11 research outputs found

    An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers

    Get PDF
    In this paper we consider a 1D parabolic singularly perturbed reaction-convection-diffusion problem, which has a small parameter in both the diffusion term (multiplied by the parameter e2) and the convection term (multiplied by the parameter µ) in the differential equation (e¿(0, 1], µ¿0, 1], µ=e). Moreover, the convective term degenerates inside the spatial domain, and also the source term has a discontinuity of first kind on the degeneration line. In general, for sufficiently small values of the diffusion and the convection parameters, the exact solution exhibits an interior layer in a neighborhood of the interior degeneration point and also a boundary layer in a neighborhood of both end points of the spatial domain. We study the asymptotic behavior of the exact solution with respect to both parameters and we construct a monotone finite difference scheme, which combines the implicit Euler method, defined on a uniform mesh, to discretize in time, together with the classical upwind finite difference scheme, defined on an appropriate nonuniform mesh of Shishkin type, to discretize in space. The numerical scheme converges in the maximum norm uniformly in e and µ, having first order in time and almost first order in space. Illustrative numerical results corroborating in practice the theoretical results are showed

    Schemes Convergent ε-Uniformly for Parabolic Singularly Perturbed Problems with a Degenerating Convective Term and a Discontinuous Source

    Get PDF
    We consider the numerical approximation of a 1D singularly perturbed convection-diffusion problem with a multiply degenerating convective term, for which the order of degeneracy is 2p + 1, p is an integer with p ≥ 1, and such that the convective flux is directed into the domain. The solution exhibits an interior layer at the degeneration point if the source term is also a discontinuous function at this point. We give appropriate bounds for the derivatives of the exact solution of the continuous problem, showing its asymptotic behavior with respect to the perturbation parameter ε, which is the diffusion coefficient. We construct a monotone finite difference scheme combining the implicit Euler method, on a uniform mesh, to discretize in time, and the upwind finite difference scheme, constructed on a piecewise uniform Shishkin mesh condensing in a neighborhood of the interior layer region, to discretize in space. We prove that the method is convergent uniformly with respect to the parameter ε, i.e., ε-uniformly convergent, having first order convergence in time and almost first order in space. Some numerical results corroborating the theoretical results are showed

    Layer-adapted meshes for convection-diffusion problems

    Get PDF
    This is a book on numerical methods for singular perturbation problems - in particular stationary convection-dominated convection-diffusion problems. More precisely it is devoted to the construction and analysis of layer-adapted meshes underlying these numerical methods. An early important contribution towards the optimization of numerical methods by means of special meshes was made by N.S. Bakhvalov in 1969. His paper spawned a lively discussion in the literature with a number of further meshes being proposed and applied to various singular perturbation problems. However, in the mid 1980s this development stalled, but was enlivend again by G.I. Shishkin's proposal of piecewise- equidistant meshes in the early 1990s. Because of their very simple structure they are often much easier to analyse than other meshes, although they give numerical approximations that are inferior to solutions on competing meshes. Shishkin meshes for numerous problems and numerical methods have been studied since and they are still very much in vogue. With this contribution we try to counter this development and lay the emphasis on more general meshes that - apart from performing better than piecewise-uniform meshes - provide a much deeper insight in the course of their analysis. In this monograph a classification and a survey are given of layer-adapted meshes for convection-diffusion problems. It tries to give a comprehensive review of state-of-the art techniques used in the convergence analysis for various numerical methods: finite differences, finite elements and finite volumes. While for finite difference schemes applied to one-dimensional problems a rather complete convergence theory for arbitrary meshes is developed, the theory is more fragmentary for other methods and problems and still requires the restriction to certain classes of meshes

    Annual Research Report 2020

    Get PDF

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore