480 research outputs found

    Modelling of the temperature distribution of spot-weldable composite/metal joints

    Get PDF
    Resistance spot welding is the most economical joining method for the production of automotive steel bodies. In modern car body construction, however, its future applicability is limited due to the growing mix of materials in multi-material design. In response to increasing weight reduction requirements to protect the environment and natural resources, lightweight materials, and fibre-reinforced plastics (FRP) in particular, are more and more used in modern vehicle bodies. To facilitate the future joining of FRP/steel structures with resistance spot welding, spot-weldable force-introduction elements may be embedded in the laminate as a joining interface. When welding the so-called inserts, thermal damage to the surrounding polymer should be avoided, as this is the only way to calculate the strength of the joint correctly. For this purpose, the paper presents a numerical model that allows the prediction of the temperature propagation during spot welding of FRP/steel joints with embedded inserts. The simulative approach is subsequently validated by comparison with experimentally determined temperature curves and in doing so, an excellent model prediction can be noted

    Progress of Fiber-Reinforced Composites

    Get PDF
    Fiber-reinforced composite (FRC) materials are widely used in advanced structures and are often applied in order to replace traditional materials such as metal components, especially those used in corrosive environments. They have become essential materials for maintaining and strengthening existing infrastructure due to the fact that they combine low weight and density with high strength, corrosion resistance, and high durability, providing many benefits in performance and durability. Modified fiber-based composites exhibit better mechanical properties, impact resistance, wear resistance, and fire resistance. Therefore, the FRC materials have reached a significant level of applications ranging from aerospace, aviation, and automotive systems to industrial, civil engineering, military, biomedical, marine facilities, and renewable energy. In order to update the field of design and development of composites with the use of organic or inorganic fibers, a Special Issue entitled “Progress of Fiber-Reinforced Composites: Design and Applications” has been introduced. This reprint gathers and reviews the collection of twelve article contributions, with authors from Europe, Asia and America accepted for publication in the aforementioned Special Issue of Applied Sciences

    Investigation of asymmetrical fiber metal hybrids used as load introduction element for thin-walled CFRP structures

    Get PDF
    Due to the industrial success of fiber reinforced plastic (FRP) light-weight components, the demand for joining methods suitable for FRP increases as well. Conventional joining elements like rivets and screws or simple clamping are designed for an application in conventional isotropic materials such as steel or aluminum. Therefore, by design these joining elements do not consider characteristic FRP properties such as the orthotropic (fiber) or the setting behavior of matrix materials that are subjected to a constant load. Thus, without any FRP specific adjustments, conventional joining elements will, in most cases, lead to poor results and an inferior joint. Hence, this investigation presents the concept of a layered local metal-hybrid area that can be used as a load introduction element, the "Multilayer-Insert". The design aspects of the hybrid area are discussed for several stacking options. Furthermore, the sensitivity to geometrical design variables and asymmetrical stackings are investigated by a simplified two-dimensional finite element model. The deduced parameter relations are discussed in the context of an application in an automated fiber placement process in order to formulate recommendations for the geometrical parameters

    Deployment verification of large CFRP helical high-gain antenna for AIS signals

    Get PDF
    Deployment verification of large CFRP helical high-gain antenna for AIS signal

    Hybrid titanium-CFRP laminates for high-performance bolted joints

    No full text
    This paper presents an experimental and numerical investigation of the mechanical response of bolted joints manufactured using new hybrid composite laminates based on the substitution of CFRP plies with titanium plies. The local hybridization of the material is proposed to increase the efficiency of the bolted joints in CFRP structures. Two modeling strategies, based on non-linear finite element methods, are proposed for the analysis of the bolt-bearing and transition regions of the hybrid laminates. The bolt-bearing region is simulated using a three-dimensional finite element model that predicts ply failure mechanisms, whereas the free-edge of the transition region is simulated using plane stress and cohesive elements. The numerical and experimental results indicate that the use of hybrid composites can drastically increase the strength of CFRP bolted joints and therefore increase the efficiency of this type of connection. In addition, the numerical models proposed are able to predict the failure mechanisms and the strength of hybrid composite laminates with a good accuracy

    Enhanced Lightweight Design : First Results of the FP7 Project ENLIGHT

    Get PDF
    © 2016 The Authors. Published by Elsevier B.V. The European Green Vehicle project ENLIGHT aims to advance highly innovative lightweight material technologies for application in structural vehicle parts of future volume produced Electric Vehicles (EVs) along four axes: performance, manufacturability, cost effectiveness and lifecycle footprint. The main target is to develop viable and sustainable solutions for medium production volume up to 50.000 EVs destined to reach the market in the next 8-12 years. The specific objectives of the ENLIGHT project are on holistic and integrated conceptual design and manufacturing concerning how the technologies and materials addressed can be combined into a representative medium-volume EV. The solutions will be demonstrated in five modules: a front module and central floor module, a front door, a sub-frame and suspension system as well as a cross-car beam. In this paper, a summary of the major results obtained up to the 3rd project year will be presented. ispartof: pages:1031-1040 ispartof: Transportation Research Procedia vol:14 pages:1031-1040 ispartof: 6th Transport Research Arena TRA2016 location:Warsaw, Poland date:18 Apr - 21 Apr 2016 status: publishe

    Recent advances in modelling and simulation of surface integrity in machining - A review

    Get PDF
    Machining is one of the final steps in the manufacturing value chain, where the dimensional tolerances are fine-tuned, and the functional surfaces are generated. Many factors such as the process type, cutting parameters, tool geometry and wear can influence the surface integrity (SI) in machining. Being able to predict and monitor the influence of different parameters on surface integrity provides an opportunity to produce surfaces with predetermined properties. This paper presents an overview of the recent advances in computational and artificial intelligence methods for modelling and simulation of surface integrity in machining and the future research and development trends are highlighted

    Recent advances in modelling and simulation of surface integrity in machining - A review

    Get PDF
    Machining is one of the final steps in the manufacturing value chain, where the dimensional tolerances are fine-tuned, and the functional surfaces are generated. Many factors such as the process type, cutting parameters, tool geometry and wear can influence the surface integrity (SI) in machining. Being able to predict and monitor the influence of different parameters on surface integrity provides an opportunity to produce surfaces with predetermined properties. This paper presents an overview of the recent advances in computational and artificial intelligence methods for modelling and simulation of surface integrity in machining and the future research and development trends are highlighted
    • …
    corecore