800 research outputs found

    Structural organization of the eukaryotic chromosome

    Get PDF

    Epigenomics and the structure of the living genome

    Get PDF
    Eukaryotic genomes are packaged into an extensively folded state known as chromatin. Analysis of the structure of eukaryotic chromosomes has been revolutionized by development of a suite of genome-wide measurement technologies, collectively termed epigenomics. We review major advances in epigenomic analysis of eukaryotic genomes, covering aspects of genome folding at scales ranging from whole chromosome folding down to nucleotide-resolution assays that provide structural insights into protein-DNA interactions. We then briefly outline several challenges remaining and highlight new developments such as single-cell epigenomic assays that will help provide us with a high-resolution structural understanding of eukaryotic genomes

    Toward a molecular understanding of yeast silent chromatin : roles for H4K16 acetylation and the Sir3 C-terminus

    Get PDF
    Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression. In budding yeast, silent chromatin is characterized by the loading of the Silent Information Regulatory (Sir) proteins (Sir2, Sir3 and Sir4) onto unmodified nucleosomes. This requires the deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions between Sir proteins forming the Sir2-3-4 complex. During my PhD thesis I sought to advance our understanding of these phenomena from a molecular perspective. Previous studies of Sir-chromatin interactions made use of histone peptides and recombinant Sir protein fragments. This gave us an idea of possible interactions, but could not elucidate the role of histone modifications in the assembly of silent chromatin. This required that we examine nucleosomal arrays exposed to full length Sir proteins or the holo Sir complex. In Chapter 2, I made use of an in vitro reconstitution system, that allows the loading of Sir proteins (Sir3, Sir2-4 or Sir2-3-4) onto arrays of regularly spaced nucleosomes, to examine the impact of specific histone modifications (methylation of H3K79, acetylation of H3K56 and H4K16) on Sir protein binding and linker DNA accessibility. The “active” H4K16ac mark is thought to limit the loading of the Sir proteins to silent domain thus favoring the formation of silent regions indirectly by increasing Sir concentration locally. Strikingly, I found that the Sir2-4 subcomplex, unlike Sir3, has a slight higher affinity for H4K16ac-containing chromatin in vitro, consistent with H4K16ac being a substrate for Sir2. In addition the NAD-dependent deacetylation of H4K16ac promotes the binding of the holo Sir complex to chromatin beyond generating hypoacetylated histone tails. We conclude that the Sir2-dependent turnover of the “active” H4K16ac mark directly helps to seed repression. The tight association of the holo Sir complex within silent domains relies on the ability of Sir3 to bind unmodified nucleosomes. In addition, Sir3 dimerization is thought to reinforce and propagate silent domains. However, no Sir3 mutants that fail to dimerize were characterized to date. It was unclear which domain of Sir3 mediates dimerization in vivo. In Chapter 3, we present the X-ray crystal structure of the Sir3 extreme C-terminus (aa 840-978), which folds into a variant winged helix-turn-helix (Sir3 wH) and forms a stable homodimer through a large hydrophobic interface. Loss of wH homodimerization impairs holo Sir3 dimerization in vitro showing that the Sir3 wH module is key to Sir3-Sir3 interaction. Homodimerization mediated by the wH domain can be fully recapitulated by an unrelated bacterial homodimerization domain and is essential for stable association of the Sir2-3-4 complex with chromatin and the formation of silent chromatin in vivo

    Dissecting cis and trans Determinants of Nucleosome Positioning: A Dissertation

    Get PDF
    Eukaryotic DNA is packaged in chromatin, whose repeating subunit, the nucleosome, consists of an octamer of histone proteins wrapped by about 147bp of DNA. This packaging affects the accessibility of DNA and hence any process that occurs on DNA, such as replication, repair, and transcription. An early observation from genome-wide nucleosome mapping in yeast was that genes had a surprisingly characteristic structure, which has motivated studies to understand what determines this architecture. Both sequence and trans acting factors are known to influence chromatin packaging, but the relative contributions of cis and trans determinants of nucleosome positioning is debated. Here we present data using genetic approaches to examine the contributions of cis and trans acting factors on nucleosome positioning in budding yeast. We developed the use of yeast artificial chromosomes to exploit quantitative differences in the chromatin structures of different yeast species. This allows us to place approximately 150kb of sequence from any species into the S.cerevisiae cellular environment and compare the nucleosome positions on this same sequence in different environments to discover what features are variant and hence regulated by trans acting factors. This method allowed us to conclusively show that the great preponderance of nucleosomes are positioned by trans acting factors. We observe the maintenance of nucleosome depletion over some promoter sequences, but partial fill-in of NDRs in some of the YAC v promoters indicates that even this feature is regulated to varying extents by trans acting factors. We are able to extend our use of evolutionary divergence in order to search for specific trans regulators whose effects vary between the species. We find that a subset of transcription factors can compete with histones to help generate some NDRs, with clear effects documented in a cbf1 deletion mutant. In addition, we find that Chd1p acts as a potential “molecular ruler” involved in defining the nucleosome repeat length differences between S.cerevisiae and K.lactis. The mechanism of this measurement is unclear as the alteration in activity is partially attributable to the N-terminal portion of the protein, for which there is no structural data. Our observations of a specialized chromatin structure at de novo transcriptional units along with results from nucleosome mapping in the absence of active transcription indicate that transcription plays a role in engineering genic nucleosome architecture. This work strongly supports the role of trans acting factors in setting up a dynamic, regulated chromatin structure that allows for robustness and fine-tuning of gene expression

    CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail

    No full text
    Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-C-CR), the main CENP-A binding module of human CENP-C. We establish that the short alpha N helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-C-CR and CENP-C-motif) both bind exclusively to the CENP-A nucleosome. We find CENP-C-CR to bind with high affinity due to an extended hydrophobic area made up of CENP-A(V)(532) and CENP-A(V)(533). Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-C-CR rigidifies the N-terminal tail of H4 in the conformation favoring H4(K20) monomethylation, essential for a functional centromere

    Structural organization of the meiotic prophase chromatin in the rat testis

    Get PDF
    Pachytene nuclei were isolated from rat testes by the unit gravity sedimentation technique and contained histone variants H1a, H1t, TH2A, TH2B, and X2 in addition to the somatic histones H1bde, H1c, H2A, H2B, H3, and H4. The basic organization of the pachytene chromatin namely the nucleosome repeat length and the accessibility to micrococcal nuclease, was similar to that of rat liver interphase chromatin. However, when digested by DNase I, the susceptibility of pachytene chromatin was 25% more than liver chromatin under identical conditions. Nucleosome core particles were isolated from both liver and pachytene nuclei and were characterized for their DNA length and integrity of the nucleoprotein on low ionic strength nucleoprotein gels. While liver core particles contained all the somatic histones H2A, H2B, H3, and H4, in the pachytene core particles, histone variants TH2A, X2, and TH2B had replaced nearly 60% of the respective somatic histones. A comparison of the circular dichroism spectra obtained for pachytene and liver core particles indicated that the pachytene core particles were less compact than the liver core particles. Studies on the thermal denaturation properties of the two types of core particles revealed that the fraction of the pachytene core DNA melting at the premelting temperature region of 55-60 degrees C was significantly higher than that of the liver core DNA

    Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    Get PDF
    Abstract Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression
    • 

    corecore