ξ, F (t)) ∀ξ}.

From the definition of ε(t)

δ∗(ξ, F (t)) ≤ A[δ∗(ξ, F (·))](t) + ε(t).

Therefore,

F (t) ⊂ {z : (ξ, z) ≤ A[δ∗(ξ, F (·))](t) + ε(t) ∀ξ} = Ãε[F ](t).

Lemma 15 For any function F ∈ C([a, b],Kc(Rn))

δh(F (t), Ãε[F ](t)) ≤ 2ε(t). (7.4)

Proof. We have

δh(F (t), Ãε[F ](t)) = sup
||ξ||=1

|δ∗(ξ, Ãε[F ](t))− δ∗(ξ, F (t))|.

Since the first term inside the absolute value is greater than the second, we can remove the

absolute value. Moreover,

δ∗(ξ, Ãε[F ](t)) = sup
||ξ||=1

{δ∗(ξ, z) : z ∈ Ãε[F ](t)}.

But for z ∈ Ãε[F ](t)

(ξ, z) ≤ A[δ∗(ξ, F (·))](t) + ε(t).

Thus,

δh(F (t), Ãε[F ](t)) ≤ sup
||ξ||=1

{A[δ∗(ξ, F (·))](t) + ε(t)− δ∗(ξ, F (t))}

ε(t) + ε(t) = 2ε(t).

Therefore,

δh(F (t), Ãε[F ](t)) ≤ 2ε(t). �

Advantages of this approach are the simplicity of construction of the operator Ãε and a

good estimate of the approximation error.

7.4 Error estimates

Let the operator A that generates operator Ã be the polynomial interpolation operator.

In this case, the error estimation δh(F (t), Ã[F ](t)) is given in [15] and [13].
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If Ã[F ](t)) contains the ball B(m(t), r(t)) and

c(t) = sup
||ξ||=1

A[δ∗(ξ, F (·))](t),

then

δh(F (t), Ã[F ](t)) ≤ 2c(t)

r(t)
ε(t).

The next theorem gives an estimate of δh(F (t), Ã[F ](t)) in the case of an arbitrary operator

A. The formulation and proof we give for functions F (t) with 2D-values due to applications

to recovery of 3D bodies from their cross-sections.

Theorem 20 Suppose Ã[F ](t)) contains the ball B(m(t), r(t)). Suppose, also, that ε(t) <

r(t) for any t ∈ [a, b]. Then for any F ∈ C([a, b],Kc(R2))

δh(F (t), Ã[F ](t)) ≤
(

2c(t)

r(t)− ε(t)
+ 2

)
ε(t).

Proof. We have

δh(F (t), Ã[F ](t)) ≤ δh(F (t), Ãε[F ](t)) + δh(Ãε[F ](t), Ã[F ](t))

≤ 2ε(t) + δh(Ãε[F ](t), Ã[F ](t)). (7.5)

Thus, it is enough to estimate δh(Ãε[F ](t), Ã[F ](t)). Because

Ã[F ](t) = {z ∈ R2 : (ξ, z) ≤ A[δ∗(ξ, F (·))](t) + ε(t) ∀ξ}

⊂ {z : (ξ, z) ≤ A[δ∗(ξ, F (·))](t) + ε(t) ∀ξ} = Ãε[F ]

it is enough to estimate deviation of Ãε[F ](t) from Ã[F ](t).

Since any convex compact set in a plane can be approximated arbitrarily well by a

convex polygon, we assume below that

Ã[F ](t) = {z ∈ R2 : (ξi, z) ≤ ai ∀i ∈ I}

and

Ãε[F ](t) = {z ∈ R2 : (ξi, z) ≤ ai + ε(t) ∀i ∈ I}

(where I is some finite index set).
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Let a1
ij be the vertex of a polygon Ãε[F ](t) that we get when the following edges are

intersected

(ξi, z) = ai and (ξj , z) = aj , (7.6)

and a2
ij is the vertex of Ãε[F ](t) that we get when the following edges are intersected

(ξi, z) = ai + ε and (ξj , z) = aj + ε. (7.7)

It is clear that

δh(Ã[F ](t), Ãε[F ](t)) ≤ max
ij
|a1
ij − a2

ij |.

For fixed i and j we estimate

|a1
ij − a2

ij |.

Let β be an angle between the edges (7.6) and it is the same in (7.7).

We consider a set

co(B(m(t), r(t)) ∪ {a2
ij}).

And let α be an angle near the vertex of this set. It is clear that α ≤ β < π.

Denote as x a maximum of numbers |a1
ij − a2

ij |. Then we have

|m(t)− a2
ij | ≤ |m(t)− a1

ij |+ |a1
ij − a2

ij | ≤ 2c(t) + x

(Ball with radius c(t) and center θ contains set Ã[F ](t)).

We have

sin
α

2
=

r(t)

|m(t)− a2
ij |
≥ r(t)

2c(t) + x
. (7.8)

Next,

x =
ε(t)

sin β
2

.

Since α ≤ β < π, then

sin
β

2
≥ sin

α

2
.

Therefore, due to equation (7.8)

x ≤ ε(t)

sin α
2

≤ ε(t)(
r(t)

2c(t)+x

) =
2c(t) + x

r(t)
ε(t).

Thus,

r(t)x ≤ 2c(t)ε(t) + xε(t)

and, therefore,

(r(t)− ε(t))x ≤ 2c(t)ε(t).
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Hence,

x ≤ 2c(t)

r(t)− ε(t)
ε(t).

We have proved that

δh
(
Ã[F ](t), Ãε[F ](t)

)
≤ 2c(t)

r(t)− ε(t)
ε(t).

The last inequality, together with estimation (7.5), gives

δh(F (t), Ã[F ](t)) ≤ 2ε(t) +
2c(t)

r(t)− ε(t)
ε(t). �

We can use finite dimensional operators.

Any operator

AN : C[a, b]→ HN , dimHN = N

has the form

AN [f ](t) =
N∑
k=1

Φk(f)ϕk(t),

where ϕ1, ..., ϕN is the basis in HN , and Φ1, ...,ΦN are linear continuous functions on C[a, b].

In particular, as Φ1, ...,ΦN , we can take values of a function at points t1, ..., tN , i.e.,

AN [f ](t) =
N∑
k=1

f(tk)ϕk(t).

In this form, we can write, for example,

• interpolation polynomials;

• interpolation splines;

• Bernstein operator;

• Schoenberg operator.

7.5 Interpolation of functions with 1D-images

As a special case, we describe polynomials and provide more properties and suggest

what should be done in practical problems.

Let

ε(t) = sup
||ξ||=1

|δ∗(ξ, F (t))− pN (ξ, t)|,

so for any ξ ∈ Sn−1: |δ∗(ξ, F (t))− pN (ξ, t)| ≤ ε(t). Instead of PN (t), consider

P̃N (t) = {z ∈ Rn : (z, ξ) ≤ pN (ξ, t) + ε(t), ∀ξ ∈ Sn−1}.

Properties that the new polynomial has:
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1. For t = ti : P̃N (ti) = F (ti)

Since pN (ξ, ti) = δ∗(ξ, F (ti)) then ε(ti) = 0 and

P̃N (ti) = PN (ti) = F (ti). �

2. Constants recovery: F (t) ≡ A ∈ Kc(Rn), then P̃N (t)) ≡ A.

Really, δ∗(ξ, F (t)) = δ∗(ξ, A) for any t. It implies that

pN (ξ, t) =

n∑
i=0

δ∗(ξ, F (ti))Li(t)

= δ∗(ξ, A)

n∑
i=0

Li(t) = δ∗(ξ, A).

So for any t pN (ξ, t) = δ∗(ξ, A), ε(t) = 0 and

P̃N (t)) = {z ∈ Rn : (z, ξ) ≤ pN (ξ, t) ∀ξ ∈ Sn−1}

= {z ∈ Rn : (z, ξ) ≤ δ∗(ξ, A) ∀ξ ∈ Sn−1} = A. �

3. For ∀t F (t) ⊂ P̃N (t) and consequently P̃N (t) is nonempty.

We have

δ∗(ξ, F (t)) ≤ pN (ξ, t) + ε(t). (7.9)

Therefore,

F (t) = {z ∈ Rn : (z, ξ) ≤ δ∗(ξ, F (t)), ∀ξ}

⊂ {z ∈ Rn : (z, ξ) ≤ pN (ξ, t) + ε(t), ∀ξ} = P̃N (t). �

4. h(F (t), P̃N (t)) ≤ 2ε(t).
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Due to the property of the Hausdorff metric

h(F (t), P̃N (t)) = sup
||ξ||=1

|δ∗(ξ, F (t))− δ∗(ξ, P̃N (t))|.

Note that

δ∗(ξ, P̃N (t)) ≥ δ∗(ξ, F (t)) (since F (t) ⊂ P̃N (t))

δ∗(ξ, P̃N (t)) = sup
z∈P̃N (t)

(ξ, z) ≤ pN (ξ, t) + ε(t).

So,

h(F (t), P̃N (t)) = sup
||ξ||=1

(δ∗(ξ, P̃N (t))− δ∗(ξ, F (t))) ≤

≤ sup
||ξ||=1

(pN (ξ, t) + ε(t)− δ∗(ξ, F (t))) ≤

≤ sup
||ξ||=1

(|pN (ξ, t)− δ∗(ξ, F (t))|+ ε(t)) =

= ε(t) + ε(t) = 2ε(t). �

For practical purposes, when we do not know the function F (t) as well as ε(t), we can

use the following approach.

It is well known that the interpolation error can be rewritten in the following Cauchy

form

δ∗(ξ, F (t))− pN (ξ, t) =
δ∗(ξ, F (η))

(N+1)
t

(N + 1)!
ωN+1(t),

where ωN+1(t) =
N∏
0

(t− tk).

Suppose δ∗(N+1)(ξ, F (t)) exist and also

sup
|ξ|=1

sup
t∈[a,b]

|δ∗(N+1)(ξ, F (t))| ≤M.

Then,

ε(t) ≤ M

(N + 1)!
|ωN+1(t)|

and the modified interpolation polynomial can be rewritten for practical purposes in the

following way

P̃N (t) =

{
z : (ξ, z) ≤ pN (ξ, t) +

M

(N + 1)!
|ωN+1(t)| ∀ξ

}
.

If for some reasons we cannot find M, we can choose a constant, instead of the factor M
(N+1)! ,

to be a small number (ex. 0.0001) and run a program with ε(t) = 0.0001|ωN+1(t)|. If the
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program signals that we still have an empty set, we should increase our constant by a

reasonably small number and run it again, and so on till we do obtain a nonempty set.

Next we build a modified interpolation polynomials according to another scheme that is

different from the above general scheme. For functions with 1D-images this scheme seems

to be more appropriate and convenient.

Let F : [0, 1] −→ Kc(R1). We will work with the interval-valued functions that can be

described in the following way:

F (t) = [F (t), F (t)], F (t) ≤ F (t).

δ∗(ξ, [a, b]) is the support function and ξ ∈ S0 = {−1, 1}.

Now we find δ∗(ξ, F (t)). It is clear that for the interval [a, b]

δ∗(ξ, F (t)) =

{
F (t), ξ = 1;
−F (t), ξ = −1.

Choose points on [0, 1]: 0 ≤ t0 < t1 < ... < tN ≤ 1.

For ∀ξ ∈ S0, we build an interpolation Lagrange polynomial for the function δ∗(ξ, F (t))

as a function of t:

pN (ξ, t) =
N∑
j=0

δ∗(ξ, F (tj))Lj(t),

where

Lj(t) =
N∏

µ=0,µ 6=j

(t− tµ)

(tj − tµ)
.

7.5.1 Scheme of construction of interpolant for the function

Consider

F (t) = [F (t), F (t)].

We build two Lagrange interpolation polynomials. First pN (−1, t), that interpolates a

function −F (t) and second, pN (1, t), that interpolates a function F (t).

Once we have this two polynomials, we can define an interval-valued function:

PN (t) := {z ∈ R1 : ξ · z ≤ pN (ξ, t) ∀ξ = ±1}

= {z ∈ R1 : −pN (−1, t) ≤ z ≤ pN (1, t)}

Next we find out for what t set PN (t) is empty and for what nonempty.

For the fixed t, let α = pN (−1,t)+pN (1,t)
2 .

It is clear that if α ≥ 0, then PN (t) 6= ∅. If α < 0, then PN (t) = ∅.
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If PN (t) 6= ∅, we set

P̃N (t) = PN (t).

If PN (t) = ∅, then we build the following modified polynomial

P̃N (t) := {z ∈ R1 : ξ · z ≤ pN (ξ, t)− α(t) ∀ξ = ±1}

= {z ∈ R1 : −pN (−1, t) + α(t) ≤ z ≤ pN (1, t)− α(t)}

Since α = pN (−1,t)+pN (1,t)
2 the system of inequalities

−pN (−1, t) + α(t) ≤ z ≤ pN (1, t)− α(t)

can be rewritten in the following form

pN (1, t)− pN (−1, t)

2
= −pN (−1, t) +

pN (−1, t) + pN (1, t)

2
≤ z

≤ pN (1, t)− pN (−1, t) + pN (1, t)

2
=
pN (1, t)− pN (−1, t)

2

Therefore,

P̃N (t) =

{
PN (t), α ≥ 0;{
pN (1,t)−pN (−1,t)

2

}
, α < 0.

Next we estimate δh(F (t), P̃N (t)). Note that the polynomial pN (1, t) interpolates F (t),

and polynomial pN (−1, t) interpolates −F (t), i.e., −pN (−1, t) interpolates F (t).

Denote as above

ε(t) = sup
ξ∈S0

|δ∗(ξ, F (t))− pN (ξ, t)|,

i.e.,

ε(t) = max
{
|F (t)− pN (1, t)|, |F (t) + pN (−1, t)|

}
.

Theorem 21 For any function F ∈ C([a, b],Kc(R1))

δh(F (t), P̃N (t)) ≤ ε(t).

Proof. We assume first that PN (t) 6= ∅. Then

δh(F (t), P̃N (t)) = δh(F (t), PN (t)) =

max
{
|F (t)− pN (1, t)|, |F (t) + pN (−1, t)|

}
≤ ε(t).

Now let PN (t) = ∅.
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This means that the following system of inequalities

−pN (−1, t) ≤ z ≤ pN (1, t)

is inconsistent, i.e.,

pN (1, t) < −pN (−1, t). (7.10)

Moreover,

F (t) ≤ F (t). (7.11)

Consider ε(t) neighborhood of the points F (t) and F (t). It follows from inequalities (7.10)

and (7.11) that intersection of these neighborhoods contains the interval (pN (1, t),−pN (−1, t)).

This means that its midpoint

z0 =
pN (1, t) + pN (−1, t)

2

differs from each of the points F (t) and F (t) by no more then ε(t).

Since in this case P̃N (t) = {z0} we have that in the case PN (t) = ∅

δh(F (t), P̃N (t)) ≤ ε(t). �

Figure 7.2 illustrates the result of applying the interpolant P̃N (t) in the case when PN (t)

does not give an empty set.

Figure 7.3 and Figure 7.4 show how the interpolant P̃N (t) works in the case when PN (t)

actually gives an empty set.

7.6 Interpolation of functions with 2D-images

Interpolation of 2D-images has many applications in our day-to-day life. These include,

for example, recovery of a 3D body using it cross-sections with applications to tomography,

3D-printing, and 3D-scanning.

Figure 7.2: Modified interpolant P̃N (t). Example with no emptiness for regular interpolant
PN (t).
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Figure 7.3: Modified interpolant P̃N (t). Example of the problem for which regular
approach would give an empty set.

Figure 7.4: Modified interpolant P̃N (t). Figure 7.3 zoomed in.

Using the approach in defining interpolation polynomials introduced by Lempio in [47],

it is possible to extend the notion of interpolation polynomials to interpolation splines. P.

Alfeld ([2]) has constructed software that applies various interpolation techniques such as

polynomial, piecewise linear, natural cubic spline, and cubic Hermite spline to set-valued

functions. We illustrate here the importance of having different methods of interpolation.

We considered a problem of interpolation of set-valued function within 12 knots. The

given values at knots were:

• a circle with center at (1,1) and radius 0.6;

• a circle with center at (-1,1) and radius 0.3;

• a circle with center at (-1,-1) and radius 0.6;

• a circle with center at (1,-1) and radius 0.3;

and then the same values for 2 more rounds.
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One can see from Figure 7.5 that the result given by polynomial interpolation is not

satisfying since its value is the empty set in several intervals. This is natural since we

computed a polynomial of degree 11 and thus interpolation polynomials p11(ξ, t) oscillate

widely.

Figure 7.6 illustrates the piecewise linear interpolation applied to the same data. We

have no empty sets in this case, but the interpolation is not smooth.

Finally, Figure 7.7 shows the result of natural cubic spline interpolation applied to the

same problem, which in this case obviously gives the best results.

Figure 7.5: Polynomial interpolation

Figure 7.6: Piecewise linear interpolation

Figure 7.7: Natural cubic spline interpolation
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7.7 Discussion

In this chapter, we showed some additional tools that can be used to study questions

of approximation of set-valued functions due to the presence of a notion of a support

function of a set. In particular, we have shown that any arbitrary linear, bounded op-

erator A : C[a, b] → C[a, b] can be put into correspondence to an interpolation operator

Ã : C([a, b],Kc(Rn)) → C([a, b],Kc(Rn)). We also studied approximative properties of this

operator Ã.

Similar results would be interesting to obtain for fuzzy-valued functions. We plan to

investigate this problem in the future.
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F́ıs.-Qúım. Nat. Zaragoza, 20, Acad. Cienc. Exact. F́ıs. Qúım. Nat. Zaragoza, Zaragoza,
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