1,472 research outputs found

    Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    Get PDF
    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    Diffusion, convection and erosion on R3 x S2 and their application to the enhancement of crossing fibers

    Get PDF
    In this article we study both left-invariant (convection-)diffusions and left-invariant Hamilton-Jacobi equations (erosions) on the space R3 x S2 of 3D-positions and orientations naturally embedded in the group SE(3) of 3D-rigid body movements. The general motivation for these (convection-)diffusions and erosions is to obtain crossing-preserving fiber enhancement on probability densities defined on the space of positions and orientations. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on R3 x S2 and can be solved by R3 x S2-convolution with the corresponding Green’s functions or by a finite difference scheme. The left-invariant Hamilton-Jacobi equations are Bellman equations of cost processes on R3 x S2 and they are solved by a morphological R3 x S2-convolution with the corresponding Green’s functions. We will reveal the remarkable analogy between these erosions/dilations and diffusions. Furthermore, we consider pseudo-linear scale spaces on the space of positions and orientations that combines dilation and diffusion in a single evolution. In our design and analysis for appropriate linear, non-linear, morphological and pseudo-linear scale spaces on R3 x S2 we employ the underlying differential geometry on SE(3), where the frame of left-invariant vector fields serves as a moving frame of reference. Furthermore, we will present new and simpler finite difference schemes for our diffusions, which are clear improvements of our previous finite difference schemes. We apply our theory to the enhancement of fibres in magnetic resonance imaging (MRI) techniques (HARDI and DTI) for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. We provide experiments of our crossing-preserving (non-linear) left-invariant evolutions on neural images of a human brain containing crossing fibers

    Total Variation and Mean Curvature PDEs on Rd⋊Sd−1\mathbb{R}^d \rtimes S^{d-1}

    Get PDF
    Total variation regularization and total variation flows (TVF) have been widely applied for image enhancement and denoising. To include a generic preservation of crossing curvilinear structures in TVF we lift images to the homogeneous space M=Rd⋊Sd−1M = \mathbb{R}^d \rtimes S^{d-1} of positions and orientations as a Lie group quotient in SE(d). For d = 2 this is called 'total roto-translation variation' by Chambolle & Pock. We extend this to d = 3, by a PDE-approach with a limiting procedure for which we prove convergence. We also include a Mean Curvature Flow (MCF) in our PDE model on M. This was first proposed for d = 2 by Citti et al. and we extend this to d = 3. Furthermore, for d = 2 we take advantage of locally optimal differential frames in invertible orientation scores (OS). We apply our TVF and MCF in the denoising/enhancement of crossing fiber bundles in DW-MRI. In comparison to data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings. We support this by error comparisons on a noisy DW-MRI phantom. We also apply our TVF and MCF in enhancement of crossing elongated structures in 2D images via OS, and compare the results to nonlinear diffusions (CED-OS) via OS.Comment: Submission to the Seventh International Conference on Scale Space and Variational Methods in Computer Vision (SSVM 2019). (v2) Typo correction in lemma 1. (v3) Typo correction last paragraph page

    Fast T2 Mapping with Improved Accuracy Using Undersampled Spin-echo MRI and Model-based Reconstructions with a Generating Function

    Full text link
    A model-based reconstruction technique for accelerated T2 mapping with improved accuracy is proposed using undersampled Cartesian spin-echo MRI data. The technique employs an advanced signal model for T2 relaxation that accounts for contributions from indirect echoes in a train of multiple spin echoes. An iterative solution of the nonlinear inverse reconstruction problem directly estimates spin-density and T2 maps from undersampled raw data. The algorithm is validated for simulated data as well as phantom and human brain MRI at 3 T. The performance of the advanced model is compared to conventional pixel-based fitting of echo-time images from fully sampled data. The proposed method yields more accurate T2 values than the mono-exponential model and allows for undersampling factors of at least 6. Although limitations are observed for very long T2 relaxation times, respective reconstruction problems may be overcome by a gradient dampening approach. The analytical gradient of the utilized cost function is included as Appendix.Comment: 10 pages, 7 figure
    • …
    corecore