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Abstract

In this article we study both left-invariant (convection-)diffusions and left-invariant Hamilton-Jacobi equations
(erosions) on the space R3 o S2 of 3D-positions and orientations naturally embedded in the group SE(3) of 3D-
rigid body movements. The general motivation for these (convection-)diffusions and erosions is to obtain crossing-
preserving fiber enhancement on probability densities defined on the space of positions and orientations.

The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on R3 o
S2 and can be solved by R3 o S2-convolution with the corresponding Green’s functions or by a finite difference
scheme. The left-invariant Hamilton-Jacobi equations are Bellman equations of cost processes on R3 o S2 and they
are solved by a morphological R3 o S2-convolution with the corresponding Green’s functions. We will reveal the
remarkable analogy between these erosions/dilations and diffusions. Furthermore, we consider pseudo-linear scale
spaces on the space of positions and orientations that combines dilation and diffusion in a single evolution.

In our design and analysis for appropriate linear, non-linear, morphological and pseudo-linear scale spaces on
R3 o S2 we employ the underlying differential geometry on SE(3), where the frame of left-invariant vector fields
serves as a moving frame of reference. Furthermore, we will present new and simpler finite difference schemes for
our diffusions, which are clear improvements of our previous finite difference schemes.

We apply our theory to the enhancement of fibres in magnetic resonance imaging (MRI) techniques (HARDI
and DTI) for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. We pro-
vide experiments of our crossing-preserving (non-linear) left-invariant evolutions on neural images of a human brain
containing crossing fibers.

Keywords: Nonlinear diffusion, Lie groups, Hamilton-Jacobi equations, Partial differential equations, Sub-Riemannian geometry,
Cartan Connections, Magnetic Resonance Imaging, High Angular Resolution Diffusion Imaging and Diffusion Tensor Imaging.
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1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) involves magnetic resonance techniques for non-invasively
measuring local water diffusion inside tissue. Local water diffusion profiles reflect underlying biological fiber structure
of the imaged area. For instance in the brain, diffusion is less constrained parallel to nerve fibers than perpendicular
to them. In this way, the measurement of water diffusion gives information about the fiber structures present, which
allows extraction of clinical information from these scans.

The diffusion of water molecules in tissue over time is described by a transition density y 7→ pt(Yt = y | Y0 = y0)
that reflects the probability density of finding a water molecule at time t > 0 at position y ∈ R3 given that it started
at y ∈ R3 at time t = 0. Here the family of random variables (Yt)t≥0 (stochastic process) with joint state space R3

reflects the distribution of water molecules over time. The function pt can be directly related to MRI signal attenuation
of Diffusion-Weighted image sequences, so can be estimated given enough measurements. The exact methods to do
this are described by e.g. Alexander [3]. Diffusion tensor imaging (DTI), introduced by Basser et al. [11], assumes
that pt can be described for each position y ∈ R3 by an anisotropic Gaussian function. So

pt(Yt = y′ | Y0 = y) =
1

(4πt)
3
2
√
|detD(y)|

e−
(y′−y)T (D(y))−1(y′−y)

4t ,

where D is a tensor field of positive definite symmetric tensors on R3. In a DTI-visualization one plots the surfaces

y + {v ∈ R3 | vTD−1(y)v = µ2}, (1)

where µ > 0 is fixed and y ∈ Ω with Ω some compact subset of R3. From now on we refer to these ellipsoidal surfaces
as DTI-glyphs. The drawback of this anisotropic Gaussian approximation in DTI is the limited angular resolution of
the corresponding probability density U : R3 o S2 → R+ on positions and orientations

U(y,n) =
3

4π
∫

Ω
trace{D(y′)}dy′

nTD(y)n, y ∈ R3,n ∈ S2, (2)

and thereby unprocessed DTI is not capable of representing crossing, kissing or diverging fibers, cf. [3].

High Angular Resolution Diffusion Imaging (HARDI) is another recent magnetic resonance imaging technique for
imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. HARDI provides for each
position in R3 and for each orientation an MRI signal attenuation profile, which can be related to the local diffusivity of
water molecules in the corresponding direction. Typically, in HARDI modeling the Fourier transform of the estimated
transition densities is considered at a fixed characteristic radius (generally known as the b-value), [22]. As a result,
HARDI images are distributions (y,n) 7→ U(y,n) over positions and orientations, which are often normalized per
position. HARDI is not restricted to functions on the 2-sphere induced by a quadratic form and is capable of reflecting
crossing information, see Figure 1, where we visualize HARDI by glyph visualization as defined below.

Definition 1 A glyph of a distribution U : R3 × S2 → R+ on positions and orientations is a surface Sµ(U)(y) =
{y + µU(y,n) n | n ∈ S2} ⊂ R3 for some y ∈ R3 and µ > 0. A glyph visualization of the distribution
U : R3 × S2 → R+ is a visualization of a field y 7→ Sµ(U)(y) of glyphs, where µ > 0 is a suitable constant.

For the purpose of detection and visualization of biological fibers, DTI and HARDI data enhancement should maintain
fiber junctions and crossings, while reducing high frequency noise in the joined domain of positions and orientations.
Promising research has been done on constructing diffusion/regularization processes on the 2-sphere defined at each
spatial locus separately [21, 36, 37, 65] as an essential pre-processing step for robust fiber tracking. In these approaches
position and orientation space are decoupled, and diffusion is only performed over the angular part, disregarding spatial
context. Consequently, these methods are inadequate for spatial denoising and enhancement, and tend to fail precisely
at the interesting locations where fibres cross or bifurcate.
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fibertracking fibertracking

DTI HARDI

Figure 1: This figure shows glyph visualizations of HARDI and DTI-images of a 2D-slice in the brain where neural
fibers in the corona radiata cross with neural fibers in the corpus callosum. Here DTI and HARDI are visualized
differently; HARDI is visualized according to Def. 1, whereas DTI is visualized using Eq. (1).

In contrast to previous work on diffusion of DW-MRI [21, 36, 37, 65, 56], we consider both the spatial and the
orientational part to be included in the domain, so a HARDI dataset is considered as a function U : R3 × S2 → R.
Furthermore, we explicitly employ the proper underlying group structure, that naturally arises by embedding the
coupled space of positions and orientations

R3 o S2 := SE(3)/({0} × SO(2)),

as the quotient of left cosets, into the group SE(3) = R3 oSO(3) of 3D-rigid motions. The relevance of group theory
in DTI/HARDI (DW-MRI) imaging has also been stressed in promising and well-founded recent works [43, 44, 45].
However these works rely on bi-invariant Riemannian metrics on compact groups (such as SO(3)) and in our case the
group SE(3) is neither compact nor does it permit a bi-invariant metric [6, 30].

Throughout this article we use the following identification between the DW-MRI data (y,n)→ U(y,n) and functions
Ũ : SE(3)→ R given by

Ũ(y, R) = U(y, Rez). (3)

By definition one has Ũ(y, RRez,α) = Ũ(y, R) for all α ∈ [0, 2π), where Rez,α is the counterclockwise rotation
around ez by angle α.

In general the advantage of our approach on SE(3) is that we can enhance the original HARDI/DTI data using
simultaneously orientational and spatial neighborhood information, which potentially leads to improved enhancement
and detection algorithms, [33, 59, 58]. See Figure 2 where fast practical implementations [59] of the theory developed
in [33, ch:8.2] have been applied. The potential clinical impact is evident: By hypo-elliptic diffusions on R3 oS2 one
can generate distributions from DTI that are similar to HARDI-modeling as recently reported by Prčkovska et al. [58].
This allows a reduction of scanning directions in areas where the random walks processes that underly hypo-elliptic
diffusion [33, ch:4.2] on R3 o S2 yield reasonable fiber extrapolations. Experiments on neural DW-MRI images
containing crossing fibers of the corpus callosum and corona radiata show that extrapolation of DTI (via hypo-elliptic
diffusion) can cope with HARDI for a whole range of reasonable b-values, [58]. See Figure 2. However, on the
locations of crossings HARDI in principle produces more detailed information than extrapolated DTI and application

6



HARDI data (Linear hypoelliptic diffusion (DTI -data)  )2

DTI-data     (Glyphs)DTI-data    (DTI -Glyphs)

Q-ball SH
2

Figure 2: DTI and HARDI data containing fibers of the corpus callosum and the corona radiata in a human brain with b-
value 1000s/mm2 on voxels of (2mm)3, cf. [58]. We visualize a 10×16-slice (162 samples on S2 using icosahedron
tessellations) of interest from 104×104×10×(162×3) datasets. Top row, region of interest with fractional anisotropy
intensities with colorcoded DTI-principal directions. Middle row, DTI data U (49 scanned orientations) vizualized
according to Eq. (1) respectively Def. 1. Bottom row: HARDI data (Q-ball with l ≤ 4, [22]) of the same region,
processed DTI data Φt(U). For the sake of visualization we applied min-max normalization of n 7→ Φt(U)(y,n) for
all positions y. For parameter settings of the hypo-elliptic diffusion operator Φt, see Section 6, Eq. (49).

of the same hypo-elliptic diffusion on HARDI removes spurious crossings that arise in HARDI, see Figure 3 and the
recent work [59].

In this article we will build on the recent previous work [58, 33, 59], and we address the following open issues that
arise immediately from these works:

• Can we adapt the diffusion on R3 o S2 locally to the initial HARDI/DTI image?

• Can we apply left-invariant Hamilton-Jacobi equations (erosions) to sharpen the data without grey-scale trans-
formations (squaring) needed in our previous work ?

• Can we classify the viscosity solutions of these left-invariant Hamilton-Jacobi equations?

• Can we find analytic approximations for viscosity solutions of these left-invariant Hamilton-Jacobi equations on
R3 o S2, likewise the analytic approximations we derived for linear left-invariant diffusions, cf. [33, ch:6.2]?

• Can we relate alternations of greyscale transformations and linear diffusions to alternations of linear diffusions
and erosions?

7
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data)  ) 

2 2

Figure 3: Same settings as Fig:2, except for different b-value and a different region of interest and the hypo-elliptic
diffusion, Eq. (49), is applied to the HARDI dataset.

• The resolvent Green’s functions of the direction process on R3 o S2 contain singularities at the origin, [33,
ch: 6. 1. 1,Fig. 8]. Can we overcome this complication in our algorithms for the direction process and can we
analyze iterations of multiple time integrated direction process to control the filling of gaps?

• Can we combine left-invariant diffusions and left-invariant dilations/erosions in a single pseudo-linear scale
space on R3 o S2, generalizing the approach by Florack et al. [35] for greyscale images to DW-MRI images?

• Can we avoid spherical harmonic transforms and the sensitive regularization parameter treg [33, ch:7.1,7.2] in
our finite difference schemes and obtain both faster and simpler numerical approximations of the left-invariant
vector fields ?

To address these issues, we introduce besides linear scale spaces, morphological scale spaces and pseudo-linear scale
spaces (y,n, t) 7→ W (y,n, t), for all y ∈ R3,n ∈ S2, t > 0, defined on (R3 o S2) × R+, where we use the input
DW-MRI image as initial condition W (y,n, 0) = U(y,n).

To get a preview of how these approaches perform on the same neural DTI dataset (different slice) considered in [58],
see Fig. 5, where we used

V(U)(y, n) =

(
U(y, n)− Umin(y)

Umax(y)− Umin(y)

)2

, with Umin
max

(y) = min
max
{U(y, n) | n ∈ S2}. (4)

Typically, if linear diffusions are directly applied to DTI the fibers visible in DTI are propagated in too many directions.
Therefore we combined these diffusions with monotonic transformations in the codomain R+, such as squaring input
and output cf. [33, 59, 58]. Visually, this produces anatomically plausible results, cf. Fig. 2 and Fig. 3, but does not
allow large global variations in the data. This is often problematic around ventricle areas in the brain, where the
glyphs are usually larger than those along the fibers, as can be seen in the top row of Fig. 5. In order to achieve a
better way of sharpening the data where global maxima do not dominate the sharpening of the data, cf. Fig. 4, we
propose morphological scale spaces on R3 o S2 where transport takes place orthogonal to the fibers, both spatially
and spherically, see Fig.6. The result of such an erosion after application of a linear diffusion is depicted down left in
Fig.5, where the diffusion has created crossings in the fibers and where the erosion has visually sharpened the fibers.
Simultaneous dilation and diffusion can be achieved in a pseudo-linear scale space that conjugates a diffusion with a
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Figure 4: From left to right. Noisy artificial dataset, output diffused dataset (thresholded), squared output diffused
dataset as in [58, 33, 59], R3 o S2-eroded output, Eq.(52), diffused dataset, Eq.(49).

specific grey-value transformation. An experiment of applying such a left-invariant pseudo-linear scale space to DTI-
data is given up-right in Figure 5. Regarding the numerics of the evolutions we mainly consider the left-invariant finite
difference approach in [33, ch:7], as an alternative to the analytic kernel implementations in [33, ch:8.2] and [58, 59].
Here we avoid the discrete spherical Harmonic transforms [33], but use fast precomputed linear interpolations instead
as our finite difference schemes are of first order accuracy anyway. Regarding the Hamilton-Jacobi equations involved
in morphological and pseudo-linear scale spaces we have, akin to the linear left-invariant diffusions [33, ch:7], two
options: analytic morphological R3 o S2-convolutions and finite differences. Regarding fast computation on sparse
grids the second approach is preferable. Regarding geometric analysis the first approach is preferable.

We show that our morphological R3oS2-convolutions with analytical morphological Green’s functions are the unique
viscosity solutions of the corresponding Hamilton-Jacobi equations on R3 o S2. Thereby, we generalize the results
in [34, ch:10], [52] (on the Heisenberg group) to Hamilton-Jacobi equations on the space R3 o S2 of positions and
orientations.

Evolutions on HARDI-DTI must commute with all rotations and translations. Therefore evolutions on HARDI and
DTI and underlying metric (tensors) are expressed in a local frame of reference attached to fiber fragments. This frame
{A1, . . . ,A6} consists of 6 left-invariant vector fields on SE(3), given by

AiŨ(y, R) = lim
h↓0

U((y, R) ehAi)− U((y, R) e−hAi)
2h

(5)

where {A1, . . . , A6} is the basis for the Lie-algebra at the unity element and Te(SE(3)) 3 A 7→ eA ∈ SE(3) is the
exponential map in SE(3) and where the group product on SE(3) is given by

(x, R) (x′, R′) = (x +Rx′, RR′), (6)

for all positions x, x′ ∈ R3 and rotations R,R′ ∈ SO(3). The details will follow in Section 4, see also [33,
ch:3.3,Eq. 23–25] and [33, ch:7] for implementation. In order to provide a relevant intuitive preview of this moving
frame of reference we refer to Fig. 6. The associated left-invariant dual frame {dA1, . . . ,dA6} is uniquely determined
by

〈dAi,Aj〉 := dAi(Aj) = δij , i, j = 1, . . . , 6, (7)

where δij = 1 if i = j and zero else. Then all possible left-invariant metrics are given by

G(y,Rn) =
6∑

i,j=1

gij dAi
∣∣
(y,Rn)

⊗ dAj
∣∣
(y,Rn)

. (8)

where y ∈ R3, n ∈ S2 and where Rn ∈ SO(3) is any rotation that maps ez = (0, 0, 1)T onto the normal n ∈ S2, i.e.

Rnez = n. (9)

and where gij ∈ C. Necessary and sufficient conditions on gij to induce a well-defined left-invariant metric on the
quotient R3 o S2 = (SE(3)/({0} × SO(2))) can be found in Appendix E. It turns out that the matrix [gij ] must be

9



Figure 5: DTI data of corpus callosum and corona radiata fibers in a human brain with b-value 1000s/mm2 on voxels
of (2mm)3. Top row: DTI-visualization according to Eq. (1). The yellow box contains 13 × 22 × 10 glyphs with
162 orientations of the input DTI-data depicted in the left image of the middle row. This input-DTI image U is
visualized using Eq. (2) and Rician noise ηr [33, Eq. 90] with σ = 10−4 has been included. Operator V is defined in
Eq. (4). Middle row, right: output of finite difference scheme pseudo-linear scale space (for parameters see Section
11). Bottom row, left: output erosion, Eq. (135) after hypo-elliptic diffusion, Eq. (49) with (D44 = 0.04, D33 = 1,
t = 1), right: output of non-linear adaptive diffusions discussed in [20] with D44 = 0.01. All evolutions commute
with rotations and translations and are implemented by finite differences (Section 12) with time t and stepsize ∆t.
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diffusion

erosion

diffu
sion

erosion

Figure 6: A curve [0, 1] 3 s 7→ γ(s) = (x(s), n(s)) → R3 o S2 consists of a spatial part s 7→ x(s) (left) and an angular
part s 7→ n(s) (right). Along this curve we have the moving frame of reference {Ai|γ̃(s)}

5
i=1 with γ̃(s) = (x(s), Rn(s)) where

Rn(s) ∈ SO(3) is any rotation such that Rn(s)ez = n(s) ∈ S2. HereAi, with Ai = Ai|(0,I) denote the left-invariant vector fields
in SE(3). To ensure that the diffusions and erosions do not depend on the choice Rn(s) ∈ SO(3), Eq. (9), these left-invariant
evolution equations must be isotropic in the tangent planes span{A1,A2} and span{A4,A5}. Diffusion/convection primarily takes
place along A3 in space and (outward) in the plane span{A4,A5} tangent to S2. Erosion takes place both inward in the tangent
plane span{A1,A2} in space and inward in the plane span{A4,A5}.

constant and diagonal gij = 1
Dii δij , i, j = 1 . . . , 6 with Dii ∈ R+ ∪ ∞, with D11 = D22, D44 = D55, D66 = 0.

Consequently, the metric is parameterized by the values D11, D33, D44 and in the sequel we write

GD11,D33,D44
:=

1
D11

(dA1 ⊗ dA1 + dA2 ⊗ dA2) +
1
D33

(dA3 ⊗ dA3) +
1
D44

(dA4 ⊗ dA4 + dA5 ⊗ dA5)

The corresponding metric tensor on the quotient R3 o S2 = (SE(3)/({0} × SO(2))) is given by

GD11,D33,D44

(y,n) (
5∑
i=1

ci Ai|(y,n) ,
5∑
j=1

dj Ai|(y,n)) = GD11,D33,D44

(y,Rn) (
5∑
i=1

ci Ai|(y,n) ,
5∑
j=1

dj Aj |(y,n))

= 1
D11 (c1d1 + c2d2) + 1

D33 (c3d3) + 1
D44 (c4d4 + c5d5).

(10)

It is well-defined on R3 oS2 as the choice of Rn, Eq. (9), does not matter (right-multiplication with Rez,α boils down
to rotations in the isotropic planes depicted in Figure 6) and with the differential operators on R3 × S2:

(Aj |(y,n) U)(y,n) = lim
h→0

U(y+hRnej ,n)−U(y−hRnej ,n)
2h ,

(A3+j |(y,n) U)(y,n) = lim
h→0

U(y,(RnRej ,h)ez)−U(y,(RnRej ,−h)ez)

2h , j = 1, 2, 3,

where Rej ,h denotes the counter-clockwise rotation around axis ej by angle h, with e1 = (1, 0, 0), e2 = (0, 1, 0),
e3 = (0, 0, 1), which (except for A3) do depend on the choice of Rn satisfying Eq. (9).

In [33, ch:6.2] we have analytically approximated the hypo-elliptic diffusion kernels for both the direction process and
Brownian motion on the sub-Riemannian manifold (or contact manifold [12]) (SE(3),dA1,dA2,dA6) using contrac-
tion towards a nilpotent group. For the erosions we employ a similar type of technique to analytically approximate the
erosion (and dilation) kernels that describe the growth of balls in the sub-Riemannian manifold (SE(3),dA3,dA6).

A sub-Riemannian manifold is a Riemannian manifold with the extra constraint that tangent-vectors to curves in
that Riemannian manifold are not allowed to use certain subspaces of the tangent space. For example, curves in
(SE(3),dA1,dA2,dA6) are curves γ̃ : [0, L]→ SE(3) with the constraint

〈dA1
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA2
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA6
∣∣
γ̃(s)

, ˙̃γ(s)〉 = 0, (11)

for all s ∈ [0, L], L > 0. Note that Eq. (11) implies that

˙̃γ(s) = 〈dA3
∣∣
γ̃(s)

, ˙̃γ(s)〉 A3|γ̃(s) + 〈dA4
∣∣
γ̃(s)

, ˙̃γ(s)〉 A4|γ̃(s) + 〈dA5
∣∣
γ̃(s)

, ˙̃γ(s)〉 A5|γ̃(s)
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Curves satisfying (11) are called horizontal curves and we visualized a horizontal curve in Figure 6. For further details
on differential geometry in (sub-Riemannian manifolds within) SE(3) and R3 o S2 see Appendices A, B and C, E
and G.

1.1 Outline of the article

This paper is organized as follows. In section 2 we will explain the embedding of the coupled space of positions
and orientations R3 o S2 into SE(3). In section 3 we explain why operators on DW-MRI must be left-invariant and
we consider, as an example, convolutions on R3 o S2. In section 4 we construct the left-invariant vector fields on
SE(3). In general there are two ways of considering vector fields. Either one considers them as differential operators
on smooth locally defined functions, or one considers them as tangent vectors to equivalent classes of curves. These
two viewpoints are equivalent, for a formal proof see [7, Prop. 2.4]. Throughout this article we will consider them as
differential operators and use them as reference frame, cf. Fig 6, in our evolution equations in later sections. Then in
Section 5 we consider morphological convolutions on R3 o S2.

In Section 6 we consider all possible linear left-invariant diffusions that are solved by R3 o S2-convolution (Section
3) with the corresponding Green’s function. Subsequently, in Section 7 we consider their morphological counter part:
left-invariant Hamilton-Jacobi equations (i.e. erosions), the viscosity solutions of which are given by morphologi-
cal convolution, cf. Section 5, with the corresponding (morphological) Green’s function. This latter result is a new
fundamental mathematical result, a detailed proof is given in Appendix B.

Subsequently, in Section 8 and in Section 9 we provide respectively the underlying probability theory and the un-
derlying Cartan differential geometry of the evolutions considered in Section 5 and Section 6. Then in Section 10
we derive analytic approximations for the Green’s functions of both the linear and the morphological evolutions on
R3 oS2. Section 11 deals with pseudo linear scale spaces which are evolutions that combine the non-linear generator
of erosions with the generator of diffusion in a single generator.

Section 12 deals with the numerics of the (convection)-diffusions, the Hamilton-Jacobi equations and the pseudo linear
scale spaces evolutions. Section 13 summarizes our work on adaptive left-invariant diffusions on DW-MRI data. for
more details we refer to the Master thesis by Eric Creusen [20]. Finally, we provide experiments in Section 14.

2 The Embedding of R3 o S2 into SE(3)

In order to generalize our previous work on line/contour-enhancement via left-invariant diffusions on invertible orien-
tation scores of 2D-images we first investigate the group structure on the domain of an HARDI image. Just like orien-
tation scores are scalar-valued functions on the coupled space of 2D-positions and orientations, i.e. the 2D-Euclidean
motion group, HARDI images are scalar-valued functions on the coupled space of 3D-positions and orientations. This
generalization involves some technicalities since the 2-sphere S2 = {x ∈ R3 | ‖x‖ = 1} is not a Lie-group proper1

in contrast to the 1-sphere S1 = {x ∈ R2 | ‖x‖ = 1}. To overcome this problem we will embed R3 × S2 into
SE(3) which is the group of 3D-rotations and translations (i.e. the group of 3D-rigid motions). As a concatenation
of two rigid body-movements is again a rigid body movement, the product on SE(3) is given by (6). The group
SE(3) is a semi-direct product of the translation group R3 and the rotation group SO(3), since it uses an isomorphism
R 7→ (x 7→ Rx) from the rotation group onto the automorphisms on R3. Therefore we write R3 o SO(3) rather than
R3 × SO(3) which would yield a direct product. The groups SE(3) and SO(3) are not commutative. Throughout
this article we will use Euler-angle parametrization for SO(3), i.e. we write every rotation as a product of a rotation

1If S2 were a Lie-group then its left-invariant vector fields would be non-zero everywhere, contradicting Poincaré’s “hairy ball theorem” (proven
by Brouwer in 1912), or more generally the Poincaré-Hopf theorem (the Euler-characteristic of an even dimensional sphere S2n is 2).
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around the z-axis, a rotation around the y-axis and a rotation around the z-axis again.

R = Rez,γRey,βRez,α , (12)

where all rotations are counter-clockwise. Explicit formulas for matricesRez,γ , Rey,β , Rez,α, are given in [38, ch:7.3.1].
The advantage of the Euler angle parametrization is that it directly parameterizes SO(3)/SO(2) ≡ S2 as well.
Here we recall that SO(3)/SO(2) denotes the partition of all left cosets which are equivalence classes [g] = {h ∈
SO(3) | h ∼ g} = g SO(2) under the equivalence relation g1 ∼ g2 ⇔ g−1

1 g2 ∈ SO(2) where we identified SO(2)
with rotations around the z-axis and we have

SO(3)/SO(2) 3 [Rez,γRey,β ] = {Rez,γRey,βRez,α | α ∈ [0, 2π)} ↔
n(β, γ) := (cos γ sinβ, sin γ sin β, cos β) = Rez,γRey,βRez,αez ∈ S2.

(13)

Like all parameterizations of SO(3)/SO(2), the Euler angle parametrization suffers from the problem that there does
not exist a global diffeomorphism from a sphere to a plane. In the Euler-angle parametrization the ambiguity arises at
the north and south-poles:

Rez ,γ Rey,β=0 Rez ,α = Rez ,γ−δRey,β=0Rez ,α+δ, and Rez ,γ Rey,β=π Rez ,α = Rez ,γ+δ Rey,β=π Rez ,α+δ, for all δ ∈ [0, 2π) .
(14)

Consequently, we occasionally need a second chart to cover SO(3);

R = Rex,γ̃Rey,β̃Rez,α̃, (15)

which again implicitly parameterizes SO(3)/SO(2) ≡ S2 using different ball-coordinates β̃ ∈ [−π, π), γ̃ ∈ (−π2 ,
π
2 ),

ñ(β̃, γ̃) = Rex,γ̃Rey,β̃ ez = (sin β̃,− cos β̃ sin γ̃, cos β̃ cos γ̃)T , (16)

but which has ambiguities at the intersection of the equator with the x-axis, [33].

Rex,γ̃Rey,β̃=±π2
Rez,α̃ = Rex,γ̃∓δRey,β̃=±π2

Rez,α̃±δ, for all δ ∈ [0, 2π) , (17)

see Figure 7. Away from the intersection of the z and x-axis with the sphere one can accomplish conversion between
the two charts by solving for for either (α̃, β̃, γ̃) or (α, β, γ) in Rex,γ̃Rey,β̃Rez,α̃ = Rez,γRey,βRez,α.

Now that we have explained the isomorphism n = Rez ∈ S2 ↔ SO(3)/SO(2) 3 [R] explicitly in charts, we return
to the domain of HARDI images. Considered as a set, this domain equals the space of 3D-positions and orientations
R3 × S2. However, in order to stress the fundamental embedding of the HARDI-domain in SE(3) and the thereby
induced (quotient) group-structure we write R3 o S2, which is given by the following Lie-group quotient:

R3 o S2 := (R3 o SO(3))/({0} × SO(2)).

Here the equivalence relation on the group of rigid-motions SE(3) = R3 o SO(3) equals

(x, R) ∼ (x′, R′)⇔ (x, R)−1(x′, R′) ∈ {0}o SO(2)⇔ x = x′ and R−1R′ is a rotation around z-axis

and set of equivalence classes within SE(3) under this equivalence relation (i.e. left cosets) equals the space of
coupled orientations and positions and is denoted by R3 o S2.

3 Linear Convolutions on R3 o S2

In this article we will consider convection-diffusion operators on the space of HARDI images. We shall model the
space of HARDI images by the space of square integrable functions on the coupled space of positions and orientations,
i.e. L2(R3oS2). We will first show that such operators should be left-invariant with respect to the left-action of SE(3)
onto the space of HARDI images. This left-action of the group SE(3) onto R3 o S2 is given by

g · (y,n) = (Ry + x, Rn), g = (x, R) ∈ SE(3), x, y ∈ R3,n ∈ S2, R ∈ SO(3) (18)

and it induces the so-called left-regular action of the same group on the space of HARDI images similar to the left-
regular action on 3D-images (for example orientation-marginals of HARDI images):
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α̃

Figure 7: The two charts which together appropriately parameterize the sphere S2 ≡ SO(3)/SO(2) where the
rotation-parameters α and α̃ are free. The first chart (left-image) is the common Euler-angle parametrization (12), the
second chart is given by (15). The first chart has singularities at the north and at the south-pole (inducing ill-defined
parametrization of the left-invariant vector fields (31) at the unity element) whereas the second chart has singularities
at (±1, 0, 0).

Definition 2 The left-regular actions of SE(3) onto L2(R3 o S2) respectively L2(R3) are given by

(Lg=(x,R)U)(y,n) = U(g−1 · (y,n)) = U(R−1(y− x), R−1n), x, y ∈ R3,n ∈ S2, U ∈ L2(R3 o S2),
(Ug=(x,R)f)(y) = f(R−1(y− x)) , R ∈ SO(3), x, y ∈ R3, f ∈ L2(R3).

Intuitively, Ug=(x,R) represents a rigid motion operator on images, whereas Lg=(x,R) represents a rigid motion on
HARDI images.

Operator on HARDI-images must be left-invariant as the net operator on a HARDI-image should commute with
rotations and translations. For detailed motivation see [33], where our motivation is similar as in our framework of
invertible orientation scores [4, 39, 38, 32, 31, 27, 26, 30, 29].

Theorem 1 Let K be a bounded operator from L2(R3 oS2) into L∞(R3 oS2) then there exists an integrable kernel
k : (R3 o S2)× (R3 o S2)→ C such that ‖K‖2 = sup

(y,n)∈R3oS2

∫
R3oS2 |k(y,n ; y′,n′)|2dy′dσ(n′) and we have

(KU)(y,n) =
∫

R3oS2
k(y,n ; y′,n′)U(y′,n′)dy′dσ(n′) , (19)

for almost every (y,n) ∈ R3 o S2 and all U ∈ L2(R3 o S2). Now Kk := K is left-invariant iff k is left-invariant, i.e.

Lg ◦ Kk = Kk ◦ Lg ⇔ ∀g∈SE(3)∀y,y′∈R3∀n,n′∈S2 : k(g · (y,n) ; g · (y′,n′)) = k(y,n ; y′,n′). (20)

Then to each positive left-invariant kernel k : R3 o S2 ×R3 o S2 → R+ with
∫

R3

∫
S2 k(0, ez ; y,n)dσ(n)dy = 1 we

can associate a unique probability density p : R3 o S2 → R+ with the invariance property

p(y,n) = p(Rez,αy, Rez,αn), for all α ∈ [0, 2π), (21)

by means of p(y,n) = k(y,n ; 0, ez). The convolution now reads

KkU(y,n) = (p ∗R3oS2 U)(y,n) =
∫
R3

∫
S2

p(RTn′(y− y′), RTn′n)U(y′,n′)dσ(n′)dy′, (22)

where σ denotes the surface measure on the sphere and where Rn′ is any rotation such that n′ = Rn′ez .
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For details see [33]. By the invariance property (21), the convolution (22) on R3 o S2 may be written as a (full)
SE(3)-convolution. To this end we extend our positively valued functions U defined on the quotient R3 o S2 =
(R3 o SO(3))/({0} × SO(2)) to the full Euclidean motion group by means of Eq. (3) which yields

Ũ(x, Rez,γRey,βRez,α) = U(x,n(β, γ)). (23)

in Euler angles. Throughout this article we will use this natural extension to the full group.

Definition 3 We will call Ũ : R3 o SO(3) → R, given by Eq. (3), the HARDI-orientation score corresponding to
HARDI image U : R3 o S2 → R.

Remark 1 By the construction of a HARDI-orientation score, Eq. (3), it satisfies the following invariance property
Ũ(x, RRez,α) = U(x, R) for all x ∈ R3, R ∈ SO(3), α ∈ [0, 2π).

An SE(3) convolution [17] of two functions p̃ : SE(3)→ R, Ũ : SE(3)→ R is given by:

(p̃ ∗SE(3) Ũ)(g) =
∫
SE(3)

p̃(h−1g)Ũ(h)dµSE(3)(h) , (24)

where Haar-measure dµSE(3)(x, R) = dx dµSO(3)(R) with dµSO(3)(Rez,γRey,βRez,α) = sinβdαdβdγ. It is easily
verified that that the following identity holds:

(p̃ ∗SE(3) Ũ)(x, R) = 2π (p ∗R3oS2 U)(x, Rez) .

Later on in this article (in Subsection 8.1 and Subsection 8.2) we will relate scale spaces on HARDI data and first order
Tikhonov regularization on HARDI data to Markov processes. But in order to provide a road map of how the group-
convolutions will appear in the more technical remainder of this article we provide some preliminary explanations on
probabilistic interpretation of R3 o S2-convolutions.

4 Left-invariant Vector Fields on SE(3) and their Dual Elements

We will use the following basis for the tangent space Te(SE(3)) at the unity element e = (0, I) ∈ SE(3):

A1 = ∂x, A2 = ∂y, A3 = ∂z, A4 = ∂γ̃ , A5 = ∂β̃ , A6 = ∂α̃ , (25)

where we stress that at the unity element (0, R = I), we have β = 0 and here the tangent vectors ∂β and ∂γ are not
defined, which requires a description of the tangent vectors on the SO(3)-part by means of the second chart.

The tangent space at the unity element is a 6D Lie algebra equipped with Lie bracket

[A,B] = lim
t↓0

t−2
(
a(t)b(t)(a(t))−1(b(t))−1 − e

)
, (26)

where t 7→ a(t) resp. t 7→ b(t) are any smooth curves in SE(3) with a(0) = b(0) = e and a′(0) = A and b′(0) = B,
for explanation on the formula (26) which holds for general matrix Lie groups, see [28, App.G]. The Lie-brackets of
the basis given in Eq. (25) are given by

[Ai, Aj ] =
6∑
k=1

ckijAk , (27)

where the non-zero structure constants for all three isomorphic Lie-algebras are given by

−ckji = ckij =
{

sgn perm{i− 3, j − 3, k − 3} if i, j, k ≥ 4, i 6= j 6= k,
sgn perm{i, j − 3, k} if i, k ≤ 3, j ≥ 4, i 6= j 6= k.

(28)
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More explicitly, we have the following table of Lie-brackets:

([Ai, Aj ])
i=1,...6
j=1,...,6 =


0 0 0 0 A3 −A2

0 0 0 −A3 0 A1

0 0 0 A2 −A1 0
0 A3 −A2 0 A6 −A5

−A3 0 A1 −A6 0 A4

A2 −A1 0 A5 −A4 0

 , (29)

so for example c315 = 1, c314 = c215 = 0, c216 = −c261 = −1. The corresponding left-invariant vector fields {Ai}6i=1

are obtained by the push-forward of the left-multiplication Lgh = gh by Ai|g φ = (Lg)∗Aiφ = Ai(φ ◦ Lg) (for
all smooth φ : Ωg → R which are locally defined on some neighborhood Ωg of g) and they can be obtained by the
derivative of the right-regular representation:

Ai|g φ = (dR(Ai)φ)(g) = lim
t↓0

φ(g etAi )−φ(g)
t , withRgφ(h) = φ(hg). (30)

Expressed in the first coordinate chart, Eq. (12), this renders for the left-invariant derivatives at position
g = (x, y, z, Rez,γRey,βRez,α) ∈ SE(3) (see also [17, Section 9.10])

A1 = (cos α cos β cos γ − sin α sin γ) ∂x + (sin α cos γ + cos α cos β sin γ) ∂y − cos α sin β ∂z,
A2 = (− sin α cos β cos γ − cos α sin γ) ∂x + (cos α cos γ − sin α cos β sin γ) ∂y + sin α sin β ∂z,
A3 = sin β cos γ ∂x + sin β sin γ ∂y + cos β ∂z,
A4 = cos α cot β ∂α + sin α ∂β − cos α

sin β
∂ γ ,

A5 = − sin α cot β ∂α + cos α ∂ β + sin α
sin β

∂γ ,

A6 = ∂α .
(31)

for β 6= 0 and β 6= π. The explicit formulae of the left-invariant vector fields in the second chart, Eq. (15), are :

A1 = cos α̃ cos β̃ ∂x + (cos γ̃ sin α̃+ cos α̃ sin β̃ sin γ̃) ∂y
+(sin α̃ sin γ̃ − cos α̃ cos γ̃ sin β̃) ∂z,

A2 = − sin α̃ cos β̃ ∂x + (cos α̃ cos γ̃ − sin α̃ sin β̃ sin γ̃) ∂y
+(sin α̃ sin β̃ cos γ̃ + cos α̃ sin γ̃) ∂z,

A3 = sin β̃ ∂x − cos β̃ sin γ̃ ∂y + cos β̃ cos γ̃ ∂z,

A4 = − cos α̃ tan β̃ ∂α̃ + sin α̃ ∂β̃ + cos α̃

cos β̃
∂γ̃ ,

A5 = sin α̃ tan β̃ ∂α̃ + cos α̃ ∂β̃ −
sin α̃

cos β̃
∂γ̃ ,

A6 = ∂α̃,

(32)

for β̃ 6= π
2 and β̃ 6= −π2 . Note that dR is a Lie-algebra isomorphism, i.e.

[Ai, Aj ] =
6∑
k=1

ckijAk ⇔ [dR(Ai),dR(Aj)] =
6∑
k=1

ckijdR(Ak)⇔ [Ai,Aj ] = AiAj −AjAi =
6∑
k=1

ckijAk .

These vector fields form a local moving coordinate frame of reference on SE(3). The corresponding dual frame
{dA1, . . . ,dA6} ∈ (T (SE(3)))∗ is defined by duality. A brief computation yields :

dA1

dA2

dA3

dA4

dA5

dA6

 =

 (Rez ,γRey,βRez ,α)T 0

0 Mβ,α




dx
dy
dz
dα
dβ
dγ

 =

 (Rex,γ̃Rey,β̃Rez ,α̃)T 0

0 M̃β̃,α̃




dx
dy
dz
dα̃

dβ̃
dγ̃

 (33)

where the 3× 3-zero matrix is denoted by 0 and where the 3× 3-matrices Mβ,α, M̃β̃,α̃ are given by

Mβ,α =

 0 sinα − cosα sinβ
0 cosα sinα sinβ
1 0 cosβ

 , M̃β̃,α̃ =

 − cos α̃ tan β̃ sin α̃ cos α̃

cos β̃

sin α̃ tan β̃ cos α̃ − sin α̃

cos β̃

1 0 0


−T

.

Finally, we note that by linearity the i-th dual vector filters out the i-th component of a vector field
∑6
j=1 v

jAj

〈dAi,
6∑
j=1

vjAj〉 = vi , for all i = 1, . . . , 6.
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Remark 2 In our numerical schemes, we do not use the formulas (31) and (32) for the left-invariant vector fields
as we want to avoid sampling around the inevitable singularities that arise with the the coordinate charts, given by
Eq. (12) and (15), of S2. Instead in our numerics we use the approach that will be described in Section 12. However,
we shall use formulas (31) and (32) frequently in our analysis and derivation of Green’s functions of left-invariant
diffusions and left-invariant Hamilton-Jacobi equations on R3 o S2. These left-invariant diffusions and left-invariant
erosions are similar to diffusions and erosions on R5, we “only” have to replace the fixed left-invariant vector fields
{∂x1 , . . . , ∂x5} by the left-invariant vector fields {A1|g , . . . , A5|g} which serve as a moving frame of reference (along
fiber fragments) in R3 o S2 = SE(3)/({0} × SO(2)). For an a priori geometric intuition behind our left-invariant
erosions and diffusions expressed in the left-invariant vector fields see Figure 6.

5 Morphological Convolutions on R3 o S2

Dilations on the joint space of positions and orientations R3 o S2 are obtained by replacing the (+, ·)-algebra by the
(max,+)-algebra in the R3 o S2-convolutions (22)

(k ⊕R3oS2 U)(y,n) = sup
(y′,n′)∈R3oS2

[
k(RTn′(y− y′), RTn′n) + U(y′,n′)

]
(34)

where k denotes a morphological kernel. If this morphological kernel is induced by a semigroup (or evolution) then
we write kt for the kernel at time t. Our aim is to derive suitable morphology kernels such that

kt ⊕R3oS2 ks = ks+t , for all s, t > 0,

where t 7→ kt(y,n) describes the growth of balls in R3 o S2, i.e. t 7→ kt(y,n) is the unique viscosity solution, see
[19] and Appendix B, of {

∂W
∂t (y,n, t) = 1

2 G−1
(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)

)
W (y,n, 0) = −δC

(35)

with the inverse G−1 of the metric tensor restricted to the sub-Riemannian manifold (SE(3),dA3,dA6)

G =
1
D11

(A1 ⊗A1 +A2 ⊗A2) +
1
D44

(A4 ⊗A4 +A5 ⊗A5), (36)

given by
G−1 = D11(A1 ⊗A1 +A2 ⊗A2) +D44(A4 ⊗A4 +A5 ⊗A5).

Both G and its inverse are well-defined on the cosets R3 o S2 = (R3 o SO(3))/({0} × SO(2)), cf. Appendix E.
Furthermore, in Eq. (35) we have used the morphological delta distribution δC(y,n) = +∞ if (y,n) 6= (0, ez) and 0
else, where we note that

lim
t↓0

kt ⊕R3oS2 U = (−δC)⊕R3oS2 U = U

uniformly on R3 o S2. Furthermore, we have used the left-invariant gradient which is the co-vector field

dU(y,n) =
6∑
i=1

(Ai(U))(y,n) dAi
∣∣
(y,n)

=
5∑
i=1

(Ai(U))(y,n) dAi
∣∣
(y,n)

, (y,n) ∈ R3 o S2, (37)

which we occasionally represent by a row vector given by

∇U(y,n) = (A1U(y,n), . . . ,A5U(y,n), 0). (38)

The dilation equation (35) now becomes{
∂W
∂t (y,n, t) = 1

2

(
D11((A1W (y,n, t))2 + (A2W (y,n, t))2) +D44((A4W (y,n, t))2 + (A5W (y,n, t))2)

)
W (y,n, 0) = −δC(y,n) .
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Now we can consider either a positive definite metric (the case of dilations), or we can consider a negative definite
metric (the case of erosions). In the non-adaptive case this means; either we consider the gii = 1

Dii > 0 or we choose
them gii = − 1

Dii < 0. Note that the erosion kernel follows from the dilation kernel by negation kt 7→ −kt. Dilation
kernels are negative and erosion kernels are positive and therefore we write

k+
t := −kt ≥ 0 and k−t := kt ≤ 0 .

for the erosion kernels. Erosions on R3 o S2 are given by:

(k+
t 	R3oS2 U)(y,n) = inf

(y′,n′)∈R3oS2

[
U(y′,n′) + k+

t (RTn′(y− y′), RTn′n)
]
. (39)

We distinguish between three types of erosions/dilations on R3 o S2

1. Angular erosion/dilation (i.e. erosion on glyphs): In case g11 = g33 = 0 and g44 < 0 the erosion kernels are
given by

k+,g11=0,g44
t (y,n) =

{
∞ if y 6= 0
k

+,g11=0,|g44|
t (0,n) else

such that the angular erosions are given by

(k+,g11=0,|g44|
t 	R3oS2 U)(y,n) = (k+,g11=0,|g44|

t (0, ·)	S2 U(y, ·))(n)
= inf

n′∈S2

[
k

+,g11=0,|g44|
t (0, RTn′(n′)) + U(y′,n′)

] (40)

whereas the angular dilations g44 > 0 are given by

(k−,g11=g33=0,g44
t ⊕R3oS2 U)(y,n) = (k−,g11=g33=0,g44

t (0, ·)⊕S2 U(y, ·))(n)
= sup

n′∈S2

[
kg11=g33=0,g44
−t (0, RTn′n) + U(y′,n′)

]
(41)

2. Spatial erosion/dilation (i.e. the same spatial erosion for all orientations): In case g11g33 6= 0, g11 ≤ 0, g33 ≤ 0
and g44 = 0 the erosion kernels are given by

k+,g11,g33,g44=0
t (y,n) =

{
∞ if n 6= ez
k

+,|g11|=|g33|,g44=0
t (y, ez) else

such that the spatial erosions are given by

(k+,|g11|,|g33|,g44=0
t 	R3oS2 U)(y,n) = (k+,|g11|,|g33|,g44=0

t (·, ez)	R3 U(·,n))(y)

whereas the spatial dilations g11, g33 ≥ 0, g11g33 > 0 are given by

(k−,g11,g33,g44=0
t ⊕R3oS2 U)(y,n) = (k−,g11,g33,g44=0

t (·, ez)⊕R3 U(·,n))(y).

3. Simultaneous spatial and angular erosion/dilations (i.e. erosions and dilations along fibers). The case g44 6= 0
and g11 6= 0 or g33 6= 0.

Similar to our previous work on R3 o S2-diffusion [25] the third case is the most interesting one, simply because one
would like to erode orthogonal to the fibers such that both the angular distribution and the spatial distribution of the a
priori probability density U : R3 o S2 → R+ are sharpened. See Figure 8.
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Figure 8: Top row: output angular erosion on a single glyph with crossings for several parameter settings. Middle row:
input and output simultaneous spatial and angular erosion (i.e. R3 o S2-erosion), where angular erosion dominates
t = 3, D44 = 0.6, D33 = 0.3. Bottom row: input and output R3oS2-erosion, where angular spatial erosion dominates
t = 2, D44 = 0.1, D33 = 0.3.
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6 Left-Invariant Diffusions on SE(3) = R3 o SO(3) and R3 o S2

In order to apply our general theory on diffusions on Lie groups, [26], to suitable (convection-)diffusions on HARDI
images, we first extend all functions U : R3 o S2 → R+ to functions Ũ : R3 o SO(3) → R+ in the natural way, by
means of (3).

Then we follow our general construction of scale space representations W̃ of functions Ũ (could be an image, or a
score/wavelet transform of an image) defined on Lie groups, [26], where we consider the special case G = SE(3):{

∂tW̃ (g, t) = QD,a(A1,A2, . . . ,A6) W̃ (g, t) ,
lim
t↓0

W̃ (g, t) = Ũ(g) . (42)

which is generated by a quadratic form on the left-invariant vector fields:

QD,a(∇) := QD,a(A1,A2, . . . ,An) =
6∑
i=1

−aiAi +
6∑
j=1

AiDijAj (43)

Now the Hörmander requirement, [47], on the symmetric D = [Dij ] ∈ R6×6, D ≥ 0 and a, which guarantees smooth
non-singular scale spaces, for SE(3) tells us that D need not be strictly positive definite. The Hörmander requirement
is that all included generators together with their commutators should span the full tangent space. To this end for
diagonal D one should consider the set

S = {i ∈ {1, . . . , 6} | Dii 6= 0 ∨ ai 6= 0} ,

now if for example 1 is not in here then 3 and 5 must be in S, or if 4 is not in S then 5 and 6 should be in S.
If the Hörmander condition is satisfied the solutions of the linear diffusions (i.e. D, a are constant) are given by
SE(3)-convolution with a smooth probability kernel pD,a

t : SE(3)→ R+ such that

W̃ (g, t) = (pD,at ∗SE(3) Ũ)(g) =
∫

SE(3)

pD,at (h−1g)Ũ(h)dµSE(3)(h),

lim
t↓0

pD,at ∗SE(3) Ũ = Ũ , with pD,a
t > 0 and

∫
SE(3)

pD,a
t (g)dµSE(3)(g) = 1.

where the limit is taken in L2(SE(3))-sense. On HARDI images whose domain equals the homogeneous space
R3 o S2 one has the following scale space representations:{

∂tW (y,n, t) = QD(U),a(U)(A1,A2, . . . ,A5) W (y,n, t) ,
W (y,n, 0) = U(y,n) .

(44)

withQD(U),a(U)(A1,A2, . . . ,An) =
∑6
i=1

(
aiAi +

∑6
j=1AiDij(U)Aj

)
, where from now on we assume that D(U)

and a(U) satisfy
a(Ũ)(gh) = ZTα (a)(g) and D(Ũ)(gh) = ZαD(Ũ)(g)ZTα . (45)

for all g ∈ SE(3) and all h = (0, Rez,α) ∈ ({0} × SO(2)) and where

Zα =



cosα − sinα 0 0 0 0
sinα cosα 0 0 0 0

0 0 1 0 0 0

0 0 0 cosα − sinα 0
0 0 0 sinα cosα 0
0 0 0 0 0 1

 = Rez ,α ⊕Rez ,α, Zα ∈ SO(6), Rez ,α ∈ SO(3). (46)

Recall the grey tangent planes in Figure 6 where we must require isotropy due to our embedding of R3 oS2 in SE(3),
cf. [33, ch:4].
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In the linear case the solutions of (44) are given by the following kernel operators on R3 o S2:

W (y,n, t) = (pD,a
t ∗R3oS2 U)(y,n)

=
π∫
0

2π∫
0

∫
R3

pD,a
t ((Rez,γ′Rey,β′)

T (y− y′), (Rez,γ′Rey,β′)
Tn)) U(y′,n(β′, γ′)) dy′ dσ(n(β′, γ′)),

(47)

where the surface measure on the sphere is given by dσ(n(β′, γ′)) = sinβ′ dγ′dβ′ ≡ dσ(ñ(β̃, γ̃)) = | cos β̃| dβ̃dγ̃.
Now in particular in the linear case, since (R3, I) and (0, SO(3)) are subgroups of SE(3), we obtain the Laplace-
Beltrami operators on these subgroups by means of:

∆S2 = QD=diag{0,0,0,1,1,1},a=0 = (A4)2 + (A5)2 + (A6)2 = (∂β)2 + cot(β)∂β + sin−2(β)(∂γ)2 ,
∆R3 = QD=diag{1,1,1,0,0,0},a=0 = (A1)2 + (A2)2 + (A3)2 = (∂x)2 + (∂y)2 + (∂z)2 .

One wants to include line-models which exploit a natural coupling between position and orientation. Such a coupling
is naturally included in a smooth way as long as the Hormander’s condition is satisfied. Therefore we will consider
more elaborate simple left-invariant convection, diffusions on SE(3) with natural coupling between position and
orientation. To explain what we mean with natural coupling we shall need the next definitions.

Definition 4 A curve γ : R+ → R3 o S2 given by s 7→ γ(s) = (y(s),n(s)) is called horizontal if n(s) ≡
‖ẏ(s)‖−1ẏ(s). A tangent vector to a horizontal curve is called a horizontal tangent vector. A vector field A on
R3 o S2 is horizontal if for all (y,n) ∈ R3 o S2 the tangent vector A(y,n) is horizontal. The horizontal part Hg of
each tangent space is the vector-subspace of Tg(SE(3)) consisting of horizontal vector fields. Horizontal diffusion is
diffusion which only takes place along horizontal curves.

It is not difficult to see that the horizontal part Hg of each tangent space Tg(SE(3)) is spanned by {A3,A4,A5}.
So all horizontal left-invariant convection diffusions are given by Eq. (44) where in the linear case one must set
a1 = a2 = a6 = 0, Dj2 = D2j = D1j = Dj1 = Dj6 = D6j = 0 for all j = 1, 2, . . . , 6. Now on a commutative
group like R6 with commutative Lie-algebra {∂x1 , . . . , ∂x6} omitting 3-directions (say ∂x1 , ∂x2 , ∂x6 ) from each
tangent space in the diffusion would yield no smoothing along the global x1, x2, x6-axes. In SE(3) it is different
since the commutators take care of indirect smoothing in the omitted directions {A1,A2,A6}, since

span {A3,A4,A5, [A3,A5] = A2, [A4,A5] = A6, [A5,A3] = A1} = T (SE(3))

Consider for example the SE(3)-analogues of the Forward-Kolmogorov (or Fokker-Planck) equations of the direction
process for contour-completion and the stochastic process for contour enhancement which we considered in our pre-
vious work, [29], on SE(2). Here we first provide the resulting PDEs and explain the underlying stochastic processes
later in subsection 8.1. The Fokker-Planck equation for (horizontal) contour completion on SE(3) is given by{

∂tW (y,n, t) = (−A3 +D((A4)2 + (A5)2)) W (y,n, t) = (−A3 +D∆S2) W (y,n, t) , D = 1
2σ

2 > 0.
lim
t↓0

W (y,n, t) = U(y,n) .

(48)
where we note that (A6)2(W (y,n(β, γ), s)) = 0. This equation arises from Eq. (44) by setting D44 = D55 = D and
a3 = 1 and all other parameters to zero. The Fokker-Planck equation for (horizontal) contour enhancement is{

∂tW (y,n, t) = (D33(A3)2 +D44((A4)2+(A5)2))W (y,n, t) = (D33(A3)2 +D∆S2) W (y,n, t) ,
lim
t↓0

W (y,n, t) = U(y,n) . (49)

The solutions of the left-invariant diffusions on R3 o S2 given by (44) (with in particular (48) and (49)) are again
given by convolution product (47) with a probability kernel pD,a

t on R3 o S2. For a visualization of these probability
kernels, see Figure 10.
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7 Left-invariant Hamilton-Jacobi Equations on R3 o S2

The unique viscosity solutions of{
∂W
∂t (y,n, t) = 1

2ηG−1
(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)

)η
W (y,n, 0) = U(y,n),

(50)

where η ≥ 1
2 , are given by dilation, Eq. (34), with the morphological Green’s function kD

11,D44,η,−
t : R3 o S2 → R−

W (y,n, t) = (kD
11,D44,η,−

t ⊕ U)(y,n), (51)

whereas the unique viscosity solutions of{
∂W
∂t (y,n, t) = − 1

2ηG−1
(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)

)η
W (y,n, 0) = U(y,n)

(52)

are given by erosion, Eq. (39), with the morphological Green’s function kD
11,D44,η,+

t : R3 o S2 → R+

W (y,n, t) = (kD
11,D44,η,+

t 	 U)(y,n), (53)

This is formally shown in Appendix B, Theorem 4. The exact morphological Green’s functions are given by (where
we recall (10))

−kD
11,D44,η,−

t (y,n) = kD
11,D44,η,+

t (y,n) := inf
γ = (x(·), Rn(·)) ∈ C∞((0, t), SE(3)),
γ(0) = (0, I = Rez ), γ(t) = (y, Rn),

〈 dA3
∣∣∣
γ
, γ̇〉 = 〈 dA6

∣∣∣
γ
, γ̇〉 = 0

t∫
0

Lη(γ(p), γ̇(p)) dp , (54)

with Lagrangian

Lη(γ(p), γ̇(p)) :=
2η − 1

2η

(
1
D11

((γ̇1(p))2 + (γ̇2(p))2) +
1
D44

((γ̇4(p))2 + (γ̇5(p))2)
) η

2η−1

where we applied short notation γ̇i(p) = 〈dAi
∣∣
γ(p)

, γ̇(p)〉 and with R3 o S2-“erosion arclength” given by

p(τ) =
τ∫
0

√
Gγ(τ̃)(γ̇(τ̃), γ̇(τ̃)) dτ̃ =

τ∫
0

√ ∑
i∈{1,2,4,5}

1
Dii |〈dAi|γ(τ̃) , γ̇(τ̃)〉|2 dτ̃ . (55)

As motivated in Appendix B, we use the following asymptotical analytical formula for the Green’s function

kD
11,D44,η,±

t (y, ñ(β̃, γ̃)) ≡ ± 2η − 1
2η

C
2η

2η−1 t−
1

2η−1

(
6∑
i=1

|c̃i(y, α̃ = 0, β̃, γ̃)|
2
wi

Dii

) η
2η−1

(56)

for sufficiently small time t > 0, where C ≥ 1 is a constant that we usually set equal to 1 and where the constants
c̃iy,α̃=0,β̃,γ̃

, i = 1, . . . , 6, are components of the logarithm

6∑
i=1

c̃iy,α̃=0,β̃,γ̃
Ai = logSE(3)(y, Rex,γ̃Rey,β̃) ,

that we shall derive in Section 9.1, Eq. (75).

Apparently, by Eq. (54) the morphological kernel describes the growth of “erosion balls” in R3 o S2. In Appendix
B we show that these erosion balls are locally equivalent to a weighted modulus on the Lie-algebra of SE(3), which
explains our asymptotical formula (56). This gives us a simple analytic approximation formula for balls in R3 o S2,
where we do not need/use the minimizing curves (i.e. geodesics) in (54).
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Figure 9: From left to right, input glyph at say y = 0. Sample points where ∆LBU(0,n) < 0 resp. ≥ 0 are respectively
indicated in red and blue. Linearly eroded glyph (D44 = 0.4, t = 0.5, η = 1, ∆t = 0.01), adaptive eroded glyph
(D44 = 0.4, t = 0.5, η = 1, φ(x) = D44x

1
3 ).

Remark 3 In Appendix G we provide the system of Pfaffian equations for geodesics on the sub-Riemannian manifold
(SE(3),dA1,dA2,dA6) as a first step to generalize our results on SE(2) = R2 o S1 in [30, App. A], where we
generalize our results on SE(2) = R2 o S1 in [30, App. A] to (SE(3). In order to compute the geodesics on the
sub-Riemannian manifold (SE(3),dA3,dA6) (used in the erosions Eq. 52) a similar approach can be followed.

7.1 Data adaptive angular erosion and dilation

In the erosion evolution (52) one can include adaptivity by makingD44 depend on the local Laplace-Beltrami-operator

D44(U)(y,n) = φ(∆LBU(y,n)− c).

with φ a non-decreasing, odd function and inf
n∈S2,y∈R3

∆LBU(y,n) < c < sup
n∈S2,y∈S3

∆LBU(y,n). The intuitive idea

here is to dilate on points on a glyph x + µ{U(x, x)n | n ∈ S2} where the Laplace-Beltrami operator is negative
(usually around spherical maxima) and to erode on at locations on the glyph where the Laplace-Beltami operator is
positive. Parameter c > 0 tunes the boundary on the glyph where the switch between erosion and dilation takes place,
See Figure 9 where we have set φ(x) = D44 x

1
3 while varying c.

8 Probability Theory on R3 o S2

8.1 Brownian Motions on SE(3) = R3 o SO(3) and on R3 o S2

Next we formulate a left-invariant discrete Brownian motion on SE(3) (expressed in the moving frame of reference).
The left-invariant vector fields {A1, . . . ,A6} form a moving frame of reference to the group. Here we note that
there are two ways of considering vector fields. Either one considers them as differential operators on smooth locally
defined functions, or one considers them as tangent vectors to equivalent classes of curves. These two viewpoints are
equivalent, for formal proof see [7, Prop. 2.4]. Throughout this article we mainly use the first way of considering vector
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fields, but in this section we prefer to use the second way. We will write {e1(g), . . . , e6(g)} for the left-invariant vector
fields (as tangent vectors to equivalence classes of curves) rather than the differential operators {A1|g , . . . , A6|g}.
We obtain the tangent vector ei from Ai by replacing

∂x ↔ (1, 0, 0, 0, 0, 0),
∂y ↔ (0, 1, 0, 0, 0, 0),
∂z ↔ (0, 0, 1, 0, 0, 0),

∂β ↔ (0, 0, 0, α cos β cos γ, α cos β sin γ,−α sin β),
∂γ ↔ (0, 0, 0, α cos γ, α sin γ, 0),
∂α ↔ (0, 0, 0, cos γ sinβ, sin γ sin β, cos β),

(57)

where we identified SO(3) with a ball with radius 2π whose outer-sphere is identified with the origin, using Euler
angles Rez,γRey,βRez,α ↔ αn(β, γ) ∈ B0,2π . Next we formulate left-invariant discrete random walks on SE(3)
expressed in the moving frame of reference {ei}6i=1 given by (31) and (112):

(Yn+1,Nn+1) = (Yn,Nn) + ∆s
5∑
i=1

ai ei|(Yn,Nn) +
√

∆s
5∑
i=1

εi,n+1

5∑
j=1

σji ej |(Yn,nn) for all n = 0, . . . , N − 1,

(Y0,n0) ∼ UD,

with random variable (Y0,n0) is distributed by UD, where UD are the discretely sampled HARDI data (equidistant
sampling in position and second order tessalation of the sphere) and where the random variables (Yn,Nn) are re-
cursively determined using the independently normally distributed random variables {εi,n+1}n=1,...,N−1

i=1,...,5 , εi,n+1 ∼
N (0, 1) and where the stepsize equals ∆s = s

N and where a :=
∑5
i=1 aiei denotes an apriori spatial velocity vector

having constant coefficients ai with respect to the moving frame of reference {ei}5i=1 (just like in (43)). Now if we
apply recursion and let N →∞ we get the following continuous Brownian motion processes on SE(3):

Y (t) = Y (0) +
t∫

0

(
3∑
i=1

ai ei|(Y (τ),N(τ)) + 1
2τ
− 1

2 εi
3∑
j=1

σji ej |(Y (τ),N(τ))

)
dτ ,

N(t) = N(0) +
t∫

0

(
5∑
i=4

ai ei|(Y (τ),N(τ)) + 1
2τ
− 1

2 εi
5∑
j=4

σji ej |(Y (τ),N(τ))

)
dτ ,

(58)

with εi ∼ N (0, 1) and (X(0), N(0)) ∼ U and where σ =
√

2D ∈ R6×6, σ > 0. Note that d
√
τ = 1

2τ
− 1

2 dτ .

Now if we set U = δ0,ez (i.e. at time zero ) then suitable averaging of infinitely many random walks of this process
yields the transition probability (y,n) 7→ pD,a

t (y,n) which is the Green’s function of the left-invariant evolution
equations (44) on R3 o S2. In general the PDE’s (44) are the Forward Kolmogorov equation of the general stochastic
process (58). This follows by Ito-calculus and in particular Ito’s formula for formulas on a stochastic process, for
details see [4, app.A] where one should consistently replace the left-invariant vector fields of Rn by the left-invariant
vector fields on R3 o S2.

In particular we have now formulated the direction process for contour completion in R3oS2 (i.e. non-zero parameters
in (58) are D44 = D55 > 0, a3 > 0 with Fokker-Planck equation (48)) and the (horizontal) Brownian motion for
contour-enhancement in R3 oS2 (i.e. non-zero parameters in (58) are D33 > 0, D44 = D55 > 0 with Fokker-Planck
equation (49)).

See Figure 10 for a visualization of typical Green’s functions of contour completion and contour enhancement in
Rd o Sd−1, d = 2, 3.

8.2 Time Integrated Brownian Motions

In the previous subsection we have formulated the Brownian-motions (58) underlying all linear left-invariant convection-
diffusion equations on HARDI data, with in particular the direction process for contour completion and (horizontal)
Brownian motion for contour-enhancement. However, we only considered the time dependent stochastic processes
and as mentioned before in Markov-processes traveling time is memoryless and thereby negatively exponentially
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Analytic (resolvent) Green’s functions linear case:

Contour completion

Contour enhancement

Figure 10: The Green’s function of Forward Kolmogorov equation of (the horizontal) direction process and the Green’s
function of the Forward Kolmogorov equation of (horizontal) Brownian motion in RdoSd−1, for d = 3 as considered
in this article and for d = 2 as considered in our previous work [32] (completion) and [29, 30] (enhancement).
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distributed T ∼ NE(λ), i.e. P (T = t) = λe−λt with expectation E(T ) = λ−1, for some λ > 0. By means
of Laplace-transform with respect to time we relate the time-dependent Fokker-Planck equations to their resolvent
equations, as at least formally we have

W (y,n, t) = (et(Q
D,a(∇))U)(y,n) and Pγ(y,n, t) = λ

∫ ∞
0

e−tλ(et(Q
D,a(∇))U)(y,n) = λ(λI −QD,a(∇))−1U(y,n),

for t, λ > 0 and all y ∈ R3, n ∈ S2, where the negative definite generator QD,a is given by (43) and again with
∇U = (A1U, . . . ,A6U)T . The resolvent operator λ(λI −QD=diag(Dii),a=0(∇ ))−1 occurs in a first order Tikhonov
regularization as we show in the next theorem.

Theorem 2 Let U ∈ L2(R3 o S2) and λ, D33 > 0, D44 = D55 > 0. Then the unique solution of the variational
problem

arg min
P∈H1(R3oS2)

∫
R3oS2)

λ

2
(P (y, n)− U(y, n))2 +

5∑
k=3

Dkk|AkP (y, n)|2dydσ(n) (59)

is given by PλU (y,n) = (RDλ ∗R3oS2 U)(y,n), where the Green’s function RDλ : R3 o S2 → R+ is the Laplace-

transform of the heat-kernel with respect to time: RDλ (y,n) = λ
∞∫
0

pD,a=0
t (y, n)e−tλ dtwithD = diag{D11, . . . , D55}.

PλU (y,n) equals the probability of finding a random walker in R3 oS2 regardless its traveling time at position y ∈ R3

with orientation n ∈ S2 starting from initial distribution U at time t = 0.

For a proof see [25]. Basically, PλU (y,n) = (RDλ ∗R3oS2U)(y,n) represents the probability density of finding a random
walker at position y with orientation n given that it started from the initial distribution U regardless its traveling time,
under the assumption that traveling time is memoryless and thereby negatively exponentially distributed T ∼ NE(λ).
There is however, a practical drawback due to the latter assumption: Both the time-integrated resolvent kernel of the
direction process and the time-integrated resolvent kernel of the enhancement process suffer from a serious singularity
at the unity element. In fact by some asymptotics one has

R
a=0 , D=diag{0,0,D33,D44,D55}
λ (y,n) ∼ 1

|g|6 with |g| = |(y, Rn)| for |g|D33,D44,D55 << 1,

and Ra=(0,0,1) , D=diag{0,0,0,D44,D55}
λ (0, 0, z,n) ∼ 1

z4 for 0 < z << 1,

where |g|D33,D44,D55 is the weighted modulus on SE(3) = R3 o SO(3). For details see Appendix D. These kernels
can not be sampled using an ordinary mid-point rule. But even if the kernels are analytically integrated spatially and
then numerically differentiated the kernels are too much concentrated around the singularity for visually appealing
results.

8.2.1 A k-step Approach: Temporal Gamma Distributions and the Iteration of Resolvents

The sum T of k independent negatively exponentially distributed random variables Ti ∼ NE(λ) (all with expectation
E(Ti) = λ−1) is Gamma distributed:

T =
k∑
i=1

Ti with pdf : p(T = t) = p(T1 = t) ∗k−1
R+ p(Tk = t) = Γ(t ; k, λ) :=

λktk−1

(k − 1)!
e−λt , k ∈ N,

where we recall that temporal convolutions are given by (f ∗R+ g)(t) =
∫ t

0
f(t− τ)g(τ) dτ and note that application

of the laplace transform L, given by Lf(λ) =
∫∞

0
f(t)e−tλdt yields L(f ∗R+ g) = L(f) · L(g) . Now for the sake

of illustration we set k = 2 for the moment and we compute the probability density of finding a random walker with
traveling time T = T1 + T2 at position y with orientation n given that it at t = 0 started at (0) with orientation
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ez . Basicly this means that the path of the random walker has two stages, first one with time T1 ∼ NE(λ) and
subsequently one with traveling time T2 ∼ NE(λ) and straightforward computations yield

RD,a
λ,k=2(y,n) =

∞∫
0

p(GT = (y,n)|T = t and G0 = e) p(T = t) dt

=
∞∫
0

p(GT = (y,n) | T = T1 + T2 = t and G0 = e) p(T1 + T2 = t) dt

=
∞∫
0

t∫
0

p(GT1+T2 = (y,n) | T1 = t− s and T2 = s and G0 = e) p(T1 = t− s) p(T2 = s) dsdt

= λ2 L
(
t 7→

t∫
0

(Kt−s ∗R3oS2 Ks ∗R3oS2 δe)(y,n)ds
)

(λ)

= λ2 L
(
t 7→

t∫
0

(Kt−s ∗R3oS2 Ks)(y,n)ds
)

(λ)

= λ2 L (t 7→ Kt(·)) (λ) ∗R3oS2 L (t 7→ Kt(·)) (λ)(y,n) = (RD,a
λ,k=1 ∗R3oS2 RD,a

λ,k=1)(y,n) .
(60)

By induction this can easily be generalized to the general case where we have

RD,a
λ,k=2 = RD,a

λ ∗
k−1
R3oS2 R

D,a
λ with RD,a

λ = RD,a
λ,k=1 and p(T = t) = (p(T1 = ·) ∗k−1

R+ p(Tk = ·))(t) .

As an alternative to our probabilistic derivation one has the following derivation (which holds in distributional sense):

RD,a
λ,k =

∞∫
0

(etQ
D,a(∇ )δe) Γ(t ; k, λ) dt

= λk(−QD,a(∇ ) + λI)−kδe = (λ (−QD,a((∇ ) + λI)−1)kδe
= RD,a

λ ∗
k−1
R3oS2 R

D,a
λ .

where we note that the Laplace transformation of a Gamma distribution equals

LΓ(·, k, λ)(s) = (1 + λ−1s)−k .

Figure 11: Glyph visualization, recall Def. 1, of the kernels RD,a
λ,k=2 : R3 o S2 → R+, with diffusion matrix

D = diag{0, 0, 0, D44, D44, 0} and convection vector a = (0, 0, 1, 0, 0, 0), for several parameter-settings (λ, k) for
D44 = 0.005. Kernels are sampled and computed on a spatial 8× 8× 8-grid and on an a 162-point tessellation of the
icosahedron using a left-invariant finite difference scheme, cf. [20]. For the sake of comparison we fixed the expected
value of the Gamma-distribution to k

λ = 4. The glyph-visualization parameter µ (which determines the global scaling
of the glyphs) has been set manually in all cases.
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Figure 12: Glyph visualization, recall Def. 1, of left-invariant finite difference scheme, on a 12 × 12 × 12-grid
and 162-point tessellation of the icosahedron, applied to the input data set, according to our time integrated contour-
completion process, ref. Eq. (58), with diffusion matrix D = diag{0, 0, 0, D44, D44}, D44 = 0.005 and convection
vector a = (0, 0, 1, 0, 0), iterated k-times with E(Ti) = λ−1, i = 1, . . . , k.

Figure 12 shows some experiments of contour completion on an artificial data set containing fibers with a gap we
would like to complete, for various parameter settings of (λ, k), where Ti ∼ NE(λ) and k denotes the iteration
index of the time integrated contour-completion process. In principle this scheme boils down to R3 o S2-convolution
with the Green’s functions depicted in Fig. 13 (this is only approximately the case due to discretization). For a fair
comparison we kept the expected value constant, that is E(T ) = E(T1 + . . . Tk) = k

λ = 4 in Figure 11 and E(T ) =
E(T1 + . . . Tk) = k

λ = 2 in Figure 12, which roughly coincides with half the size of the gap. Note that the results
hardly change after two iterations, as the graphs of the scaled Gamma distributions Γ(· ; k

2 , k)/Γ((2(k − 1)/k); k
2 , k)

are similar for k = 2, 3, 4, 5.

8.3 Cost Processes on SE(3)

In this subsection we present a short overview of cost processes on SE(3). The mapping I 7→ limε→0 logε I defines a
morphism of the (+, ·)-algebra to the (min,+)-algebra on R+ (the co-domain of our HARDI orientation scores, recall
Def. 3) and it is indeed readily verified that limε→0 logε εa · εb = a+ b and limε→0 logε(εa + εb) = min(a, b). Using
this map, various notions of probability calculus can be mapped to their counterparts in optimization problems. Next
we mention the following definitions as given by Akian, Quadrat and Viot in [2] adapted to our case.

Definition 5 The decision space is the triplet (SE(3),O(SE(3)), C) with O(SE(3)) denoting the set of all open
subsets of the topological space SE(3). The function C : O(SE(3))→ R+

:= R+ ∪ {∞} is such that
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1. C(SE(3)) = 0

2. C(φ) = +∞

3. C(
⋃
nAn) = infn C(An) for any An ∈ O(SE(3))

C is called a cost measure on SE(3). The map c : SE(3) → R+
given by g 7→ c(g) such that C(A) = infg∈A c(g)

for all A ⊆ SE(3), is called the cost density of the cost measure C.

Definition 6 Analogous to the random variables of probability theory, a decision variableG (on (SE(3),O(SE(3)), C))
is a mapping from SE(3) to R. It induces a cost measure CG on R given by CG(I) = C(G−1(I)) for all I ∈ O(R).
The associated cost density is denoted by cG.

One can formulate related concepts such as independent decision variables, conditional cost, mean of a decision vari-
able, characteristic function of a decision variable etc. in the same way as in probability theory keeping in mind the
morphism of the (+, ·)-algebra to the (min,+)-algebra. The Laplace or Fourier transform in (+, ·)-algebra corre-
sponds to the Frenchel transform in the (min,+)-algebra. Now we present the decision counterpart of the Markov
processes, namely Bellman processes.

Definition 7 A continuous time Bellman process Gt on (SE(3),O(SE(3)), C) is a function from SE(3) to C(R+)
(set of continuous functions on non negative reals) with cost density

cG(γ̃(·)) = c0(γ̃(0)) +
∫ ∞

0

c(t, γ̃(t), γ̃′(t)) dt (61)

where c is called the transition cost which is a map from R× SE(3)× T (SE(3)) to R+
such that

inf
A∈L(SE(3))

c(t, g, A|g) ≡ 0 for all (t, g) ∈ R+ × SE(3),

and where c0 is some cost density on SE(3).

We set
c(t, γ̃(t), γ̃′(t)) =

∑
i∈{1,2,4,5}

|〈dAi
∣∣
γ̃(t)

, γ̃′(t)〉|2.

Then the marginal cost for a Bellman process Gt on (SE(3),O(SE(3)), C) to be in a state g at time t given an initial
cost c0, m̃(g, t) := C(Gt = g) satisfies the following relation known as the Bellman equation

∂tm̃+ (FL(SE(3))(L))(dm̃) = 0,
m̃(g, 0) = c0(g) (62)

where FL(SE(3)) denotes the Fenchel transform, see Appendix B, Definition 9, on the Lie-Algebra L(SE(3)) of
left-invariant vector fields and where

L(A) =
∑

i∈{1,2,4,5}

1
Dii

∣∣〈dAi,A〉∣∣2 ,
dm̃ =

∑
i∈{1,2,4,5}

Aim̃ dAi

for all A left-invariant vector fields within contact-manifold (SE(3),dA3,dA6) and with left-invariant gradient of m̃
within (SE(3),dA3,A6). This Bellman equation for the cost process coincides with the Hamilton-Jacobi equation on
SE(3) (135) whose viscosity solution is given by morphological convolution with the corresponding morphological
Green’s function as proven in Appendix B.
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9 Differential Geometry: The underlying Cartan-Connection on SE(3) and
the Auto-Parallels in SE(3)

Now that we have constructed all left-invariant scale space representations on HARDI images, generated by means of
a quadratic form (43) on the left-invariant vector fields on SE(3). The question rises what is the underlying differential
geometry for these evolutions ?

For example, as the left-invariant vector fields clearly vary per position in the group yielding a moving frame of
reference attached to luminosity particles (random walkers in R3 o S2 embedded in SE(3)) with both a position and
an orientation, the question rises along which trajectories in R3 o S2 do these particles move ? Furthermore, as the
left-invariant vector fields are obtained by the push-forward of the left-multiplication on the group,

Ag = (Lg)∗Ae, i.e. Agφ̃ = Ae(φ̃ ◦ Lg), where Lgh = gh, g, h ∈ SE(3), φ̃ : SE(3)→ R smooth ,

the question rises whether this defines a connection between all tangent spaces, such that these trajectories are auto-
parallel with respect to this connection ? Finally, we need a connection to rigid body mechanics described in a moving
frame of reference, to get some physical intuition in the choice of the fundamental constants2 {ai}6i=1 and {Dij}6i,j=1

within our generators (43).

In order to get some first physical intuition on analysis and differential geometry along the moving frame {A1, . . . ,A6}
and its dual frame {dA1, . . . ,dA6}, we will make some preliminary remarks on the well-known theory of rigid body
movements described in moving coordinate systems. Imagine a curve in R3 described in the moving frame of reference
(embedded in the spatial part of the group SE(3)), describing a rigid body movement with constant spatial velocity
ĉ(1) and constant angular velocity ĉ(2) and parameterized by arc-length s > 0. Suppose the curve is given by

y(s) =
3∑
i=1

αi(s) Ai|y(s) where αi ∈ C2([0, L],R),

such that ĉ(1) =
∑3
i=1 α̇

i(s) Ai|y(s) for all s > 0. Now if we differentiate twice with respect to the arc-length

parameter and keep in mind that d
ds Ai|y(s) = ĉ(2) × Ai|y(s), we get

ÿ(s) = 0 + 2ĉ(2) × ĉ(1) + ĉ(2) × (ĉ(2) × y(s)) .

In words: The absolute acceleration equals the relative acceleration (which is zero, since ĉ(1) is constant) plus the
Coriolis acceleration 2ĉ(2)× ĉ(1) and the centrifugal acceleration ĉ(2)× (ĉ(2)×y(s)). Now in case of uniform circular
motion the speed is constant but the velocity is always tangent to the orbit of acceleration and the acceleration has
constant magnitude and always points to the center of rotation. In this case, the total sum of Coriolis acceleration and
centrifugal acceleration add up to the well-known centripetal acceleration,

ÿ(s) = 2ĉ(2) × (−ĉ(2) ×Rr(s)) + ĉ2 × (ĉ(2) ×Rr(s)) = −‖ĉ(2)‖2Rr(s) = −‖ĉ
1‖2

R
r(s),

where R is the radius of the circular orbit y(s) = m +R r(s), ‖r(s)‖ = 1). The centripetal acceleration equals half
the Coriolis acceleration, i.e. ÿ(s) = ĉ(2) × ĉ(1).

In our previous work [29, part II] on contour-enhancement and completion via left-invariant diffusions on invertible
orientation scores (complex-valued functions on SE(2)) we put a lot of emphasis on the underlying differential ge-
ometry in SE(2). All results straightforwardly generalize to the case of HARDI images, which can be considered
as functions on R3 o S2 embedded in SE(3). These rather technical results are summarized in Theorem 3, which
answers all questions raised in the beginning of this section. Unfortunately, this theorem requires general differential

2Or later in Subsection 13 to get some intuition in the choice of functions {ai}6i=1 and {Dij}6i,j=1.
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geometrical concepts such as principal fiber bundles, associated vector bundles, tangent bundles, frame-bundles and
the Cartan-Ehresmann connection defined on them. These concepts are explained in full detail in [62] (with a very
nice overview on p.386 ).

The reader who is not familiar with these technicalities from differential geometry can skip the first part of the theorem
while accepting the formula of the covariant derivatives given in Eq. (67), where the anti-symmetric Christoffel
symbols are equal to minus the structure constants ckij = −ckji (recall Eq. (28)) of the Lie-algebra. Here we stress
that we follow the Cartan viewpoint on differential geometry, where connections are expressed in moving coordinate
frames (we use the frame of left-invariant vector fields {A1, . . . ,A6} derived in Subsection 4 for this purpose) and
thereby we have non-vanishing torsion.3 This is different from the Levi-Civita connection for differential geometry
on Riemannian manifolds, which is much more common in image analysis. The Levi-Civita connection is the unique
torsion free metric compatible connection on a Riemannian manifold and because of this vanishing torsion of the
Levi-Civita connection ∇ there is a 1-to-1 relation4 to the Christoffel symbols (required for covariant derivatives
∇ivj = ∂iv

j + Γkij∂kv
j ) and the derivatives of the metric tensor. In the more general Cartan connection outlined

below, however, one can have non-vanishing torsion and the Christoffels are not necessarily related to a metric tensor,
nor need they be symmetric.

Theorem 3 The Maurer-Cartan form ω on SE(3) is given by

ωg(Xg) =
6∑
i=1

〈dAi
∣∣
g
, Xg〉Ai, Xg ∈ Tg(SE(3)), (63)

where the dual vectors {dAi}6i=1 are given by (7) and Ai = Ai|e. It is a Cartan Ehresmann connection form on
the principal fiber bundle P = (SE(3), π : SE(3) → e ≡ SE(3)/SE(3), SE(3)), where π(g) = e, Rgu = ug,
u, g ∈ SE(3). Let Ad denote the adjoint action of SE(3) on its own Lie-algebra Te(SE(3)), i.e. Ad(g) = (Rg−1Lg)∗,
i.e. the push-forward of conjugation. Then the adjoint representation of SE(3) on the vector space L(SE(3)) of left-
invariant vector fields is given by

Ãd(g) = dR ◦ Ad(g) ◦ ω. (64)

This adjoint representation gives rise to the associated vector bundle SE(3) ×Ãd L(SE(3)). The corresponding
connection form on this vector bundle is given by

ω̃ =
6∑
j=1

ãd(Aj)⊗ dAj =
6∑

i,j,k=1

ckij Ak ⊗ dAi ⊗ dAj , (65)

with ãd = (Ãd)∗, i.e. ãd(Aj) =
6∑
i=1

[Ai,Aj ]⊗ dAi,[49, p.265]. Then ω̃ yields the following 6×6-matrix valued 1-form

ω̃kj (·) := −ω̃(dAk, ·,Aj) k, j = 1, 2, . . . , 6. (66)

on the frame bundle, [62, p.353,p.359], where the sections are moving frames [62, p.354]. Let {µk}6k=1 denote the
sections in the tangent bundleE := (SE(3), T (SE(3))) which coincide with the left-invariant vector fields {Ak}6k=1.
Then the matrix-valued 1-form given by Eq. (66) yields the Cartan connection given by the covariant derivatives

DX|γ(t)(µ(γ(t))) := Dµ(γ(t))(X|γ(t))

=
6∑
k=1

ȧk(t)µk(γ(t)) +
6∑
k=1

ak(γ(t))
6∑
j=1

ω̃jk(X|γ(t)) µj(γ(t))

=
6∑
k=1

ȧk(t)µk(γ(t)) +
6∑

i,j,k=1

γ̇i(t) ak(γ(t)) Γjik µj(γ(t))

(67)

3The torsion tensor T∇ of a connection ∇ is given by T∇[X,Y ] = ∇XY − ∇YX − [X,Y ]. The torsion-tensor T∇ of a Levi-Civita
connection vanishes, whereas the torsion-tensor of our Cartan connection∇ on SE(3) is given by T∇ = 3

∑6
i,j,k=1 c

k
ijdAi ⊗ dAj ⊗Ak .

4In a Levi-Civita connection one has Γikl = Γilk = 1
2

∑
m gim(gmk,l + gml,k − gkl,m) with respect to a holonomic basis.
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with ȧk(t) =
6∑
i=1

γ̇i(t) (Ai|γ(t) a
k), for all tangent vectors X|γ(t) =

6∑
i=1

γ̇i(t) Ai|γ(t) along a curve t 7→ γ(t) ∈

SE(2) and all sections µ(γ(t)) =
6∑
k=1

ak(γ(t))µk(γ(t)). The Christoffel symbols in (67) are constant Γjik = −cjik,

with cjik the structure constants of Lie-algebra Te(SE(3)). Consequently, the connectionD has constant curvature and
constant torsion and the left-invariant evolution equations given in Eq. (42) can be rewritten in covariant derivatives
(using short notation∇j := DAj ):

∂tW (g, t) =
6∑
i=1

−ai(W )AiW (g, t) +
6∑

i,j=1

Ai ( (Dij(W ))(g, t)AjW )(g, t)

=
6∑
i=1

−ai(W )∇iW (g, t) +
6∑

i,j=1

∇i ((Dij(W ))(g, t)∇jW )(g, t)

W (g, 0) = Ũ(g) , for all g ∈ SE(3), t > 0.

(68)

Both convection and diffusion in the left-invariant evolution equations (42) take place along the exponential curves

γc,g(t) = g · e
t

6∑
i=1

ciAi
in SE(3) which are the covariantly constant curves (i.e. auto-parallels) with respect to the

Cartan connection. In particular, if ai(W ) = ci constant and if Dij(W ) = 0 (convection case) then the solutions are

W (g, t) = Ũ(g · e
−t

6∑
i=1

ciAi
) . (69)

The spatial projections PR3γ of these of the auto-parallel/exponential curves γ are circular spirals with constant
curvature and constant torsion. The curvature magnitude equals ‖ĉ(1)‖−1‖ĉ(2) × ĉ(1)‖ and the curvature vector
equals

κ(t) =
1

‖ĉ(1)‖

(
cos(t ‖ĉ(2)‖) ĉ(2) × ĉ(1) +

sin(t ‖ĉ(2)‖)
‖ĉ(2)‖

ĉ(2) × ĉ(2) × ĉ(1)

)
, (70)

where c = (c1, c2, c3 ; c4, c5, c6) = (ĉ(1) ; ĉ(2)). The torsion vector equals τ (t) = |ĉ1 · ĉ2| κ(t).

Proof The proof is a straightforward generalization from our previous results [29, Part II, Thm 3.8 and Thm 3.9]
on the SE(2)-case to the case SE(3). The formulas of the constant torsion and curvature of the spatial part of
the auto-parallel curves (which are the exponential curves) follow by the formula (71) for (the spatial part x(s) of)
the exponential curves, which we will derive in Section 9.1. Here we stress that s(t) = t

√
(c1)2 + (c2)2 + (c3)2

is the arc-length of the spatial part of the exponential curve and where we recall that κ(s) = ẍ(s) and τ (s) =
d
ds (ẋ(s) × ẍ(s)). Note that both the formula (71) for the exponential curves in the next section and the formulas for
torsion and curvature are simplifications of our earlier formulas [38, p.175-177]. In the special case of only convection
the solution (69) follows by etdR(A)Ũ(g) = RetAŨ(g), with A = −

∑6
i=1 c

iAi and dR(A) = −
∑6
i=1 c

iAi with
Ai = dR(Ai).

9.1 The Exponential Curves and the Logarithmic Map explicitly in Euler Angles

The surjective exponent mapping is given by

γc(t) = e
t

6∑
i=1

ciAi
=

{
(c1t, c2t, c3t , I) if ĉ(2) = 0 ,
(tĉ(1) + 1−cos(q̃t)

q̃2 Ωĉ(1) + (tq̃−2 − sin(q̃t)
q̃3 ) Ω2ĉ(1) , I + sin(q̃t)

q̃ Ω + (1−cos(q̃t))
q̃2 Ω2) else.

(71)
where q̃ = ‖ĉ(2)‖ =

√
(c4)2 + (c5)2 + (c6)2 and Ωx = ĉ(2) × x for all x ∈ R3.
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The logarithmic mapping on SE(3) is given by:

logSE(3)(x, Rγ,β,α) =
3∑
i=1

cix,γ,β,αAi +
6∑
i=4

ciγ,β,αAi

=
3∑
i=1

cix,γ̃,β̃,α̃Ai +
6∑
i=4

ci
γ̃,β̃,α̃

Ai

(72)

Expressed in the first chart (using short notation ci := cix,γ,β,α) we have

q̃ = arcsin
√

cos2
(
α+γ

2

)
sin2 β + cos4

(
β
2

)
sin2(α+ γ)

c(2) := (c4, c5, c6)T = q̃
2 sin q̃ (sinβ(sinα− sin γ) , sinβ(cosα+ cos γ) , 2 cos2

(
β
2

)
sin(α+ γ))

(73)

and
c(1) = (c1, c2, c3)T = x− 1

2 c(2) × x + q̃−2(1− ( q̃2 ) cot( q̃2 )) c(2) × (c(2) × x). (74)

with c(1) = (c1, c2, c3), c(2) = (c4, c5, c6).

Throughout this article we will take the section α = 0 (this is just a choice, we could have taken another section) in
the partition R3 o S2/({0} × SO(2)), which means that we will only consider the case

(c(1) ; c(2))
∣∣∣
α̃=0

= (c1x,γ,β,α=0, c
2
x,γ,β,0, c

3
x,γ,β,0, c

4
x,γ,β,0, c

5
x,γ,β,0, c

6
x,γ,β,0).

Expressed in the second chart the section α̃ = 0 coincides with the section α = 0 and along this section we again have
(74) but now with

q̃ = arcsin
√

cos4(γ̃/2) sin2(β̃) + cos2(β̃/2) sin2(γ̃) ,

c(2) = (c̃4, c̃5, c̃6)T = q̃
sin(q̃) ( sin γ̃ cos2( β̃2 ) , sin β̃ cos2( γ̃2 ) , 1

2 sin γ̃ sin β̃ )T ,
(75)

where we again used short notation c̃i := c̃ix,γ̃,β̃,α̃=0
. Roughly speaking, c(1) is the spatial velocity of the exponential

curve (fiber) and c(2) is the angular velocity of the exponential curve (fiber).

10 Analysis of the Convolution Kernels of Scale Spaces on HARDI images

It is notorious problem to find explicit formulas for the exact Green’s functions pD,a
t : R3 o S2 of the left-invariant

diffusions (44) on R3 o S2. Explicit, tangible and exact formulas for heat-kernels on SE(3) do not seem to exist in
literature. Nevertheless, there does exist a nice general theory overlapping the fields of functional analysis and group
theory, see for example [67, 54], which at least provides Gaussian estimates for Green’s functions of left-invariant
diffusions on Lie groups, generated by subcoercive operators. In the remainder of this section we will employ this
general theory to our special case where R3 o S2 is embedded into SE(3) and we will derive new explicit and useful
approximation formulas for these Green’s functions. Within this section we use the second coordinate chart (15), as
it is highly preferable over the more common Euler angle parametrization (12) because of the much more suitable
singularity locations on the sphere.

We shall first carry out the method of contraction. This method typically relates the group of positions and rotations
to a (nilpotent) group positions and velocities and serves as an essential pre-requisite for our Gaussian estimates and
approximation kernels later on. The reader who is not so much interested in the detailed analysis can skip this section
and continue with the numerics explained in Chapter 12.
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10.1 Local Approximation of SE(3) by a Nilpotent Group via Contraction

The group SE(3) is not nilpotent. This makes it hard to get tangible explicit formulae for the heat-kernels. Therefore
we shall generalize our Heisenberg approximations of the Green’s functions on SE(2), [32], [64],[4], to the case
SE(3). Again we will follow the general work by ter Elst and Robinson [67] on semigroups on Lie groups generated
by weighted subcoercive operators. In their general work we consider a particular case by setting the Hilbert space
L2(SE(3)), the group SE(3) and the right-regular representation R. Furthermore we consider the algebraic basis
{A3,A4,A5} leading to the following filtration of the Lie algebra

g1 = span{A3,A4,A5} ⊂ g2 = span{A1,A2,A3,A4,A5,A6} = L(SE(3)) . (76)

Now that we have this filtration we have to assign weights to the generators

w3 = w4 = w5 = 1 and w1 = w2 = w6 = 2. (77)

For example w3 = 1 since A3 already occurs in g1, w6 = 2 since A6 is within in g2 and not in g1.

Now that we have these weights we define the following dilations on the Lie-algebra Te(SE(3)) (recall Ai = Ai|e):

γq(
6∑
i=1

ciAi) =
6∑
i=1

qwi ciAi, for all ci ∈ R,

γ̃q(x, y, z, Rγ̃,β̃,α̃) =
(

x
qw1 ,

y
qw2 ,

z
qw3 , R γ̃

qw4 ,
β̃
qw5 ,

α̃
qw6

)
, q > 0,

and for 0 < q ≤ 1 we define the Lie product [A,B]q = γ−1
q [γq(A), γq(B)]. Now let (SE(3))q be the simply

connected Lie group generated by the Lie algebra (Te(SE(3)), [·, ·]q). This Lie group is isomorphic to the matrix
group with group product:

(x, Rγ̃β̃α̃) ·q (x′, Rγ̃′β̃′α̃′) = ( x + Sq ·Rγ̃q,β̃q,α̃q2 · Sq−1 x′ , Rγ̃β̃α̃ ·Rγ̃′β̃′α̃′ ) (78)

where the diagonal 3×3-matrix is defined by Sq := diag{1, 1, q} and we used short-notationRγ̃β̃α̃ = Rex,γ̃Rey,β̃Rez,α̃,
i.e. our elements of SO(3) are expressed in the second coordinate chart (15). Now the left-invariant vector fields on
the group (SE(3))q are given by

Aqi |g = (γ̃−1
q ◦ Lg ◦ γ̃q)∗Ai, i = 1, . . . , 6.

Straightforward (but intense) calculations yield (for each g = (x, Rγ̃β̃α̃) ∈ (SE(3))q ):

Aq1|g = cos(q2α̃) cos(qβ̃) ∂x + (cos(γ̃q) sin(α̃q2) + cos(α̃q2) sin(β̃q) sin(γ̃q)) ∂y+

+q(sin(α̃q2) sin(γ̃q)− cos(α̃q2) cos(γ̃q) sin(β̃q)) ∂z
Aq2|g = − sin(α̃q2) cos(β̃q) ∂x + (cos(q2α̃) cos(γ̃q)− sin(α̃q2) sin(β̃q) sin(γ̃q)) ∂y+

+q(sin(α̃q2) sin(β̃q) cos(β̃q) + cos(α̃q2) sin(γ̃q)) ∂z
Aq3|g = q−1 sin(β̃q) ∂x − q−1 cos(β̃q) sin(γ̃q) ∂y + cos(β̃q) cos(γ̃q) ∂z

Aq4|g = −q−1 cos(α̃q2) tan(β̃q) ∂α̃ + sin(α̃q) ∂β̃ + cos(α̃q2)

cos(β̃q)
∂γ̃

Aq5|g = q−1 sin(α̃q2) tan(β̃q) ∂α̃ + cos(α̃q2) ∂β̃ −
sin(q2α̃)

cos(qβ̃)
∂γ̃

Aq6|g = ∂α̃.

Now note that [Ai, Aj ]q = γ−1
q [γq(Ai), γq(Aj)] = γ−1

q qwi+wj [Ai, Aj ] =
6∑
k=1

qwi+wj−wkckijAk and thereby we have

[A4, A5]q = A6, [A4, A6]q = −q2A5, [A5, A6]q = q2A4, [A4, A3]q = −A2,
[A4, A2]q = q2A3, [A5, A1]q = −q2A3, [A5, A3]q = A1, [A6, A1]q = q2A2 and [A6, A2]q = −q2A1.

(79)

Analogously to the case q = 1, (SE(3))q=1 = SE(3) we have an isomorphism of the common Lie-algebra at the
unity element Te(SE(3)) = Te((SE(3))q) and left-invariant vector fields on the group (SE(3))q :

(Ai ↔ Aqi and Aj ↔ Aqj)⇒ [Ai, Aj ]q ↔ [Aqi ,A
q
j ] .
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It can be verified that the left-invariant vector fields Aqi satisfy the same commutation relations (79).

Now let us consider the case q ↓ 0, then we get a nilpotent-group (SE(3))0 with left-invariant vector fields

A0
1 = ∂x, A0

2 = ∂y, A0
3 = β̃∂x − γ̃∂y + ∂z, A0

4 = −β̃∂α̃ + ∂γ̃ , A0
5 = ∂β̃ , A0

6 = ∂α̃ . (80)

10.1.1 The Heisenberg-approximation of the Time-integrated k-step Contour Completion Kernel

Recall that the generator of contour completion diffusion equalsA3 +D44((A4)2 + (A5)2). So let us replace the true
left-invariant vector fields {Ai}5i=3 on SE(3) = (SE(3))q=1 by their Heisenberg-approximations {A0

i }5i=3 that are
given by (80) and compute the Green’s function pa3=1,D44=D55

t on (SE(3))0 (i.e. the convolution kernel which yields
the solutions of contour completion on (SE(3))0 by group convolution on (SE(3))0). For 0 < D44 << 1 this kernel
is a local approximation of the true contour completion kernel5 pa3=1,D44=D55

t , on R3 o S2:

pa3=1,D44=D55

t := et(A
0
3+D44((A0

4)2+(A0
5)2))δx0 ⊗ δ

y
0 ⊗ δz0 ⊗ δ

γ̃
0 ⊗ δ

β̃
0 ⇒

pa3=1,D44=D55

t (x, y, z, ñ(β̃, γ̃)) = δ(t− z) (et(β̃∂x+D44(∂β̃)2)δx0 ⊗ δ
β̃
0 )(x, β̃) (et(−γ̃∂y+D44(∂γ̃)2)δy0 ⊗ δ

γ̃
0 )(y, γ̃)

= δ(t− z) 3
4(D44πz2)2 e

− 12(x−(1/2)zβ̃)2+z2β̃2

4z3D44 e−
12(y+(1/2)zγ̃)2+z2γ̃2

4z3D44 ,

(81)
where ñ(β̃, γ̃) = Rex,γ̃Rey,β̃ez = (sin β̃,− sin γ̃ cos β̃, cos γ̃ cos β̃)T . The corresponding k-step resolvent kernel on
the group (SE(3))0 is now directly obtained by conditional integration over time6

R
a3=1,D44=D55

λ,k (x, y, z, ñ(β̃, γ̃)) =

{
3

4(D44π)2
(λ)kzk−5

(k−1)!
e−λz e

− 12(x−(1/2)zβ̃)2+z2β̃2

4z3D44 e
− 12(y+(1/2)zγ̃)2+z2γ̃2

4z3D44 if z > 0

0 if z ≤ 0 and (x, y) 6= (0, 0).
(82)

10.1.2 Approximations of the Contour Enhancement Kernel

Recall that the generator of contour completion diffusion equals D33(A3)2 +D44((A4)2 + (A5)2). So let us replace
the true left-invariant vector fields {Ai}5i=3 on SE(3) = (SE(3))q=1 by their Heisenberg-approximations {A0

i }5i=3

given by (80) and consider the Green’s function pD
33,D44=D55

t on (SE(3))0:

Now since the Heisenberg approximation kernel pD
33,D44 ; (SE(2))0

t is for reasonable parameter settings (that is 0 <
D44

D33 << 1) close to the exact kernel pD
33,D44 ; (SE(2))

t we heuristically propose for these reasonable parameter settings
the same direct-product approximation for the exact contour-enhancement kernels on R3 o S2:

pD
33,D44=D55 ; R3oS2

t (x, y, z, ñ(β̃, γ̃)) ≈ N(D33, D44, t) p
D33,D44 ; (SE(2))
t (z/2, x, β̃) ·pD

33,D44 ; (SE(2))
t (z/2,−y, γ̃) , (83)

where
N(D33, D44, t) ≈ 1

8
√

2

√
πt
√
tD33

√
D33D44 (84)

5The superscript for the kernel is actually pD,at so in the superscript-labels, for the sake of simplicity, we only mention the non-zero coefficients
Dij , ai of (44).

6Note that the delta distribution δ(s − z) allowed us to replace all s by z in the remaining factor in (81) which makes it easy to apply the

integration Ra3=1,D33,D44

γ,k =
∫

R+ pa3=1,D33,D44

t Γ(t ; k, λ)dt.
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takes care of L1(R3 o S2)-normalization and with

pD
33,D44

t (x, y, θ) ≡ 1
4πt2D44D33 e

− 1
4t c2

√(
x2

D33 + θ2

D44

)2
+
|y− xθ2 |

2

D44D33 ,

pD
33,D44

t (x, y, θ) ≡


1

4πt2D44D33 e
− 1

4t c2

√(
θ2

D44 +
θ2(y−(−x sin θ+y cos θ))2

4(1−cos(θ))2D33

)2
+ 1
D44D33 | θ((x cos θ+y sin θ)−x)

2(1−cos θ) |2
, if θ 6= 0,

1
4πt2D44D33 e

− 1
4t c2

√(
x2

D33

)2
+

|y|2
D44D33 , if θ = 0

(85)
which are reasonably sharp estimates of hypoelliptic diffusion on SE(2), with 1

2 ≤ c ≤ 4
√

2, for details see [29, ch

5.4]. For the purpose of numerical computation, we simplify pD
33,D44

t (x, y, θ) in (85) to

pD
33,D44

t (x, y, θ) =
1

4πt2D44D33
e

− 1
4t c2

√√√√√√
 θ2
D44 +

(
θy
2 + θ/2

tan(θ/2) x
)2

D33


2

+ 1
D44D33

(
−xθ

2 +
θ/2

tan(θ/2) y
)2

where one can use the estimate θ/2
tan(θ/2) ≈

cos(θ/2)
1−(θ2/24) for |θ| < π

10 to avoid numerical errors.

10.2 Gaussian Estimates for the Heat-kernels on SE(3)

In [25, ch:6.2] it is shown that the constants C̃3, C̃4 are very close and that a reasonably sharp approximation and
upperbound of the horizontal diffusion kernel on R3 o S2 is given by

p
D=diag{0,0,D33,D44,D55,0}
t (y, ñ(β̃, γ̃)) ≈ 1

(4πt2D33D44)2 e
−
|(y,Rn)|2

D33,D44
4t , (86)

with weighted modulus

|(y, Rn)|2D33,D44 :=

√
|c1|2 + |c2|2
D33D44

+
|c6|2
D44

+
(

(c3)2

D33
+
|c4|2 + |c5|2

D44

)2

(87)

where n = ñ(β̃, γ̃) ∈ S2 and where we again use short notation ck := ckq=1(x, Rγ̃,β̃,0), k = 1, . . . , 6. Recall from
Section 9.1 that these constants are computed by the logarithm (72) on SE(3) or more explicitly by (75).

10.3 Analytic estimates for the Green’s functions of the Cost Processes on R3 o S2

In Appendix B we have derived the following analytic approximation for the Green’s function kD
11,D44,η,±

t of the
Hamilton-Jacobi equation (135) and corresponding cost-process explained in Section 8.3, Eq. (62) on R3 o S2:

kD
11,D44,η,±

t (y, ñ(β̃, γ̃)) ≡ ± 2η − 1
2η

C
2η

2η−1 t−
1

2η−1

(
6∑
i=1

|c̃i(y, α̃ = 0, β̃, γ̃)|
2
wi

Dii

) η
2η−1

(88)

for sufficiently small time t > 0, with weights w1 = w2 = w4 = w5 = 1, w3 = w6 = 2 and 2 > C > 0 and where
the (c1, . . . , c6) are given by (75) and where we have set n = ñ(β̃, γ̃) and ck := ckq=1(y, Rγ̃,β̃,0). Here we recall
that D11 tunes the spatial erosion orthogonal to fibers, D44 tunes angular erosion and η ∈ ( 1

2 , 1] relates homogeneous
erosion η = 1

2 to standard quadratic erosion η = 1.

Now analogously to our approach on SE(2) in [29, Ch:5.4] we use the estimate

|a|+ |b| ≥
√
|a|2 + |b|2 ≥ 1√

2
(|a|+ |b|)
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a, b ∈ R to obtain differentiable analytic local approximations:

kD
11,D44,η,+

t (y,n) ≈ 2η−1
2η C

2η
2η−1 t−

1
2η−1

((
|c1|2+|c2|2

D11 + |c4|2+|c5|2
D44

)2

+ |c3|2
D11D44

) η
2η−1

, η ∈ ( 1
2 , 1] (89)

and for η = 1
2 we obtain the flat analytic local approximation (that arises by taking the limit η ↓ 1

2 ):

kD
11,D44,η,+

t (y,n) ≈ { ∞ if

√(
|c1|2+|c2|2

D11 + |c4|2+|c5|2
D44

)2

+ |c3|2
D11D44 ≥ t2

0 else
(90)

See Figure 13 for glyph visualizations (recall Definition 1) of the erosion and corresponding diffusion kernel

p
D=diag{D11,D11,0,D44,D55,0}
t = et(D

11(∆R3−(A3)2))+D44∆LBδ0 ⊗ δez (91)

on the contact manifold (R3 o S2,dA3). In order to study the accuracy of this approximation formula for the case of

Figure 13: Left: Diffusion kernel in Eq. (91), where angular diffusion takes place over the full S2 sphere and spatial
diffusion simultaneously takes place in the plane GD11,D33,D44

-orthogonal to A3. Right: Erosion kernel in (89).

angular erosion only (i.e. D11 = 0) we have analytically computed

m(β̃, γ̃) = |A4k
D11=0,D44=1
t |2+|A5k

D11=0,D44=1
t |2

∂tk
D11=0,D44=1
t

=
|∂β̃k

D11=0,D44=1
t |2+(cos β̃)−2|∂γ̃kD

11=0,D44=1
t |2

∂tk
D11=0,D44=1
t

= 1
4

(∂β̃((c4)2+(c5)2))2+cos−2 β̃(∂γ̃((c4)2+(c5)2))2

(c4)2+(c5)2 ,

(92)

where we used the following identities

|A4U |2 + |A5U |2 = |∂2
β̃
U |2 + (cos β̃)−2|∂2

γ̃U |2

|A1U |2 + |A2U |2 = |∂xU |2 + |∂yU |2 + |∂zU |2 − |A3U |2 for all U ∈ C1(R3 o S2).

Ideally m = 1 since then the approximation is exact. For relevant parameter settings we indeed have m ≈ 1 up to
5-percent `∞-errors as can be seen in Figure 14.

11 Pseudo Linear Scale Spaces on R3 o S2

So far we have considered anisotropic diffusions aligned with fibers and erosions orthogonal to the fibers. As these
two types of left-invariant evolutions are supposed to be alternated,

ΦG=−diag{g11,g11,0,g44,g44,0}
t/2 ◦ esQ

D=diag{D11,D11,D33,D44,D44,0},a=0(∇) ◦ ΦG=−diag{g11,g11,0,g44,g44,0}
t/2
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Figure 14: This figure shows that our approximation (89) is rather accurate for relevant parameter settings β̃, γ̃ ∈
[−π4 ,

π
4 ]. We have computed the surface m = m(β̃, γ̃) where m(β̃, γ̃) is given by (92). The approximation is exact iff

m = 1, which is the case along the lines β̃ = 0 and γ̃ = 0. Relative errors are smaller than 0.05 percent.

where gij are the components of the inverse metric, which in case of a diagonal metric tensor simply reads gii =
g−1
ii = Dii, like in (52) where D33 � D11 and where Φt denotes the viscosity solution operator U 7→ W (·, ·, t)

for the erosion Hamilton-Jacobi equation (52). the natural question arises is there a single evolution process that
combines erosion/dilation and diffusion. Moreover, a from a practical point of view quite satisfactory alternative to
visually sharpen distributions on positions and orientations is to apply monotonic greyvalue transformations (instead
of an erosion) such as for example the power operator χ̃p

(χ̃p(U))(y,n) = (U(y,n))p ,

where p ≥ 1, where we also recall the drawback illustrated in Figure 4 Conjugation of the diffusion operator with a
monotonically increasing grey-value transformation χ : R+ → R+

χ−1 ◦ etQ
D,a(∇) ◦ χ (93)

is related to simultaneous erosion and diffusion. For a specific choice of grey-value transformations this is indeed the
case we will show next, where we extend the theory for pseudo linear scale space representations of greyscale images
[35] to DW-MRI (HARDI and DTI).

Next we derive the operator χ−1 ◦ etQD,a(∇) ◦ χ more explicitly using the chain-law for differentiation:

Aj(χ(V (·, ·, t))) = χ′(V (·, ·, t))Aj(V (·, ·, t)) ,
∂tχ(V (·, ·, t)) = χ′(V (·, ·, t))∂t(V (·, ·, t)) ,

AiAj(χ(V (·, ·, t))) = χ′′(V (·, ·, t))Ai(V (·, ·, t))Aj(V (·, ·, t)) + χ′(V (·, ·, t))AiAj(V (·, ·, t)).

Consequently, if we set W (·, ·, t) = χ(V (·, ·, t))⇔ V (·, ·, t) = χ−1(W (·, ·, t)) and

W (·, ·, t) = etQ
D=diag{D11,D11,D33,D44,D44,0},a=0W (·, ·, 0),

see Figure 15, then V satisfies ∂tV (y,n, t) =
5∑
i=1

Dii
(

(Ai
∣∣
(y,n)

)2V
)

(y,n, t) + µ̃(V (y,n, t))
5∑
i=1

Dii
(
Ai|(y,n) V (y,n, t)

)2

,

V (y,n, 0) = χ−1(U(y,n)) .
(94)

where µ̃(V (y,n, t)) = χ′′(χ(V (y,n,t)))
χ′(χ(V (y,n,t))) . So if we set µ̃(V (y,n, t)) = C constant we achieved that (93) coincides with

a simultaneous erosion/dilation and diffusion with

G−1 =
5∑

i,j=1

gijAi ⊗Aj =
5∑

i,j=1

DijAi ⊗Aj .
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Figure 15: The commutative diagram of simultaneous left-invariant dilation and diffusion along the fibers (D33 �
D11) given by Eq. (94) with µ̃(V (y,n, t)) = C illustrates that conjugation of specific grey-value transformations (96)
with left-invariant diffusion is equivalent.

Figure 16: Left: Graphs of the grey-value transformations, Eq. (96), that are solutions χC : [0, 1]→ [0, 1] of Eq. (95),
for C = −8,−4,−2,−1, 0, 1, 2, 4, 8, [35] (depicted from left to right). The concave solutions correspond to diffusion
and erosion whereas the convex solutions yield convection and diffusion. Right: Graphs of the convex χC of Eq. (95)
depicted together with their inverse χ−1

C , Eq (97) , for C = −8,−4,−2,−1

This means we have to solve the following ODE-system

χ′′(I)− C χ′(I) = 0 I ∈ [0, 1] ,
χ(0) = 0 and χ(1) = 1 , (95)

where I ∈ [0, 1] stands for intensity where in particular we set I := V (y,n,0)−min(y,n) V (y,n,0)

maxy,n V (y,n,0)−min(y,n) V (y,n,0) (y,n) ∈ R3 o S2.
The unique solutions of (95) are given by

χC(I) =

{
eC I−1
eC−1

if C 6= 0 ,
I if C = 0 ,

(96)

so that V (y,n, t) is the solution of an evolution (44) where the generator is a weighted sum of a diffusion and ero-
sion/dilation operator. The inverse of χ is given by

χ−1
C (I) =

{
1
C ln(1 + (eC − 1)I) if C 6= 0 ,
I if C = 0 . (97)

The drawback of this intriguing correspondence, is that our diffusions primarily take place along the fibers, whereas
our erosions take place orthogonal to the fibers. Therefore, at this point the correspondence between pseudolinear
scale spaces and hypo-elliptic diffusion conjugated with ξ is primarily useful for simultaneous dilation and diffusion
along the fibers7, i.e. the case

D = diag{0, 0, D11, D22, D33, 0} and C > 0.

7In general one does not want to erode and diffuse in the same direction.
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Remark 4 Finally, for C ≈ 2 the operator in Eq. (93) is close to the operators applied in Figure 1 and Figure 2 on
DTI and HARDI data of the brain. The difference though is that (93) conjugates a diffusion operator with greyvalue
transformations, whereas in Figure 1 and 2 we applied χp ◦ etQ

D,a(∇) ◦ χp with p = 2.

12 Implementation of the Left-Invariant Derivatives and R3oS2-Evolutions

In our implementations we do not use the two charts (among which the Euler-angles parametrization) of S2 because
this would involve cumbersome and expensive bookkeeping of mapping the coordinates from one chart to the other
(which becomes necessary each time the singularities (14) and (17) are reached). Instead we recall that the left-
invariant vector fields on HARDI-orientation scores Ũ : SE(3) → R, which by definition (recall Definition 3)
automatically satisfy

Ũ(RRez,α) = Ũ(R), (98)

are constructed by the derivative of the right-regular representation

AiŨ(g) = (dR(Ai)Ũ)(g) = lim
h↓0

Ũ(g ehAi)− Ũ(g)
h

= lim
h↓0

Ũ(g ehAi)− Ũ(g e−hAi)
2h

,

where in the numerics we can take finite step-sizes in the righthand side. Now in order to avoid a redundant computa-
tion we can also avoid taking the de-tour via HARDI-orientation scores and actually work with the left-invariant vector
fields on the HARDI data itself. To this end we need the consistent right-action R of SE(3) acting on the space of
HARDI images L2(R3 o S2). To construct this consistent right-action we formally define S : L2(R3 o S2) → H ,
where H denotes the space of HARDI-orientation scores, that equals the space of quadratic integrable functions on
the group SE(3) which are α right-invariant, i.e. satisfying (98) by

(SU)(x, R) = Ũ(x, R) = U(x, Rez).

This mapping is injective and its left-inverse is given by (S−1Ũ)(x,n) = Ũ(x, Rn), where again Rn ∈ SO(3) is some
rotation such thatRnez = n. Now the consistent right-action R : SE(3)→ B(L2(R3 oS2)), whereB(L2(R3 oS2))
stands for all bounded linear operators on the space of HARDI images, is (almost everywhere) given by

(R(x,R)U)(y,n) = (S−1 ◦ R(x,R) ◦ S U)(y,n) = U(Rnx + y, RnRez).

This yields the left-invariant vector fields (directly) on sufficiently smooth HARDI images:

AiU(y,n) = (dR(Ai)U)(y,n) = lim
h↓0

(RehAiU)(y,n)− U(y,n)
h

= lim
h↓0

(RehAiU)(y,n)− (Re−hAiU)(y,n)
2h

.

Now in our algorithms we take finite step-sizes and elementary computations (using the exponent (71)) yield the
following simple expressions for the discrete left-invariant vector fields, for respectively central,

A1U(y, n) ≈ Ac1U(y, n) := U(y+hRnex , n)−U(y−hRnex , n)
2h

,

A2U(y, n) ≈ Ac2U(y, n) :=
U(y+hRney , n)−U(y−hRney , n)

2h
,

A3U(y, n) ≈ Ac3U(y, n) := U(y+hRnez , n)−U(y−hRnez , n)
2h

,

A4U(y, n) ≈ Ac4U(y, n) :=
U(y , Rn Rex,h ez)−U(y , Rn Rex,−h ez)

2h
,

A5U(y, n) ≈ Ac5U(y, n) :=
U(y , Rn Rey,h ez)−U(y , Rn Rey,−h ez)

2h
.

(99)
forward,

A1U(y, n) ≈ Af1U(y, n) := U(y+hRnex , n)−U(y , n)
h

,

A2U(y, n) ≈ Af2U(y, n) :=
U(y+hRney , n)−U(y , n)

h
,

A3U(y, n) ≈ Af3U(y, n) := U(y+hRnez , n)−U(y , n)
h

,

A4U(y, n) ≈ Af4U(y, n) :=
U(y , Rn Rex,h ez)−U(y , n)

h
,

A5U(y, n) ≈ Af5U(y, n) :=
U(y , Rn Rey,h ez)−U(y , n)

h
.

(100)

and backward,

A1U(y, n) ≈ Ab1U(y, n) := U(y , n)−U(y−hRnex , n)
h

,

A2U(y, n) ≈ Ab2U(y, n) :=
U(y , n)−U(y−hRney , n)

h
,

A3U(y, n) ≈ Ab3U(y, n) := U(y , n)−U(y−hRnez , n)
h

,

A4U(y, n) ≈ Ab4U(y, n) :=
U(y , n)−U(y , Rn Rex,−h ez)

h
,

A5U(y, n) ≈ Ab5U(y, n) :=
U(y , n)−U(y , Rn Rey,−h ez)

h
.

(101)
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left-invariant finite differences. The left-invariant vector fields {A1,A2,A4,A5} clearly depend on the choice of
Rn ∈ SO(3) which maps Rnez = n. Now functions in the space H are α-right invariant, so thereby we may assume
that R can be written as R = Rex,γRey,β , now if we choose Rn again such that Rn(β,γ) = Rex,γRey,βRey,α=α0=0

then we take consistent sections in SO(3)/SO(2) and we get full invertibility S−1 ◦ S = S ◦ S−1 = I.

Our evolution schemes, however, the choice of representant Rn is irrelevant, because they are well-defined on the
quotient R3 o S2 = SE(3)/({0} × SO(2)).

In the computation of (99) one would have liked to work with discrete subgroups of SO(3) acting on S2 in order to
avoid interpolations, but unfortunately the platonic solid with the largest amount of vertices (only 20) is the dodeca-
hedron and the platonic solid with the largest amount of faces (again only 20) is the icosahedron. Nevertheless, we
would like to sample the 2-sphere such that the distance between sampling points should be as equal as possible and
simultaneously the area around each sample point should be as equal as possible. Therefore we follow the common
approach by regular triangulations (i.e. each triangle is regularly divided into (o + 1)2 triangles) of the icosahedron,
followed by a projection on the sphere. This leads toNo = 2+10(o+1)2 vertices. We typically considered o = 1, 2, 3,
for further motivation regarding uniform spherical sampling, see [38, ch.7.8.1].

For the required interpolations to compute (99) within our spherical sampling there are two simple options. Either one
uses a triangular interpolation of using the three closest sampling points, or one uses a discrete spherical harmonic
interpolation. The disadvantage of the first and simplest approach is that it introduces additional blurring, whereas the
second approach can lead to overshoots and undershoots. In both cases it is for computational efficiency advisable to
pre-compute the interpolation matrix, cf. [20, ch:2.1], [40, p.193]. See Appendix F.

12.1 Finite difference schemes for diffusion and pseudo-linear scale spaces on R3 o S2

The linear diffusion system on R3 o S2 can be rewritten as{
∂tW (y,n, t) =

(
D11((A1)2 + (A2)2) +D33(A3)2 +D44∆S2

)
W (y,n, t)

W (y,n, 0) = U(y,n) , (102)

This system is the Fokker-Planck equation of horizontal Brownian motion on R3 o S2 if D11 = 0. Spatially, we
take second order centered finite differences for (A1)2, (A2)2 and (A3)2, i.e. we applied the discrete operators in the
righthand side of (99) twice (where we replaced 2h 7→ h to ensure direct-neighbors interaction), so we have

((A3)2W )(y,n, t) ≈ W (y + hRnez,n, t)− 2W (y,n, t) +W (y− hRnez,n, t)
h2

, (103)

For each q ∈ N ∪ {0}, we define the vector wq = (wqy,k)k=1...No,y∈I ∈ RN3No , where k enumerates the number of
samples on the sphere, where y enumerates the samples on the discrete spatial grid I = {1, . . . , N} × {1, . . . , N} ×
{1, . . . , N} and where q enumerates the discrete time frames. Rewrite (103) and (102) in vector form using Euler-
forward first order approximation in time:

wq+1 = (I −∆t(JS2 + JR3))wq ,

where JS2 ∈ RN3No×N3No denotes the angular increments block-matrix and where JR3 ∈∈ RN3No×N3No denotes
the spatial increments block-matrix.

12.1.1 Angular increments block-matrix

The angular increments block-matrix equals in the basic (more practical) approach, cf.[20], of (tri-)linear spherical
interpolation

JS2 = h−2
a D44(B4 +B5), (104)
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with angular stepsize ha > 0 and with B4 and B5 are matrices with 2 on the diagonal and where for each column the
of off-diagonal elements is also equal to 2. See Appendix F, Eq. (163), for details.

In the more complicated discrete spherical harmonic transform interpolation approach, cf. [33, Ch:7] the angular
increments block-matrix is given by

JS2 = I ⊗D44Λ−1MTQMΛ ∈ R(N3No)×(N3No), with Q = diagj=1,...,NSH
{l(j)(l(j) + 1)e−tregl(j)(l(j)+1)},

(105)
with regularization parameter treg > 0 and where NSH represents the number of spherical harmonics and with
nSH ×No-matrix

M = [M j
k ] = [

1√
C
Y
l(j)
m(j)(nk)], with l(j) = b

√
j − 1c and m(j) = j − (l(j))2 − l(j)− 1

with C =
∑nSH
j=1 |Y

l(j)
m(j)(0, 0)|2 and where the diagonal matrix Λ = diag{δS2(n1), . . . , δS2(nNo)} contains discrete

surface measures δS2(nk) (for spherical sampling by means of higher order tessellations of the icosahedron) given by

δS2(nk) =
1
6

∑
i 6=k,j 6=k,i 6=j,i∼j∼k

A(ni,nj ,nk) , (106)

where i ∼ j means that ni and nj are part of a locally smallest triangle in the tessellation and where the surface
measure of the spherical projection of such a triangle is given by

A(ni,nj ,nk) = 4 arctan(
√

tan(sijk/2) tan((sijk − sij)/2) tan((sijk − sik)/2) tan((sijk − sjk)/2)) ,
with sijk = 1

2 (sij + sik + sjk) and sij = arccos(ni · nj).

12.1.2 Spatial increments matrix

In both approaches the spatial increments block matrix equals JR3 given by Eq. (163) in Appendix F.

12.1.3 Stability bounds on the step-size

We have guaranteed stability iff

‖I −∆t(JS2 + JR3)‖ = sup‖w‖=1‖(I −∆t(JS2 + JR3))w‖ < 1,

which is by I −∆t(JS2 + JR3) = (νI −∆tJR3) + ((1− ν)I −∆tJS2), with ν ∈ (0, 1), the case if

‖I − ∆t
ν
JR3‖ < 1 and ‖I − ∆t

1− ν
JS2‖ < 1 ⇒ ‖(νI −∆tJR3) + ((1− ν)I −∆tJS2)‖ < ν+ (1− ν) = 1. (107)

Sufficient (and sharp) conditions for the first inequality are obtained by means of the Gerschgorin Theorem [42] :

∆t ≤ νh2

4D11 + 2D33
. (108)

Application of the Gerschgorin Theorem [42] on the second equality gives after optimization over ν, the following
global guaranteed-stability bound

∆t ≤ 1
4D11+2D33

h2 + 4D44

h2
a

(109)
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in the linear interpolation case and

∆t ≤ h2

4D11+2D33+D44h2 L(L+1)

2 etregL(L+1)

if treg · L(L+ 1) ≤ 1 ,

∆t ≤ h2

4D11+2D33+D44h2 1
2e treg

if treg · L(L+ 1) > 1
(110)

in the spherical harmonic interpolation case. For details, see respectively [20] and [33].

The pseudo-linear scale spaces are implemented using the above together with Eq. (93), and Eq. (96), Eq. (97).

12.2 Finite difference schemes for Hamilton-Jacobi equations on R3 o S2

Similar to the previous section we use a Euler-forward first order time integration scheme, but now we use a so-called
upwind-scheme, where the sign of the central difference determines whether a forward or central difference is taken.

W (y, n, t+ ∆t) = W (y, n) + ∆t
2η

(
D11

((
a−,1(y, n)U(y , n)−U(y−hRnex , n)

h
+ a+,1(y, n)U(y+hRnex , n)−U(y , n)

h

)2

+
(
a−,2(y, n)

U(y , n)−U(y−hRney , n)

h
+ a+,2(y, n)

U(y+hRney , n)−U(y , n)

h

)2
)

+

+D44

((
a−,4(y, n)

U(y , n)−U(y , Rn Rex,−h ez)

h
+ a+,4(y, n)

U(y , Rn Rex,h)−U(y , n)

h

)2

+
(
a−,5(y, n)

U(y , n)−U(y , Rn Rey,−h ez)

h
+ a+,5(y, n)

U(y , Rn Rex,h)−U(y , n)

h

)2
) )η

,

where the functions a−,k are given by

a−,1(y, n) = max
{

0, U(y+hRnex , n)−U(y−hRnex , n)
2h

}
, a+,1(y, n) = min

{
0, U(y+hRnex , n)−U(y−hRnex , n)

2h

}
,

a−,2(y, n) = max
{

0,
U(y+hRney , n)−U(y−hRney , n)

2h

}
, a+,2(y, n) = min

{
0,

U(y+hRney , n)−U(y−hRney , n)

2h

}
,

a+,4(y, n) = min
{

0,
U(y , Rn Rex,h ez)−U(y , Rn Rex,−h ez)

2h

}
, a−,4(y, n) = max

{
0,

U(y , Rn Rex,h ez)−U(y , Rn Rex,−h ez)

2h

}
.

a+,5(y, n) = min
{

0,
U(y , Rn Rey,h ez)−U(y , Rn Rey,−h ez)

2h

}
. a−,5(y, n) = max

{
0,

U(y , Rn Rey,h ez)−U(y , Rn Rey,−h ez)

2h

}
.

12.3 Convolution implementations

The algorithm for solving Hamilton-Jacobi Equations Eq. 135, (52) by R3oS2 dilation/erosion with the corresponding
analytic Green’s function (89) boils down to the same algorithm as R3 o S2-convolutions with analytic Green’s
functions for diffusion. Basically, the algebra (+, ·) is to be replaced by respectively the (max,+) and (min,+)-
algebra. So the results on fast efficient computation, using lookup-tables and/or parallelization cf. [59], apply also to
the morphological convolutions. The difference though is that hypo-elliptic diffusion kernels are mainly supported
near the z-axis (thereby within the R3 o S2 convolution after translation and rotation near the A3-axis), whereas the
erosion kernels are mainly supported near the xy-plane, but the efficiency principles are easily carried over to the
morphological convolutions.

Next we address two minor issues that arise when implementing the convolution algorithms [33, ch:8.2] and [59]:

1. In the implementation with analytical kernels expressed in the second chart, such as (83) one needs to extract the
second chart Euler angles (β̃, γ̃) from each normal n in the spherical sampling, i.e. one must solve n(β̃, γ̃) = n.
The solutions are

(β̃, γ̃) = (sign(n1) arccos(s̃ign(n2

√
n2

2 + n2
3)),−s̃ign(n3) arcsin

(
n2√
n2

2 + n2
3

)
) (111)
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with sign(x) = 1 if x > 0 and zero else, and with s̃ign(x) = 1 if x ≥ 0 and zero else.

2. R3 o S2-convolution requires computation of RTn v , with v = y− y′, Theorem 1. For the sake of computation
speed this can be done without goniometric formulas:

RTn (v) =
1

(n1)2 + (n2)2

 (n2)2v1 + n1n2(n3 − 1)v2 + n1(n1n3v1 −
√

(n1)2 + (n2)2
√

1− (n3)2v3)
(n1)2v2 + n1n2(n3 − 1)v1 + n2(n2n3v2 −

√
(n1)2 + (n2)2

√
1− (n3)2v3)√

1− (n3)2
√

(n1)2 + (n2)2(n1v1 + n2v2) + n3v3((n1)2 + (n2)2)


if (n1, n2) 6= (0, 0), where Rn is indeed a rotation given by

RTn (v) =
1

(n1)2 + (n2)2

 (n2)2v1 + n1n2(n3 − 1)v2 + n1(n1n3v1 +
√

(n1)2 + (n2)2
√

1− (n3)2v3)
(n1)2v2 + n1n2(n3 − 1)v1 + n2(n2n3v2 +

√
(n1)2 + (n2)2

√
1− (n3)2v3)

−
√

1− (n3)2
√

(n1)2 + (n2)2(n1v1 + n2v2) + n3v3((n1)2 + (n2)2)


if (n1, n2) 6= (0, 0) that maps (0, 0, 1)T onto (n1, n2, n3) ∈ S2. If (n1, n2) = (0, 0) then we set Rn=(0,0,n3) =
sign(n3) I .

13 Adaptive, Left-Invariant Diffusions on HARDI images

13.1 Scalar Valued Adaptive Conductivity

In order to avoid mutual influence of anisotropic regions (areas with fibers) and isotropic regions (ventricles) one can
replace the constant diffusivity/conductivity D33 by

D33A3A3 7→ D33A3 ◦ e−
|A3W (·,t)|2

K2 ◦ A3 , (112)

in the generator of the left-invariant diffusion (44) (where a = 0 and D = diag{0, 0, D33, 0, 0}). This now yields the
following hypoelliptic diffusion system

∂W
∂t (y,n, t) = D33 A3|y,n (e−

| A3|y,nW (y,n,t)|2

K2 A3W )(y,n, t),
W (y,n, 0) = U(y,n),

(113)

Here could also choose to adapt the diffusivity by the original DW-MRI data U : R3 oS2 → R+ at time 0, so that the
diffusion equation itself is linear, whereas the mapping U 7→ Φt(U) := W (·, t) in Eq. (113) included is well-posed
and nonlinear. In the experiments, however we extended the standard approach by PeronaMalik [57] to R3 o S2 and
we used (113) where both the diffusion equation and the mapping U 7→ W (·, t) are nonlinear. The idea is simple:
the replacement sets a soft-threshold on the diffusion in A3-direction, at fiber locations one expects |A3U(y,n)| to
be small, whereas in the transition areas between ventricles and white matter, where one needs to block the fiber
propagation by hypo-elliptic diffusion, one expects a large |A3U(y,n)|. For further details see the second author’s
master thesis [20]. Regarding discretization of (113) in the finite difference schemes of Subsection 12.1 we propose

(A3(D33 e
− |A3W (·,t)|2

K2 A3W (·, t)))(y, n) ≈
D̃33(y+ 1

2
h, n, t) · Ac3W (y+ 1

2
h, n, t)− D̃33(y− 1

2
h, n, t) · Ac3W (y− 1

2
h, n, t)

h

where h is the spatial stepsize and where h = hRnez for notational convenience and where

D̃33(y,n, t) = D33 e
−
(

max{|Af3W (y,n,t)|,|Ab3W (y,n,t)|}
K

)2

.

and where we recall Eq. (99), Eq. (100) and Eq. (101) for central, forward and backward finite differences.
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13.2 Tensor-valued adaptive conductivity

For details see [33] and [25, Ch:9], where we generalized the results in [30, 39]. Current implementations do not
produce the expected results. Here the following problems arise. Firstly, the logarithm and exponential curves in
Section 9.1 are not well-defined on the quotient R3 o S2 and we need to take an appropriate section through the
partition of cosets in R3 o S2. Secondly, the. 6× 6 Hessian in [25, Eq.103,Ch:9] has a nilspace in A6-direction.

14 Experiments and Evaluation

First we provide a chronological evaluation of the experiments depicted in various Figures so far.

In Figure 2 and Figure 3 one can find experiments of R3 o S2-convolution implementations of hypo-elliptic diffusion
(“contour enhancement”,cf. Figure 10), Eq. (49), using the analytic approximation of the Green’s function Eq. (83).
Typically, these R3 oS2-convolution kernel operators propagate fibers slightly better at crossings, as they do not suffer
from numerical blur (spherical interpolation) in finite difference schemes explained in Section 12.1. Compare Figure 2
to Figure 5, where the same type of fiber crossings of the corona radiata and corpus callosum occur. Here we note
that all methods in Figure 5 have been evaluated by finite difference schemes, based on linear spherical interpolation,
with sufficiently small time steps ∆t, recall Eq. (109) using 162 spherical samples from a higher order tessellation of
the icosahedron. In Figure 5 the visually most appealing results are obtained by a single concatenation of diffusion
and erosion. Then in Figure 4 we have experimentally illustrated the short-coming of sharpening the data by means
of squaring in comparison to the erosions, Eq. (52). Experiments of the latter evolution, implemented by the upwind
finite difference method described in Section 12.2, has been illustrated for various parameter settings in Figure 8 (also
in Figure 5). The possibilities of a further modification, where erosion is locally adapted to the data, can be found in
Figure 9. Then in Figure 10 and Figure 11 we have depicted the Green’s functions of the (iterated) direction process
(hypo-elliptic convection and diffusion) that we applied in a fiber completion experiment in Figure 12.

The experiments in Figure 5 (implemented in Mathematica 7) take place on volumetric DTI-data-sets 104× 104× 10
where we applied (2) using 162 samples on the sphere (tessellation icosahedron). In Figure 17 we illustrate the
enhancement and eroding effect in 3D, of the same experiments as in Figure 5 where we took two different viewpoints
on a larger 3D-part of the total data-set.

In the remaining subsections we will consider some further experiments on respectively diffusion, erosion and pseudo-
linear scale spaces.

14.1 Further experiments diffusions

In Figure 18 we have applied both linear and nonlinear diffusion on an noisy artificial data set which both contains an
anisotropic part (modeling neural fibers) and containing a large isotropic part (modeling ventricles, compare to Fig. 5).
When applying linear diffusion on the data-set the isotropic part propagates and destroys the fiber structure in the

anisotropic part, when applying nonlinear diffusion with the same parameter settings, but now with D33 = e−
|A3U|

2

K2

and suitable choice ofK > 0 one turns of the propagation (diffusion-flow) through the boundary between isotropic and
non-isotropic areas where (y,n 7→ |A3(y,n)|2 is relatively high. Consequently, both the fiber-part and the ventricle
part are both appropriately diffused without too much influence on each other, yielding both smooth/aligned fibers and
smooth isotropic glyphs.
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Figure 17: Same experiments as in Figure 5, but now visualized with several slices in 3D. First row: Input DTI-
data set. Second row: Output squared linear diffusion on squared data-set. Third row: Output erosion applied to the
diffused dataset depicted in the second row. For parameter settings, see Figure 5.

1

Figure 18: Adaptive diffusivity/conductivity based on the data, Section 13.1. Top row: Artificial 15× 15× 15× 162-
input data that is a sum of a noisy fiber part and a noisy isotropic part. For the sake of visualization we depicted these
parts separately. Bottom row: Output of just linear diffusion (without greyvalue transformations, nor Eq. (4)), t = 1,
D33 = 1, D44 = 0.04. Output nonlinear diffusion with t = 1, D33 = 1, D44 = 0.015, K = 0.05, ∆t = 0.01.
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Figure 19: The effect on η ∈ [ 1
2 , 1] on angular erosion Eq. (52), D44 = 0.4, D11 = 0 and t = 0.4, ∆t = 0.02. Left:

original glyph, right eroded glyphs for η = 0.5, . . . , 1.0.

Figure 20: Morphological kernel implementation of the Hamilton-Jacobi equations Eq. (52) by R3 o S2-erosion,
Eq. (39), η = 1, D11 = 0, D44 = 0.4, t = 1, Left: input and output for No = 162, Right: same for No = 362.

14.2 Further experiments erosions

Erosions yield a geometrical alternative to more ad-hoc data-sharpening by squaring, see Fig:4 for a basic illustration.
We compared angular erosions for several values of η ∈ [0, 1], in Figure 19, where we fixed D44 = 0.4, D11 = 0 and
t = 0.4 in Eq. (52). Typically, for η close to a half the structure elements are more flat, Eq. (89) and Eq. (90) leading
to a more radical erosion effect if time is fixed. Note that this difference is also due to the fact that D11 in Eq. (52) has
physical dimension [Intensity][Length]2η

[Time] and D44 has physical dimension [Intensity]
[Time] .

We have implemented two algorithms for erosion, by morphological convolution in R3 o S2 erosions Eq. (39) with
analytical kernel approximations Eq. (89) and finite difference upwind schemes with stepsize t > 0. A drawback of
the morphological convolutions is that it typically requires high sampling on the sphere, as can be seen in Figure 20,
whereas the finite difference schemes also work out well for low sampling rates (in the experiments on real medical
data sets in 5 we used a 162-point tessellation of the icosahedron). Nevertheless, for high sampling on the sphere the
analytical kernel implementations were close to the numerical finite difference schemes and apparently our analytical
approximation Eq. (90) approximates the propagation of balls in R3 o S2 close enough for reasonable parameter-
settings in practice. Upwind finite difference schemes are better suited for low sampling rates on the sphere, but for
such sampling rates they do involve inevitable numerical blur due to spherical grid interpolations. Typically, erosions
should be applied to strongly smoothed data as it enhances local extrema. In Figure 5, lower left corner one can see the
result on a DTI-data set containing fibers of the corpus callosum and corona radiata, where the effect of both spatial
erosion (glyphs in the middle of a “fiber bundle” are larger than the glyphs at the boundary) and angular erosion glyphs
are much sharper so that it is easier to visually track the smoothly varying fibers in the output dataset. Typically, as can
be seen in Fig. 5, applying first diffusion and then erosion is stable with respect to the parameter settings and produces
visually more appealing sharper results then simultaneous diffusion and dilation in pseudo-linear scale spaces.

14.3 Further experiments pseudo-linear scale spaces

Pseudo-linear scale spaces, Eq.94 combine diffusion and dilation along fibers in a single evolution. The drawback is
a relatively sensitive parameter C > 0 that balances infinitesimally between dilation and diffusion. In Figure 21 we
applied some experiments where we kept parameters fixed except for C > 0. The generator of a pseudo-linear scale
space consists of a diffusion generator plus C times an erosion generator and indeed for C = 4 we see more elongated
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Figure 21: Pseudo-linear scale space on R3 o S2 applied on the initial DTI-dataset in Figure 5. t = D33 = 1,
D44 = 0.04, ∆t = 0.01, top: C = 2, bottom: C = 4.

glyphs and more apparent crossings than for the case C = 2.

15 Conclusion

For the purpose of tractography detection and visualization of biological fibers, Diffusion-Weighted MRI-images, such
as DTI and HARDI, should be enhanced such that fiber junctions are maintained, while reducing high frequency noise
in the joint domain R3 o S2 of positions and orientations. Therefore we have considered diffusions and Hamilton-
Jacobi equations on DW-MRI HARDI and DTI induced by fundamental stochastic processes on R3 o S2 embedded
in the group manifold SE(3) of 3D-rigid body motions. In order to achieve rotation and translation covariance,
processing must be left-invariant. We have classified all left-invariant linear and morphological scale spaces on DW-
MRI. This classifications yield novel approaches, that in contrast to the existing methods, employ fiber extensions
simultaneously over positions and orientations, while preserving crossings and/or bifurcations. Application on DTI
creates fiber-crossings by extrapolation, comparable to HARDI, allowing to reduce the number of scanning directions,
whereas applying the same method to HARDI removes spurious non-aligned crossings. In order to sharpen the DW-
MRI images, we apply morphological scale spaces (Hamilton-Jacobi equations) related to probabilistic cost-processes
on R3 o S2. Moreover, we provide pseudo-linear scale spaces combining morphological scale spaces and linear scale
spaces in a single evolution. All evolutions can be implemented by stable, left-invariant finite difference methods,
or by convolution with analytic kernels. For example, we have shown by extending existing results on Rn (and
recently on the Heisenberg group to SE(3), cf.[52]), that morphological R3oS2-convolutions are the unique viscosity
solutions of Hamilton-Jacobi equations on R3 o S2 and moreover we have provided analytical approximations of the
morphological kernels (Green’s functions). Finally, we have extended anisotropic linear diffusions systems on R3oS2

to data-adaptive diffusion systems of Perona Malik type that are useful to avoid undesired interaction between more
isotropic regions (at the neural fibers) and less isotropic regions (at the ventricles).
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In future work we aim to extend our differential geometrical approach on R3 o S2 to the actual tracking of fibers.
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A Metric and Lagrangians on (R3 o S2, dA1, dA2)
Recall from Figure 6 that our left-invariant diffusions on R3 oS2 take place on the contact/sub-Riemannian manifold
(SE(3),dA1,dA2,dA6). On this contact manifold (SE(3),dA1,dA2,dA6) we set the Lagrangian

Lη(γ̃(s), ˙̃γ(s)) =
2η − 1

2η

(
| ˙̃γ3(s)|2

D33
+
| ˙̃γ4(s)|2 + | ˙̃γ5(s)|2

D44

) η
2η−1

(114)

where η > 1
2 and where D33, D44 > 0 and where ˙̃γi(s) = 〈dAi

∣∣
γ̃(s)

, ˙̃γ(s)〉 are the components w.r.t. the moving
frame of reference attached to the curve, cf. Figure 6. For η → ∞ we have a homogeneous Lagrangian and a
left-invariant semi-metric on (SE(3),dA1,dA2,dA6) is set by

d(g1, g2) := d(g−1
2 g1, e = (0, I)) =

inf
h1,h2∈{0}×SO(2)⊂SE(3)

inf
γ = (x(·), Rn(·)) ∈ C∞((0, 1), SE(3)),

γ(0) = eh2, γ(1) = g
−1
2 g1h1,

〈 dA1
∣∣∣
γ
, γ̇〉 = 〈 dA2

∣∣∣
γ
, γ̇〉 = 〈 dA6

∣∣∣
γ
, γ̇〉 = 0

∫ 1

0

√ ∑
i∈{3,4,5}

1
Dii |dAi(γ̇(s))|2 ds (115)

By left-invariance of the Lagrangian and the fact that eh2 = h2e we may as well set γ(0) = e and γ(L) =
h−1

2 g−1
2 g1h1 = (g2h2)−1g1h1 in Eq. (115) so that d(g1, g2) = d(g1h1, g2h2) for all h1, h2 ∈ {0} × SO(2) and

thereby inducing a well-defined metric on (R3 o S2,dA1,dA2):

dhor((y,n), (y′,n′)) = d((y, Rn), (y′, Rn′))

on R3 o S2. Along horizontal curves s 7→ γ̃(s) = (x(s), R(s)) in SE(3) we have n(s) = R(s)ez = ẋ(s) and

‖κ(s)‖2 = |〈dA4
∣∣
γ(s)

, γ̇(s)〉|2 + |〈dA5
∣∣
γ(s)

, γ̇(s)〉|2,
〈dA3

∣∣
γ(s)

, γ̇(s)〉 = ‖ẋ(s)‖ = 1,

and thereby the metric reduces to

dhor((y,n), (y′,n′)) = inf
x(·) ∈ C∞((0, L),R3),

x(0) = 0, ẋ(0) = ez,
x(L) = RTn (y′ − y),

ẋ(L) = RTn Rn′ ez = RTn n′,

L∫
0

√
1
D44
‖κ(s)‖2 +

1
D33

ds (116)

where s, L > 0, and κ(s) are respectively spatial arclength, total length, and curvature of the spatial part of the curve.
Note that the distance (116) is indeed invariant under the choice of Rn such that Eq. (9) holds, due to left-invariance
of (115) and rotation covariance of (116) and (RnRez,α)T = RTez,αRn. Furthermore, we note that torsion is implicitly
penalized by simultaneous penalization of length and curvature.
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B Viscosity Solutions of Hamilton-Jacobi Equations on (R3 o S2, dA3)

After introducing a positive semi-definite8 left-invariant metric tensor G : R3 oS2×T (R3 oS2)×T (R3 oS2)→ R
given by Eq. (36), we considered the solutions (51) and (53) of the Hamilton-Jacobi equations on R3 o S2:{

∂W
∂t (y,n, t) = ±(H(dW (·, ·, t)))(y,n) := 1

2 (G(y,n))−1
(

dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)
)

W (y,n, 0) = U(y,n)
(117)

where H stands for the Hamiltonian. It is well-known [19] that Hamilton-Jacobi equations in general do not have a
unique solution, unless extra requirements such as the practically reasonable viscosity requirement are added.9

Our claim was that the solutions (51) and (53) are the unique [19] viscosity solutions of the Hamilton-Jacobi equations
(135) and (52).

Definition 8 Suppose that the Hamiltonian is convex and H(p) → ∞ as p → ∞. Then a viscosity solution is a
bounded and continuous (not necessarily differentiable) weak solution W : (R3 o S2)× R+ → R of (117) such that

1. for any smooth function V : (R3 o S2) × R+ → R such that W − V attains a local maximum at (y0,n0, t0)
one has

∂V

∂t
(y0,n0, t0)∓ (H(dV (·, ·, t)))(y0,n0) ≤ 0 . (118)

2. for any smooth function V : (R3 o S2) × R+ → R such that W − V attains a local minimum at (y0,n0, t0)
one has

∂V

∂t
(y0,n0, t0)∓ (H(dV (·, ·, t)))(y0,n0) ≥ 0 . (119)

We will first provide a quick review of Hamilton-Jacobi theory, the Hopf-Lax formula and erosions on respectively
R4 and on the Heisenberg group (SE(3))0 that we obtain by contraction from SE(3) and which serves as a local
approximation of SE(3), as explained in Section 10.1.

Definition 9 Let X be a normed space, then the Legendre-Fenchel transform L 7→ FL on X is given by

(FXL)(x) = sup
y∈X
{〈x, y〉 − L(y)}

where L : X → R ∪∞ and 〈x, y〉 = x(y) and x ∈ X∗. In particular if X = Rn one gets

(FRnL)(x) = sup
y∈Rn

{x · y− L(y)}

and in case of the Lie-algebra L(SE(3)) of left-invariant vector fields on SE(3) we get

(FL(SE(3))L)(
6∑
i=1

pidAi) = sup
6∑
i=1

ciAi

{〈
6∑
i=1

pidAi,
6∑
j=1

cjAj〉 − L(
6∑
i=1

ciAi)} = ((FR6 l)(p1, . . . , p6) ,

with l(c1, . . . , c6) = L(
6∑
i=1

ciAi).

8It need not be strictly positive definite, but the Hörmander condition [47] should not be violated.
9Consider for example the initial value problem ∂U

∂t
(x, t) = ( ∂U

∂x
(x, t))2 and U(x, 0) = 0, x ∈ R, t ≥ 0, with continuous (non-sensible)

solution U(x, t) = |x| − t if t > |x| and zero else. This “nonsense” solution is not a viscosity solution, namely consider φ(x, t) = e−te−x
2

and
k = −1 in the Definition of viscosity solutions according to Crandall [19].
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Lemma 1 Let η > 1
2 . The Legendre-Fenchel transform of the function

R4 3 (c1, c2, c4, c5) 7→ 2η − 1
2η

(
(c1)2 + (c2)2

D11
+

(c4)2 + (c5)2

D44

) η
2η−1

∈ R

is given by

R4 3 (p1, p2, p4, p5) 7→ 1
2η
(
D11((p1)2 + (p2)2) +D44((p4)2 + (p5)2

)η ∈ R

Proof It is well-known that the Fenchel transform of c 7→ 1
a‖c‖

a equals p 7→ 1
b‖p‖

b with 1
a + 1

b = 1, furthermore
F◦Dλ = Dλ−1 ◦F whereDλ denotes the scaling operator given byDλf(x) = f(λ−1x) from which the result follows
by setting b = 2η, a = 2η

2η−1 and respectively λ =
√
D11,

√
D44. �

Corollary 1 Let η > 1
2 , t > 0, then on R4 the Hopf-Lax formula is given by

w(x, t) := inf
y∈R4

inf
γ ∈ C1(0, t)
γ(t) = x
γ(0) = y

{
t∫

0

Lη(γ̇(s)) ds+ u(y)} = min
y∈R4
{tLη

(
1
t
(x− y)

)
+ u(y)}, (120)

with w(·, 0) = u a given Lipschitz continuous function on R4, with

Lη(γ̇(s)) = Lη(γ̇1(s), γ̇2(s), γ̇4(s), γ̇5(s))
:= 2η−1

2η

(
1
D11 ((γ̇1(s))2 + (γ̇2(s))2) + 1

D44 ((γ̇4(s))2 + (γ̇5(s))2)
) η

2η−1
(121)

and w(x, t) given by (120) is the unique viscosity solution of the Hamilton-Jacobi-Bellman system{
∂w
∂t (x, t) = − 1

2η

(
D11

((
∂w
∂x1 (x, t)

)2
+
(
∂w
∂x2 (x, t)

)2)
+D44

((
∂w
∂x4 (x, t)

)2
+
(
∂w
∂x5 (x, t)

)2))η
,

w(x, 0) = u(x)

with x = (x1, x2, x4, x5) ∈ R4, t ≥ 0. The morphological Green’s function of this PDE is given by

kD
11,D44,η,+

t (x) = tLη(t−1x) =
2η − 1

2η
t−

1
2η−1

(
(x1)2 + (x2)2

D11
+

(x4)2 + (x5)2

D44

) η
2η−1

.

In the limiting case η →∞ the Lagrangian is homogeneous10 and

w(x, t) = min
y
{u(y) +

(
1
D11

(
(x1 − y1)2 + (x2 − y2)2

)
+

1
D44

(
(x4 − y4)2 + (x5 − y5)2

)) 1
2

}

and we arrive at the time-independent Hamilton-Jacobi equation

1 = D11
((

∂w
∂x1 (x, t)

)2
+
(
∂w
∂x2 (x, t)

)2)
+D44

((
∂w
∂x4 (x, t)

)2
+
(
∂w
∂x5 (x, t)

)2)
,

In the limiting case η ↓ 1
2 the Hamiltonian is homogeneous and the Hopf-Lax formula reads

w(x, t) = min
y∈R4
{kD

11,D44,1/2,+
t (x− y) + u(y)}

where the flat morphological erosion kernel is given by

k
D11,D44,1/2,+
t (y) =

{
0 if (y1)2+(y2)2

D11 + (y4)2+(y5)2

D44 ≤ t2,
∞ else .

10The corresponding HamiltonianH(p̃) = L(γ̇) is homogeneous as well, but now with respect to p̃i := 1
2
∂2(L∞(γ̇))

∂γ̇iγ̇j
, [ch:3][66].
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Proof Directly follows by Lemma 1 and [34, ch:3(Thm 4), ch:10 (Thm 1, Thm 3)]. For the special case of a
homogeneous Lagrangian (η →∞), see [66, Ch:3].

Remark 5 We parameterized elements in R4 by means of y = (y1, y2, y4, y5) since we want to stress the analogy to
Hamilton-Jacobi equations on R3 o S2.

Lemma 2 (semigroup property of erosion operator on R3 o S2)
Let η > 1

2 and let D11, D44. Let the morphological Green’s function be defined as

kD
11,D44,η

t (y,n) := inf
γ = (x(·), R(·)) ∈ C∞((0, t), SE(3)),
γ(0) = (0, I = Rez ), γ(t) = (y, Rn),

〈 dA3
∣∣∣
γ
, γ̇〉 = 〈 dA6

∣∣∣
γ
, γ̇〉 = 0

t∫
0

Lη(γ(p), γ̇(p)) dp , (122)

with
Lη(γ(p), γ̇(p)) := Lη(〈dA1

∣∣
γ(p)

, γ̇(p)〉, . . . , 〈dA5
∣∣
γ(p)

, γ̇(p)〉)

where we recall Eq. (121) and with R3 o S2-“erosion arclength” given by

p(τ) =
τ∫
0

√
Gγ(τ̃)(γ̇(τ̃), γ̇(τ̃)) dτ̃ =

τ∫
0

√ ∑
i∈{1,2,4,5}

1
Dii |〈dAi|γ(τ̃) , γ̇(τ̃)〉|2 dτ̃ (123)

with D11 = D22 and D44 = D55 and with left-invariant metric tensor G(·, ·) = lim
η→∞

(Lη(·, ·))2. Then we have the

following identity
kD

11,D44,η,+
t−τ 	 (kD

11,D44,η,+
τ 	 U) = kD

11,D44,η,+
t 	 U , (124)

for all τ ∈ [0, t] and all Lipschitz continuous functions U : R3 o S2 → R, where we recall that our erosion operator
	 is defined in Eq. (39).

Proof First of all we note thatD11 = D22 andD44 = D55 are necessary requirements for a well-defined kD
11,D44,η,+

t :
R3 oS2 → R+ and in particular (as η →∞) a well-defined metric on the quotient R3 oS2 = (R3 oSO(3))/({0}×
SO(2)). Here the limit lim

η→∞
Lη(·, ·) is homogeneous in the second entry so that

L∞(γ(p),
dγ

dp
) = L∞

(
γ(p(τ)), (L∞(γ(p(τ)),

dγ

dτ
))−1 dγ

dτ

)
= 1 and lim

η→∞
kD

11,D44,η,+
t (y,n) = t,

so t > 0 is the total length of the curve in the sub-Riemannian manifold (R3 oS2,dA3) and where p is the arc-length
parameter in (R3 oS2,dA3) since connecting curves over which is optimized are not allowed to use theA3-direction
in the tangent bundle (practical motivation: we want to erode orthogonal to the fibers).

Secondly, we recall that functions U : R3 oS2 → R are related to functions Ũ : SE(3)→ R with invariance property
(∀g∈SE(3)∀h=(0,Rez,α)∈SE(3)Ũ(gh) = Ũ(g)) by means of

Ũ(g) = Ũ(x, R) = U(x, Rez) ,

with g = (x, R) ∈ SE(3), y ∈ R3, ez = (0, 0, 1)T . We apply this identification by setting

W̃ (g, t) := inf
q∈SE(3)

{k̃t(q−1g) + Ũ(q)}

for all g ∈ SE(3) and t ≥ 0. Consequently, we may rewrite our Eq. (124) as

W̃ (g, t) = inf
v∈SE(3)

{k̃t−τ (v−1g) + W̃ (v, τ)} , (125)
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where we use short notation k̃t(y, R) := kD
11,D44,η,+

t (y, Rez).

Thirdly, we apply basically the same approach as in [52, Thm.1] where we replace the Heisenberg group by the
3D-Euclidean motion group SE(3) where in this lemma we carefully omit scaling properties of the Lagrangian that
do hold for the Heisenberg group, but not on the SE(3) (even though one has the contraction limq↓0(SE(3))q =
(SE(3))0 which serves as a local nilpotent approximation, [67]). We shall return to these local approximations later
when we derive approximations of kD

11,D44,η,+
t (y,n). For, now let us proceed with proving Eq. (125).

In general one has
k̃t(v−1g) ≤ k̃τ (v−1q) + k̃t−τ (q−1g) (126)

for all g, h, v ∈ SE(3) and all τ ∈ [0, t] as the concatenation of two optimal curves yields an admissible curve over
which is optimized in the left hand side. Here equality is obtained if v−1q is on the minimizing curve between e and
v−1g, i.e. by left-invariance g is on the minimizing curve between e and v−1g. Now due to continuity and convexity
of (c1, c2, c4, c5) 7→ Lη(c1, c2, c4, c5) the infimum in (125) and (122) is actually a minimum and therefore we can
choose v ∈ SE(3) such that

W̃ (q, τ) = k̃τ (v−1q) + Ũ(v).

Then by Eq. (126) one has
W̃ (g, t) ≤ k̃t(v−1g) + Ũ(v)

≤ k̃τ (v−1q) + k̃t−τ (q−1g) + Ũ(v)
= W̃ (q, τ) + k̃t−τ (q−1g)

for all q ∈ SE(3) and thereby (by taking the infimum over all q) we obtain

kD
11,D44,η,+

t−τ 	 (kD
11,D44,η,+

τ 	 U) ≥ kD
11,D44,η,+

t 	 U . (127)

So in order to prove (124) it remains to be shown that kD
11,D44,η,+

t−τ 	 (kD
11,D44,η,+

τ 	 U) ≤ kD
11,D44,η,+

t 	 U . Let
w ∈ SE(3) such that

W̃ (g, t) = min
v∈SE(3)

k̃t(v−1g) + Ũ(v) = k̃t(w−1g) + Ũ(w) ,

now take q as a point along the minimizing curve between g and w where the vertical R3 oS2 arc-length equals p = τ .
Then we have

W̃ (g, t) = k̃τ (w−1q) + k̃t−τ (q−1g) + Ũ(w) ≥ k̃t−τ (q−1g) + W̃ (q, τ)
≥ min
r∈SE(3)

{k̃t−τ (r−1g) + W̃ (r, τ)}

from which the result follows. �

Lemma 3 Let kD
11,D33,η,±

h respectively denote the viscosity solution of Eq. (135), Eq. (52), with initial condition
±δC , η > 1

2 , D
11, D33 > 0. Horizontal diffusions on R3 o S2 require the filtration (76) of the Lie-algebra. Vertical

diffusions, erosions and dilations on R3 o S2 require the filtration

g0 := {A1,A2,A4,A5} ⊂
g1 := {A1,A2,A3,A4,A5,A6}

(128)

and thereby we have the following estimate for h > 0 sufficiently small

2η−1
2η C−

2η
2η−1 |

∑
i∈{1,2,4,5}

ciAi|
2η

2η−1 ≤
kD

11,D44,η,+
h

([
exp

(
h

∑
i∈{1,2,4,5}

ciAi

)])
h

≤ 2η−1
2η C

2η
2η−1 |

∑
i∈{1,2,4,5}

ciAi|
2η

2η−1

(129)
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with Ai = Ai|e ∈ Te(SE(3)), ci ∈ R, C ≥ 1 and |
∑

i∈{1,2,4,5}
ciAi| =

√ ∑
i∈{1,2,4,5}

1
Dii |ci|2 with D11 = D22

and D44 = D55 and where

[
exp

(
h

∑
i∈{1,2,4,5}

ciAi

)]
denotes the left coset in R3 o S2 = SE(3)/({0} × SO(2))

associated to the group element exp

(
h

∑
i∈{1,2,4,5}

ciAi

)
∈ SE(3).

Proof First of all we set D44 = D11 = 1 as the other cases follow by scaling. The theory of weighted subcoercive
operators on Lie groups applies, [67, ch:1,6] where one should consider the special case U = R, G = SE(3) and
algebraic basis g0 given by (128) as erosion/dilation only takes place in the directions A1, A2, A4 and A5 (i.e. G-
orthogonal to A3). As a result we must assign the following weights to the Lie-algebra elements w1 = w2 = w3 =
w4 = 1 and w3 = w6 = 2. The solution of the Hamilton-Jacobi equation (35) describes the propagation of “balls”
in R3 o S2 = SE(3)/({0} × SO(2)) centered around unity element e = (0, ez) ≡ {(0, Rez,α) | α ∈ [0, 2π)} ∈
R3 o S2, as we show in Appendix C Its Green’s function is given by (122) as we will show later in Theorem 4. with
morphological Green’s function given by Eq. (122) By means of (122) we obtain the estimate

kD
11,D44,η

h (y,n)
h

≤ 2η − 1
2η

h−
1

2η−1−1
(
dSE(3)((y, Rn), (0, I)

) 2η
2η−1 , (130)

where dSE(3) : SE(3)× SE(3)→ R+ is the metric defined by

dSE(3)(g, v) = d(v−1g, e) = d(q, e) = inf
{
δ > 0 | ∃γ∈C1([0,1],SE(3)) : γ(0) = e and γ(1) = g

and sup
s∈[0,1],i∈{1,2,4,5}

|γ̇i(s)| < δ and γ̇3(s) = γ̇6(s) = 0

}

for all q = v−1g, v, g ∈ SE(3), where γ̇i(s) := 〈dAi, γ̇(s)〉, i = 1, . . . , 6, with s = pt−1. Now by the general results
in [67, Prop 6.1] (where one must set Hilbert space H = L2(SE(2)), group G = SE(3), right-regular representation
U = R and filtration (128)) we deduce that there exists11 a C ≥ 1 and ε > 0 such that for all 0 < t = h < ε one has

C−1|
∑

i∈{1,2,4,5}
ciAi| ≤ dSE(3)(e

h
∑

i∈{1,2,4,5}
ciAi

, e) ≤ C|
∑

i∈{1,2,4,5}
ciAi|

= C
√ ∑
i∈{1,2,4,5}

|ci|2wi = C
√ ∑
i∈{1,2,4,5}

|ci|2 .
(131)

Now the result (129) follows by (130) and (131) where we note that h−
1

2η−1−1h
2η

2η−1 = 1. �

Clearly, not every element (y, Rez,γRey,β) ∈ SE(3) is reached by an exponential curve of the type h 7→ eh
∑
i∈{1,2,4,5} c

iAi .
In fact, by the Campbell-Baker-Hausdorff formula and the commutator table (29) one has

(h(y1, y2, 0), Rez,γhRez,βh) = (h (y1, y2, 0), I)(0, Rez,γhRez,βh)
= exp{h(y1A1 + y2A2)} exp{hγA4} exp{hβA5}
= exp{h(y1A1 + y2A2)} exp{hγA4 + βhA5 + 1

2βh
2[A4, A5] +O(h3)}

= exp{h(y1A1+y2A2) + hγA4 + βhA5 + 1
2h

2(y1β−y2γ)A3 + 1
2h

2(βγ)A6 +O(h3)}

= exp{
6∑
i=1

ciAih
wi +O(h3)}

(132)
and consequently, one has

Lemma 4 Let Ωe be a compact set around the unity element e = (0, ez) ≡ [(0, I)] = {(0, Rez,α) | α ∈ [0, 2π)}
within R3 o S2, then there exists an ε > 0 and C > 1 such that for all h < ε one has the following uniform estimate

11In fact this estimate holds uniformly for the groups (SE(3))q , q ∈ [0, 1], of Section 10.1 which share the same Lie-algebra.
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on compact sets

2η−1
2η h

−2η
2η−1 C−

2η
2η−1

(
6∑
i=1

(ci)
2
wi

) η
2η−1

≤ kh((y,n(β,γ)))
h =

kh([exp{
6∑
i=1

ciAih
wi}])

h

≤ h
−2η
2η−1 2η−1

2η C
2η

2η−1

(
6∑
i=1

(ci)
2
wi

) η
2η−1

for all (y,n(β, γ) ≡ [exp{
6∑
i=1

ciAih
wi}] ∈ Ωe, with w1 = w2 = w5 = w4 = 1 and w3 = w6 = 2 and ci := ci(y, α =

0, β, γ) = c̃i(y, α̃ = 0, β̃, γ̃), given by Eq. (75) and (72).

Proof Regarding the assignment of the weights to the Lie-algebra elements we refer to Eq. (132) and (128). Regarding
the logarithmic mapping in SE(3) we recall Section 9.1. Akin to the metric (161), the formula (122) is well-defined
on the partition R3 o S2 := SE(3)/({0} × SO(2)) of left cosets. However as we have the restriction 〈dA6, γ̇〉 =
〈dα̃, γ̇〉 = 〈dα, γ̇〉 = 0 we must apply a consistent cross-section in R3 o S2. For convenience, we take the unique
element from the left cosets with α̃ = 0 in the Euler-angle parametrization in both the initial point (0, Rez = I) and
endpoint (y, Rn = Rex,γ̃Rey,β̃) of the curve. For the rest the proof is the same as the proof of Lemma 3. �.

Corollary 2 Let η > 1
2 , D11 > 0, D44 > 0. w1 = w2 = w4 = w5 = 1, w3 = w6 = 2. For the morphological

erosion (+) and dilation kernel (-) on R3 o S2 one can use the following asymptotical formula

kD
11,D44,η,±

t (y, ñ(β̃, γ̃)) ≡ ± 2η − 1
2η

C
2η

2η−1 t−
1

2η−1

(
6∑
i=1

|c̃i(y, α̃ = 0, β̃, γ̃)|
2
wi

Dii

) η
2η−1

(133)

for sufficiently small time t > 0.

Remark 6 Now according to Theorem 3, the covariantly constant curves with respect to the Cartan connection are
the exponential curves. Now suppose (y, Rn) with Rnez = n and suppose that Rn has α = 0 in its Euler angle

parametrization (12). If (y,n) =

[
e

∑
i∈{1,2,4,5}

ciAi
]

then

[0, 1] 3 s 7→ γ̃(s) := e
s

∑
i∈{1,2,4,5}

ciAi

is the unique covariantly constant (i.e. auto-parallel) curve connecting (0, I) with (y, Rn) in SE(3). Now, according
to Theorem 3 the Cartan connection has non-vanishing torsion and thereby covariantly constant curves need not
coincide with curves (that we call geodesics) that minimize

inf
γ = (x(·), Rn(·)) ∈ C∞((0, t), SE(3)),

γ(0) = (0, Rez ), γ(t) = (y, Rn),

〈 dA3
∣∣∣
γ
, γ̇〉 = 〈 dA6

∣∣∣
γ
, γ̇〉 = 0

t∫
0

Lη(γ(p), γ̇(p)) dp. (134)

If we now substitute γ̃(s) into (134) then one has γ̃i(s) = 〈dAi
∣∣
γ̃(s)

, ˙̃γ(s)〉 = ci, i ∈ {1, 2, 4, 5} and consequently
we obtain (we again set s = t−1p as in the proof of Lemma 3)

t

1∫
0

Lη(γ̃(s), t−1 d

ds
γ̃(s)) ds =

2η − 1
2η

 ∑
{1,2,4,5}

|ci|2

Dii


η

2η−1

t−
1

2η−1 ,

which is precisely the weighted modulus on the Lie-algebra ! So from Lemma 3 we observe that the discrepancy
between covariantly constant curves (exponential curves) and energy minimizers (geodesics) that is due to the torsion
of the Cartan connection (so that the standard result on the geodesic equation [49, p.172-174] does not apply) has a
minor effect for small time steps (that is if (y,n) can be connected via a suitable covariantly constant curve).
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Lemma 5 Let ci ∈ R, i = 1, 2, 4, 5 and η > 1
2 then

lim
h↓0

kD
11,D44,η,+

h

([
exp

(
h

∑
i∈{1,2,4,5}

ciAi

)])
h

=
2η − 1

2η
|

∑
i∈{1,2,4,5}

ci√
Dii

Ai|
2η

2η−1 =
2η − 1

2η

∣∣∣∣∣∣
∑

i∈{1,2,4,5}

|ci|2

Dii

∣∣∣∣∣∣
η

2η−1

.

Proof Consider Eq. (122), then to each C2-curve with 〈dA3
∣∣
γ
, γ̇〉 = 〈dA6

∣∣
γ
, γ̇〉 = 0, we have the following

C1-functions
[0, h] 3 p 7→ γ̇i(p) := 〈dAi

∣∣
γ(p)

, γ̇(p)〉 ∈ R

for i ∈ {1, 2, 4, 5}. By applying a first order Taylor-approximation around p = 0 we obtain

lim
h↓0

h−1
h∫
0

Lη( 1√
D11 γ̇

1(p), 1√
D11 γ̇

2(p), 1√
D44 γ̇

4(p), 1√
D44 γ̇

5(p)) dp

= lim
h↓0

h−1
h∫
0

Lη( 1√
D11 γ̇

1(0) +O(p), 1√
D11 γ̇

2(p) +O(p), 1√
D44 γ̇

4(0) +O(p), 1√
D44 γ̇

5(0) +O(p)) dp

= O(h
2η

2η−1h−1) + 2η−1
2η

( ∑
i∈{1,2,4,5}

1
Dii (γ̇

i(0))2

) η
2η−1

and O(h
2η

2η−1h−1) = O(h
1

2η−1 ) → 0 as h ↓ 0 (since η > 1
2 ) the result follows by the definition of the morphological

kernel, Eq. (122). �

Theorem 4 The viscosity solutions of{
∂W
∂t (y,n, t)∓ 1

2η

(
G−1

(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n

))η
= 0

W (y,n, 0) = U(y,n)
(135)

with G(y,n) = gii dAi
∣∣
y,n ⊗ dAi

∣∣
y,n with gii = 1

Dii with D11 = D22, D44 = D55 > 0 are respectively given by (+
case) left-invariant erosion

(kD
11,D44,η,+

t 	R3oS2 U)(y,n) = inf
(y′,n′)∈R3oS2

[
U(y′,n′) + kD

11,D44,η,+
t (RTn′(y− y′), RTn′n)

]
. (136)

and (− case) left-invariant dilation

(kD
11,D44,η,−

t ⊕R3oS2 U)(y,n) = sup
(y′,n′)∈R3oS2

[
kD

11,D44,η,−
t (RTn′(y− y′), RTn′n) + U(y′,n′)

]
(137)

Proof The proof consists of two parts, first we must show that they are indeed solutions and then we show that they
are viscosity solutions. We will only consider the erosion case since the dilation case can be treated analogously.

part I. This part consists of two subparts. In part Ia we will show that if we set

W (y,n, t) := (kD
11,D44,η,+

t 	R3oS2 U)(y,n)

with morphological kernel given by (122) then

∂W
∂t (y,n, t)∓ 1

2η

(
G−1

(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n

))η
≤ 0 . (138)

Subsequently, in part Ib we show that

∂W
∂t (y,n, t)∓ 1

2η

(
G−1

(y,n)

(
dW (·, ·, t)|y,n , dW (·, ·, t)|y,n

))η
≥ 0 . (139)

so that part I is finished.
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part Ia Again we resort to evolutions on the full group SE(3) by setting W̃ (y, R, t) = W (y, Rez, t) for all y ∈ R3,
R ∈ SO(3), t > 0. Then for all A =

∑
i∈{1,2,4,5}

ciAi one has by Lemma 2 that

W̃ (gehA, t+ h) = min
v∈SE(3)

k̃D
11,D44,η,+

h (v−1gehA) + W̃ (v, t)

≤ k̃D
11,D44,η,+

h (ehA) + W̃ (g, t)

for all g = (y, R) and consequently, one has

W̃ (gehA, t+ h)− W̃ (g, t)
h

≤
k̃D

11,D44,η,+
h (ehA)

h

and thereby, by Lemma 5 and the construction of the left-invariant vector fields by means of the derivative of
the right regular representation Ai = dR(Ai) on gets

∂W̃ (g, t)
∂t

+ ci Ai|g W̃ (g, t) ≤ Lη(c) (140)

for all c = (c1, c2, c4, c5) ∈ R4. So by subtracting the Lagrangian and taking the maximum over all c we apply
the Fenchel transform of the Lagrangian which yields the Hamiltonian, i.e.

∂W̃ (g,t)
∂t + sup

c∈R4

{ ∑
i∈{1,2,4,5}

ci Ai|g W̃ (g, t)− Lη(c)

}
≤ 0 ⇔

∂W̃ (g,t)
∂t + 1

2η

{ ∑
i∈{1,2,4,5}

|Ai|gW̃ (g,t)|2

Dii

}2η

≤ 0.

part Ib Let g∗ = (y∗, Rn∗) ∈ SE(3) be the minimizer in the erosion operator, i.e.

W̃ (g, t) = W̃ (g∗, 0) + k̃D
11,D44,η,+

t ((g∗)−1g).

Then we have

W̃ (g,t)−W̃ (ge−
h
t
Ae+

h
t
A∗ ,t−h)

h ≥ 1
h

(
W̃ (g, 0) + k̃D

11,D44,η,+
t ((g∗)−1g)

−
(
W̃ (g, 0) + k̃D

11,D44,η,+
t ((g∗)−1g e−

h
t A)e+h

t A
∗
))

=
k̃D

11,D44,η,+
t ((g∗)−1g)−k̃D

11,D44,η,+
t−h ((g∗)−1g e−

h
t
Ae+

h
t
A∗ )

h

(141)

where g = eA = e

6∑
i=1

ciAi
and g∗ = eA

∗
= e

6∑
i=1

(c∗)iAi
∈ SE(3). If we now let h ↓ 0 then we obtain

lim
h↓0

W̃ (g,t)−W̃ (ge−
h
t
(A−A∗),t−h)

h ≥ lim
h↓0

k̃D
11,D44,η,+

t ((g∗)−1g)−k̃D
11,D44,η,+

t−h ((g∗)−1g e−
h
t
(A−A∗))

h

= lim
h↓0

1
h

(
sup

v∈SE(3)

k̃D
11,D44

t−h (v) + k̃D
11,D44,η,+

h (v−1(g∗)−1g)

−k̃D
11,D44,η,+

t−h ((g∗)−1ge−
h
t (A−A∗))

)
≥ lim

h↓0

k̃D
11,D44,η,+

h (e
h
t
(A−A∗))

h

(142)

where we applied Lemma 2 and where we note that by the Campbell-Baker-Hausdorff formula

e−
h
t A e+h

t A
∗

= e−
h
t (A−A∗)+ h2

2t2
[A,A∗]+O(h3)

so that
W̃ (g e−

h
t (A−A∗), t− h) = W̃ (g e−

h
t A e+h

t A
∗
, t− h) +O(h2)
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for almost every g ∈ R3 o S2 (where W̃ (·, t− h) is differentiable).

Recall that the left-invariant vector fields are obtained by the derivative of the right-regular representation Ai =
dR(Ai), Ai = Ai|(0,I) and as a result the limit in the left-hand side of (142) equals

lim
h↓0

W̃ (g, t)− W̃ (ge−
h
t (A−A∗), t− h)

h
=

∂

∂t
W̃ (g, t)−

∑
i∈{1,2,4,5}

(
ci − (c∗)i

t

)
Ai|g W̃ (g, t).

Furthermore, we can assume without loss of generality that c3 = c6 = (c∗)3 = (c∗)6 = 0, i.e.

A−A∗ ∈ span{A1, A2, A4, A5}. (143)

To this end we recall both R3 o S2 = SE(3)/({0} × SO(2)) and W̃ (g, t) = W (y, Rez, t), g ∈ SE(3) so that

W̃ (g, t) = W̃ (geαA6 , t) and k̃D
11,D44,η,+

t (e−βA6geαA6) = k̃D
11,D44,η,+

t (g)

for all α, β ∈ R and by the Campbell-Baker-Hausdorff formula one can always find α, β ∈ R such that

log
(
eAeαA6

)
− log

(
eA
∗
eβA6

)
⊂ span{A1, A2, A4, A5}.

Assumption (143) allows us to compute the limit in the final right-hand side of inequality (142) by means of
Lemma 5 and we obtain

∂
∂tW̃ (g, t) +

∑
i∈{1,2,4,5}

(
ci−(c∗)i

t

)
Ai|g W̃ (g, t)

≥ lim
h↓0

k̃h(e
h
t
(A−A∗))
h = Lη

(
c1−(c∗)1

t , c
2−(c∗)2

t , c
4−(c∗)4

t ), c
5−(c∗)5

t

)
.

from which we conclude :

∂W̃ (g,t)
∂t + 1

2η

( ∑
i∈{1,2,4,5}

(AiW̃ (g,t))2

Dii

)2η

= ∂W̃ (g,t)
∂t + sup

c̃∈R4

( ∑
i∈{1,2,4,5}

c̃i Ai|g W̃ (g, t)− Lη(c̃)

)
≥ ∂

∂tW̃ (g, t) +
∑

i∈{1,2,4,5}

(
ci−(c∗)i

t

)
Ai|g W̃ (g, t)− Lη

(
c1−(c∗)1

t , c
2−(c∗)2

t , c
4−(c∗)4

t ), c
5−(c∗)5

t

)
from which the result (139) follows.

part II. Next we verify that erosion (137) with the Green’s function kD
11,D44,η,+

t indeed satisfies (118) at a location
(y0,n0, t0) ∈ (R3oS2)×R+ whereW−V attains a local maximum. The other case (119) can be shown analogously.
Similarly one can show that dilation (39) with the kernel kD

11,D44,η,−
t = −kD

11,D44,η,+
t is the viscosity solution of

Eq. (52).

First of all it follows by left-invariance (and the fact that SE(3) acts transitively on R3 oS2 by means of Eq. (18)) that
without loss of generality we can restrict ourselves to the case (y0,n0) = (0, ez) and furthermore, by the semigroup
property Lemma 2, we can, again without loss of generality, restrict ourselves to the case t0 = 0. Since W −V attains
a maximum in (0, ez, 0), there exists a small open set Ω around (0, ez, 0) in (R3 o S2)× R where

W (y,n, t)− V (y,n, t) ≤W (y,n, 0)− V (y,n, 0) (144)

Furthermore we have by Eq. (136) that

W (y,n, t) ≥W (0, ez, 0) + kD
11,D44,η,+

t (y,n) , (145)

for all (y,n) ∈ R3 o S2. Combining the estimates (144) with (145) yields

−V (0, ez, 0) + V (y,n, t) ≤W (y,n, t)−W (0, ez, 0) ≤ kD
11,D22,η,+

t (y,n) (146)
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locally around (0, ez, 0), that is within Ω. Or equivalently for the corresponding function on SE(3) given by Ṽ (x, R) =
V (x, Rez) we have

−Ṽ (0, I, 0) + Ṽ (y, Rn, t)
t

≤ kD
11,D22,η,+

t (y,n)
t

(147)

for t ∈ [0, ε1), dSE(3)(y, Rn, (0, I)) < ε2, for some ε1 > 0, ε2 > 0. Now set h = t, (y, Rn) = ehA with A =∑
i∈{1,2,4,5}

ciAi and take the limit h ↓ 0 then we have

dṼ

dt
(0, I, 0) +

∑
i∈{1,2,4,5}

cidR(Ai)Ṽ (0, I, 0) ≤ 2η − 1
2η

|
∑

i∈{1,2,4,5}

ciAi|
2η

2η−1

where we applied Lemma 5 (which tells us that the constant C in Lemma 3 can be set to 1 in the limiting case h ↓ 0).
Now the left-invariant vector fields are given by the derivative of the right regular representation Ai = dR(Ai) with
Ai|(0,I) = Ai so we see that

dṼ
dt (0, I, 0) + sup∑

i∈{1,2,4,5}
ciAi
{ciAiṼ (0, I, 0)− 2η−1

2η |
∑

i∈{1,2,4,5}
ciAi|

2η
2η−1 } ≤ 0

dṼ
dt (0, I, 0) +(FTe(SE(3))(A 7→ 2η−1

2η |A|
2η

2η−1 ))(dṼ (·, 0)) ≤ 0

(148)

with A =
∑

i∈{1,2,4,5}
ciAi ∈ Te(SE(3) and dṼ (·, t) =

5∑
i=1

AiṼ (·, t)dAi ∈ (Te(SE(3)))∗. Now by the final remark

in Definition 9 and Lemma 1 we see that

dṼ
dt (0, I, 0) +

(
FR4((c1, c2, c4, c5) 7→ 2η−1

2η ·(∑
i∈{1,2,4,5} |ci|2

)
η

2η−1 )
)

(A1Ṽ (0, I, 0), (A2Ṽ (0, I, 0), (A4Ṽ (0, I, 0), (A5Ṽ (0, I, 0)) ≤ 0

⇔ dṼ
dt (0, I, 0) + 1

2η

(
(A1Ṽ (0, I, 0))2 + (A2Ṽ (0, I, 0))2 + (A4Ṽ (0, I, 0))2 + (A5Ṽ (0, I, 0))2

)η
≤ 0

(149)

As a result we conclude that the erosions Eq. (136) with morphological kernel (122) are the (unique) viscosity solutions
of the Hamilton-Jacobi equations (135) on the contact manifold (R3 o S2,dA3). �

C The Hamilton-Jacobi equation on (R3 o S2, dA3) and the propagation of
geodesically equidistant surfaces in R3 o S2

Recall from Figure 6 that our left-invariant erosions on R3 o S2 take place on the contact/sub-Riemannian manifold
(SE(3),dA3,dA6). On (SE(3),dA3,dA6) we set the Lagrangian (for η > 1

2 )

Lη(γ̃(p), ˙̃γ(p)) =
2η − 1

2η

(
| ˙̃γ1(p)|2 + | ˙̃γ2(p)|2

D11
+
| ˙̃γ4(p)|2 + | ˙̃γ5(p)|2

D44

) η
2η−1

(150)

expressed in the (SE(3),dA3,dA6) arc-length parameter p given by

p(τ) =
τ∫
0

√ ∑
i∈{1,2,4,5}

1
Dii |〈dAi|γ(τ̃) , γ̇(τ̃)〉|2 dτ̃ . (151)

yielding (analogue to the previous section) the well-defined metric on (R3 o S2,dA3) given by

d((y,n), (y′,n′)) = d(((Rn′)T (y− y′), (Rn′)Tn), (0, ez)) ,

d((y,n), (0, ez)) = inf
γ̃ = (x(·), R(·)) ∈ C∞((0, 1), SE(3)),
γ̃(0) = (0, Rez ), γ̃(pmax) = (y, Rn),

〈 dA3
∣∣∣
γ̃
, ˙̃γ〉 = 〈 dA6

∣∣∣
γ̃
, ˙̃γ〉 = 0

pmax∫
0

L∞(γ̃(p), ˙̃γ(p)) dp. (152)
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Let us return to the general Lagrangian minimization problem on (R3 o S2,dA3) for η > 1
2

Eη(y,n, t) :=
inf

γ̃ = (x(·), Rn(·)) ∈ C∞((0, pmax), SE(3)),
γ̃(0) = g0, γ̃(t) = (y, Rn),

〈 dA3
∣∣∣
γ̃
, ˙̃γ〉 = 〈 dA6

∣∣∣
γ̃
, ˙̃γ〉 = 0

pmax=t∫
0

Lη(γ̃(p), ˙̃γ(p)) dp.
(153)

for some given g0 ∈ SE(3) and where the total arc-length pmax in R3 o S2 is fixed.12, say pmax = t > 0. Along
an optimizing curve γ̃∗ = (x∗, R∗) (“geodesic”) in SE(3) with corresponding curve s 7→ γ∗(s) = (x∗(s),n∗(s) :=
R∗(s)ez) ∈ R3 o S2 we have

∂

∂t
Eη(γ∗(t), t) = Lη(γ∗(t), γ̇∗(t)).

Now consider a family of surfaces associated to a smooth function W : R3 o S2 × R+ → R+ given by

St := {(y,n) ∈ R3 × S2 |W (y,n, t) = W0}

parameterized by t ≥ 0, where W0 > 0 is some positive constant. Such a family of surfaces is called geodesically
equidistant, [66], if

dW
dt (γ∗(t), t) = ∂Eη

∂t (γ∗(t), t) = Lη(γ∗(t), γ̇∗(t)) ,

〈dW (·, t)|γ∗(t) , γ̇∗(t)〉 = ∇cLη(γ∗(t), c)
∣∣
c=γ̇∗(t) .

(154)

The chain-law now gives

∂W
∂t (γ∗(t), t) + 〈dW (·, t)|γ∗(t) , γ̇∗(t)〉 = Lη(γ∗(t), γ̇∗(t))⇔
−∂W∂t (γ∗(t), t) = −Lη(γ∗(t), γ̇∗(t)) + 〈dW (·, t)|γ∗(t) , γ̇∗(t)〉

where according to the 2nd equality in (154) we may rewrite the righthand side as

sup
c=

∑
i∈{1,2,4,5}

ciAi

{
−Lη(γ∗(t), c) + 〈dW (·, t)|γ∗(t) , c〉

}

which equals the Legendre-Fenchel transform of Lη(γ∗(t), ·) on Tγ∗(t)(SE(3)) that can be computed by the results
in Appendix B, recall Def. 9 and Lemma 1 so that we obtain the Hamilton-Jacobi equation on R3 o S2:

−∂W∂t (γ∗(t), t) = 1
2η

(
G−1
γ∗(t)(dW (γ∗(t), t),dW (γ∗(t), t))

)η
⇔

−∂W∂t (γ∗(t), t) = 1
2η

(
D11(A1|γ∗(t)W (γ∗(t), t))2 +D11(A2|γ∗(t)W (γ∗(t), t))2

+D44(A4|γ∗(t)W (γ∗(t), t))2 +D44(A5|γ∗(t)W (γ∗(t), t))2
)η
,

along the characteristic curves. So we conclude that iso-contours of the solutions of W in Eq. 52 and Eq. 135 are
(at least) locally geodesically equidistant. This allows us to use the Hamilton-Jacobi equations (135) for wavefront
propagation methods [61, 55] for finding geodesics in R3 o S2. We will consider this in future work.

D Asymptotical Expansions around the Origin of the k-step Time-integrated
Heat Kernel on R3 o S2

Recall from Section 10.2 the Gaussian estimates for the heat-kernels (contour enhancement);

KD33,D44

t (y,n) =
1

16π2(D33)2(D44)2t4
e−
|g=(y,Rn)|2

D33,D44
4t .

12Otherwise for fixed η there does not exist a minimizer.
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with |g| given by Eq. (87). Then we obtain the following relation (with again short notation g = (y, Rn) ∈ SE(3)):

RD
33,D44

λ,k (y,n) :=
(
(−D33(A3)2 −D44(A4)2 −D44(A5)2 + λI)−kδe

)
(y,n)

=
∞∫
0

KD33,D44

t (y,n) Γ(t ; k, λ) dt

= 1
16π2(D33)2(D44)2

λk

Γ(k)

∞∫
0

tk−5e−
|g|2
4t e−λt dt

= 21−k

π2(D33)2(D44)2
λ
k+4
2

(k−1)! |g|
k−4K4−k(|g|

√
λ)

with ∆S2 = A2
4 +A2

5 and now we have the following asymptotical formula for the Bessel functions

Kν(z) ≈

{
− log(z/2)− γEULER if ν = 0
1
2 (|ν| − 1)!

(
z
2

)−|ν|
if ν ∈ Z, ν 6= 0.

with Euler’s constant γEULER, which holds for 0 < z << 1, so that for |g| = |(y, Rn)| << 1 we have

RD
33,D44

λ,k (y,n) ≈

{
2−k+|k−4|

π2(D33)2(D44)2 |g|
−|k−4|+k−4λ−

|k−4|
2 if k 6= 4,

1
π2(D33)2(D44)2 (− log |g|

√
λ

2 − γEULER) 2−3λ4

3! if k = 4

Likewise in the contour completion kernel, recall (82), we get rid of the singularity at the origin in

Rλ,k = Rλ,1 ∗k−1
R3oS2 Rλ,1

by setting k ≥ dim(R3 o S2) = 5. In other words to avoid a singularity in the Green’s function one must use at least
k = 5 iteration steps in the contour-enhancement process.

E Conditions on a Left-invariant Metric Tensor on R3 o S2 and the Choice
of Dii and gij

In this section we derive sufficient conditions on a metric tensor (8) to be both left-invariant and well-defined on the
quotient R3 o S2 = SE(3)/({0} × SO(2)).

Definition 10 A metric tensor G̃ : SE(3)× T (SE(3))× T (SE(3))→ C

• is left-invariant iff
G̃gq((Lg)∗X̃q, (Lg)∗Ỹq) = G̃q(X̃q, Ỹq) (155)

for all g, q ∈ SE(3) and all X̃, Ỹ ∈ T (SE(3)).

• provides a well-defined metric tensor on R3 o S2 = SE(3)/({0} × SO(2)) iff

G̃gh((Rh)∗X̃g, (Rh)∗Ỹg) = G̃g(X̃g, Ỹg) (156)

for all g ∈ SE(3) and all h ∈ ({0} × SO(2)) and all X̃, Ỹ ∈ T (SE(3)), in which case the corresponding
metric tensor on the quotient is then given by

G(y,n)(
∑
i

ci Ai|(y,n) ,
∑
j

dj Aj |(y,n)) := G(y,Rn)(
∑
i

ci Ãi
∣∣∣
(y,Rn)

,
∑
j

dj Ãj
∣∣∣
(y,Rn)

) (157)
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where vector fields are described by the differential operators on C1(R3 × S2):

(Aj |(y,n) U)(y,n) = lim
h→0

U(y+hRnej ,n)−U(y−hRnej ,n)
2h ,

(A3+j |(y,n) U)(y,n) = lim
h→0

U(y,(RnRej ,h)ez)−U(y,(RnRej ,−h)ez)

2h , j = 1, 2, 3,

where Rej ,h denotes the counter-clockwise rotation around axis ej by angle h, with e1 = (1, 0, 0)T , e2 =

(0, 1, 0)T , e3 = (0, 0, 1)T . Note that the choice of Rn satisfying Eq. (9) does not affect Eq. (157) because of
Eq. (156).

Remark 7 In the other sections in this article, for the sake of simplicity, we do not distinguish between X̃ and X . For
example we write both A3|(y,n) U and A3|(y,Rn) Ũ .

Set Ã = (Ã1, . . . , Ã6)T as a column vector of left-invariant vector fields on SE(3), then one has the following
identity

Ãgh = Zα(Rh)∗Ãg(≡ ZαAg),

with Zα ∈ SO(6) is given by Eq. (46), which is straightforwardly verified by Eq. (31) where we computed the
left-invariant vector fields explicitly in Euler-angles. As the functions Ũ are invariant under right-multiplication with
elements (0, Reα) ∈ ({0} × SO(2)) this yields the following identity

( Ãi
∣∣∣
gh
Ũ)(gh) =

6∑
j=1

(Zα)ij( Ãi
∣∣∣
g
Ũ)(g),

for all h = (0, Rez,α), where Zα = Rez,α ⊕ Rez,α ∈ SO(6), with Rez,α ∈ SO(3) is given by (46). Recall that by
right multiplication with (0, Rez,α) one takes a different section in the partition of left-cosets in R3 oS2, boiling down
to a rotation over α simultaneously in the two grey planes depicted in Figure 6.

Theorem 5 A metric tensor G(y,n) : (R3 o S2)× T (R3 o S2)× T (R3 o S2)→ R given by

G(y,n) =
6∑

i,j=1

gij(y, Rn) dAi ⊗ dAj

with g6j = gj6 = 0, j = 1, . . . , 6 is well-defined and left-invariant iff

Zα [gij ]ZTα = [gij ] , for all α ∈ [0, 2π), and
gij(y, Rn) = gij are constant (158)

which is satisfied iff
[gij ] = diag{g11, g11, g33, g44, g44, 0}. (159)

proof The left-invariant vector fields satisfy Ãi
∣∣∣
gq

= (Lg)∗ Ãi
∣∣∣
q
, since (Lg)∗(Lq)∗ = (Lgq)∗. So the left-invariance

requirement reduces to
Lg∗gij = gij

for all g ∈ SE(3). Now SE(3) acts transitively onto SE(3) (and onto R3 o S2) so gij must be constant. Regarding
(156) we note that

Ggh((Rh)∗
6∑
i=1

ci Ãi
∣∣∣
g
, (Rh)∗

6∑
j=1

cj Ãj
∣∣∣
g
) =

6∑
i,j,k,l=1

Ggh(ck(ZTα )ki Ãk
∣∣∣
gh
, ZTα )lj Ãl

∣∣∣
gh

=
6∑

i,j,k,l=1

ckclgijZ
T
α )ki Z

T
α )kj = Gg(

6∑
i=1

ci Ãi
∣∣∣
g
,
∑
j c
j Ãj

∣∣∣
g
) =

6∑
i,j=1

cicjgij
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for all (c1, . . . c6) ∈ R6 and all α ∈ [0, 2π) so that

∀α∈[0,2π) : ZTα [gij ]Zα = [gij ].

The final results follows by Schur’s lemma on SO(2) (operators commuting with irreducible representations are
multiples of the identity). �

The actual (horizontal) metric (induced by the metric tensor given by Eq. (10) on the contact manifold (R3 o
S2,dA1,dA2) is given by

d(y,n , y′,n′) := d(RTn′(y− y′), RTn′n , 0, ez) (160)

with (horizontal) modulus given by

dR3oS2(y,n, 0, ez) =

inf
γ̃ = (x(·), R(·)) ∈ C∞((0, t), SE(3)),
γ̃(0) = (0, I = Rez ), γ̃(t) = (y, Rn),

〈 dA1
∣∣∣
γ̃
, ˙̃γ〉 = 〈 dA2

∣∣∣
γ̃
, ˙̃γ〉 = 〈 dA6

∣∣∣
γ̃
, ˙̃γ〉 = 0

t∫
0

√ ∑
i,j∈{3,4,5}

gij 〈dAi|γ̃(p) ,
˙̃γ(p)〉 〈dAj |γ̃(p) ,

˙̃γ(p)〉dp , (161)

Remark 8 When measuring the distance (Eq. (160) and (161)) between the cosets [g1] = g1H and [g2] = g2H , with
H = {0} × SO(2) and gi = (xi, Rez,γiRey,βiRez,αi), i = 1, 2 one first determines the elements from both co-sets
with vanishing first Euler angle, i.e (xi, Rez,γiRey,βi) and then compute the distance w.r.t. these elements in the full
group where the connecting curves are not allowed to use the “illegal” A6-directions. Note that this procedure leads
to a well-defined metric on (R3 o S2,dA1,dA2) despite taking the section. The condition 〈dA6

∣∣
γ
, γ̇〉 = 0 avoids

possible short-cuts via the “illegal” A6-direction.

E.1 Data adaption and left invariance

In the erosion algorithms one can include adaptivity by making D44 depend on the local laplace-Beltrami-operator,
recall Subsection 7.1, whereas in the diffusion algorithms one can include adaptivity by replacing D33 in A3D

33A3

by a data adaptive conductivity

D33(U) = e−
|A3U|

2

K2 , K > 0.

In both cases this does not correspond to making a left-invariant adaptive inverse metric tensor, as this would contradict
Theorem 5. However, an adaptive erosion generator (η = 1):

U 7→
5∑

i,j=1

gij(U)(y, n) · (Ai ⊗Aj)(dU,dU) =
5∑

i,j=1

gij(U)(y, n) · (AiU)(AjU)

is left-invariant iff gij is left-invariant, that is gij commutes with left regular action of SE(3) onto L2(R3 o S2).
Similarly an adaptive diffusion generator

U 7→
5∑

i,j=1

Ai(Dij(U)Aj(U)),

is left-invariant iff Dij is left-invariant.

F Putting the left-invariant vector fields and the diffusion generator in ma-
trix form in case of linear interpolation

We will derive the N3No ×N3No matrix form of the forward approximation (100) of the left-invariant vector fields
and subsequently for the (hypo)-elliptic left-invariant diffusion generator. Here N stands for the number of spatial
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pixels (where we assume a cubic domain) and where No denotes the number of discrete orientations on S2. Note that
the matrix-form of the backward and central differences can be derived analogously.

Recall that the forward approximations of the left-invariant vector fields are given by

(Ap+3U)(y,nl) ≈ U(y,RnlRep,ha ez)−U(y,nl)
ha

,

(ApU)(y,nl) ≈ U(y+hRnl ep,nl)−U(y,nl)
h ,

p = 1, 2, 3 and where l ∈ {1, . . . , No} enumerates the discrete orientations nl ∈ S2 and where y = (y1, y2, y3) ∈
{1, . . . , N}3, where h denotes spatial step-size and ha denotes denotes the angular stepsize.

We approximate the angular vector fields by

(Ap+3U)(y,nl) ≈
1
ha

(
−U(y,nl) +

N0∑
l′=1

Mf,ha,p+3
ll′ U(y,nl′),

)
where the upper-index f stands for “forward” and with

Mf,ha,p+3
ll′ =

{
1−

∑
nj∈Ap,l

(np,l − nl′) · (nj − nl′) if nl′ ∈ Ap,l

0 else.
(162)

where Ap,l is the unique spherical triangle in the spherical triangularization containing np,l := RnlRep,haez .

We approximate the spatial vector fields by

(ApU)(y,nl) ≈ −
1
h
U(y,nl) +

1
h

∑
y1′ ,y2′ ,y3′

kp,hl [y1 − y1′ , y2 − y2′ , y3 − y3′ ] U(y1′ , y2′ , y3′ ,nl) ,

with l-indexed discrete spatial kernel given by

kp,hl (y1, y2, y3) =
3∏

m=1

v(yp,l)m(ym) ,

with (yp,l)m the m-th component of the vector yp,l := hRnlep, p = 1, 2, 3, and with linear interpolation kernel
va : Z→ [0, 1] given by

va(b) =

 1− |a| if b = 0
H(ab)|a| if b ∈ {−1, 1}
0 else

with heavyside function H(u) while assuming |a| < 1.

So if we store ((U(y,nl))l∈{1,...,No})y∈{1,...,N}3 in one long column vector u ∈ RN3No we can represent the (forward)
angular left-invariant vector fields by the matrix

Afp+3 :=
1
ha

(
N3⊕
l=1

Mf,ha
p+3 − IN3No

)
=

1
ha

(
IN3 ⊗Mf,ha

p+3 − IN3No

)
with ⊗ the Kronecker product and with Mf,ha

p+3 ∈ RN0×No the matrix with entries (162) and where IN3No ∈
RN3No×N3No denotes the identity matrix.

The (forward) spatial left-invariant vector fields is now represented by the block matrix

Afp :=
1
h

 ⊕
l=1,...,No

Mf,h,l
p − IN3No
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with Mf,h,l
p ∈ RN3×N3

the matrix with entries h−1 kp,hl [y1 − y1′ , y2 − y2′ , y3 − y3′ ].

Similarly, one defines central (index by c) and backward differences (index by b). The matrix-representation of the
generator of the (hypo)-elliptic diffusion, Eq.(102), is now given by JR3 + JS2 ∈ RN3No×N3No with

JR3 := D33Af3A
b
3 +D11

(
Af1A

b
1 +Af2A

b
2

)
,

JS2 := D44
(
Af4A

b
4 +Af5A

b
5

)
.

(163)

G Solving (the Pfaffian system) for geodesics on (SE(3), dA1, dA2, dA6)

Here we follow the same approach as in [30, App.A] where we minimized on the contact manifold (SE(2),dA3
SE(2)).

We extend the manifold SE(3) into Z = SE(3)× (R+)2 × R+ × (T (SE(3)))∗ on which SE(3) acts as follows

ηg=(x,y,z,R)((y
1, y1, y3, R′),κ, σ, (λ1, λ2, λ3, λ4, λ5, λ6)) = (g(y1, y1, y3, R′),κ, σ,CoAdg(λ1, λ2, λ3, λ4, λ5, λ6))

where CoAd is the coadjoint action of SE(3) onto the dual tangent space (T (SE(3)))∗, where κ = ẍ = −κ2A1 +
κ1A2 +0A3 and ds = σdt = ‖x′(t)‖dt represent curvature and arc-length s of the spatial R3-part of curves in SE(3),
as by definition on this extended contact manifold (Z, θ1, . . . θ6) the following Pfaffian forms vanish

θ1 := dA1 = 0 ,
θ2 := dA2 = 0 ,
θ3 := dA3 − σdt = 0 ,
θ4 := dA4 − κ1σdt = 0 ,
θ5 := dA5 − κ2σdt = 0 ,
θ6 := dA6 = 0

(164)

The first five Pfaffian forms have to vanish in order to ensure that γ : [0, L] → SE(3) yields a horizontal curve
s 7→ (x(s),n(s)) in R3 o S2 where the spatial tangent corresponds to point on the sphere, i.e.

ẋ(s) = n(s). (165)

The 6th Pfaffian form is imposed to avoid a spurious correspondence between horizontal curves γ = (x, R) in the
sub-Riemannian manifold (SE(3),dA1,dA2,dA3) to curves (x,n) in R3 o S2 satisfying (165) via

(x(s),n(s)) = (x(s), R(s)ez).

To this end we recall that A6Ũ = 0 for all smooth Ũ : SE(3) → R given by Ũ(x,R) = U(x,Rez) with U : R3 o
S2 → R. and 〈dA6

∣∣
γ
, γ̇〉 = 0 excludes spurious curves in SE(3) by means of

(x(s), R(s)) 7→ (x(s), R(s)Rez,α(s))

with α̇ 6= 0, that would correspond to the same horizontal curves in R3 o S2, see Figure 22. Our goal is to solve for
the minimizing curves of the optimization problem (115) on (SE(3),dA1,dA2,dA6)

d(g1, g2) := d(g−1
2 g1, e = (0, I)) =

inf
h1,h2∈{0}×SO(2)

inf
γ = (x(·), Rn(·)) ∈ C∞((0, 1), SE(3)),

γ(0) = eh2, γ(1) = g
−1
2 g1h1,

〈 dA1
∣∣∣
γ
, γ̇〉 = 〈 dA2

∣∣∣
γ
, γ̇〉 = 〈 dA6

∣∣∣
γ
, γ̇〉 = 0

∫ 1

0

√ ∑
i∈{3,4,5}

1
Dii |dAi(γ̇(s))|2 ds (166)

where we set D33 = β−2, s spatial arc-length, and D44 = D55 = 1, so that the equivalent problem on R3 (recall
Eq. (116)) is:

dhor((y,n), (y′,n′)) = inf
x(·) ∈ C∞((0, L),R3),

x(0) = 0, ẋ(0) = ez,
x(L) = RTn (y′ − y),

ẋ(L) = RTn Rn′ ez = RTn n′,

L∫
0

√
‖κ(s)‖2 + β2ds (167)
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Figure 22: An (optimal) curve in R3 o S2 corresponds to a class of equivalent curves in SE(3). For convenience we
impose the extra constraint 〈dA6

∣∣
γ
, γ̇〉 = 0 to avoid spurious torsion and curvature. In the figure we see that γ1 and

γ2 are equivalent, i.e. γ1(s) = γ2(s)h(s) with h(s) = (0, Rez,α(s)), but only γ1 satisfies the convenient constraint. As
the constraint dA6 = 0 does not affect the final geodesic in R3oS2, we can set the corresponding Lagrange-multiplier
λ6 = 0 in Eq. (172).

where s, L > 0, and κ(s) are respectively spatial arclength, total length, and curvature of the spatial part of the curve.

Theorem 6 The stationary curves s 7→ x(s) ∈ R3 that minimize

L∫
0

√
κ2 + β2 ds

with arclength parameter s ∈ [0, L], curvature κ and β > 0 and free length L > 0, subject to boundary conditions
x(0) = x0 ∈ R3, ẋ(0) = n0 ∈ S2 and x(L) = x1 ∈ R3, ẋ(L) = n1 ∈ S2 coincide with the stationary curves
s 7→ (x(s), ẋ(s)) ∈ R3 o S2 of the variational problem (116) on R3 o S2 and they satisfy

d

dt

∫
Nt

ψ = 0 with ψ =
√
‖κ‖2 + β2 σdt+

6∑
i=1

λiθ
i

with ds = σdt, σ = ‖x′(t)‖ for all horizontal curve t 7→ Nt pertubations on the extended 15-dimensional manifold
Z = SE(3)× (R+)3 × (T (SE(3)))′.
Along the the minimizing curves γ = (g, κ1, κ2, σ, λ1, . . . , λ6) in Z the Lagrange-multipliers are given by

λ1(s) = −λ̇5(s), λ2(s) = λ̇4(s), λ3(s) = β
√

1− (λ4(s))2 − (λ5(s))2,
λ4(s) = z1(s), λ5(s) = z2(s), λ6 = 0,

expressed in the normalized curvature

z(s) = (z1(s), z2(s)) :=
1

κ(s)
(κ1(s), κ2(s)) = cosh(βs) z(0) +

sinh(βs)
β

z′(0),

with κ =
√

(κ1)2 + (κ2)2. They satisfy the following preservation-laws

(λ1)2 + (λ2)2 + (λ3)2 = c2β2 , (co-adjoint orbits) ,
β−2(λ3)2 + (λ4)2 + (λ5)2 = 1 ,

with c > 0 constant. The SE(3)-part s 7→ g(s) of the stationary curves in Z is obtained by means of

λ(s) m(g−1)(s) = λ(0) m(g−1)(0) = λ(L) m(g−1)(L), (168)
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with row-vector λ = (λ1, . . . , λ6) and where m : SE(3)→ R6×6 is the matrix group representation given by

m(g) =
(
R σxR
0 R

)
, for all g = (x, R) ∈ SE(3), (169)

with σx ∈ R3×3 such that σxy = x × y. The curvature and torsion magnitude of (the spatial part of) these stationary
curves are given by

κ(s) = β
z(s)√

1− z2(s)
and τ(s) =

det(z0 | z′0)
z2(s)

with z(s) =
√

(z1(s))2 + (z2(s))2 = ‖z(s)‖ with constant z0, z′0 ∈ R2, L > 0 such that

x(L) = x1 and ẋ(L) = n1.

The spatial part s 7→ x(s) of the curves s 7→ g(s) can be obtained by integrating the Frenet formulas Ṫ(s)
Ṅ(s)
Ḃ(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)


where again s ∈ [0, L] denotes arclength parametrization of the spatial part of the curve with initial condition

 T(0)
N(0)
B(0)

 =


n0

1
z0

(
z2

0(cos β̃0, sin β̃0 sin γ̃0,− sin β̃0 cos γ̃0)T − z1
0(0, cos γ̃0,− sin γ̃0)T

)
1
z0

(
z1

0(cos β̃0, sin β̃0 sin γ̃0,− sin β̃0 cos γ̃0)T + z2
0(0, cos γ̃0,− sin γ̃0)T

)
 .

If these curves are a global minimizer then they coincide with the geodesics on the sub-Riemannian manifold
(SE(3),dA1,dA2,dA6) subject to left-invariant metric

Gβ = β2dA3 ⊗ dA3 + dA4 ⊗ dA4.

Proof We follow the general theory on optimizing Lagrangians on contact manifolds, [13, 12] and we set the 1-form
on Z

ψ =
√
‖κ‖2 + β2 σdt+

6∑
i=1

λiθ
i

where we must first find the Lagrange-multipliers. Now suppose we have a 1-parameter family of Legendre sub-
manifolds {Nt}t∈R within Z, this corresponds to a one parameter family of horizontal vector fields on (SE(3)). Then
compute the variation of the integrated Lagrangian-form ψ along Nt:

d

dt

∫
Nt

ψ =
∫
Nt

L ∂
∂t
ψ =

∫
Nt

∂

∂t
cdψ +

∫
Nt

d(
∂

∂t
cψ) =

∫
Nt

∂

∂t
cdψ

where we used the well-known Stokes Theorem
∫
Nt

d( ∂∂t cψ) =
∮
∂Nt

∂
∂t
cψ = 0 and the formula for Lie derivatives

of volume forms along vector fields LXA = XcdA + d(XcA). Consequently, the optimal/characteristic curves are
entirely determined by

γ′(s)c dψ|γ(s) = 0 for all s > 0.

But this by definition of the insert operator cmeans that dψ|γ (γ′, v) = 0 for all v ∈ T (Z), or equivalently formulated

(vc dψ|γ)(γ′) = 0 for all v ∈ T (Z). (170)

For further details see [12]. So in order to find the optimal trajectories one has to integrate the Pfaffian system

vcdψ = 0 for all v ∈ T (Z), (171)
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consisting of 15 vanishing dual forms.

Now by Cartan’s structural formula we have

d(dAk) = −
6∑

i,j=1

ckijdAi ⊗ dAj ,

where ckij are the structure constants of the Lie-algebra L(SE(3)), recall Eq. 28) and using this crucial identity one
finds after some straightforward (but intense) computation the following explicit form of (171):

∂σcdψ = (
√
‖κ‖2 + β2 − λ3 − λ4κ

1 − λ5κ
2)dt = 0,

∂κ1cdψ = (κ1/
√
‖κ‖2 + β2 − λ4)σdt = 0,

∂κ2cdψ = (κ2/
√
‖κ‖2 + β2 − λ5)σdt = 0,

−∂A1cdψ = dλ1 − λ2dA6 + λ3dA5 = 0,
−∂A2cdψ = dλ2 + λ1dA6 − λ3dA4 = 0,
−∂A3cdψ = dλ3 − λ1dA5 + λ2dA4 = 0,
−∂A4cdψ = dλ4 − λ5dA6 + λ6dA5 − λ2dA3 + λ3dA2 = 0,
−∂A5cdψ = dλ5 − λ6dA4 + λ4dA6 − λ3dA1 + λ1dA3 = 0,
−∂A6cdψ = dλ6 − λ4dA5 + λ5dA4 − λ1dA2 + λ2dA1 = 0,

∂λ1cdψ = dA1 = 0,
∂λ2cdψ = dA2 = 0,
∂λ3cdψ = dA3 − σdt = 0,
∂λ4cdψ = dA4 − κ1σdt = 0,
∂λ5cdψ = dA5 − κ2σdt = 0,
∂λ6cdψ = dA6 = 0,

(172)

where in the last three Pfaffian forms in the left column one may set dA1 = dA2 = 0. Now by Noether’s Theorem
the characteristic curves in Z are contained within the co-adjoint orbits, cf.[13]. As the adjoint action is given by
push-forward of conjugation Ad(g) = (LgRg−1)∗,

Ad(g)Ai = (Rg−1)∗ Ai|g = (Rg−1)∗
3∑
i=1

ci(g)∂yi
∣∣
g

=
3∑
i=1

ci(g) ∂yi
∣∣
e

with (c1)2 + (c2)2 + (c3)2 = 1, where we used Ai|g = (Lg)∗Ai and as the coadjoint action given by

〈CoAd(g)
6∑
i=1

λi dAi,
∑
j

cjAj〉 = 〈
6∑
i=1

λi dAi,Ad(g−1)
∑
j

cjAj〉

acts transitively on the span by the dual angular generators we see that SE(3) co-adjoint orbits are given by

(λ1)2 + (λ2)2 + (λ3)2 = C2,

C > 0. Indeed it directly follows from (171) that
3∑
i=1

λidλi = 0. The first three Pfaffian forms in (171) yield

λ3 = β2√
‖κ‖2+β2

,

λ4 = κ1√
‖κ‖2+β2

, λ2 = λ̇4,

λ5 = κ2√
‖κ‖2+β2

, λ1 = −λ̇5,

(173)

so that another preservation law is given by

β−2(λ3)2 + (λ4)2 + (λ5)2 = 1 ,

and as λ̇6 = λ4κ
2 − λ5κ

1 = 0, λ6 is constant. Now since dA6 = 0 is an extra constraint (recall Figure 22) that
allows us to choose convenient representatives in the cosets, the minimizers on the quotient space do not depend on
this constraint. Therefore13 we can set λ6 = 0 and we find

λ̇5 + λ1 = 0⇒ λ̈5 + λ̇1 = λ̈5 −
β2κ2√
‖κ‖2 + β2

= λ̈5 − β2λ5 = 0,

13Comparison to an alternative derivation generalizing the approach in [53] on R2 to R3 confirmed this choice.
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so that λ̈5 = β2λ5. Analogously one finds λ̈4 = β2λ4, so similar to the (SE(2),dA3)-case one has

z̈(s) = β2z(s) , with z(s) =
1√

‖κ(s)‖2 + β2
κ(s), (174)

for the normalized curvature z(s). Furthermore we find

λ̇1 = −λ3κ
2 and λ̇2 = λ3κ

1.

So again in contrast to the common and well-known elastica the geodesics do not involve special functions and we
have

z(s) = cosh(βs) z(0) +
sinh(βs)

β
z′(0). (175)

Next we compute curvature magnitude and torsion magnitude. Curvature magnitude is given by

κ =
√

(κ1)2 + (κ3)2.

In order to compute the torsion, we compute the normal and binormal from the tangent

T(s) = A3|γ(s) .

When taking derivatives one should use covariant derivatives, recall Theorem 3 to compute

d

ds
Ai|γ(s) = ∇γ̇(s)Ai =

6∑
k,j=1

ckji〈dAj
∣∣
γ(s)

, γ̇(s)〉 Ak|γ(s) .

More explicitly this yields

d
ds A1|γ(s) = c351〈dA5

∣∣
γ(s)

, γ̇(s)〉 A3|γ(s) + c261〈dA6
∣∣
γ(s)

, γ̇(s)〉 A2|γ(s) = −κ2(s) A3|γ(s) ,
d
ds A1|γ(s) = κ1(s) A3|γ(s) ,
d
ds A3|γ(s) = κ2(s) A1|γ(s) − κ1(s) A2|γ(s) ,
d
ds A4|γ(s) = A2|γ(s) − κ2(s) A6|γ(s) ,
d
ds A5|γ(s) = − A1|γ(s) + κ1(s) A6|γ(s)

(176)

along the horizontal optimal curves in SE(3), where we used (164). Using (176) we find

T′(s) = κ2(s)A1 − κ1A2,
N(s) = 1√

(κ1(s))2+(κ2(s))2
(κ2(s)A1 − κ1A2),

N′(s) =
(

κ2(s)√
(κ1(s))2+(κ2(s))2

)′
A1|γ(s) −

(
κ1(s)√

(κ1(s))2+(κ2(s))2

)′
A2|γ(s)

+ κ2(s)√
(κ1(s))2+(κ2(s))2

d
ds A1|γ(s) −

κ1(s)√
(κ1(s))2+(κ2(s))2

d
ds A2|γ(s) ,

B(s) = 1√
(κ1(s))2+(κ2(s))2

(κ1(s)A1 + κ2A2)

Now the Frenet-frame satisfies Ṅ = −κT + τB so curvature magnitude and torsion magnitude are given by

κ =
√

(κ1)2 + (κ2)2 and τ =
κ1κ̇2 − κ2κ̇1

κ2
=

z1ż2 − z2ż1

(z1)2 + (z2)2
. (177)

So if we write ‖z‖ =
√

(z1)2 + (z2)2 we see that

κ = β
‖z‖√

1− ‖z‖2
and τ =

det(z0 | z′0)
‖z‖2

. (178)
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where z0 = z(0) ∈ R2 and z′0 = z′(0) ∈ R2 and where we note that z1 and z2 satisfy the same linear ODE with
(constant) Wronskian

z1(s)ż2(s)− z2(s)ż1(s) = z1(0)ż2(0)− z2(0)ż1(0) = det(z0 | z′0).

We verified our results by extending Mumford’s approach to elastica on R2 to curves minimizing
∫ L

0

√
κ2(s) + β2(s)ds

with L free on R3. The details will follow in future work. For now we mention that such approach finally results in
the following non-linear ODE’s for κ and τ :

‖z‖′′ = (β2 + τ2)‖z‖ and 2τ‖z‖′ + τ ′‖z‖ = 0. (179)

It can be verified that the linear ODE’s Eq. (174) and Eq. (178) indeed imply Eq. (179). So, besides of all the
preservation-laws, we see another advantage of the symplectic differential geometrical approach on the extended
manifold 15 dimensional manifold Z over the more basic approach on R3. Another advantage of the symplectic
differential geometrical approach is the Frenet frame integration. Basically, one has to integrate Ṫ(s)

Ṅ(s)
Ḃ(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)

 (180)

where again s ∈ [0, L] denotes arclength parametrization of the spatial part of the curve with initial condition T(0)
N(0)
B(0)

 =


n0

1
z0

(
z2

0(cos β̃0, sin β̃0 sin γ̃0,− sin β̃0 cos γ̃0)T − z1
0(0, cos γ̃0,− sin γ̃0)T

)
1
z0

(
z1

0(cos β̃0, sin β̃0 sin γ̃0,− sin β̃0 cos γ̃0)T + z2
0(0, cos γ̃0,− sin γ̃0)T

)
 .

where we recall that the angles in the second chart (β̃0, γ̃0) can be computed from n0 by means of Eq. (111). Now
everything is expressed in the five constants

L, z0 = (z0, z1)T and z′0 = (z′0, z
′
1)T ,

which yield five degrees of freedom needed to meet the boundary condition

x(L) = x1 ∈ R3 and ẋ = n1 ∈ S2.

Now in order to investigate on how the length L and the integration constants z0 and z′0 depend on the boundary con-
dition, we follow a similar approach as in [30, App.A] where we managed to obtain full control over the equivalent14

problem in SE(2). To this end we re-express the last 6 Pfaffian forms in (172) as

dλ = −λm(g)−1dm(g), (181)

where we recall (169), where m : SE(3) → R6×6 forms a (uncommon) group representation as we will show next.
Taking the outer product y 7→ σxy = x× y is tensorial with respect to rotations and σRx = RσxR

−1 indeed implies

m(g1g2) = m(g1)m(g2) and m(e) = I

for all g1, g2 ∈ SE(3). The identity (181) follows from Eq.(172) by means of

m(g)−1dm(g) =
(
R−1dR R−1dσxR

0 R−1dR

)
=
(
R−1dR σR−1dx

0 R−1dR

)
and recall from Eq. (33) that R−1dx = (dA1,dA2,dA3)T and where the matrix g−1dg contains ω̃kj =

∑
i

ckijdAj ,

recall Theorem 3, as elements. Now from (181) we deduce that

d(λm(g)−1) = λd(m(g)−1) + (dλ)(m(g))−1 = (λ(m(g))−1dm(g) + dλ) (m(g))−1 = 0

and the result (168) follows. �

14In [30, App.A] we had to choose z0 and z′0 and L such that x(L) = x1 ∈ R2 and ẋ(L) = n1 ∈ S1.
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Theorem 7 The Frenet system (180) for the stationary curves can be integrated analytically. By means of Eq. (168)
we find

m(g) = h−1
0 m(g̃), g = (x, y, z, R̃), (182)

where h−1
0 ∈ SE(3) is given by

h−1
0 =

(
RT0 σ−RT0 x0

RT0
0 RT0

)
(183)

with x0 = (x0, y0, z0) ∈ R3 and R0 ∈ SO(3) given by

x0 = 0 (free),

y0 = −W
√
c2β2−‖z′0‖2
c2β2‖z′0‖

,

z0 = z0·z′0
cβ‖z′0‖

,

(184)

with Wronskian W = z1(s)ż2(s)− z2(s)ż1(s) = z1(0)ż2(0)− z2(0)ż1(0) and

R0 =
1
cβ


(z′0)1 (z′0)2

√
c2β2 − ‖z′0‖2

−cβ (z′0)2
‖z′0‖

cβ
(z′0)1
‖z′0‖

0

− (z′0)1
√
c2β2−‖z′0‖2
‖z′0‖

− (z′0)2
√
c2β2−‖z′0‖2
‖z′0‖

‖z′0‖

 (185)

with z′0 = ((z′0)1, (z′0)2) if z′0 6= 0. In case z′0 = 0 we have

x0 = − 1
cβ

 0
(z0)1

(z0)2

 and R0 = Rey,π2 . (186)

Furthermore, we have
g̃(s) = (x̃(s), R̃(s)) = (x̃(s), ỹ(s), z̃(s), R̃(s))

for all s ∈ [0, L] with

x̃(s) = x̃(0)− i
√

1−γ
β

√
1+c2

c
√

2

(
E
(
(βL+ ϕ

2 )i,m
)
− E

(
(ϕ2 )i,m

))
,

(ỹ(s), z̃(s))T = e

s∫
0
A(s′)ds′

(ỹ(0), z̃(0))T = Re

{
(z̃0 − iỹ0)e

∫ s
0

‖ż(τ)‖2

z(τ)·ż(τ)−i
√

1−‖ż(τ)‖2
dτ
(

i
1

)}

where the elliptic integral of the second kind is given by E(φ,m) =
φ∫
0

√
1−m sin2 θdθ with m = 2γ

γ−1 and with

γ = ‖z0−β−1z′0‖‖z0+β−1z′0‖
1+c2 ≤ 1, with φ = log

(
‖z0+β−1z′0‖
‖z0−β−1z′0‖

)
and with (commuting)

A(s) =
1

|z(s)|2 − W 2

c2β2

(
z(s) · ż(s) W

cβ

√
c2β2 − ‖ż(s)‖2

−Wcβ
√
c2β2 − ‖ż(s)‖2 z(s) · ż(s)

)

and with R̃(s) in SO(3) such that

R̃(s)ez = n(s) =
(
ẋ(s), (A(s)(ỹ(s), z̃(s))T )T

)T
=
(
λ3(s)
cβ

, (A(s)(ỹ(s), z̃(s))T )T
)T

.

Proof With respect to Eq. (182),(183), (184), (185) and (186) we note that by means of Eq. (168) we have

λ(m(g))−1 = µ⇔ λ = µm(g) = µh−1
0 m(g̃) = λ(0)(m(g(0)))−1h−1

0 g̃ = λ(0)h−1
0 g̃
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as g(0) = (0, I) ∈ SE(3) implies that its corresponding matrix representation equals the 6 × 6-identity matrix
m(g(0)) = I6. Then we choose h−1

0 such that

µh−1
0 = λ(0)h−1

0 = (cβ, 0, 0,−W
cβ
, 0, 0)

with µi = λi(0), i = 1, . . . , 6, which follows from the previous theorem. As a result h0 now follows from

h0


µ1

µ2

µ3

µ4

µ5

µ6

 =



cβ
0
0
W
cβ

0
0

⇔


R0

 (z′0)1

(z′0)2√
c2β2 − ‖z′0‖2

 =

 cβ
0
0


x0 ×R0

 (z0)1

(z0)2

0

 =

 W
cβ

0
0

 .

(187)

Next we shall derive the ODE for (ỹ, z̃). We parameterize by R = Rex,γ̃Rey,β̃Rez,α̃ ∈ SO(3) and substitution of this
parametrization in

λ = µh−1
0 m(g̃) = (cβ, 0, 0,−W

cβ
, 0, 0)m(g̃),

yields the system

R̃

 λ1

λ2

λ3

 =

 cβ
0
0

 (188)

and the system

1
cβ
Rex,γ̃


√
λ2

1 + λ2
2 0 λ3

0 cβ 0

−λ3 0
√
λ2

1 + λ2
2




λ1√
λ2
1+λ2

2

λ2√
λ2
1+λ2

2
0

− λ2√
λ2
1+λ2

2

λ1√
λ2
1+λ2

2
0

0 0 1


 λ4

λ5

0

 =

 −W
cβ

−cβz̃
cβỹ

 (189)

where we used β̃ = arg(
√
λ2

1 + λ2
2 + iλ3) and α̃ = arg(λ1 − iλ2) that follow by Eq. (188). Taking the derivative

with respect to spatial arc-length s in system (189) yields

d

ds

(
R̃(λ(2))T

)
= R̃(λ̇(2))T + ˙̃R(λ(2))T = R̃(λ̇(2))T = cβ

 0
− ˙̃z

˙̃y

 , with λ(2) = (λ4, λ5, 0),

where we stress that

R̃TdR̃ = σ(dA4,dA5,0) = σ(κ1ds,κ2ds,0) ⇒

˙̃R(λ(2))T = R̃ σ(κ1,κ2,0)T

 λ4

λ5

0

 = R̃

 κ1

κ2

0

×
 κ1

κ2

0

 1√
(κ1)2+(κ2)2

= 0.

As a result, since
√

(λ1)2 + (λ2)2 = ‖ż‖, we obtain

˙̃z =
cos γ̃
cβ‖ż‖

and ˙̃y =
− sin γ̃
cβ‖ż‖

. (190)

whereas (189) yields
−z·ż
‖ż‖ cos γ̃ + W

√
c2β2−‖ż‖2
‖z‖ sin γ̃ = −cβz̃,

−z·ż
‖ż‖ sin γ̃ − W

√
c2β2−‖ż‖2
‖z‖ cos γ̃ = cβỹ

from which we deduce that

(A(s))−1

( ˙̃y(s)
˙̃z(s)

)
=
(
ỹ(s)
z̃(s)

)
⇔
( ˙̃y(s)

˙̃z(s)

)
= A(s)

(
ỹ(s)
z̃(s)

)
.
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As the matrices A(s) share the same eigen-vectors ((i, 1)T and (−i, 1)T ) they commute and we have(
ỹ(s)
z̃(s)

)
= e

∫ s
0 A(τ) dτ

(
ỹ(0)
z̃(0)

)
= 1

2i (ỹ0 + iz̃0)e
∫ s
0

‖ż(τ)‖2

ż(τ)·z(τ)−i
√

1−‖ż(τ)‖2
dτ
(

i
1

)
+ 1

2i (−ỹ0 + iz̃0)e
∫ s
0

‖ż(τ)‖2

ż(τ)·z(τ)+i
√

1−‖ż(τ)‖2
dτ
(
−i

1

)
where the latter two vectors are each other’s conjugate. Finally, x̃(s) follows by integration

x̃(s) = x̃(0) +
s∫
0

λ3(τ)
cβ dτ

= x̃(0) + 1
c

s∫
0

√
1− ‖z‖2 dτ

= x̃(0) +
√

1+c2

c
√

2

s∫
0

√
1− c1 cosh(2βτ)− c2 sinh(2βτ) dτ

with c1 = 1
(1+c2) (‖z0‖2 − ‖ż0‖2), c2 = 2

β(1+c2) z0 · ż0, m = 2γ
γ−1 , which can be expressed as

x̃(s) = x̃(0) +
√

1+c2

c
√

2

s∫
0

√
1− γ cos(2iβτ + iϕ) dτ

= x̃0 +
√

1−γ
β

√
1+c2

c
√

2
1
i

βLi+ iϕ
2∫

iϕ
2

√
1−m sin2(v)dv

= x̃(0)− i
√

1−γ
β

√
1+c2

c
√

2

(
E
(
(βL+ ϕ

2 )i,m
)
− E

(
(ϕ2 )i,m

))
,

where ϕ = 1
2 log c1+c2

c1−c2 , v = iβτ , γ =
√

(c1)2 − (c2)2 and where we note that

γ =
1

1 + c2
‖z0 − β−1ż0‖‖z0 + β−1ż0‖ ≤

1
1 + c2

1
2
(
‖z0 − β−1ż0‖2 + ‖z0 + β−1ż0‖2

)
=

1− c2

1 + c2
≤ 1.�

Corollary 3 The solution curves stay in a plane iff z0 and z′0 are linear dependent, i.e. W = det(z0|z′0) = 0. In the
special case z′0 = −βz0, (c = 1 and W = 0) we find

x̃(s) = x̃(0) + s+ 1
cβ

(√
1− ‖z0‖2 −

√
1− ‖z0‖2e−2sβ + log

(
1+
√

1−‖z0‖2e−2sβe−2βs

1+
√

1−‖z0‖2

))
,

(ỹ(s), z̃(s))T = e−βs(ỹ(0), z̃(0))T

In the case where solution curves stay in the plane, i.e. W = 0, with general c, we find

x̃(s) = x̃(0) + 1
c

s∫
0

√
1− ‖z(τ)‖ dτ,

ỹ(s) = ỹ(0) ‖z(s)‖‖z(0)‖ = ỹ(0)√
|ỹ(0)|2+|z̃(0)|2

‖z(s)‖
cβ ,

z̃(s) = z̃(0) ‖z(s)‖‖z(0)‖ = z̃(0)√
|ỹ(0)|2+|z̃(0)|2

‖z(s)‖
cβ ,

where z(s) is given by Eq. (175). These solutions indeed coincide with the geodesics on the contact manifold (SE(2) ≡
R2 o S1,− sin θdx+ cos θdy) where elements are parameterized by (x, y, eiθ), cf. [33, App.A].

See Figure 23 for an example of a geodesic with W = 0 and c = 1.
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Figure 23: Example of a geodesic in R3 o S2. Left: s 7→ x̃(s). Right: s 7→ x(s). Parameter settings β = 1
10 ,

z0 = ( 1
2 , 0)T , z′0 = −βz0, (so c = 1 and W = 0), length L = 30, ẋ(0) = (0, 0, 1)T , x(0) = (0, 0, 0), the

rotation and translation needed to map the curve x̃ onto the geodesic x is given by h−1
0 = m(x0, R0). Note that

x(s) = RT0 (x̃(s)− x0), with x0 = (0, 0,−5) and R0 ∈ SO(3) given by Eq. (185). In this example both the curvature
κ and z are always aligned with the x-axis which explains that the curve stays within the xz-plane.
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