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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Machining is one of the final steps in the manufacturing value chain, where the dimensional tolerances are fine-tuned, and the functional surfaces 
are generated. Many factors such as the process type, cutting parameters, tool geometry and wear can influence the surface integrity (SI) in 
machining. Being able to predict and monitor the influence of different parameters on surface integrity provides an opportunity to produce 
surfaces with predetermined properties. This paper presents an overview of the recent advances in computational and artificial intelligence 
methods for modelling and simulation of surface integrity in machining and the future research and development trends are highlighted. 
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1. Introduction 

A growing challenge in the aerospace, automotive and 
biomedical industries is to manufacture the high-end 
components in line with the UN sustainable development 
targets enforcing higher resource efficiency, reduced 
environment impacts and carbon footprint along the value-
chain. It is well documented that the performance and 
functionality of a manufactured component, e.g. its fatigue 
endurance, corrosion resistance, wear properties, etc., is largely 
determined by the state of its machined surfaces, such as 
roughness, process-induced surface residual stresses (RS), etc. 
[1-3]. However, the stringent demands on machined surface 
quality can pose a challenge for the manufacturers to meet the 
sustainable development targets mentioned earlier. This is 
because the workpiece material is subjected to severe thermo-
mechanical loads during machining processes that can trigger 

various temperature- and deformation-induced phenomena 
such as surface damage (pits, tears, laps, protrusions) and 
surface and sub-surface microstructural alteration (white-layer 
formation and recrystallisation). These thermal (elevated 
temperatures followed by rapid quenching) and mechanical 
(high stresses, strains and strain rates) effects are the main 
reasons for the microstructural alteration in the materials and 
the development of tensile RS near the machined surfaces [1]. 
Hence, it is of vital importance to: 1) understand the 
fundamental relationship between the parameters associated 
with machining process namely, cutting conditions, tool 
material and micro-geometry, wear and cooling-lubrication 
strategies and the resultant machined surface characteristics; 
and 2) develop models and approaches that facilitate the 
implementation of zero-defect manufacturing strategies [4] to 
avoid the unexpected failure of machined components during 
their applications. Considering the novelty and numerosity of 
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various temperature- and deformation-induced phenomena 
such as surface damage (pits, tears, laps, protrusions) and 
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temperatures followed by rapid quenching) and mechanical 
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reasons for the microstructural alteration in the materials and 
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avoid the unexpected failure of machined components during 
their applications. Considering the novelty and numerosity of 
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the currently available approaches to improve surface integrity, 
a fast and reliable method is needed to identify the effect of the 
aforementioned parameters on the machined surface quality in 
advance. This would allow for determining the optimum 
process conditions and achieving the most desirable surface 
integrity characteristics. Recent progress in numerical 
modelling such as finite element analysis has shown great 
potential to be adapted for modelling and simulation of surface 
integrity. In addition, recent advances in artificial intelligence 
(AI) and the realisation of deep learning algorithms for signal 
processing propelled by the developments in hardware 
capabilities have enabled monitoring and modelling of 
machining performance with a potential for real time process 
control.  

 The aim of this review article is to provide a comprehensive 
but synthetic overview of modelling and simulation 
methodologies of surface integrity in machining. In particular, 
methodologies are critically discussed with respect to industrial 
applicability and the challenges towards industrial 
implementation to proactively and predictively determining the 
effect of process parameters on SI. Therefore, the analytical and 
semi-analytical approaches such as those proposed by Schoop 
et al. [5] and Baizeau et al. [6] are not the focus of the current 
review paper. This is because the applicability of these 
approaches is not sufficiently investigated. Despite this, the 
potential of physics-informed AI approaches incorporating 
such analytical and semi-analytical modelling methods have 
been acknowledfed in the summary and outlook. 

 This paper provides an overview of twofold strategies 
viable to achieve the desirable SI in machining. Firstly, 
advanced computational methods for proactively determining 
the state of machined surfaces are introduced and discussed; 
this mainly includes Finite Element Method (FEM) but also the 
recent advances in Meshless methods and application of 
Computational Fluid Dynamics (CFD) in the field, as shown in 
Fig.1. Particular attention is also devoted to shed the light on 
the importance of machining dynamics and simulation of 
process kinematics for modelling SI in machining. Secondly, 
the application of AI algorithms for monitoring and predicting 
SI is proposed. On one hand, these methods have the advantage 
of being able to be integrated with feedback and feedforward 
control loops, though they struggle in generalization due to the 
need for extensive data-driven validation, as it will be 
explained.  

Whilst the focus of this review paper is placed on metal 
cutting processes, the approaches discussed here can, in 
principle, be extended to other processes such as grinding. 
Finally, in the concluding section, the main outcomes of the 
critical analysis are summarised, and promising research 
directions are enounced to allow sustainable development for 
machined components within the whole lifecycle. 

2. Advanced computational methods 

2.1. FEM and meshless methods – continuum simulations 

The mechanical response of a metallic material during the 
cutting process is directly linked to its microstructure and its 
evolution. It therefore influences the surface integrity of the 
component, which motivates its inclusion in numerical models 
of machining [7, 8]. Modelling the material behaviour in 
cutting still mostly relies on phenomenological relations, 

although the physics-based (dislocation-based) models have 
recently become the focus of several studies. Johnson-Cook 
constitutive and damage models are still widely adopted, 
mainly due to their availability in the commercial FE codes 
such as ABAQUS®, SFTC DEFORM® and AdvantEdge® [7, 
8]. FEM uses a mesh and is the most adopted approach to 
model the cutting processes so far. Several formulations 
ranging from pure Lagrangian to pure Eulerian have been used 
for cutting simulation. In the Lagrangian formulation, the 
material is tied to the mesh, leading to mesh distortions for 
simulating large material deformations occurred during 
machining. On the contrary, the movement of the material is 
independent of the mesh in the Eulerian formulation. Eulerian 
formulation is mainly used for steady-state modelling and not 
adopted when surface integrity is considered. The Arbitrary 
Lagrangian Eulerian (ALE) formulation combines these two 
modelling strategies and enables a relative movement between 
the material and the mesh. Whilst using ALE can reduce mesh 
distortion, it cannot entirely eradicate it [9, 10]. On the other 
hand, the Coupled Eulerian-Lagrangian (CEL) formulation 
takes advantage of the Eulerian formulation to solve the 
elements distortion in the workpiece [11]. Remeshing 
techniques h introduced to avoid mesh distortion. Remapping 
of the solution between the meshes can however reduce the 
accuracy of the solution [10]. 

Meshless methods have also been developed to mainly 
overcome the problem of the element distortion due to large 
deformations encountered during cutting process and to handle 
crack formation. Smoothed particle hydrodynamics (SPH) [12] 
is nowadays the most used method for meshless modelling and 
simulation of the cutting processes. The Discrete Element 
Method (DEM) [13], the Finite Pointset Method (FPM) [14] 
and the Particle Finite Element Method (PFEM) [15] are 
showing promising results, while they are barely applied to 
cutting. These methods are computationally expensive and 
therefore access to high performance computing resources 
(e.g., parallel computing, GPU) is deemed necessary [16, 17]. 
To date, no application of meshless methods to SI modelling 
has been reported in the literature. 

Orthogonal cutting, resembling broaching operation, is the 
most modelled machining setup due to its simplicity as 
compared to the complex kinematics and tooling 
configurations commonly used under operational conditions. 
The modelling and simulation of orthogonal cutting process 
has become a well-accepted strategy for investigating the 
influence of various parameters – including tool micro-
geometry, tool wear geometry, cutting conditions and cooling-
lubrication – with large impacts on SI of machined 
components.  

Most of the literature  on modelling and simulation of 
surface integrity is focused on metallic materials [18]. 
However, drilling of composite materials, especially CFRP and 
CFRP/metal stacks, has recently gained a lot of interest. 
Modelling the influence of fibre orientation when orthogonal 
cutting CFRP laminate allowed marked improvements in the 
surface quality and reduced sub-surface damage [19, 20]. Xu et 
al. [21] simulated the orthogonal machining of CFRP/Ti6Al4V 
stacks using a 3D Lagrangian modelling strategy, where the 
fibres and the matrix were explicitly included in the FE model. 
This investigation revealed the role of sequence of the material 
stacks (CFPRP/Ti6Al4V or Ti6Al4V/CFRP) in cutting 
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directions are enounced to allow sustainable development for 
machined components within the whole lifecycle. 

2. Advanced computational methods 

2.1. FEM and meshless methods – continuum simulations 
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component, which motivates its inclusion in numerical models 
of machining [7, 8]. Modelling the material behaviour in 
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although the physics-based (dislocation-based) models have 
recently become the focus of several studies. Johnson-Cook 
constitutive and damage models are still widely adopted, 
mainly due to their availability in the commercial FE codes 
such as ABAQUS®, SFTC DEFORM® and AdvantEdge® [7, 
8]. FEM uses a mesh and is the most adopted approach to 
model the cutting processes so far. Several formulations 
ranging from pure Lagrangian to pure Eulerian have been used 
for cutting simulation. In the Lagrangian formulation, the 
material is tied to the mesh, leading to mesh distortions for 
simulating large material deformations occurred during 
machining. On the contrary, the movement of the material is 
independent of the mesh in the Eulerian formulation. Eulerian 
formulation is mainly used for steady-state modelling and not 
adopted when surface integrity is considered. The Arbitrary 
Lagrangian Eulerian (ALE) formulation combines these two 
modelling strategies and enables a relative movement between 
the material and the mesh. Whilst using ALE can reduce mesh 
distortion, it cannot entirely eradicate it [9, 10]. On the other 
hand, the Coupled Eulerian-Lagrangian (CEL) formulation 
takes advantage of the Eulerian formulation to solve the 
elements distortion in the workpiece [11]. Remeshing 
techniques h introduced to avoid mesh distortion. Remapping 
of the solution between the meshes can however reduce the 
accuracy of the solution [10]. 

Meshless methods have also been developed to mainly 
overcome the problem of the element distortion due to large 
deformations encountered during cutting process and to handle 
crack formation. Smoothed particle hydrodynamics (SPH) [12] 
is nowadays the most used method for meshless modelling and 
simulation of the cutting processes. The Discrete Element 
Method (DEM) [13], the Finite Pointset Method (FPM) [14] 
and the Particle Finite Element Method (PFEM) [15] are 
showing promising results, while they are barely applied to 
cutting. These methods are computationally expensive and 
therefore access to high performance computing resources 
(e.g., parallel computing, GPU) is deemed necessary [16, 17]. 
To date, no application of meshless methods to SI modelling 
has been reported in the literature. 

Orthogonal cutting, resembling broaching operation, is the 
most modelled machining setup due to its simplicity as 
compared to the complex kinematics and tooling 
configurations commonly used under operational conditions. 
The modelling and simulation of orthogonal cutting process 
has become a well-accepted strategy for investigating the 
influence of various parameters – including tool micro-
geometry, tool wear geometry, cutting conditions and cooling-
lubrication – with large impacts on SI of machined 
components.  

Most of the literature  on modelling and simulation of 
surface integrity is focused on metallic materials [18]. 
However, drilling of composite materials, especially CFRP and 
CFRP/metal stacks, has recently gained a lot of interest. 
Modelling the influence of fibre orientation when orthogonal 
cutting CFRP laminate allowed marked improvements in the 
surface quality and reduced sub-surface damage [19, 20]. Xu et 
al. [21] simulated the orthogonal machining of CFRP/Ti6Al4V 
stacks using a 3D Lagrangian modelling strategy, where the 
fibres and the matrix were explicitly included in the FE model. 
This investigation revealed the role of sequence of the material 
stacks (CFPRP/Ti6Al4V or Ti6Al4V/CFRP) in cutting 
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temperatures and surface quality (e.g., the amount of uncut 
fibres), and the damage at the interface of the materials. 

For metals, Liu et al. [22] studied the influence of tool 
geometry on residual stresses (RS) for Alloy 718 using a CEL 
model. Their simulation followed the experimental trends and 
the results were within the range of experimental deviations 
when varying the rake angle, edge radius and flank wear to 
provide insight into the mechanism of RS generation. The 
influence of the coating on the magnitude of RS for Alloy 718 
and AISI 316L is modelled by Outeiro et al. [23], indicating 
that RS are higher when using the uncoated tool. Özel and 
Ulutan [24] also considered the influence of cutting tool 
geometry and coating when machining Ti6Al4V and IN100 
alloy. The developed 3D FE model showed that the increase of 
the edge radius led to more compressive RS, while coating the 
tool resulted in more tensile RS. The capabilities of Lagrangian 
and CEL modelling approaches are evaluated by da Silva et al. 
[25] for modelling RS when machining Alloy 718. Both 
modelling approaches provide good results in the cutting 
direction; however, Lagrangian formulation seems to provide 
slightly better predictions in the perpendicular direction. The 
Lagrangian formulation is adopted to investigate the surface 
deformation when machining Ti6Al4V [26]. The effect of chip 
segmentation on RS distribution and surface topography is 
studied using a CEL model when machining Alloy 718 [27]. It 
showed that the formation of a segmented chip generates 
periodic mechanical and thermal loadings on the machined 
surface, resulting in a waved surface and cyclic RS. The 
influence of friction and material constitutive models on the 

reliability of the RS prediction is highlighted by Outeiro et al. 
[28]. The authors recommend designing experimental tests 
dedicated to the identification of friction coefficients and 
material constitutive parameters. Several studies also proposed 
the implementation of more elaborated phenomenological 
constitutive models to improve the reliability of RS predictions. 
For example, the constitutive model implemented by Xu et al. 
[29] resulted in differences of less than 5% between the 
experimental and the numerical cutting forces thanks to a more 
realistic thermomechanical behaviour of the machined 
material. The morphology of the numerically produced 
segmented chips was also closer to the experiments than with 
the classical Johnson-Cook law. Cyclic variation of the 
machined surface topology and RS is also observed when 
segmented chips are generated. In parallel, several physics-
based models are proposed for simulation of the microstructure 
changes (grain size and hardness) on the machined surfaces 
induced during machining various metallic alloys [30, 31]. 

Arrazola et al. [18] stated that an increasing number of 
studies are dedicated in recent years to modelling 3D 
operations closer to the industrial needs, such as drilling, 
turning and grooving. For example, Xu et al. [29] compared 2D 
and 3D free orthogonal cutting of Ti6Al4V to highlight the 
influence of lateral burr on the stress, plastic strain and 
temperature. The results demonstrated the superiority of 3D 
simulations. Longitudinal turning [32] and grooving [33] are 
simulated using a hybrid (3D) model based on a 2D local ALE 
model. However, several cutting revolutions should be 
simulated to reach the steady state condition, allowing the 

Fig. 1: Schematic overview of  the Section 2 on advanced computational methods, including the effects of machining dynamics on SI [13, 34, 48, 51, 65] 
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modelling of the surface topography (including surface 
roughness) and the prediction of RS. Vovk et al. [34, 35] 
developed a 3D CEL model of milling for AISI 4140. The 
authors introduced a multi-pass or sequential cuts approach that 
takes the influence of the previous cuts into account to 
determine RS, temperature and forces at the current cut, as 
shown in Fig.1. This is a step further to a realistic simulation of 
an industry-relevant model. The CEL formulation is also 
adopted by Zhuang et al. [36] to investigate the influence of the 
ratio of the uncut chip thickness on the tool edge radius on RS 
(together with cutting forces, chip morphology and 
temperatures) for AISI 304 stainless steel. The sequential cuts 
are also included in this investigation. The authors showed that 
the RS profile becomes approximately constant after a certain 
number of cuts; however, this phenomenon depends on the 
cutting condition and tool micro-geometry. Single and double 
cut influence on the RS development when machining 
Ti6Al4V is studied by Yue et al. [37] using a CEL model. A 
reduction in the magnitude of the RS is observed with an 
increase in the number of cuts.  

Despite significant advancement in recent years, an in-depth 
analysis of the published data in the literature suggests that 
neither FE or meshless methods are sufficiently mature to 
provide reliable predictions when machining under operational 
conditions. This is partly because of the complex metallo-
thermo-mechanical phenomena involved in the vicinity of 
cutting edge – some of which are still not well understood, e.g., 
the relative impacts of microstructural softening/alteration and 
damage evolution on material response during the chip 
formation process [38, 39]. In addition, modelling strategy and 
numerical formulation, and an appropriate representation of 
constitutive and damage models can all play marked impacts on 
the reliability of the predicted results. Yet, there are other less 
investigated factors involved that can influence the accuracy of 
numerical simulations. For example, as the microstructural 
alteration is concerned, the kinetics of the solid phase 
transformations, dynamic recovery and recrystallisation is not 
readily available at the practical ranges of strain, strain rate and 
reasonable time scales during the cutting process. Often the 
required kinetic and the physical properties of the parent and 
transformed phases, such as flow stress properties of hcp and 
bcc phases in Ti-6Al-4V, are taken from studies concerning 
forming and thermal treatments. The lack of reliable material 
data may lead to unreliable outcomes. The other factor that may 
affect the accuracy of the model predictions is the thermal 
boundary conditions. Essentially, the reliability of numerical 
simulations depends on an accurate representation of the 
boundary conditions applied on the surfaces subjected to the 
cooling media and at the tool-chip interface. Whereas the 
impact of lubrication is normally included in numerical models 
by altering the friction coefficients of an appropriate model 
[40], the cooling effects are generally taken into account using 
the constant or variable (e.g., temperature dependent) heat 
transfer coefficients (HTC) on the respective surfaces [41]. 
However, the convection HTC are either obtained using costly 
inverse approaches based on embedded thermocouples (and 
thermographic data) [41] or are determined using 
oversimplified empirical relationships as a function of 
dimensionless numbers such as Nusselt number, Reynolds 
number and fluid Prandtl number [42].  

To overcome these limitations, several studies have 
proposed utilising CFD to obtain the convection HTC to be 

later applied on the numerical models to provide a more reliable 
estimation of the thermo-mechanical loads in machining. These 
studies investigated the heat transfer when machining under 
different cooling-lubrication conditions, e.g., MQL [43-45], 
cryogenic (LN2 or CO2) [46, 47] and emulsion [48]. Yet most 
studies have placed their focus on simulation of heat transfer in 
the vicinity of cutting edge with the aim to develop simulation-
assisted strategies for cooling channel design or optimisation 
of associated parameters (e.g., cooling pressure, temperature) 
to increase the tool performance in terms of tool life or to 
investigate various cutting zone phenomena. The resulted 
improvements in tool wear management can indirectly lead to 
a better control of SI parameters in practice. For example, 
Oezkaya et al. [48] used a CFD-assisted approach to investigate 
the role of cooling pressure and nozzle diameter when drilling 
Alloy 718. The authors observed that the Reynold’s number at 
the severely loaded regions of the drill remains nearly 
unchanged with an increase of the nozzle diameter by 25%, 
despite distinctly higher mass flux when using the tool with 
larger nozzle diameter – thus nozzle diameter showed to have 
minimal cooling effects. The cooling pressure, on the other 
hand, had a marked impact on tool life and the quality of the 
machined surfaces. The authors also claimed that the higher 
cutting fluid velocities at higher cooling pressures led to 
improved convection and thus better tool life and bore surface 
qualities. Iovkov et al. [49] later used the knowledge gained 
based on this CFD-assisted strategy to re-design and modify 
the tool geometry – resulted in improved tool life, better 
temperature control and thus improved bore quality (e.g., 
roundness). These studies showcase how effectively CFD can 
be implemented to estimate the heat transfer on the machined 
surfaces and to determine the boundary conditions required for 
improved temperature predictions and thus more accurate 
estimation of RS and microstructural alteration.  

2.2. Modelling machining dynamics and its impacts 

Vibrations are inevitable in machining systems not only 
when machining large depths of cut, but it is also challenging 
to perform machining when the cutter or workpiece is flexible, 
such as in blisk machining when using long tools or machining 
difficult-to-cut and flexible materials. Hence dynamics of 
machining concern the quality of the machined component 
under the influence of the vibration characteristics of the 
machine tool/workpiece as well as the time-varying 
characteristics of the machining process. This section reviews 
the analytical efforts while including important experimental 
studies with new findings. 

The surface roughness in turning and milling is, to a large 
extent, controlled by the process kinematics (i.e., tool 
orientation, tool path, feed direction and stepover distance) and 
cutting tool geometry, so the feed marks and cusp heights were 
the most important concerns of the initial analytical studies on 
surface topography simulations with rigid body assumption 
[50, 51]. Including the tool wear [52] is also important as the 
flank face slides on the generated surface, and it can thus 
change the surface topography of the machined components. 
The introduction of relative tool/workpiece displacement [53] 
into the simulation opened the dynamics era in surface 
topography simulations. In addition to the static deformations, 
the dynamic effects include the forced vibrations in relation to 
the natural frequencies of the tool/workpiece system. As the 
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temperatures and surface quality (e.g., the amount of uncut 
fibres), and the damage at the interface of the materials. 

For metals, Liu et al. [22] studied the influence of tool 
geometry on residual stresses (RS) for Alloy 718 using a CEL 
model. Their simulation followed the experimental trends and 
the results were within the range of experimental deviations 
when varying the rake angle, edge radius and flank wear to 
provide insight into the mechanism of RS generation. The 
influence of the coating on the magnitude of RS for Alloy 718 
and AISI 316L is modelled by Outeiro et al. [23], indicating 
that RS are higher when using the uncoated tool. Özel and 
Ulutan [24] also considered the influence of cutting tool 
geometry and coating when machining Ti6Al4V and IN100 
alloy. The developed 3D FE model showed that the increase of 
the edge radius led to more compressive RS, while coating the 
tool resulted in more tensile RS. The capabilities of Lagrangian 
and CEL modelling approaches are evaluated by da Silva et al. 
[25] for modelling RS when machining Alloy 718. Both 
modelling approaches provide good results in the cutting 
direction; however, Lagrangian formulation seems to provide 
slightly better predictions in the perpendicular direction. The 
Lagrangian formulation is adopted to investigate the surface 
deformation when machining Ti6Al4V [26]. The effect of chip 
segmentation on RS distribution and surface topography is 
studied using a CEL model when machining Alloy 718 [27]. It 
showed that the formation of a segmented chip generates 
periodic mechanical and thermal loadings on the machined 
surface, resulting in a waved surface and cyclic RS. The 
influence of friction and material constitutive models on the 

reliability of the RS prediction is highlighted by Outeiro et al. 
[28]. The authors recommend designing experimental tests 
dedicated to the identification of friction coefficients and 
material constitutive parameters. Several studies also proposed 
the implementation of more elaborated phenomenological 
constitutive models to improve the reliability of RS predictions. 
For example, the constitutive model implemented by Xu et al. 
[29] resulted in differences of less than 5% between the 
experimental and the numerical cutting forces thanks to a more 
realistic thermomechanical behaviour of the machined 
material. The morphology of the numerically produced 
segmented chips was also closer to the experiments than with 
the classical Johnson-Cook law. Cyclic variation of the 
machined surface topology and RS is also observed when 
segmented chips are generated. In parallel, several physics-
based models are proposed for simulation of the microstructure 
changes (grain size and hardness) on the machined surfaces 
induced during machining various metallic alloys [30, 31]. 

Arrazola et al. [18] stated that an increasing number of 
studies are dedicated in recent years to modelling 3D 
operations closer to the industrial needs, such as drilling, 
turning and grooving. For example, Xu et al. [29] compared 2D 
and 3D free orthogonal cutting of Ti6Al4V to highlight the 
influence of lateral burr on the stress, plastic strain and 
temperature. The results demonstrated the superiority of 3D 
simulations. Longitudinal turning [32] and grooving [33] are 
simulated using a hybrid (3D) model based on a 2D local ALE 
model. However, several cutting revolutions should be 
simulated to reach the steady state condition, allowing the 

Fig. 1: Schematic overview of  the Section 2 on advanced computational methods, including the effects of machining dynamics on SI [13, 34, 48, 51, 65] 
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modelling of the surface topography (including surface 
roughness) and the prediction of RS. Vovk et al. [34, 35] 
developed a 3D CEL model of milling for AISI 4140. The 
authors introduced a multi-pass or sequential cuts approach that 
takes the influence of the previous cuts into account to 
determine RS, temperature and forces at the current cut, as 
shown in Fig.1. This is a step further to a realistic simulation of 
an industry-relevant model. The CEL formulation is also 
adopted by Zhuang et al. [36] to investigate the influence of the 
ratio of the uncut chip thickness on the tool edge radius on RS 
(together with cutting forces, chip morphology and 
temperatures) for AISI 304 stainless steel. The sequential cuts 
are also included in this investigation. The authors showed that 
the RS profile becomes approximately constant after a certain 
number of cuts; however, this phenomenon depends on the 
cutting condition and tool micro-geometry. Single and double 
cut influence on the RS development when machining 
Ti6Al4V is studied by Yue et al. [37] using a CEL model. A 
reduction in the magnitude of the RS is observed with an 
increase in the number of cuts.  

Despite significant advancement in recent years, an in-depth 
analysis of the published data in the literature suggests that 
neither FE or meshless methods are sufficiently mature to 
provide reliable predictions when machining under operational 
conditions. This is partly because of the complex metallo-
thermo-mechanical phenomena involved in the vicinity of 
cutting edge – some of which are still not well understood, e.g., 
the relative impacts of microstructural softening/alteration and 
damage evolution on material response during the chip 
formation process [38, 39]. In addition, modelling strategy and 
numerical formulation, and an appropriate representation of 
constitutive and damage models can all play marked impacts on 
the reliability of the predicted results. Yet, there are other less 
investigated factors involved that can influence the accuracy of 
numerical simulations. For example, as the microstructural 
alteration is concerned, the kinetics of the solid phase 
transformations, dynamic recovery and recrystallisation is not 
readily available at the practical ranges of strain, strain rate and 
reasonable time scales during the cutting process. Often the 
required kinetic and the physical properties of the parent and 
transformed phases, such as flow stress properties of hcp and 
bcc phases in Ti-6Al-4V, are taken from studies concerning 
forming and thermal treatments. The lack of reliable material 
data may lead to unreliable outcomes. The other factor that may 
affect the accuracy of the model predictions is the thermal 
boundary conditions. Essentially, the reliability of numerical 
simulations depends on an accurate representation of the 
boundary conditions applied on the surfaces subjected to the 
cooling media and at the tool-chip interface. Whereas the 
impact of lubrication is normally included in numerical models 
by altering the friction coefficients of an appropriate model 
[40], the cooling effects are generally taken into account using 
the constant or variable (e.g., temperature dependent) heat 
transfer coefficients (HTC) on the respective surfaces [41]. 
However, the convection HTC are either obtained using costly 
inverse approaches based on embedded thermocouples (and 
thermographic data) [41] or are determined using 
oversimplified empirical relationships as a function of 
dimensionless numbers such as Nusselt number, Reynolds 
number and fluid Prandtl number [42].  

To overcome these limitations, several studies have 
proposed utilising CFD to obtain the convection HTC to be 

later applied on the numerical models to provide a more reliable 
estimation of the thermo-mechanical loads in machining. These 
studies investigated the heat transfer when machining under 
different cooling-lubrication conditions, e.g., MQL [43-45], 
cryogenic (LN2 or CO2) [46, 47] and emulsion [48]. Yet most 
studies have placed their focus on simulation of heat transfer in 
the vicinity of cutting edge with the aim to develop simulation-
assisted strategies for cooling channel design or optimisation 
of associated parameters (e.g., cooling pressure, temperature) 
to increase the tool performance in terms of tool life or to 
investigate various cutting zone phenomena. The resulted 
improvements in tool wear management can indirectly lead to 
a better control of SI parameters in practice. For example, 
Oezkaya et al. [48] used a CFD-assisted approach to investigate 
the role of cooling pressure and nozzle diameter when drilling 
Alloy 718. The authors observed that the Reynold’s number at 
the severely loaded regions of the drill remains nearly 
unchanged with an increase of the nozzle diameter by 25%, 
despite distinctly higher mass flux when using the tool with 
larger nozzle diameter – thus nozzle diameter showed to have 
minimal cooling effects. The cooling pressure, on the other 
hand, had a marked impact on tool life and the quality of the 
machined surfaces. The authors also claimed that the higher 
cutting fluid velocities at higher cooling pressures led to 
improved convection and thus better tool life and bore surface 
qualities. Iovkov et al. [49] later used the knowledge gained 
based on this CFD-assisted strategy to re-design and modify 
the tool geometry – resulted in improved tool life, better 
temperature control and thus improved bore quality (e.g., 
roundness). These studies showcase how effectively CFD can 
be implemented to estimate the heat transfer on the machined 
surfaces and to determine the boundary conditions required for 
improved temperature predictions and thus more accurate 
estimation of RS and microstructural alteration.  

2.2. Modelling machining dynamics and its impacts 

Vibrations are inevitable in machining systems not only 
when machining large depths of cut, but it is also challenging 
to perform machining when the cutter or workpiece is flexible, 
such as in blisk machining when using long tools or machining 
difficult-to-cut and flexible materials. Hence dynamics of 
machining concern the quality of the machined component 
under the influence of the vibration characteristics of the 
machine tool/workpiece as well as the time-varying 
characteristics of the machining process. This section reviews 
the analytical efforts while including important experimental 
studies with new findings. 

The surface roughness in turning and milling is, to a large 
extent, controlled by the process kinematics (i.e., tool 
orientation, tool path, feed direction and stepover distance) and 
cutting tool geometry, so the feed marks and cusp heights were 
the most important concerns of the initial analytical studies on 
surface topography simulations with rigid body assumption 
[50, 51]. Including the tool wear [52] is also important as the 
flank face slides on the generated surface, and it can thus 
change the surface topography of the machined components. 
The introduction of relative tool/workpiece displacement [53] 
into the simulation opened the dynamics era in surface 
topography simulations. In addition to the static deformations, 
the dynamic effects include the forced vibrations in relation to 
the natural frequencies of the tool/workpiece system. As the 
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surface roughness results from the cumulative effects of rigid 
body motion and relative tool/workpiece vibrations in the 
system, for a stable chatter-free machining operation, one 
needs to superpose the vibrations on top of the rigid body 
motion [54, 55]. With the help of the semi-discretization 
method [56] that is originally formulated for checking chatter-
free conditions, a general and complete milling simulation 
model would also include the forced vibrations in calculating 
surface location error (SLE) at an instant when the machined 
surface is generated on the workpiece [57]. Additionally, 
improvement in system and process models would certainly 
increase prediction accuracy for a wide range of cutting 
conditions (e.g., depths of cut and spindle speeds) and cutting 
tool materials (e.g., CBN and carbide) [58]. For the unwanted 
chatter vibrations, the tool may start jumping out of the cut and 
lose contact during machining; the superposition fails due to 
the nonlinear cutting action. In multi-mode systems, the mode-
coupling effect may be linked to the regenerative effect. Seguy 
et al. [59] argued that this can give an advantage to the mode 
that is started first until a node of the same mode is 
encountered; they observed a strong link between vibrations 
and roughness and concluded that more dedicated research is 
required. The surface roughness pattern may repeat itself if the 
tool run-out is large enough. Zhenyu et al. [60] modelled this 
phenomenon during (face) milling operation where the axial 
run-out inevitably affects the surface roughness. The authors 
showed that the surface roughness repeats at every spindle 
rotation period, instead of tooth passing period, due to the axial 
runout between the inserts. Niu et al. [54] have developed a 
detailed model to explain the generation mechanism of surface 
topography, and concluded that surface roughness is very 
sensitive to teeth runout and pitch angle variation. A recent 
study by Yan et al. [61] reviewed comprehensively the methods 
to keep the surface quality under control in blade machining.  

For the ultrasonic vibration-assisted (UV-assisted) 
machining technology, the surface roughness is not only 
attributed to the natural frequencies of the system, but also to 
the intended relative tool/workpiece motion. Chen et al. [62, 
63] simulated the topography of machined surfaces during a 
UV-assisted helical milling operation. UV-assisted machining 
led to a marked increase (more than 63.5%) in compressive RS 
generated on the hole surfaces as compared to that of traditional 
helical milling. When the RS is concerned, majority of the 
investigations assume the tool-workpiece system is static and 
stationary, i.e., the tool is rigid and there is no relative motion 
between the workpiece and the tool other than the shearing 
action separating the chip from the workpiece. However, as 
mentioned above, machining systems are not ideal (rigid) in 
practice, and process vibrations do exist. A few studies have 
considered the effect of process vibrations on the RS developed 
on the machined surfaces [64-67]. Outeiro et al. [67] studied 
the effects of process dynamics on the RS formation. The 
authors provided controlled vibrations of the tool and 
monitored the resulting surface roughness and RS. For the first 
time, they observed that both surface roughness and RS vary 
periodically. Chomienne et al. [64] investigated the RS 
fluctuations in a real vibrating system. The authors set up a 
flexible component for a turning operation and measured RS of 
various machined samples. A clear difference between stiff and 
flexible turning workpiece samples was evident: the flexible 
sample exhibited very high deviations in both RS and surface 
roughness values, whereas the stiff sample showed very similar 

surface integrity from one sample to another. Maurotto and 
Tunc [68] also worked with a real milling system but they 
evaluated the effect of chatter vibrations on the resultant RS. 
Similar to the investigation by Outeiro et al. [67], Huang et al. 
[65] studied the cyclic development of surface residual stresses 
during turning operation. The feed rate was oscillated at 10 Hz 
between high and low values, resulting in varied uncut chip 
thickness. The trends of RS generation were well predicted. It 
was further reported that the largest variation in RS occurs 
when the largest variation in uncut chip thickness is imposed 
during the cutting process. Similar to the study conducted by 
Lin and Chang [69] for controlling the surface roughness, 
Kamada and Sasahara [66] investigated the influence of the 
vibration frequency ratio between the frequency of vibrations 
and spindle speed; they found that the RS variation can be 
eliminated at specific values. 

Research on modelling the dynamics of machining process 
aims to increase the speed and accuracy of simulating the 
chatter stability, forced vibrations, dimensional surface errors 
as well as surface roughness in machining processes. The 
research on exploring the vibrations and tool geometry causing 
cyclic surface roughness inspired further studies on RS. The 
recent literature showed that there is a strong relationship 
between the process vibrations and RS of the machined 
component, though there are not many analytical studies 
explaining the dynamic effects on surface roughness and RS. 
Therefore, dedicated models for various machining operations 
and tool/workpiece pairs are required to investigate how 
vibrations can be used and controlled in order to achieve the 
required SI. 

3. Artificial intelligence for predicting surface integrity 

Modelling and simulation of surface integrity in machining 
is still mostly limited to orthogonal cutting process, as 
mentioned in Section 2.1. This limitation has encouraged 
researchers to develop data-driven methodologies and 
algorithms for the prediction of SI indicators.  Whilst classical 
statistical methods such as regression have been used for 
modelling/predicting various parameters such as surface 
roughness, they are usually limited to specific machining 
conditions and cannot be generalised. Microstructure 
alteration, surface and sub-surface deformation, residual 
stresses and surface damage are often more complex to be 
pinned only to cutting parameters. Surface integrity parameters 
are dependent on many time-varying factors beyond cutting 
parameters such as tool wear, vibrations, cutting temperature, 
etc. To enhance the fit and improve prediction performance, 
shallow networks such as artificial neural network (ANN), 
hidden Markov, Bayesian and fuzzy expert systems (FES) have 
been used to correlate historical data with machining 
parameters. Majority of these methods have been used for tool 
condition monitoring with ANN being the dominant network 
for surface roughness prediction [70]. These models are used 
in lieu of regression models to minimise prediction errors. In 
this approach, specific surface integrity parameters are 
measured off-line and then correlated with various cutting 
parameters. Afterwards, a combination of cutting parameters is 
selected to achieve the desired surface integrity in machining. 
For instance, Khoshaim et al. [71] performed a series of 
machining experiments and assessed the residual stresses after 
turning pure iron samples. The authors used three types of 
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ANN to correlate the residual stresses to the cutting parameters 
and reported over 99% coefficient of determination. Karpat and 
Özel [72] used ANN to formulate a correlation between cutting 
parameters, surface roughness and residual stresses with less 
than 5% error on the test data. Multi-objective optimisation 
based on particle swarm optimisation was used to identify the 
optimum cutting parameters to achieve the desired surface 
integrity whilst maximising material removal rate or tool life. 
Kosarac et al. [73] performed a full factorial design of 
experiments with varying cutting parameters and used the 
experimental data for training an ANN for predicting average 
surface roughness Ra. They reported a mean squared error 
(MSE) of 0.0025 for an ANN trained with a Bayesian 
regularisation algorithm. Training shallow ANN networks with 
offline data from experiments for predicting surface roughness 
and optimising cutting parameters has received significant 
attention over the past 20 years. Obvious shortcomings are the 
limited generalisation capabilities, ignoring dynamic errors and 
time dependent variables such as tool wear. Structured DoEs 
are designed with a regression model in mind. When applied 
for training AI networks, they are prone to missing crucial 
information on machining performance. Pontes et al. [74] 
performed a critical review of using ANN shallow networks for 
predicting surface roughness. They highlighted that almost all 
papers reviewed used cutting parameters as input to their ANN 
models aiming to predict average surface roughness. It has 
become apparent that achieving higher accuracy in predicting 
surface roughness and controlling cutting parameters to reach 
a prescribed surface condition is not possible by solely 
considering cutting parameters as an input and ignoring time-
varying parameters. This has necessitated using sensors to 
collect real-time data from machining as additional input 
parameters for modelling. Acoustic emissions, cutting forces 
and temperature have been used to feed models on surface 

roughness, RS and sub-surface properties. In contrast to 
training networks on offline historical data, indirect sensor 
signals during machining can be processed with artificial 
intelligent networks to monitor and control various surface 
integrity parameters. Azouzi and Guillot [75] used ANN to fuse 
multi-sensor signals for monitoring and predicting surface 
roughness Ra. They reported 2% to 25% errors in predicting 
surface roughness and noted that factors other than cutting 
parameters affect the machining condition and their influence 
needs to be taken into account. They used cutting forces, 
vibrations, acoustic emission and tool deflection sensors to take 
the impacts of cutting fluid, tool wear, tool-workpiece stiffness 
and variation in material properties into account [75]. Motta et 
al. [76] performed 92 turning experiments and collected surface 
roughness as well as cutting force, temperature and vibration 
signals. They compared Random Forest (RF) and Gaussian 
Process Regression (GPR) in their capability to predict surface 
roughness and concluded that GPR outperformed RF resulting 
in RSME of 0.4 µm. Mohring et al. [77] trained a convolutional 
neural network (CNN) to predict surface roughness based on a 
vibration sensor signal from the cutting tool. They reported an 
accuracy of 96% in predicting average surface roughness. 
Similarly, Lin et al. [78] used the vibration signal from a sensor 
positioned on the spindle of a milling machine to train and test 
a number of deep learning models to predict surface roughness. 
They concluded that while Fast-Fourier-Transform Long-
Short-Term-Memory (FFT-LSTM) network performs best for 
higher values of roughness, a one-dimensional convolutional 
neural network (1-D CNN) is more suitable for predicting 
lower values of surface roughness. Fang and Pai [79] proposed 
using wavelet transfer packet integrated with ANN to predict 
surface roughness using cutting parameters as well as cutting 
force and vibration sensor signals. A set of 54 experimental 
data was used for training and testing the network with no 

Fig. 2: Schematic of a physics-informed AI dynamic process parameter optimisation framework enabling improved tool wear control and SI as compared with 
static (off-line) approach [86]. 
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surface roughness results from the cumulative effects of rigid 
body motion and relative tool/workpiece vibrations in the 
system, for a stable chatter-free machining operation, one 
needs to superpose the vibrations on top of the rigid body 
motion [54, 55]. With the help of the semi-discretization 
method [56] that is originally formulated for checking chatter-
free conditions, a general and complete milling simulation 
model would also include the forced vibrations in calculating 
surface location error (SLE) at an instant when the machined 
surface is generated on the workpiece [57]. Additionally, 
improvement in system and process models would certainly 
increase prediction accuracy for a wide range of cutting 
conditions (e.g., depths of cut and spindle speeds) and cutting 
tool materials (e.g., CBN and carbide) [58]. For the unwanted 
chatter vibrations, the tool may start jumping out of the cut and 
lose contact during machining; the superposition fails due to 
the nonlinear cutting action. In multi-mode systems, the mode-
coupling effect may be linked to the regenerative effect. Seguy 
et al. [59] argued that this can give an advantage to the mode 
that is started first until a node of the same mode is 
encountered; they observed a strong link between vibrations 
and roughness and concluded that more dedicated research is 
required. The surface roughness pattern may repeat itself if the 
tool run-out is large enough. Zhenyu et al. [60] modelled this 
phenomenon during (face) milling operation where the axial 
run-out inevitably affects the surface roughness. The authors 
showed that the surface roughness repeats at every spindle 
rotation period, instead of tooth passing period, due to the axial 
runout between the inserts. Niu et al. [54] have developed a 
detailed model to explain the generation mechanism of surface 
topography, and concluded that surface roughness is very 
sensitive to teeth runout and pitch angle variation. A recent 
study by Yan et al. [61] reviewed comprehensively the methods 
to keep the surface quality under control in blade machining.  

For the ultrasonic vibration-assisted (UV-assisted) 
machining technology, the surface roughness is not only 
attributed to the natural frequencies of the system, but also to 
the intended relative tool/workpiece motion. Chen et al. [62, 
63] simulated the topography of machined surfaces during a 
UV-assisted helical milling operation. UV-assisted machining 
led to a marked increase (more than 63.5%) in compressive RS 
generated on the hole surfaces as compared to that of traditional 
helical milling. When the RS is concerned, majority of the 
investigations assume the tool-workpiece system is static and 
stationary, i.e., the tool is rigid and there is no relative motion 
between the workpiece and the tool other than the shearing 
action separating the chip from the workpiece. However, as 
mentioned above, machining systems are not ideal (rigid) in 
practice, and process vibrations do exist. A few studies have 
considered the effect of process vibrations on the RS developed 
on the machined surfaces [64-67]. Outeiro et al. [67] studied 
the effects of process dynamics on the RS formation. The 
authors provided controlled vibrations of the tool and 
monitored the resulting surface roughness and RS. For the first 
time, they observed that both surface roughness and RS vary 
periodically. Chomienne et al. [64] investigated the RS 
fluctuations in a real vibrating system. The authors set up a 
flexible component for a turning operation and measured RS of 
various machined samples. A clear difference between stiff and 
flexible turning workpiece samples was evident: the flexible 
sample exhibited very high deviations in both RS and surface 
roughness values, whereas the stiff sample showed very similar 

surface integrity from one sample to another. Maurotto and 
Tunc [68] also worked with a real milling system but they 
evaluated the effect of chatter vibrations on the resultant RS. 
Similar to the investigation by Outeiro et al. [67], Huang et al. 
[65] studied the cyclic development of surface residual stresses 
during turning operation. The feed rate was oscillated at 10 Hz 
between high and low values, resulting in varied uncut chip 
thickness. The trends of RS generation were well predicted. It 
was further reported that the largest variation in RS occurs 
when the largest variation in uncut chip thickness is imposed 
during the cutting process. Similar to the study conducted by 
Lin and Chang [69] for controlling the surface roughness, 
Kamada and Sasahara [66] investigated the influence of the 
vibration frequency ratio between the frequency of vibrations 
and spindle speed; they found that the RS variation can be 
eliminated at specific values. 

Research on modelling the dynamics of machining process 
aims to increase the speed and accuracy of simulating the 
chatter stability, forced vibrations, dimensional surface errors 
as well as surface roughness in machining processes. The 
research on exploring the vibrations and tool geometry causing 
cyclic surface roughness inspired further studies on RS. The 
recent literature showed that there is a strong relationship 
between the process vibrations and RS of the machined 
component, though there are not many analytical studies 
explaining the dynamic effects on surface roughness and RS. 
Therefore, dedicated models for various machining operations 
and tool/workpiece pairs are required to investigate how 
vibrations can be used and controlled in order to achieve the 
required SI. 

3. Artificial intelligence for predicting surface integrity 

Modelling and simulation of surface integrity in machining 
is still mostly limited to orthogonal cutting process, as 
mentioned in Section 2.1. This limitation has encouraged 
researchers to develop data-driven methodologies and 
algorithms for the prediction of SI indicators.  Whilst classical 
statistical methods such as regression have been used for 
modelling/predicting various parameters such as surface 
roughness, they are usually limited to specific machining 
conditions and cannot be generalised. Microstructure 
alteration, surface and sub-surface deformation, residual 
stresses and surface damage are often more complex to be 
pinned only to cutting parameters. Surface integrity parameters 
are dependent on many time-varying factors beyond cutting 
parameters such as tool wear, vibrations, cutting temperature, 
etc. To enhance the fit and improve prediction performance, 
shallow networks such as artificial neural network (ANN), 
hidden Markov, Bayesian and fuzzy expert systems (FES) have 
been used to correlate historical data with machining 
parameters. Majority of these methods have been used for tool 
condition monitoring with ANN being the dominant network 
for surface roughness prediction [70]. These models are used 
in lieu of regression models to minimise prediction errors. In 
this approach, specific surface integrity parameters are 
measured off-line and then correlated with various cutting 
parameters. Afterwards, a combination of cutting parameters is 
selected to achieve the desired surface integrity in machining. 
For instance, Khoshaim et al. [71] performed a series of 
machining experiments and assessed the residual stresses after 
turning pure iron samples. The authors used three types of 
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ANN to correlate the residual stresses to the cutting parameters 
and reported over 99% coefficient of determination. Karpat and 
Özel [72] used ANN to formulate a correlation between cutting 
parameters, surface roughness and residual stresses with less 
than 5% error on the test data. Multi-objective optimisation 
based on particle swarm optimisation was used to identify the 
optimum cutting parameters to achieve the desired surface 
integrity whilst maximising material removal rate or tool life. 
Kosarac et al. [73] performed a full factorial design of 
experiments with varying cutting parameters and used the 
experimental data for training an ANN for predicting average 
surface roughness Ra. They reported a mean squared error 
(MSE) of 0.0025 for an ANN trained with a Bayesian 
regularisation algorithm. Training shallow ANN networks with 
offline data from experiments for predicting surface roughness 
and optimising cutting parameters has received significant 
attention over the past 20 years. Obvious shortcomings are the 
limited generalisation capabilities, ignoring dynamic errors and 
time dependent variables such as tool wear. Structured DoEs 
are designed with a regression model in mind. When applied 
for training AI networks, they are prone to missing crucial 
information on machining performance. Pontes et al. [74] 
performed a critical review of using ANN shallow networks for 
predicting surface roughness. They highlighted that almost all 
papers reviewed used cutting parameters as input to their ANN 
models aiming to predict average surface roughness. It has 
become apparent that achieving higher accuracy in predicting 
surface roughness and controlling cutting parameters to reach 
a prescribed surface condition is not possible by solely 
considering cutting parameters as an input and ignoring time-
varying parameters. This has necessitated using sensors to 
collect real-time data from machining as additional input 
parameters for modelling. Acoustic emissions, cutting forces 
and temperature have been used to feed models on surface 

roughness, RS and sub-surface properties. In contrast to 
training networks on offline historical data, indirect sensor 
signals during machining can be processed with artificial 
intelligent networks to monitor and control various surface 
integrity parameters. Azouzi and Guillot [75] used ANN to fuse 
multi-sensor signals for monitoring and predicting surface 
roughness Ra. They reported 2% to 25% errors in predicting 
surface roughness and noted that factors other than cutting 
parameters affect the machining condition and their influence 
needs to be taken into account. They used cutting forces, 
vibrations, acoustic emission and tool deflection sensors to take 
the impacts of cutting fluid, tool wear, tool-workpiece stiffness 
and variation in material properties into account [75]. Motta et 
al. [76] performed 92 turning experiments and collected surface 
roughness as well as cutting force, temperature and vibration 
signals. They compared Random Forest (RF) and Gaussian 
Process Regression (GPR) in their capability to predict surface 
roughness and concluded that GPR outperformed RF resulting 
in RSME of 0.4 µm. Mohring et al. [77] trained a convolutional 
neural network (CNN) to predict surface roughness based on a 
vibration sensor signal from the cutting tool. They reported an 
accuracy of 96% in predicting average surface roughness. 
Similarly, Lin et al. [78] used the vibration signal from a sensor 
positioned on the spindle of a milling machine to train and test 
a number of deep learning models to predict surface roughness. 
They concluded that while Fast-Fourier-Transform Long-
Short-Term-Memory (FFT-LSTM) network performs best for 
higher values of roughness, a one-dimensional convolutional 
neural network (1-D CNN) is more suitable for predicting 
lower values of surface roughness. Fang and Pai [79] proposed 
using wavelet transfer packet integrated with ANN to predict 
surface roughness using cutting parameters as well as cutting 
force and vibration sensor signals. A set of 54 experimental 
data was used for training and testing the network with no 

Fig. 2: Schematic of a physics-informed AI dynamic process parameter optimisation framework enabling improved tool wear control and SI as compared with 
static (off-line) approach [86]. 



238 Amir Malakizadi  et al. / Procedia CIRP 115 (2022) 232–240
 Author name / Procedia CIRP 00 (2019) 000–000  7 

details on validation data. Wang et al. [80] used a RF classifier 
to correlate acoustic emissions (AE) to machining conditions 
in orthogonal cutting of natural fibre-reinforced plastic. They 
performed a series of orthogonal cutting experiments using 
unidirectional composites at different fibre orientations. The 
proposed method was capable of predicting material cutting 
mode and detecting fibre fracture and debonding using the AE 
signal. Knittel et al. [81] used cutting forces in milling 
honeycomb cores with thin cell walls to train different types of 
learning algorithms to classify surface flatness into two 
categories: 1) best surface quality and 2) worst surface quality. 
They concluded that the support vector machines (SVM) 
preformed best when using labelled cutting force signals in 
supervised learning compared with k-nearest neighbour (KNN) 
and decision tree (DT) algorithms [81]. 
Deep learning networks are specifically powerful tools for 
image processing. In 1998, Tsai et al. [82] proposed using an 
ANN for predicting surface roughness based on images taken 
from machined surfaces illuminated with a structured light 
source. Rifai et al. [83] trained a CNN for predicting surface 
roughness based on images taken from machined surfaces. Liu 
et al. [84] developed a setup for on-machine scanning of 
machined surfaces in diamond turning using scattered light and 
a photodiode. A CNN was trained to detect surface defects on 
the machined surfaces. Bhandari and Park [85] used labelled 
microscopic images of machined surfaces and cutting 
parameters to train a CNN to classify machined surfaces into 
fine, smooth, coarse and rough categories. This is one of the 
few publications which shared the data and codes along with 
the paper. Whilst the use of shallow artificial networks has 
resulted in improved prediction performance and reducing 
errors, they still fail to capture dynamic and time dependant 
parameters affecting surface integrity. The combination of 
cutting parameters with live sensor signals together with deep 
learning analysis of the signals have a clear advantage in 
capturing the complexities of machining induced surface 
integrity. Combined with real time control, they have the 
potential to realise manufacturing of prescribed surface 
integrity. Surface defects such as plastic deformation, 
smearing, etc. are not quantifiable to be modelled and predicted 
using conventional statistics and shallow neural networks. 
Artificial Intelligence methods such as classifiers are capable 
of detecting and predicting these phenomena in machining 
based on additional sensor signals. Nevertheless, one of the 
major shortcomings of research publications on using artificial 
intelligent data-driven methods is the lack of data for training, 
testing, and cross-validation. Generating and collecting 
meaningful, repeatable, and reproducible experimental data 
can be costly and time consuming. Moreover, the data and the 
models used in published literature are often not available, 
limiting the possibility of cross-validation. 

4. Summary and outlook 

In recent years, the modelling and simulation tools have 
been used more effectively to address some of the key 
industrial challenges associated with the surface integrity of 
machined components, e.g., RS development, microstructural 
alteration, surface and sub-surface deformation and surface 
roughness. Whilst there are numerous successful examples 
reported in the literature, the industrial realisation of these 
computational approaches is still limited. A successful example 

is in cutting tool manufacturing, where these modelling 
techniques are more commonly used in the product 
development stages to minimise the need for experimental tests 
and the associated costs and efforts required for introducing a 
new tool grade/geometry. This is because these modelling 
approaches are often computationally very expensive and 
achieving reliable predictions still demands significant efforts, 
e.g., a careful selection of well-defined constitutive, damage 
and friction models and thermal boundary conditions. These 
limitations have led to the advent of sensor-based and data-
driven methods, often classified under the AI umbrella. While 
AI algorithms provide powerful means to develop models 
based on historical data, the inclusion of real-time sensor data 
can enhance the accuracy of predictions. Specifically, tool wear 
and cutting temperature can affect surface integrity beyond 
cutting parameters. Similar methods used for tool condition 
monitoring using sensor data can be used to enhance prediction 
and control of surface integrity leading to machining of 
prescribed surfaces. Nevertheless, the integration of the 
continuum modelling and sensor-based data-driven 
approaches, i.e., physics-informed AI, is deemed necessary to 
benefit from the strength of both strategies, an example of 
which is shown in Fig. 2 [86]. This necessitates the 
development of reliable, efficient and robust hybrid (FE-based 
or semi-analytic) methods [5, 6, 32, 33] for the prediction of SI 
indicators such as RS and microstructural alteration to be 
integrated with AI algorithms. We expect this field of research 
to expand in the future.  
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details on validation data. Wang et al. [80] used a RF classifier 
to correlate acoustic emissions (AE) to machining conditions 
in orthogonal cutting of natural fibre-reinforced plastic. They 
performed a series of orthogonal cutting experiments using 
unidirectional composites at different fibre orientations. The 
proposed method was capable of predicting material cutting 
mode and detecting fibre fracture and debonding using the AE 
signal. Knittel et al. [81] used cutting forces in milling 
honeycomb cores with thin cell walls to train different types of 
learning algorithms to classify surface flatness into two 
categories: 1) best surface quality and 2) worst surface quality. 
They concluded that the support vector machines (SVM) 
preformed best when using labelled cutting force signals in 
supervised learning compared with k-nearest neighbour (KNN) 
and decision tree (DT) algorithms [81]. 
Deep learning networks are specifically powerful tools for 
image processing. In 1998, Tsai et al. [82] proposed using an 
ANN for predicting surface roughness based on images taken 
from machined surfaces illuminated with a structured light 
source. Rifai et al. [83] trained a CNN for predicting surface 
roughness based on images taken from machined surfaces. Liu 
et al. [84] developed a setup for on-machine scanning of 
machined surfaces in diamond turning using scattered light and 
a photodiode. A CNN was trained to detect surface defects on 
the machined surfaces. Bhandari and Park [85] used labelled 
microscopic images of machined surfaces and cutting 
parameters to train a CNN to classify machined surfaces into 
fine, smooth, coarse and rough categories. This is one of the 
few publications which shared the data and codes along with 
the paper. Whilst the use of shallow artificial networks has 
resulted in improved prediction performance and reducing 
errors, they still fail to capture dynamic and time dependant 
parameters affecting surface integrity. The combination of 
cutting parameters with live sensor signals together with deep 
learning analysis of the signals have a clear advantage in 
capturing the complexities of machining induced surface 
integrity. Combined with real time control, they have the 
potential to realise manufacturing of prescribed surface 
integrity. Surface defects such as plastic deformation, 
smearing, etc. are not quantifiable to be modelled and predicted 
using conventional statistics and shallow neural networks. 
Artificial Intelligence methods such as classifiers are capable 
of detecting and predicting these phenomena in machining 
based on additional sensor signals. Nevertheless, one of the 
major shortcomings of research publications on using artificial 
intelligent data-driven methods is the lack of data for training, 
testing, and cross-validation. Generating and collecting 
meaningful, repeatable, and reproducible experimental data 
can be costly and time consuming. Moreover, the data and the 
models used in published literature are often not available, 
limiting the possibility of cross-validation. 

4. Summary and outlook 

In recent years, the modelling and simulation tools have 
been used more effectively to address some of the key 
industrial challenges associated with the surface integrity of 
machined components, e.g., RS development, microstructural 
alteration, surface and sub-surface deformation and surface 
roughness. Whilst there are numerous successful examples 
reported in the literature, the industrial realisation of these 
computational approaches is still limited. A successful example 

is in cutting tool manufacturing, where these modelling 
techniques are more commonly used in the product 
development stages to minimise the need for experimental tests 
and the associated costs and efforts required for introducing a 
new tool grade/geometry. This is because these modelling 
approaches are often computationally very expensive and 
achieving reliable predictions still demands significant efforts, 
e.g., a careful selection of well-defined constitutive, damage 
and friction models and thermal boundary conditions. These 
limitations have led to the advent of sensor-based and data-
driven methods, often classified under the AI umbrella. While 
AI algorithms provide powerful means to develop models 
based on historical data, the inclusion of real-time sensor data 
can enhance the accuracy of predictions. Specifically, tool wear 
and cutting temperature can affect surface integrity beyond 
cutting parameters. Similar methods used for tool condition 
monitoring using sensor data can be used to enhance prediction 
and control of surface integrity leading to machining of 
prescribed surfaces. Nevertheless, the integration of the 
continuum modelling and sensor-based data-driven 
approaches, i.e., physics-informed AI, is deemed necessary to 
benefit from the strength of both strategies, an example of 
which is shown in Fig. 2 [86]. This necessitates the 
development of reliable, efficient and robust hybrid (FE-based 
or semi-analytic) methods [5, 6, 32, 33] for the prediction of SI 
indicators such as RS and microstructural alteration to be 
integrated with AI algorithms. We expect this field of research 
to expand in the future.  
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