3,179 research outputs found

    Numerical Evaluation of the Accuracy and Stability Properties of High-order Direct Stokes Solvers with or without Temporal Splitting

    Get PDF
    The temporal stability and effective order of two different direct high-order Stokes solvers are examined. Both solvers start from the primitive variables formulation of the Stokes problem, but are distinct by the numerical uncoupling they apply on the Stokes operator. One of these solvers introduces an intermediate divergence free velocity for performing a temporal splitting (J. Comput. Phys. [1991] 97, 414-443) while the other treats the whole Stokes problem through the evaluation of a divergence free acceleration field (C.R. Acad. Sci. Paris [1994] 319 Serie I, 1455-1461; SIAM J. Scient. Comput. [2000] 22(4), 1386-1410). The second uncoupling is known to be consistent with the harmonicity of the pressure field (SIAM J. Scient. Comput. [2000] 22(4), 1386-1410). Both solvers proceed by two steps, a pressure evaluation based on an extrapolated in time (of theoretical order Je) Neumann condition, and a time implicit (of theoretical order Ji) diffusion step for the final velocity. These solvers are implemented with a Chebyshev mono-domain and a Legendre spectral element collocation schemes. The numerical stability of these four options is investigated for the sixteen combinations of (Je,Ji), 1 ≀ Je, Ji ≀

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic

    A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows

    Full text link
    Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M≈0.1\mathrm{M}\approx 0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to a genuinely incompressible formulation. Our contributions to the state-of-the-art are twofold: Firstly, we present a high-performance discontinuous Galerkin solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures. The performance results presented in this work focus on the node-level performance and our results suggest that there is great potential for further performance improvements for current state-of-the-art discontinuous Galerkin implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows

    On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Full text link
    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.Comment: 31 page

    Inertial Coupling Method for particles in an incompressible fluctuating fluid

    Full text link
    We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and associated discussion) relative to published versio

    Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows

    Full text link
    We present a robust and accurate discretization approach for incompressible turbulent flows based on high-order discontinuous Galerkin methods. The DG discretization of the incompressible Navier-Stokes equations uses the local Lax-Friedrichs flux for the convective term, the symmetric interior penalty method for the viscous term, and central fluxes for the velocity-pressure coupling terms. Stability of the discretization approach for under-resolved, turbulent flow problems is realized by a purely numerical stabilization approach. Consistent penalty terms that enforce the incompressibility constraint as well as inter-element continuity of the velocity field in a weak sense render the numerical method a robust discretization scheme in the under-resolved regime. The penalty parameters are derived by means of dimensional analysis using penalty factors of order 1. Applying these penalty terms in a postprocessing step leads to an efficient solution algorithm for turbulent flows. The proposed approach is applicable independently of the solution strategy used to solve the incompressible Navier-Stokes equations, i.e., it can be used for both projection-type solution methods as well as monolithic solution approaches. Since our approach is based on consistent penalty terms, it is by definition generic and provides optimal rates of convergence when applied to laminar flow problems. Robustness and accuracy are verified for the Orr-Sommerfeld stability problem, the Taylor-Green vortex problem, and turbulent channel flow. Moreover, the accuracy of high-order discretizations as compared to low-order discretizations is investigated for these flow problems. A comparison to state-of-the-art computational approaches for large-eddy simulation indicates that the proposed methods are highly attractive components for turbulent flow solvers

    Higher-order in time “quasi-unconditionally stable” ADI solvers for the compressible Navier–Stokes equations in 2D and 3D curvilinear domains

    Get PDF
    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier–Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas–Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are “quasi-unconditionally stable” in the following sense: each algorithm is stable for all couples (h,Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0,M_h)×(0,M_t). In other words, for each fixed value of Δt below a certain threshold, the Navier–Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier–Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier–Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions
    • 

    corecore