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ABSTRACT 

Eukaryotic DNA is packaged in chromatin, whose repeating subunit, the 

nucleosome, consists of an octamer of histone proteins wrapped by about 147bp 

of DNA. This packaging affects the accessibility of DNA and hence any process 

that occurs on DNA, such as replication, repair, and transcription.  An early 

observation from genome-wide nucleosome mapping in yeast was that genes 

had a surprisingly characteristic structure, which has motivated studies to 

understand what determines this architecture. Both sequence and trans acting 

factors are known to influence chromatin packaging, but the relative contributions 

of cis and trans determinants of nucleosome positioning is debated. Here we 

present data using genetic approaches to examine the contributions of cis and 

trans acting factors on nucleosome positioning in budding yeast.  

We developed the use of yeast artificial chromosomes to exploit 

quantitative differences in the chromatin structures of different yeast species. 

This allows us to place approximately 150kb of sequence from any species into 

the S.cerevisiae cellular environment and compare the nucleosome positions on 

this same sequence in different environments to discover what features are 

variant and hence regulated by trans acting factors. This method allowed us to 

conclusively show that the great preponderance of nucleosomes are positioned 

by trans acting factors. We observe the maintenance of nucleosome depletion 

over some promoter sequences, but partial fill-in of NDRs in some of the YAC 
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promoters indicates that even this feature is regulated to varying extents by trans 

acting factors.  

We are able to extend our use of evolutionary divergence in order to 

search for specific trans regulators whose effects vary between the species. We 

find that a subset of transcription factors can compete with histones to help 

generate some NDRs, with clear effects documented in a cbf1 deletion mutant. In 

addition, we find that Chd1p acts as a potential “molecular ruler” involved in 

defining the nucleosome repeat length differences between S.cerevisiae and 

K.lactis. The mechanism of this measurement is unclear as the alteration in 

activity is partially attributable to the N-terminal portion of the protein, for which 

there is no structural data. Our observations of a specialized chromatin structure 

at de novo transcriptional units along with results from nucleosome mapping in 

the absence of active transcription indicate that transcription plays a role in 

engineering genic nucleosome architecture. This work strongly supports the role 

of trans acting factors in setting up a dynamic, regulated chromatin structure that 

allows for robustness and fine-tuning of gene expression. 
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CHAPTER I: Introduction 

With the exception of dinoflagellates, all eukaryotes package their genomes into 

a repeating nucleoprotein complex known as the nucleosome. All eukaryotic 

DNA transactions, from transcription to DNA repair to recombination, occur in the 

context of this nucleosomal packaging. As the DNA wrapped around the 

nucleosome and the DNA located between nucleosomes differ in their 

accessibility and structural characteristics, the precise locations of nucleosomes 

have proven to be of great importance for understanding the function of the 

genome. 

Nucleosome structure 

The nucleosome core particle consists of ~147 base pairs of double-stranded 

DNA wrapped ~1.7 times in a left-handed superhelical turn around an octamer of 

histone proteins – 2 each of H2A, H2B, H3, and H4 (Kornberg and Lorch, 1999; 

Luger et al., 1997) (Figure I.1). The path of DNA around the histone octamer can 

vary between nucleosomes, as for example 145 bp templates can be wrapped in 

a nucleosome but require additional DNA stretching to accommodate the 

decreased total DNA incorporated (Ong et al., 2007). 
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Figure I. 1: Crystal structure of the nucleosome core particle. 

About 147bp of DNA wrap around an octamer of histone proteins—2 copies each of H2A 
(yellow), H2B (red), H3 (blue), and H4 (green). The H3/H4 dimers are joined to form a tetramer 
and mark the center or dyad of the nucleosome; H2A/H2B dimers attach via connection of H2A 
and H4 to form the octamer. The wrapping of double stranded DNA around the histones causes 
compression of the minor groove, when it is facing in towards the core. 

Reprinted by permission from Macmillan Publishers Ltd: Nature, Luger et al., 1997. 
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The tight wrapping of DNA in nucleosomes has several important 

consequences. First of all, the superhelical path of DNA wrapped around the 

histones is significantly more curved than the persistence length of double-

stranded DNA in solution. As a result of this deformation, intrinsically flexible 

DNA sequences are energetically favored for nucleosome formation, whereas 

stiff DNA sequences relatively disfavor nucleosomal incorporation. Second, the 

wrapping of DNA into nucleosomes has dramatic effects on the ability of DNA-

binding proteins to access their template. On average, the “linker” DNA that lies 

between nucleosomes is far more accessible than the DNA in contact with the 

histones. In addition, DNA is not equally accessible throughout the nucleosome – 

DNA located near the entry/exit points is generally more accessible than DNA 

located near the dyad axis (Figure I.1). This accessibility is a result of thermal 

“breathing” of DNA at the edges of the nucleosome – detailed kinetic studies 

suggest that the DNA at the edges of the nucleosome binds and unbinds the 

histones over time scales of tens of milliseconds (Anderson and Widom, 2001; 

Anderson and Widom, 2000; Polach and Widom, 1995; Polach and Widom, 

1996), and this breathing can have regulatory consequences. Importantly, the 

sequence of the DNA wrapped around the histone octamer, and the presence or 

absence of specific covalent histone modifications, can affect the rates of DNA 

breathing at the entry/exit points. Internally, the wrapping of DNA around the 

nucleosome results in alternating stretches in which the DNA major groove faces 
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either towards the octamer surface or outwards towards the solution, and this 

differential exposure can also be biologically relevant. 

The many nucleosomes that package a given genome can differ from one 

another in many important ways. For example, in addition to the four “canonical” 

histone proteins – H2A, H2B, H3, and H4 – a number of variant histones can be 

assembled into nucleosomes. The number of variant histones found in the 

genome differs between species. Many smaller organisms such as budding yeast 

encode only two histone variants – a largely centromere-specific histone H3 

variant (Cse4 in yeast, CENPA in mammals), and a predominantly promoter-

localized H2A variant known as Htz1 or H2A.Z. Larger organisms often encode 

more histone variants, including relatively well-studied histone variants such as 

H3.3, MacroH2A, and H2A.X, as well as understudied variants such as H2A.Bbd 

and others. Many of these histone variants significantly alter the structure of the 

nucleosome. Most dramatically, it has been suggested that centromeric 

nucleosomes are composed of histone tetramers rather than octamers (Dalal et 

al., 2007), and are wrapped by a right-handed rather than a left-handed 

superhelix of DNA (Furuyama and Henikoff, 2009), although both of these 

fascinating hypotheses are the subject of ongoing and rather heated debates. 

 The specific subunit composition of the histone octamer can, in principle, 

influence any of the mechanisms involved in nucleosome positioning listed 

below. An increasing body of literature deals with the impact of histone variants 
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on ATP-dependent chromatin remodeling enzymes, but relatively little study has 

focused on the impact of histone variants on nucleosomal sequence preferences. 

Altogether, it is worth being aware that the classic nucleosome core particle 

crystal structure represents one family member among a multitude of related 

entities. In addition to histone variants, the exact DNA sequence wrapped around 

the histone octamer and the histone modifications present in the octamer can all 

alter key biophysical and structural characteristics of the nucleosome core 

particle and thereby exert regulatory effects on the genome. 

In vivo nucleosome positions 

The relative inaccessibility of nucleosomal DNA is the basis for several 

convenient experimental tools for identifying nucleosome positions, as linker 

DNA has proven to be far more nuclease-sensitive than nucleosomal DNA. 

Classically, this allowed researchers to link DNase-hypersensitive sites to gene 

regulatory elements (Stalder et al., 1980; Weintraub and Groudine, 1976) which 

are strongly nucleosome-depleted. While DNase hypersensitivity is a convenient 

tool for identifying relatively long linkers, micrococcal nuclease has proven to be 

a more versatile tool for mapping nucleosomes in vivo (Keene and Elgin, 1981; 

Noll, 1974), as extensive micrococcal nuclease digests leave the majority of 

nucleosomal DNA intact while extensively degrading even short linker DNAs. 

 In yeast, seminal studies in the Horz laboratory showed that under 

repressive conditions the PHO5 promoter is associated with several nuclease-
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hypersensitive sites, between which were located several “well-positioned” 

nucleosomes (Almer and Horz, 1986; Almer et al., 1986). A key insight from 

these papers was the identification of positioned nucleosomes, whose existence 

can be attributed to relatively little cell to cell variation in the location of the 

histone octamer. The contrasting case of delocalized, or “fuzzy” nucleosomes, 

results from nucleosomes being located at varying positions in different cells in a 

population and in particular from being absent in others (Small et al., 2014).  

After Almer and Horz’s study on yeast PHO5, numerous additional examples of 

in vivo nucleosome positioning were reported over the decades. 

The past decade has seen modern genome-wide approaches such as 

tiling microarrays and deep sequencing applied to MNase-digested chromatin, 

yielding whole genome maps of nucleosome positioning in an ever-increasing list 

of organisms. Nucleosome positioning has been characterized genome-wide in 

major model organisms including S. cerevisiae, S. pombe, D. melanogaster, C. 

elegans, A. thaliana, and M. musculus, and in a number of human cell lines. In 

addition, many less common model and nonmodel organisms have been subject 

to genome-wide analysis, including 15 additional Hemiascomycete yeasts, the 

Japanese killifish (medaka), P. falciparum, D. discoidium, and many others (Field 

et al., 2009; Marx et al., 2006; Sasaki et al., 2009; Tsankov et al., 2011, 2010; 

Westenberger et al., 2009). The budding yeast, S. cerevisiae, and humans are 

among the best-studied species for nucleosome positioning. Not only are these 

species particularly well-studied, but they also exhibit dramatic differences in 
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multiple aspects of genomic architecture that correlate with chromatin structure, 

such as average gene length, number of introns, extent of higher-order chromatin 

structure, relative AT% vs. GC% at promoters, and many others. 

Alternative methods for mapping nucleosomes in vivo 

While MNase does not have dramatic sequence specificity, it nonetheless does 

have some preference on naked DNA (Dingwall et al., 1981; Hörz and 

Altenburger, 1981). While this sequence preference must be kept in mind when 

interpreting MNase-based nucleosome mapping studies, a number of partly or 

completely independent methods have been developed for genome-wide 

analysis of nucleosome positioning and/or occupancy, and in general results 

using these methods largely agree with MNase-based nucleosome maps. 

 First, because nucleosomal DNA is generally inaccessible to nuclease 

attack, MNase is not the only nuclease that can be used for nucleosome 

mapping – DNase I digestion of yeast chromatin followed by ultradeep 

sequencing has been successfully used to identify in vivo nucleosome positions 

(Hesselberth et al., 2009), and comparison of MNase and caspase-activated 

DNase maps of reconstituted chromatin templates showed nearly identical 

results (Allan et al., 2012). Other enzymes that act on DNA are also inhibited by 

nucleosomes, and several labs have made use of DNA methyltransferases to 

probe nucleosome positioning in isolated nuclei (Bell et al., 2010; Kelly et al., 

2012) or in intact cells (Jessen et al., 2006). Here, treatment of chromatin with 
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methylases results in extensive methylation of linker (but not nucleosomal) DNA, 

which can then be interrogated by isolation of methylated DNA or by bisulfite 

sequencing. Nucleosomal footprints are then revealed as locations protected 

from cytosine methylation. 

 Second, a technique termed FAIRE (Formaldehyde-Assisted Isolation of 

Regulatory Elements) relies on differential solubility of naked DNA and protein-

associated DNA during phenol extraction(Lee et al., 2004; Nagy et al., 2003). 

Heavily protein-associated nucleosomal DNA partitions to phenol, while 

nucleosome-depleted DNA is preferentially recovered in the aqueous phase 

(Hogan et al., 2006). An alternative way to measure overall histone occupancy of 

DNA is to use Chromatin Immunoprecipitation (ChIP) – ChIP against histone H3 

is often used to infer overall nucleosome occupancy (Bernstein et al., 2004; Fan 

et al., 2010), and experiments using epitope-tagged or in vivo biotinylated 

histones have also been quite successful (Mito et al., 2005). 

 Finally, perhaps the most exciting new technique for nucleosome mapping 

was reported by Widom and colleagues (Brogaard et al., 2012). Here, yeast were 

engineered to carry nucleosomes bearing a specific cysteine (H4S47C) located 

near the DNA backbone. After recovery of chromatin, a sulfhydryl-reactive 

copper-chelating reagent was reacted with the nucleosomal cysteine, enabling 

localized production of OH radicals. Subsequent mapping of DNA cleavage sites 

identifies genome-wide positions of nucleosomes with reported single nucleotide 
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resolution. This stands in contrast to nucleosome mapping that relies on MNase, 

as this enzyme continues to “chew away” at nucleosome ends during extended 

digestion protocols, leaving behind at each nucleosome position a population of 

nucleosome-protected DNA fragments with substantial (~10-20 bp) variability in 

the precise fragment ends. Overall, results obtained using ALL of these 

alternative methods are highly concordant with those obtained using MNase, 

lending strong independent support to the widespread use of MNase in 

nucleosome mapping studies.  

In vivo nucleosome positioning patterns 

As noted above, genome-wide nucleosome positioning maps have been 

established for at least 30 different species. Moreover, nucleosome positioning 

has been characterized in multiple cell types for several multicellular organisms, 

in a panel of genetically distinct human lymphoblastoid cell lines, and in scores of 

chromatin-related budding yeast mutants (van Bakel et al., 2013; Carone et al., 

2014; Gaffney et al., 2012; Gkikopoulos et al., 2011; Hartley and Madhani, 2009; 

Mavrich et al., 2008a; Parnell et al., 2008; Schones et al., 2008; Tirosh et al., 

2010; Tolkunov et al., 2011; Valouev et al., 2008; Whitehouse et al., 2007; Yen et 

al., 2012; Zentner et al., 2013). Across this multitude of cell types and genetic 

backgrounds, some surprisingly consistent themes emerge, making studies in 

budding yeast and human cells fairly representative. 
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 Across all organisms studied, promoters and other regulatory elements 

are typically nucleosome-depleted (Radman-Livaja and Rando, 2010). In yeast, 

nucleosome depletion is strongest at promoters, but modest nucleosome 

depletion is also observed at the 3’ ends of genes, even at intergenic regions 

located in between convergently-transcribed genes (Mavrich et al., 2008b). In 

humans, nucleosome depletion is also observed at other regulatory elements, 

such as distal enhancers (Heintzman et al., 2007; Verzi et al., 2010; He et al., 

2010) or binding sites for the insulator factor CTCF (Fu et al., 2008). The region 

of diminished nucleosome occupancy observed at regulatory elements is variably 

referred to in the literature as the “nucleosome-free region” (NFR) or the 

“nucleosome-depleted region” (NDR), NDR being the more inclusive term. 

Nucleosome depletion at promoters typically correlates with transcription 

rate – in all organisms studied, highly-transcribed genes are strongly 

nucleosome-depleted (Kelly et al., 2012; Lee et al., 2007; Schones et al., 2008; 

Valouev et al., 2011; Wang et al., 2012; Weiner et al., 2010). Poorly-expressed 

genes are fully nucleosome-occupied in human immune cells (Valouev et al., 

2011), whereas they are still moderately nucleosome-depleted in budding yeast 

(Radman-Livaja et al., 2011) – this difference likely stems from the fact that very 

few genes are truly silent in yeast, and from the much more widespread role for 

“antinucleosomal” sequences in promoter chromatin structure in yeast relative to 

humans (see below). 



11 
 

 In general, nucleosomes surrounding nucleosome-depleted regions are 

relatively well-positioned, but nucleosome positioning decays with increasing 

distance from the NDR. This observation is most clearly demonstrated at yeast 

promoters, where the first nucleosome downstream of a promoter (typically 

called the “+1” nucleosome to denote its location relative to the transcription start 

site) is characteristically extremely well-positioned (Figure I.2). Delocalized, or 

“fuzzy” nucleosomes, are primarily located near (but somewhat downstream of) 

the midpoints of long coding regions (Mavrich et al., 2008b; Vaillant et al., 2010; 

Yuan et al., 2005). Similar results hold in humans, where well-positioned 

nucleosomes are observed flanking NDRs at promoters, enhancers, and CTCF-

binding sites. +1 nucleosome positioning is particularly strong at promoters 

associated with paused RNA polymerase (Schones et al., 2008), but can also be 

observed at a subset of promoters lacking reported polymerase pausing. As in 

yeast, nucleosomes located distal to regulatory elements become increasingly-

poorly positioned with increasing distance, with little discernable positioning for 

the majority of nucleosomes located farther than ~10 positions away from a 

promoter, CTCF binding site, or other nucleosome-depleted region. Thus, 

because genes are far longer in mammals than in yeast (where the average 

gene is shorter than 2 kb), this means that the majority of nucleosomes are 

delocalized in mammalian cells, whereas the converse is true in yeast. 
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Figure I. 2: Canonical genic nucleosome architecture. 

Cartoon (A), average nucleosome profile (B), and heat map (C) of nucleosome positions 
surrounding the transcription start site. The +1 nucleosome just downstream of the TSS is 
characteristically well-positioned adjacent to the nucleosome depleted promoter, which is flanked 
upstream by the -1 nucleosome. The conservation of nucleosome architecture across all yeast 
genes is evident in the heat map, where each row is a gene, aligned by the TSS. 
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Another major distinction between yeast and mammals is the relative 

abundance of introns, which are quite rare in budding yeast (~250 intron-

containing genes out of ~5500 total genes) but nearly ubiquitous in mammals 

and many other metazoans. Curiously, nucleosome occupancy is quite different 

between introns and exons, with exons typically exhibiting significantly elevated 

nucleosome occupancy relative to introns in humans, worms, flies (Schwartz et 

al., 2009), fission yeast (Tilgner et al., 2009; Wilhelm et al., 2011), and others. 

This likely results from the generally elevated GC% found at exons, which is 

expected to thermodynamically favor nucleosome formation relative to the AT-

rich sequences at introns (see below). 

Variations on the basic theme 

The averaged chromatin structure of promoters across an organism’s genome is 

highly reproducible (Figure I.2C), with fairly similar qualitative features being 

observed in all organisms studied. However, there is substantial variation from 

gene to gene within an organism. Most notably, the extent of nucleosome 

depletion at promoters is highly variable, ranging from the high nucleosome 

occupancy observed at silenced genes in humans to an apparently complete 

absence of nucleosomes at highly-transcribed genes in yeast. Beyond this 

unsurprising link to transcription rate, genes can be broadly grouped into two 

classes with distinctive chromatin packaging and regulatory machinery. 
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 In yeast, the major distinction between gene classes is that between 

“growth” genes, encoding the machinery involved in rapid biomass production 

such as ribosomal proteins, and “stress” genes, encoding cellular components 

such as chaperones and redox enzymes required to tolerate suboptimal 

conditions (Rando, 2012). This distinction between growth and stress genes is 

the first principal component in every genome-wide dataset we can think of. 

Relative to stress genes, growth genes are more often essential, exhibit more 

consistent protein abundance from cell to cell (Choi and Kim, 2009; Choi et al., 

2008; Newman et al., 2006), are more conserved (both in copy number and 

sequence) over evolutionary time (Wapinski et al., 2007), are regulated by TFIID 

rather than SAGA (Huisinga and Pugh, 2004), are relatively insensitive to 

mutations in chromatin-remodeling complexes (Basehoar et al., 2004), carry 

more AT-rich promoters (Field et al., 2008), and have poorly conserved TATA 

boxes (Basehoar et al., 2004; Rhee and Pugh, 2012). In terms of chromatin 

structure, growth genes exhibit more strongly nucleosome-depleted promoters, 

whereas nucleosome depletion at stress genes is less dramatic (Field et al., 

2008; Tirosh and Barkai, 2008; Weiner et al., 2010). Furthermore, growth genes 

are characterized by a strongly-positioned +1/-1 pair of NDR-flanking 

nucleosomes, whereas promoter nucleosomes at stress genes are relatively 

delocalized. It has been proposed that these chromatin features are at least 

partly responsible for the regulatory differences between the gene classes – 

competition between nucleosomes and TFs at stress genes likely explains why 
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stress genes are more reliant on chromatin regulators for proper expression, for 

instance (Field et al., 2008). 

In mammals, the analogous distinction to the “growth/stress” axis in yeast 

is between “housekeeping” genes and tissue-specific genes. As in yeast, this 

distinction strongly correlates with sequence features – ubiquitously-expressed 

housekeeping genes are generally associated with CG-rich promoters (“High 

CpG Promoters”, or HCPs), while tissue-specific genes typically have CpG-poor 

(LCP) promoters (Deaton et al., 2011). As in yeast, these promoter classes differ 

in countless aspects of their chromatin packaging and gene regulation (Vavouri 

and Lehner, 2012). A curious aspect of this homology is while in yeast essential, 

highly-expressed genes have AT-rich promoters that are intrinsically 

nucleosome-depleted, in humans housekeeping genes have GC-rich promoters 

which are intrinsically favorable for nucleosome assembly (Tillo and Hughes, 

2009; Valouev et al., 2011). 

 In addition to gene-to-gene variation in promoter packaging state, the 

internucleosomal spacing over coding regions can also vary. Indeed, the average 

linker length between adjacent nucleosomes differs between species (Van Holde, 

1989), between cell types in multicellular organisms (Teif et al., 2012; Valouev et 

al., 2011), and between individual genes within a given species. 
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Nucleosome stability and dynamics 

It has long been known that linkers differ in their susceptibility to nuclease – 

nucleosome-depleted regions at regulatory elements are cleaved at low levels of 

MNase or DNase digestion (eg are nuclease hypersensitive), whereas longer 

digestion times are required to cleave linkers located within gene coding regions. 

Similarly, nucleosomes differ in their stability during long MNase digestions 

(Bryant et al., 2008). Recent genome-wide studies have characterized this 

behavior in some detail via deep sequencing of mononucleosomal DNA isolated 

after varying length MNase digestions (Weiner et al., 2010; Xi et al., 2011). In 

general, the length of DNA remaining after MNase digestion decreases with 

increasing digestion time or MNase concentration, as MNase slowly chews away 

the ends of nucleosomal DNA. In addition, a subset of “fragile” nucleosomes, 

typically occurring at nucleosome-depleted regions such as promoters and 3’ 

ends of genes, are observed only under relatively mild digestion conditions, when 

the majority of chromatin remains in partially-digested fragments consisting of 

two or more nucleosomes. Fragile nucleosomes are highly correlated with 

localization data for the H2A.Z histone variant, with a large number of 5’-biased 

histone modifications including many histone acetylation marks, and with sites of 

rapid replication-independent nucleosome turnover (Dion et al., 2007; Rufiange 

et al., 2007). 
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How are nucleosome positions established in vivo? 

The surprising order observed in genome-wide nucleosome positioning studies – 

particularly in organisms with compact genomes – has further motivated an 

already sizeable community to attempt to understand the mechanistic basis 

underlying the establishment of nucleosome positions. It has long been known 

that nucleosome formation is thermodynamically preferred over some sequences 

relative to others (Drew and Travers, 1985), raising the possibility that chromatin 

architecture is “programmed” by the genome’s sequence. In contrast, it has also 

been clear for decades that proteins from transcription factors to RNA 

polymerase to the broad group of ATP-dependent chromatin remodelers can 

influence nucleosome positioning. While it is abundantly clear that both cis (DNA 

sequence) and trans (remodelers, etc.) factors have some influence over 

chromatin architecture, the past 7-8 years have seen a lively debate regarding 

the relative contributions of these factors to in vivo nucleosome positioning.  

Sequence Biases in Nucleosome Positioning – favorable sequences 

As expected for a whole-genome packaging factor, histones do not have 

sequence-specific DNA-binding domains. Most interactions between histone 

proteins and DNA observed in the nucleosome crystal structure are between 

residues that penetrate into the minor groove, and the phosphodiester backbone 

(Luger et al., 1997). Despite this, early studies showed that the sea urchin 5S 

rRNA sequence, which is associated with a well-positioned nucleosome in vivo, 



18 
 

was sufficient to direct a positioned nucleosome in in vitro reconstitutions where 

no other proteins are present to influence nucleosome assembly (Simpson and 

Stafford, 1983), and mutations in the sequence were shown to interfere with 

appropriate positioning (FitzGerald and Simpson, 1985). These and many related 

studies identified a role for sequence in modulating the affinity of a stretch of 

DNA for histone proteins and thus in the preferred placement of nucleosomes. 

Seminal studies from Drew and Travers investigated the role of DNA 

flexibility in constraining nucleosome positioning – in order to be incorporated into 

a nucleosome, DNA must dramatically bend to wrap around the histone octamer, 

and differences in DNA flexibility thus can alter the affinity of a given DNA 

sequence for the histone octamer. Drew and Travers observed a rotational 

preference for DNA formed into a nucleosome in vitro: short AT runs positioned 

with their minor grooves facing inwards, with GC runs positioned facing outwards 

(Drew and Travers, 1985). Cloning nucleosomal DNA from chicken erythrocytes 

further revealed a ~10.15 bp periodicity of di- and tri- nucleotides in nucleosomal 

DNA, with AT dinucleotides prevalent where the minor groove faces inward 

towards the nucleosome core, and GC occurring where the DNA minor groove 

faces away from the nucleosome (Satchwell et al., 1986). The preferential 

positioning of AT-rich stretches with minor grooves facing inwards, confirmed in a 

plethora of subsequent mapping studies (Brogaard et al., 2012), has been 

ascribed to the fact that AT-rich minor grooves are narrower than those of GC-

rich sequences, enabling them to better suffer the compression of the minor 
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groove (Figure I.1) required by the smaller internal radius (Chua et al., 2012; 

Morozov et al., 2009; Olson and Zhurkin, 2011; Tolstorukov et al., 2007). Indeed, 

even in the absence of histones, the Drew and Travers circular DNA template 

formed with A+T stretches in the internally facing minor groove (Drew and 

Travers, 1985). Beyond this indirect  readout of shape, recent work suggests that 

AT dinucleotide periodicity might additionally reflect improved thermodynamics of 

electrostatic interactions between histone arginine side chains and the narrowed 

minor groove (West et al., 2010). 

Armed with the knowledge that sequence could direct nucleosome 

positioning, Widom and colleagues undertook an extensive series of selection 

studies to isolate exceptionally strong nucleosome positioning sequences, 

resulting in the now-famous “Widom601” nucleosome positioning sequence 

(Lowary and Widom, 1998). This sequence has been used in thousands of 

subsequent studies requiring nucleosomes positioned at precisely-defined 

locations on a template in vitro, and therefore provides the foundation for much of 

our understanding of nucleosome biochemistry (although the unusually strong 

affinity of this sequence for histones is worth keeping in mind when extending 

interpretations of such studies to more typical nucleosomes encountered in the 

genome). The Widom601 and many other sequences selected for preferential 

nucleosome incorporation generally show evidence of being inherently bent (or 

having a greater ability to bend) – these sequences tend to exhibit strong 

periodic spacing of AT dinucleotides (Lowary and Widom, 1998), as is seen in 
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natural nucleosome sequences (Brogaard et al., 2012; Satchwell et al., 1986). 

When the 10 bp phasing of AT dinucleotides is disrupted or they are removed, 

the relative affinity of these sequences for nucleosomes is reduced (Segal et al., 

2006), suggesting that this characteristic is necessary for strongly positioning 

nucleosomes. Several groups have taken advantage of the periodicity of 

dinucleotides seen in nucleosomal DNA to develop models that are able to 

predict nucleosome positions and occupancy to some extent based on sequence 

(Ioshikhes et al., 1996, 2006; Segal et al., 2006).  

However, while early computational models based on AT-periodicity 

claimed to provide a modest improvement over random models, these models 

dramatically fail to predict major features of in vivo nucleosome positions, such 

as promoter nucleosome depletion. In subsequent years, in vitro reconstitution of 

nucleosomes found no strong signal for nucleosome positioning at the +1 

nucleosome, rather revealing the major signal to be nucleosome depletion over 

promoters in the yeast genome (Kaplan et al., 2009; Zhang et al., 2009) (Figure 

I.3A). This observation is consistent with the improvement of computational 

models by the incorporation of nucleosome depleted sequences (Field et al., 

2008). Thus, the major sequence contribution to chromatin architecture in yeast, 

at least at ~10 bp resolution, is the role of antinucleosomal sequences at 

promoters. 
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Figure I. 3: Nucleosome positioning by sequence and trans-acting factors.  

A) In vitro reconstituted nucleosome positions and sequence-based models of nucleosome 
positions support nucleosome depletion in cis.  

B) in vitro reconstitution with yeast whole cell extract shows importance of ATP-dependent 
chromatin remodellers in establishing native chromatin structure.  

Panel A reprinted by permission from Macmillan Publishers Ltd: Nature, Kaplan et al., 2008. 

Panel B from Zhang, Z., Wippo, C.J., Wal, M., Ward, E., Körber, P., Pugh, B.F., (2011) A Packing 
Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome, Science, 
332: 6032. Reprinted with permission from AAAS.  

 

 

Sequence Biases in Nucleosome Positioning – antinucleosomal sequences 

In addition to the role of AT-periodicity in DNA bending, Travers and colleagues 

also noted that homopolymeric stretches such as PolyA, which are intrinsically 

stiff, might be preferentially excluded from nucleosomes and would likely be 

overrepresented in linker DNA. Indeed, the major signal in genome-wide 

nucleosome reconstitution studies comes from nucleosome depletion over 

sequences rich in poly(dA:dT) runs (Figure I.3A). Early studies suggested that 
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long poly(dA:dT) tracts would not assemble into nucleosomes (Rhodes, 1979; 

Simpson and Künzler, 1979), although later studies were able to assemble these 

tracts into nucleosomes, albeit with reduced affinity relative to random sequences 

(Anderson and Widom, 2001; Puhl and Behe, 1995; Puhl et al., 1991; Satchwell 

et al., 1986). These in vitro studies were complemented by classic in vivo 

experiments in yeast from Iyer and Struhl which showed that nucleosome 

depletion at the HIS3 promoter was strongly correlated with the length of the 

poly(dA:dT) tract (Iyer and Struhl, 1995). Subsequent work showed that the 

extensive nucleosome depletion associated with promoters in yeast can be 

recapitulated via in vitro reconstitution of yeast genomic DNA (Sekinger et al., 

2005), and early in vivo mapping studies in yeast showed a very strong 

correspondence between PolyA elements and promoter nucleosome depletion 

(Yuan et al., 2005). Genome-wide reconstitution studies confirmed that the major 

signal for DNA sequence in establishing nucleosome occupancy was that of 

PolyA elements (Kaplan et al., 2009; Zhang et al., 2009) (Figure I.3A). 

Computational analyses of in vivo nucleosome mapping data further support a 

dominant role for antinucleosomal PolyA runs as key sequence determinants of 

the chromatin landscape (Field et al., 2008; Yuan and Liu, 2008), and in fact a 

model based solely on GC% was nearly as successful as far more complex 

computational models at predicting nucleosome occupancy from genomic 

sequence (Tillo and Hughes, 2009). 
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 The major role of promoter PolyA elements as a sequence determinant of 

nucleosome organization in yeast is now well-established. Importantly, 

nucleosome depletion over PolyA elements is a quantitative feature, and scales 

with the number and length of PolyA elements at a given promoter. Because 

homopolymeric runs such as PolyA runs are labile – they suffer relatively rapid 

sequence expansions and contractions over generations of growth – PolyA 

length elements provide a mechanism for evolutionarily rapid control of a gene’s 

promoter accessibility, expression level, and regulatory program. PolyA strength 

at many promoters is polymorphic between different budding yeast strains, and 

changes in PolyA length are observed at target promoters even during short 

laboratory evolution experiments (Vinces et al., 2009). Over longer time scales, 

PolyA gain and loss contributes to the evolution of gene regulatory programs. 

Most dramatically, in Hemiascomycota fungi that preferentially generate energy 

via respiration (those that diverged prior to a whole genome duplication event), 

promoters of genes involved in respiration (mitochondrial proteins, TCA cycle 

genes, etc.) are associated with long PolyA tracts and are strongly nucleosome-

depleted in vivo and in vitro (Field et al., 2009; Tsankov et al., 2010). In species 

that preferentially obtain energy via fermentation, these genes have lost PolyAs 

and gain nucleosome occupancy, and exhibit other characteristics of “stress”, 

rather than “growth”, genes. 

 Moreover, the extent to which an organism utilizes antinucleosomal 

sequences such as PolyA tracts varies across eukaryotic species. Among 
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Hemiascomycota, for example, PolyA was shown to be used to a similar extent 

(PolyA tract length, number of genes associated with strong PolyA tracts) in a 

number of species, but PolyA tracts were found to be relatively short and 

infrequent in the halophilic yeast D. hansenii (Tsankov et al., 2011, 2010). More 

distantly, a number of larger eukaryotes appear to use PolyA tracts sparingly, as 

for example in mammals housekeeping genes are instead associated with the 

GC-rich CpG island promoters. These promoter sequences strongly favor 

nucleosome assembly (Tillo et al., 2010; Valouev et al., 2011), in contrast to the 

nucleosome depletion programmed at yeast growth genes. Interestingly 

however, there is some evidence in metazoans that GC-rich promoters are 

“paradoxically” accessible – for example, upon p53 induction, those p53 motifs 

that are located in GC-rich promoters and are nucleosome-occupied become 

p53-bound in preference to equally-strong motifs found in low GC-promoters 

(Lidor Nili et al., 2010). In this and other cases, it is plausible that 

“overpackaging” with nucleosomes may prevent compaction into higher-order 

chromatin structures such as 30 nm fiber, enabling TF access to genomic loci 

despite high nucleosome occupancy. No doubt future studies will provide insights 

into the forces shaping the evolution of overall genomic nucleotide composition 

as well as the role for local deviations from the genomic average in dictating 

promoter packaging and access. 

Taken together, computational analyses of in vivo nucleosome mapping 

data and experimental study of in vitro nucleosome reconstitutions reveal two 
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mechanisms by which DNA sequence affects the chromatin landscape. A major 

force in relative nucleosome occupancy is AT% versus GC%, with high AT% at 

yeast promoters associated with nucleosome depletion, and the high GC% at 

mammalian promoters driving high intrinsic nucleosome occupancy. In addition, 

a multitude of studies indicate intrinsically high affinities of sequences with 10 bp 

AT-dinucleotide periodicity for the histone octamer. While these sequences do 

not direct strong nucleosome positioning in in vitro reconstitutions, they more 

likely direct local rotational positioning; that is, the orientation of the minor groove 

in relation to the nucleosome core. In other words, we may consider AT 

dinucleotide periodicity as driving a “toothed” local thermodynamic landscape, 

where extrinsic factors drive positioning to +/- 5 bp, with the local landscape 

directing the precise sequences that bend inwards vs. outwards and thereby 

influencing major groove sequence access. Indeed, single bp precision 

nucleosome mapping suggests that this rotational positioning occurs throughout 

yeast coding regions (Brogaard et al., 2012). It will be interesting in the future to 

see the functional consequences of such rotational positioning. 

Packing effects in nucleosome positioning – “statistical positioning” and 

related models 

While sequence cues clearly affect nucleosome occupancy, it is less clear why 

the majority of nucleosomes are well-positioned in organisms with compact 

genomes. In general, nucleosomes surrounding regulatory elements are well-
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positioned, with nucleosome “fuzziness” increasing with increasing distance from 

such elements.  Broadly speaking, these observations are consistent with 

Kornberg and Stryer’s “statistical positioning” hypothesis (Kornberg and Stryer, 

1988). This hypothesis holds that even if there is no intrinsic preference for 

nucleosomes to form at a given position along a stretch of DNA, if nucleosomes 

are fixed at the ends of a given stretch (by transcription factors, sequence cues, 

etc.) then intervening nucleosomes could exhibit strong positioning as a result of 

straightforward packaging considerations. An analogy we like to use (Rando and 

Chang, 2009) is that of a can of tennis balls – a single tennis ball in a can could 

occupy many positions throughout the can, but three tennis balls in a can will all 

be well-positioned. Many observations are consistent with this – in human cell 

lines, phased arrays of nucleosomes are often found surrounding nucleosome-

depleted loci, but are lost in cell types or in genetic backgrounds with diminished 

nucleosome depletion at the putative boundary (Gaffney et al., 2012; Wang et al., 

2012). Moreover, when yeast are subject to global nucleosome depletion 

(Gossett and Lieb, 2012), nucleosome positions appear to be less sharply 

defined, consistent with relaxed packing constrains. However, nucleosome 

occupancy rather than distribution appears to be affected particularly at 

sequences that are less predisposed to wrap nucleosomes (Celona et al., 2011; 

Gossett and Lieb, 2012), which indicates that chromatin packing is not 

exclusively mediated by statistical positioning. 
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In a detailed analysis of this phenomenon, Vaillant et al sorted yeast 

genes by the distance from the first (+1) to the last (+N) nucleosome associated 

with a coding region (Vaillant et al., 2010), finding that the peak of nucleosome 

fuzziness typically occurred roughly 2/3 of the way along the length of the gene. 

Interestingly, the authors also noted that for gene lengths that were an integral 

repeat of the internucleosomal repeat length exhibited “crystalline” nucleosome 

arrays with well-positioned nucleosomes, while nonintegral repeats were 

associated with fuzzier nucleosome arrays. In other words, tennis balls in a 3 or 4 

ball-length can are all well positioning, but the balls in a 3.5 ball length can have 

extra room to bounce around. Computational models also support statistical 

positioning, as average nucleosome positioning over yeast genes can be 

explained using a “Tonk’s gas” one-dimensional gas formalism(Möbius and 

Gerland, 2010; Möbius et al., 2013). Interestingly, in these models the decay of 

nucleosome positioning is best-explained with nucleosomes downstream of a 

promoter packing against a positioned +1 nucleosome, but with upstream 

nucleosomes being constrained instead by nucleosome-disfavoring sequences at 

promoters. This asymmetry may help explain why the greatest nucleosome 

fuzziness over coding regions occurs downstream of genic midpoints. 

 Together, these observations lend extensive support to the idea that 

statistical positioning accounts for the surprising order observed for nucleosomes 

in compact genomes, although it is worth noting that some observations do not 

support this model (see, eg, (Zhang et al., 2011)). 
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Nucleosome positioning: trans-acting factors 

Altogether, there is little question that sequence features play some role in 

influencing nucleosome occupancy in vivo, it is quite clear that precise 

nucleosome positioning in vivo results from trans-acting factors, primarily 

proteins. This is apparent from the results of reconstitution assays in which yeast 

genomic DNA is incorporated into nucleosomes in vitro – as noted above, DNA 

sequence alone is sufficient to direct nucleosome depletion at many promoters 

(Kaplan et al., 2009; Korber and Hörz, 2004; Sekinger et al., 2005; Zhang et al., 

2009), but beyond promoter nucleosome depletion very few features of 

nucleosome positioning are recovered in these assays. For instance, DNA 

sequence is quite insufficient to accurately direct positioning of the well-

positioned +1 nucleosome in such studies. Moreover, several groups have found 

that even the strongest nucleosome positioning sequence, the “Widom601” 

sequence, fails to direct nucleosome positioning when engineered into intact 

cells (Gracey et al., 2010; Perales et al., 2011). The disconnect between 

sequence preferences and in vivo positioning is particularly pronounced in 

humans, where the generally GC-rich promoters are sites of preferential 

nucleosome incorporation in vitro (Tillo and Hughes, 2009; Valouev et al., 2011), 

yet are in fact nucleosome-depleted in vivo.  

 In yeast, two approaches provide particularly strong evidence for a 

general role for trans-acting factors in nucleosome positioning. First, Korber and 
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colleagues have developed an elegant extract-based reconstitution to identify 

factors required for appropriate in vivo nucleosome positioning. Originally, they 

used this system to show that while PHO5 chromatin could not be recapitulated 

by salt dialysis to deposit histones on DNA in vitro, addition of yeast whole cell 

extract was sufficient to correctly assemble this gene’s chromatin architecture in 

vitro (Korber and Hörz, 2004). Subsequent genome-wide analysis showed that 

yeast extract could broadly help assemble nucleosomes on the yeast genome in 

patterns closely resembling their true in vivo positions (Zhang et al., 2011) 

(Figure I.3B). This biochemical approach promises to enable powerful future 

studies such as fractionation of activities required for proper nucleosome 

positioning over specific promoters (Wippo et al., 2011). 

 A second class of approach to unraveling cis and trans determinants of 

chromatin structure is primarily genetic.  For example, the Kruglyak lab 

pioneered the approach of crossing two yeast strains (BY and RM), and 

analyzing hundreds of haploid segregants to dissect cis and trans genetic effects 

on transcription (Brem et al., 2002). This approach was recently extended to an 

analysis of open chromatin (analyzed using FAIRE) in 96 haploid segregants, 

with a key insight being that the vast majority (~90%) of differences between 

open chromatin between these strains was linked to trans-acting loci such as 

chromatin regulators (Lee et al., 2013). A related genetic approach to generally 

separate cis and trans effects on nucleosome positioning is to analyze chromatin 

structure over a given sequence carried in alternative species’ genomes. For 
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instance, Struhl and colleagues showed that for the budding yeast HIS3 

promoter, nucleosome depletion was maintained over this promoter when it was 

inserted into the S. pombe genome, but only 2/7 nucleosomes were correctly 

positioned (Sekinger et al., 2005). Using hybrids between the closely-related S. 

cerevisiae and S. paradoxus, Tirosh and Barkai showed that differences in 

poly(dA:dT) abundance could explain in most cases those chromatin differences 

that were linked in cis to genomic sequence (Tirosh et al., 2010).  

 Taken together, results from in vitro reconstitution experiments with and 

without cell extracts, and from experiments using heterologous sequences in 

different cells, demonstrate that the majority of nucleosomes depend on trans-

acting factors for correct in vivo positioning. The three major classes of trans-

acting factor that can affect nucleosome positioning are transcription factors, 

RNA polymerase, and ATP-dependent remodelers. 

ATP-dependent chromatin remodeling enzymes  

As noted above, yeast genomic DNA can be assembled in vitro into 

nucleosomes that reasonably match in vivo positions only when using whole cell 

extract. This assembly requires ATP hydrolysis, pointing to the general 

importance of a major class of chromatin regulatory factors – the ATP-dependent 

chromatin remodelers (Clapier and Cairns, 2009). ATP-dependent chromatin 

remodelers are defined by the presence of an ATPase subunit homologous to 

the yeast Swi2/Snf2 (Peterson and Tamkun, 1995; Winston and Carlson, 1992) 
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protein – in budding yeast, 17 Snf2 homologs exist, while humans carry 53. Snf2 

homologs typically occur in multisubunit complexes, and these complexes exhibit 

a wide variety of activities on chromatin substrates. They share in common the 

use of ATP hydrolysis to disrupt histone-DNA interactions and thereby “loosen” 

DNA on the surface of the octamer. Depending on the ATPase in question and 

its associated subunits, eventual outcomes of the remodeling reaction can 

include nucleosome “sliding” (eg lateral movement to a new position without 

histone loss), partial or complete nucleosome eviction, and alterations in the 

octamer composition such as histone dimer exchange (Figure I.4). It is worth 

noting that these outcomes are extensively entangled in vivo (Tomar et al., 

2009). For example, the Ino80 complex appears to have a major role in 

H2A/H2A.Z exchange, yet its deletion exhibits altered nucleosome positioning in 

vivo (van Bakel et al., 2013; Tirosh et al., 2010; Yen et al., 2012). However, 

whether nucleosome locations in this mutant are altered directly by Ino80 sliding 

activity, which has been observed in vitro (Udugama et al., 2011), or results from 

H2A.Z’s ability to interfere with or enhance other ATP-dependent remodelers (Li 

et al., 2005) remains unknown. 



32 
 

 

 

Figure I. 4: ATP-dependent chromatin remodellers affect chromatin structure in 
several ways. 

A) Nucleosome sliding by remodellers, such as Isw and Chd class remodellers, can expose or 
occlude DNA binding sites. 

B) SWI/SNF class remodellers are capable of evicting nucleosomes to expose underlying DNA. 
C) Swr1/Ino80-class remodellers exchange H2A/H2B and H2A/Z/H2B dimers to alter chromatin 

composition. 

 

 

In general, Swr1/Ino80-class remodelers primarily act to exchange 

H2A/H2B and H2A.Z/H2B dimers with one another (Figure I.4C) (although Ino80 

can also slide nucleosomes in vitro), Isw-class remodelers play roles in lateral 

nucleosome sliding (Figure I.4A), and Snf2-class remodelers alter nucleosome 

occupancy by eviction/reassembly of histone octamers (Figure I.4B). In vitro, 

different remodeling complexes can have quite distinct activities on the same 
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templates; for instance Isw1a, Isw2, and Chd1 tend to centrally position 

nucleosomes on short DNA fragments, while Isw1b and human SWI/SNF are 

capable of moving nucleosomes toward the end points of DNA (Bouazoune et 

al., 2009; Stockdale et al., 2006). As these remodelers serve to generally loosen 

DNA-histone contacts, this may allow the nucleosome to sample relatively 

unfavorable sequence locations, with accessory subunits in the various 

complexes or specific domains in the ATPases themselves serving to stabilize 

different remodeling outcomes (end vs. central, for example). For instance, Isw1, 

Isw2, and Chd1 exhibit particularly strong binding to nucleosomes carrying 

extranucleosomal DNA, which may be involved in their tendency to centre 

nucleosomes (Stockdale et al., 2006). Indeed, alterations in the DNA binding 

abilities of Chd1 have been able to motivate directed movement of a nucleosome 

toward the DNA binding site (McKnight et al., 2011). Remodeling complexes not 

only bind to nucleosomes and associated DNA, but can also carry domains that 

are regulated by covalent histone modifications or specific histone variants. Thus, 

combinations of DNA and histone binding domains may serve to target the 

remodeler or may modulate its activity at a particular site, serving to determine 

the directionality characteristics of nucleosome movement (Clapier and Cairns, 

2009).    

In vivo, chromatin remodeling complexes often appear to subvert the 

genomic landscape of favorable/unfavorable nucleosome positions. As a key 

example, now-classic work from Whitehouse and Tsukiyama showed that the 
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Isw2 repressor functions to position nucleosomes over intrinsically unfavorable 

sequences (Whitehouse and Tsukiyama, 2006; Whitehouse et al., 2007). More 

generally, in a study of four ATP-dependent remodelers – ISWI, (P)BAP, INO80, 

and NURD – in Drosophila S2 cells found that all four of these remodelers (which 

bound to different genomic locations) acted to subvert intrinsic sequence 

preferences for nucleosome occupancy (Moshkin et al., 2012). Here, ISWI was 

localized over predicted nucleosome-favoring sequences where it acted to 

reduce nucleosome occupancy, whereas the other three remodelers all bound to 

nucleosome-disfavoring sequences and stabilized nucleosomes. Similar results 

are found in many additional yeast mutants, where nucleosome positions in 

several remodeler deletions better match intrinsic sequence preferences than do 

wild-type nucleosome positions (van Bakel et al., 2013). It is worth noting that 

nucleosome remodelers do not universally counteract sequence preferences, as 

for example it has been reported in yeast that SWI/SNF functions to clear 

nucleosomes from intrinsically unfavorable sequences and thereby reinforces 

sequence preferences (Tolkunov et al., 2011).  

In yeast, a number of studies have examined the effects of deletion of 

most ATP-dependent remodelers, with data currently available for mutations in 

the RSC complex, Isw2, SWI/SNF, Isw1a and Isw1b complexes, Ino80 and 

Swr1, and Chd1 (van Bakel et al., 2013; Gkikopoulos et al., 2011; Hartley and 

Madhani, 2009; Parnell et al., 2008; Tirosh et al., 2010; Tolkunov et al., 2011; 

Whitehouse et al., 2007; Yen et al., 2012), as well as several double and triple 
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mutants (Gkikopoulos et al., 2011). The most dramatic phenotype observed 

came from this last study, in which triple deletions lacking Isw1, Isw2, and 

Chd1exhibited reasonable positioning of the +1 and +2 nucleosomes over coding 

regions, but nearly complete disorganization of all downstream nucleosomes 

(Gkikopoulos et al., 2011).  A similar effect is seen in S.pombe deletion mutants 

of its two Chd1 orthologs (Pointner et al., 2012). The generation of a normal 

nucleosome ladder upon gel electrophoresis would suggest that internucleosome 

spacing is actually maintained within a gene/cell, but that the anchor point of the 

nucleosome array varies from cell to cell. Further extending this study to single 

molecule mapping using cytosine methylation (Jessen et al., 2006) would be 

extremely informative.  

In general, mutant and localization studies carried out under favorable 

growth conditions find that specific remodelers tend to exhibit consistent 

directional effects. For example, Isw2 and the Isw1a complex primarily shift 

nucleosomes at the 5’ ends of genes from 3’ to 5’, towards the NDR – in other 

words, loss of either of these complexes results in +1 and +2 nucleosomes 

shifting downstream into the coding regions of target genes (Figure I.5). In 

contrast to Isw2 and Isw1a, Isw1b, Chd1, SWI/SNF, and RSC, all on average 

push 5’ nucleosomes downstream (Figure I.5). The opposite behavior is 

generally observed on the other side of the NDR – Isw2, for example, shifts both 

NDR-flanking nucleosomes towards the NDR. A striking observation from these 

localization and deletion studies is that ATP-dependent remodeling enzymes 
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often “act at a distance.” In other words, remodeling enzymes such as Isw2 or 

Chd1 are primarily localized at NDR-flanking nucleosomes (Yen et al., 2012; 

Zentner et al., 2013), yet their deletions can affect nucleosome positions several 

positions away, within gene bodies. This may reflect packing effects over coding 

regions, in which a given remodeler directly acts on, say, the +1 nucleosome, 

with effects on +2 and +3 nucleosomes occurring downstream as these 

nucleosomes are packed against a shifted boundary. 
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Figure I. 5: Chromatin remodeler activity is targeted to different areas of the gene. 

Cartoons show the localization of chromatin remodeler with colored elipses above nucleosomes, 
while arrows show the directionality of chromatin remodeling, based on alterations of nucleosome 
positions in deletion mutants.  

Adapted from Cell 149, Yen, K., Vinayachandran, V., Bata, K., Körber, R.T., & Pugh, B.F., 
Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers, 1461-1473, 
2012 with permission from Elsevier 
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General regulatory factors and other transcription factors 

Even for promoter nucleosome depletion, in vitro reconstitutions do not perfectly 

recapitulate in vivo data– on average, yeast promoters are far more nucleosome-

depleted in vivo than in vitro. This is of course far more pronounced for 

nucleosome depletion at promoters in other species such as humans, where 

extrinsic factors must reverse the nucleosome occupancy programmed by the 

relatively high GC%. The specific nucleosome depletion seen in vivo likely stems 

from the large number and variety of proteins that are typically associated with 

active promoters. 

 It has long been understood that transcription factors can compete with 

histones for binding to the same DNA sequence. For instance, Workman and 

Kingston showed two decades ago that binding of the Gal4p transcription factor 

can evict nucleosomes from a promoter (Workman and Kingston, 1992; 

Workman et al., 1991) by making the histones more available to acceptors such 

as histone chaperones (Owen-Hughes and Workman, 1996). But the relationship 

between transcription factors and nucleosomes is somewhat complex – 

nucleosomes generally inhibit binding of transcription factors to their motifs (see 

below), and for many transcription factors deletion studies show minimal effects 

on nucleosome occupancy of their binding sites. A number of features underlie 

the complexity of this relationship. First, it appears that transcription factors differ 

in their ability to invade, or displace, a nucleosome in vivo (Yu and Morse, 1999) 
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– these differences may result from differences in protein abundance or the 

ability to recruit chromatin remodelers, among other things. Second, as noted 

above, transcription factors are more able to bind to nucleosomal DNA located 

near the entry/exit points, where thermal breathing is more pronounced – the 

time scale for DNA exposure varies from ~0.25 second unwrapping times near to 

DNA entry-exit points to ~10 minute unwrapping times for DNA at the dyad axis 

(Tims et al., 2011). Third, in vivo promoter architecture no doubt alters the impact 

of transcription factor deletion – a TF binding site located next to a long PolyA 

sequence is more likely to remain nucleosome-depleted in the absence of the TF 

than is an isolated TF binding site. 

In yeast, a specific family of transcription factors such as Abf1, Reb1, and 

Rap1, known as “General Regulatory Factors (GRFs)” (Buchman and Kornberg, 

1990), has particularly robust activity in nucleosome eviction. Interestingly, while 

GRFs have some transactivation potential, more often they appear to facilitate 

gene activation by enabling the binding of other TFs with strong transactivation 

domains to a given promoter (Buchman and Kornberg, 1990; Yarragudi et al., 

2004; Yu and Morse, 1999). The antinucleosomal capabilities of GRFs manifest 

in three distinct assays. First, shifting conditional GRF mutants (which are usually 

essential) to the restrictive temperature results in increased nucleosome 

occupancy over the GRF’s binding sites (Badis et al., 2008; van Bakel et al., 

2013; Ganapathi et al., 2011; Tsankov et al., 2011). Second, incorporating a 

GRF binding motif into a heterologous location (such as the middle of a coding 
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region for a nonessential gene) can direct nucleosome depletion, although this 

appears to require at least a short PolyA stretch in addition to the GRF motif and 

to be mediated by RSC activity (Hartley and Madhani, 2009; Raisner et al., 

2005). Finally, GRFs can be identified bioinformatically by comparing in vivo 

nucleosome occupancy to nucleosome occupancy obtained from in vitro 

reconstitutions. For example, Kaplan et al compared in vitro and in vivo 

nucleosome occupancy over all possible 7mer sequences, finding the expected 

strong nucleosome depletion over AAAAAAA (Kaplan et al., 2009). However, a 

number of sequences exhibit divergent nucleosome occupancy, with dramatic 

nucleosome depletion observed in vivo despite no intrinsic antinucleosomal 

activity in vitro. These sequences correspond to binding sites for the GRFs. This 

same approach has also been successfully extended to the genomes of other 

hemiascomycetes in order to predict and later validate novel GRF binding sites in 

other species (Tsankov et al., 2011, 2010). 

In another interesting connection between the transcription machinery and 

nucleosome positioning, it is typically found that the first nucleosome 

downstream of a promoter, the +1 nucleosome, is generally relatively well-

positioned, with a stereotyped positioning with respect to genic transcription start 

sites (TSSs) and with respect to basal transcription factors such as TFIID (Rhee 

and Pugh, 2012). The mechanistic basis for the stereotyped positioning of the +1 

nucleosome in many organisms remains imperfectly understood. The contention 

that this occurs via intrinsic sequence effects (Segal et al., 2006) is clearly 
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incorrect, as in vitro nucleosome reconstitutions using only salt dialysis reveal no 

evidence whatsoever for +1 nucleosome positioning (Kaplan et al., 2009; Zhang 

et al., 2009, 2011), and even in the presence of yeast extract and ATP the 

positioning of the +1 nucleosome does not match in vivo positions.  

At present, a number of pieces of evidence point toward a role for some 

component of the basal transcription machinery in positioning the +1 

nucleosome. In CD4+T cells, binding of Pol II, regardless of active transcription, 

appears to play a role in nucleosome positioning, but the position of the +1 

nucleosome appears to be further influenced by active elongation of Pol II in 

these cells (Schones et al., 2008). Similar results are obtained in flies, where 

Pol2 pausing has dramatic effects on nucleosome positioning – genes with high 

levels of paused Pol2 exhibit low levels of downstream nucleosome occupancy, 

and upon release of pausing by NELF knockdown nucleosome occupancy is 

increased over the transcription start site, specifically at genes that experience a 

high pause index (Gilchrist et al., 2010). This suggests that these highly paused 

genes are regulated by competition between the nucleosome and transcriptional 

machinery as well as by negative elongation regulators. Clearly nucleosome 

positioning and transcription are intimately linked, however the order of events in 

the establishment of the well-positioned +1 nucleosome and the transcription 

start site are not yet elucidated. 
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Effects of RNA polymerase on chromatin structure  

Outside of DNA polymerase, the trans-acting protein that acts at the greatest 

fraction of the genome is likely RNA polymerase, as it is known in many 

organisms that the majority of the genome is transcribed – in yeast, 2/3 of the 

genome codes for proteins, while in humans a huge amount of noncoding 

transcription has been uncovered in the last decade. Moreover, as noted above, 

transcription at protein-coding genes is correlated with chromatin structure – 

highly-transcribed genes typically exhibit greater promoter nucleosome depletion, 

and shorter average internucleosomal spacing downstream, than poorly-

transcribed genes.  

 Two general approaches reveal the effects of RNA polymerase on 

nucleosome positioning – either changing transcription rates in vivo by changing 

growth conditions, or more directly by analyzing chromatin structure in the 

absence of transcription, either in vivo or in vitro. A large number of studies have 

examined the effects of altering transcriptional programs on nucleosome 

positioning, starting with Horz’s classic work on the PHO5 promoter. In the 

genomics era, changes in nucleosome positioning/occupancy in yeast has been 

studied in response to carbon source shifts, various stress conditions, and during 

the meiotic program, while studies in larger eukaryotes include heat stress in flies 

and TCR activation in human CD4+ T cells. Given that promoter nucleosome 

occupancy in vivo typically anticorrelates with transcription rate, it is therefore 
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unsurprising that this relationship is dynamic – many genes repressed during a 

given transcriptional response exhibit nucleosome gains when repressed. That 

said, it is worth noting that a large number of genes can be found in any gene 

induction/repression response that exhibit strong mRNA abundance changes 

without any apparent change in promoter nucleosome positioning/occupancy. 

Of course, alterations in chromatin observed during an in vivo 

transcriptional response might reflect the direct action of RNA polymerase, but 

could just as easily result from changes in TF binding or chromatin remodeling 

activities. Slightly more direct than inducing or repressing gene transcription are 

studies on chromatin state in the presence or complete absence of transcription. 

In most multicellular organisms a number of cell divisions occur in the early 

embryo prior to activation of the zygotic genome, and in flies nucleosomes have 

been mapped before and after this stage (the mid-blastula transition) (Moshkin et 

al., 2012). Unsurprisingly, in both of these cases nucleosomes in the 

untranscribed state exhibited better correlations with the pure thermodynamic 

preferences of genomic sequences for nucleosome incorporation, while 

transcription clearly is capable of subverting these intrinsic preferences. 

In vitro transcription assays on a chromatin template have shown that 

RNA polymerase passage results in upstream trafficking of histone proteins. 

Here, multiple groups have found that some RNA polymerases are capable of 

shifting histones in a direction retrograde to polymerase passage, apparently as 
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a result of polymerases pushing a bubble of DNA around the octamer (Bintu et 

al., 2011; Kulaeva et al., 2009; Studitsky et al., 1994, 1997). The ability of Pol2 in 

particular to shift nucleosomes upstream (versus complete nucleosome eviction) 

appears to depend both on transcription rate (Bintu et al., 2011) and on 

polymerase density (Kulaeva et al., 2010). 

 Together, these studies show a strong influence of RNA polymerase, 

either alone or in conjunction with associated remodelers or chaperones, on 

nucleosome positioning. In particular, RNA polymerase broadly subverts intrinsic 

sequence preferences for nucleosomes, and furthermore appears to play a 

perhaps counterintuitive role in directional nucleosome movement upstream 

against the direction of transcription. 

Integrating cis and trans-acting factors in nucleosome positioning 

In the above sections, DNA flexibility and trans-acting factors were treated as 

independent contributors to nucleosome positioning. This is of course an 

oversimplification, as ATP-dependent remodelers often exhibit preferential 

positioning or nucleosome eviction specifically at pro- or anti-nucleosomal 

sequence elements. As noted above, in yeast the Isw2 ATP-dependent 

remodeler acts preferentially to position nucleosomes over intrinsically 

unfavorable sequences typically found at NDRs, thereby generally acting to shift 

nucleosomes over promoters (Whitehouse and Tsukiyama, 2006; Whitehouse et 

al., 2007). In contrast, SWI/SNF appears primarily to reinforce sequence effects 
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on nucleosome occupancy, as snf2∆ mutant yeast preferentially gain 

nucleosomes over intrinsically nucleosome-disfavoring promoters (Tolkunov et 

al., 2011). A multitude of similar cases can be found in the literature – the 

positioning of a nucleosome at a given sequence is influenced by the sequence’s 

intrinsic preferences, but these preferences can be reinforced or subverted by 

everything from cytosine methylation to TF binding to transcription level. Thus, 

while many broad mechanistic themes have become apparent that play key roles 

in genomic nucleosome positioning, we feel it will be a long time before anyone 

has the ability to analyze any given 1 kilobase sequence and predict precisely 

where nucleosomes will assemble in a given organism. 

 

Consequences of nucleosome positioning 

It has long been apparent that the tight complex between histones and DNA 

would affect DNA accessibility, and this has motivated the general notion that 

nucleosomes primarily inhibit DNA-templated processes by blocking access to 

relevant factors. This is of course broadly true, but over the decades exceptions 

to this rule have emerged, and moreover the basic fact that nucleosomes 

interfere with DNA-binding proteins turns out to have endlessly complex 

implications for gene regulation, depending on the detailed layout of DNA-binding 

sites relative to nucleosome positions. Overall, while the rules underlying the 

establishment of nucleosome positioning are increasingly understood, 
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understanding the consequences of nucleosome positioning for cellular 

processes remains a bit of a dark art. 

Nucleosomal repression of gene expression 

As noted above, nucleosomes broadly inhibit access of proteins such as 

transcription factors to their binding sites. The classic demonstration that 

nucleosomes generally inhibit transcription comes from the Grunstein lab – 

depleting histones in vivo (by shutting off transcription of a galactose-driven pair 

of histones) resulted in derepression of PHO5 under normally repressive high 

phosphate growth conditions (Han and Grunstein, 1988; Han et al., 1988a). 

Similar results have been reported for many other yeast genes in histone shutoff 

experiments, a result that has since been extended to the whole genome 

(Gossett and Lieb, 2012; Wyrick et al., 1999), with over 2400 genes being 

reported as derepressed in response to H3/H4 depletion. Genes derepressed in 

response to histone depletion were significantly correlated with the set of genes 

with decreased promoter nucleosome occupancy, again consistent with the 

general idea that promoter nucleosomes inhibit transcription. An alternative 

approach to tuning overall nucleosome occupancy at a specific promoter came 

from classic studies from Iyer and Struhl, who showed that increasing PolyA 

length, with resulting decreased nucleosome occupancy, at the HIS3 promoter 

contributes to increased expression of this gene (Figure I.6A) (Iyer and Struhl, 

1995). These studies are now being systematically extended by the Segal lab, 
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who have examined the expression of thousands of fluorescent reporter 

constructs driven by a variety of TFs, flanked by varying length PolyA elements 

(Figure I.6). Consistent with Iyer and Struhl’s studies, inhibiting nucleosome 

binding to the promoter via strong PolyA elements or via addition of GRF binding 

sites contributed to increased reporter transcription (Sharon et al., 2012). 

 

 

 

Figure I. 6: Promoter chromatin organization allows for tuning of gene expression. 

Nucleosome depletion is generally conducive to gene expression and can be achieved by polyA 
elements programming an open promoter (A), or trans-acting factors abrogating histone binding 
(B) or moving nucleosomes (C). Genes with higher intrinsic nucleosome occupancy tend to be 
more reliant on trans-acting factors, such as general regulatory factor or chromatin remodellers, 
for higher levels of gene expression (B,C).  
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 Because nucleosomes are generally repressive, differences in intrinsic 

nucleosome occupancy between promoters can have important consequences 

for gene regulation (Figure I.6). As noted above, in yeast highly-expressed 

“growth” genes have significantly AT-rich promoters, whereas “stress” genes are 

generally less AT-rich. As a result, stress gene promoters exhibit significantly 

greater nucleosome occupancy than do growth gene promoters. This results in 

dramatic regulatory differences between these gene classes – growth genes are 

generally unaffected by mutations in chromatin remodeling machinery, whereas 

stress genes are highly sensitive to a wide variety of chromatin-related mutants 

which are required to evict or destabilize nucleosomes in order to overcome 

nucleosomal repression of these promoters (Basehoar et al., 2004). Related 

results are seen in human cells, where for example genes induced upon TLR4 

stimulation could be separated into Swi/Snf-dependent and –independent groups 

based on their promoters’ intrinsic propensity to form nucleosomes (Ramirez-

Carrozzi et al., 2009). As noted above, a curious evolutionary quirk is that the 

widely-expressed housekeeping genes in mammals, the apparent analog of 

yeast growth-related genes, are associated with GC-rich promoters. 

 The relatively high nucleosome occupancy of stress genes in yeast has 

many implications for gene regulation. Most trivially, these genes typically are 

expressed at lower levels than are growth genes. Perhaps more interestingly, 

these genes tend to exhibit more cell-to-cell variability in expression, or noise, 

than do growth genes – this will be discussed below. Additionally, inherently 
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nucleosome-repressed promoters provide for highly tunable regulation due to the 

intrinsic complexity of chromatin-based regulation (Figure I.6B,C). For instance, 

because many chromatin regulators are regulated by second messengers or key 

metabolites – including alpha ketoglutarate, acetyl-CoA, S-adenosylmethionine, 

NAD, and others – intrinsically nucleosome-occupied promoters are therefore 

potentially far more likely to respond to changes in cellular metabolism. Indeed, 

stress genes tend to be highly environmentally-responsive in yeast, although 

there are many other potential explanations for such behavior, including the 

obvious one that the TFs that drive these promoters are subject to environmental 

control. 

Nucleosomal effects on RNA polymerase elongation 

In addition to nucleosomal repression of transcription initiation in vivo by 

obstructing binding sites for transcription factors, nucleosomes can also present 

strong barriers for polymerase elongation – a template with a positioned 

nucleosome is inefficiently transcribed by RNA Polymerase II in vitro, even under 

high salt conditions (Bondarenko et al., 2006; LeRoy et al., 1998; Orphanides et 

al., 1998). RNA Polymerase II appears to pause about 45bp into the 

nucleosome, at the H3/H4 tetramer (Bondarenko et al., 2006), likely reflecting a 

requirement for DNA to stochastically unwrap from the histones to allow the 

polymerase to proceed further (Hodges et al., 2009). While nucleosomes may 

present a barrier to RNA Polymerases, they are not an insurmountable barrier. 
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For instance, running in vitro transcription assays with a second trailing 

polymerase, akin to what might occur during more rapid transcription in vivo, has 

been seen to aid the leading polymerase in its progress through the nucleosome, 

apparently thanks to the trailing polymerase inhibiting nucleosome-induced 

backtracking of the leading polymerase (Jin et al., 2010; Kulaeva et al., 2010). 

Furthermore, a number of “elongation factors”, including ATP-dependent 

chromatin remodelers and other chromatin regulators such as the H2A/H2B 

chaperone FACT play key roles in the alleviation of the nucleosomal barrier to 

RNA polymerase (LeRoy et al., 1998; Orphanides et al., 1998). Thus, a number 

of cofactors present in vivo can assist RNA polymerase in transiting chromatin 

templates. However, the extent to which chromatin elongation factors represent 

uniform constituents of elongating RNA polymerase, or are used in a promoter-

driven manner that differs between genesets, remains an active area of 

investigation. 

Nucleosomal activation of gene expression 

While genome-wide analyses reveal thousands of transcripts in yeast that are 

de-repressed in response to histone depletion as expected, hundreds of 

transcripts surprisingly decrease expression upon histone depletion (Gossett and 

Lieb, 2012; Wyrick et al., 1999). This counterintuitive result points towards the 

underappreciated roles for nucleosomes in gene activation. A number of 

mechanisms exist by which nucleosomes can enhance gene transcription. 
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First, non-coding transcription is widespread throughout the genome and 

has been associated with suppression of coding genes (Martens et al., 2004); 

therefore, nucleosomal repression of inhibitory non-coding transcripts can result 

in gene activation. Second, several cases have been described in which 

nucleosomes contribute positively to transcription by taking up DNA between two 

DNA binding sites to bring the regulatory elements into physical proximity. For 

example, at the human U6 promoter, two DNA-binding sites are located ~150 bp 

away from one another. In the absence of a nucleosome, the TFs that bind these 

sites each bind too weakly to effectively activate transcription, and the distance 

separating the motifs is too great for significant cooperation between the TFs. 

However, upon incorporation into a nucleosome with the resulting compaction of 

the intervening DNA, the two TF binding motifs are brought into much greater 

spatial proximity, allowing the TFs to bind cooperatively (Stünkel et al., 1997). 

Similar results were observed at the fly hsp26 promoter (Lu et al., 1995). 

Additionally, while most transcription factors bind poorly to nucleosomal DNA, 

some are able to bind DNA on the surface of the nucleosome (McPherson et al., 

1993) or compete with histones for binding to DNA (Workman and Kingston, 

1992). Finally, a number of sequence-specific DNA-binding proteins also carry 

additional domains such as bromodomains or PHD fingers that are known to bind 

to modified histones. Thus, for a subset of transcription activators a chromatin 

context may enhance binding to a target promoter relative to a long naked stretch 

of DNA, by enabling bivalent binding interactions between the TF and both the 
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target motif and a nearby histone mark at the promoter in question. While these 

and other mechanisms have been explored in specific cases, a systematic 

understanding of nucleosome-dependent activation of genes lags far behind the 

converse case of chromatin-mediated gene repression. 

Nucleosomal effects on gene regulatory logic and expression noise 

The general idea that nucleosomes interfere with DNA binding by other proteins 

is a simple concept with endlessly complicated implications – because protein 

factors carry out the majority of the regulatory work for DNA-templated 

processes, nucleosomes can essentially have any arbitrary effect on gene 

regulation or origin firing, etc., based simply on which proteins they are in the 

way of. Noted here a few examples of paradigms in which nucleosomes have 

more complicated consequences for transcription than simple gene 

repression/activation. 

 A particularly interesting example of nucleosomal control of gene 

regulatory logic comes from the human β-interferon promoter, which is regulated 

by multiple transcription factors including NF-κB, IRF1/3/7, and ATF2. Here, a 

nucleosome positioned over the TATA box prevents transcriptional induction in 

response to activation of any one of the transcription factors (in response to, for 

instance TNF-α or IFN-γ). However, upon viral infection, all three transcription 

factors are activated, the nucleosome shifts downstream, and IFN-β is 

transcribed. In an elegant approach, Lomvardas and Thanos designed an 
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artificial IFN-β promoter in which a strong nucleosome positioning sequence was 

placed at the normal post-induction location (Lomvardas and Thanos, 2002). As 

a result, activation of any of the three transcription factors was sufficient to 

activate transcription. Thus, a 40 bp shift in nucleosome location can change a 

promoter from an AND gate to an OR gate. 

Nucleosomes can also play roles in filtering signal strength and signaling 

kinetics. Nucleosomes are not fixed entities – histone proteins can be evicted in 

response to signaling cascades (Almer et al., 1986), and also exhibit dynamic 

eviction and replacement under steady-state conditions (Dion et al., 2007; 

Rufiange et al., 2007). As a result, nucleosome-occluded regulatory information 

can contribute to gene regulation in complex ways that are predicted to depend 

very strongly on the dynamics of promoter “opening/closing.” For example, 

O’Shea and colleagues found that DNA-binding sites for the transcription factor 

Pho4 have different effects on PHO5 transcription depending on whether they 

are exposed or nucleosome-occluded: exposed Pho4 sites contributed to the 

level of phosphate starvation required for PHO5 induction, but after this threshold 

was reached and promoter nucleosomes were evicted, the sum total of all Pho4 

binding sites contributed the extent of mRNA production (Lam et al., 2008). In 

this case, whatever promoter dynamics exist under uninduced conditions 

apparently do not expose Pho4 binding sites for long enough to have any 

regulatory impact, as these nucleosome-occluded TF binding sites solely 

contribute to mRNA production once exposed by nucleosome eviction. A similar 
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phenomenon has been reported for the yeast CLN2 promoter, where multiple 

General Regulatory Factors contribute to a constitutive NDR covering the binding 

site for regulator SBF (Bai et al., 2010, 2011). Here, eliminating the NDR by 

mutating GRF binding sites, or moving the SBF binding site to a nucleosome-

occluded site, resulted in extensive cell to cell variability in CLN2 expression. In 

contrast, CLN2 driven by an accessible SBF binding site occurred uniformly 

every cell cycle. Most interesting in these studies was the observation that loss of 

the NDR had no effect on the level of CLN2 in individual expressing cells, but 

instead altered only the fraction of cells expressing this reporter. Thus, similar to 

Lam and O’Shea’s studies on PHO5, nucleosome-occluded regulatory 

information becomes functional in those cells in which this information is exposed 

by nucleosome eviction. 

Understanding quantitatively the effects of nucleosome-occluded 

regulatory information will require integrating information about histone exchange 

dynamics with DNA sequence information and TF dynamics. In general, 

promoters with high steady-state nucleosome occupancy are highly responsive 

to chromatin mutants, and exhibit high levels of cell to cell variation (“noise”) in 

gene expression (Field et al., 2008; Newman et al., 2006; Raser and O’Shea, 

2004; Tirosh and Barkai, 2008). While much of this may be driven by the high 

enrichment of TATA boxes at such genes (Basehoar et al., 2004) and the 

resulting slow off rate for bound TBP, modeling and experimental studies also 

point to a major influence of chromatin state transitions from “open” to “closed” 
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on gene expression variability (Boeger et al., 2008; Raser and O’Shea, 2004). 

Chromatin dynamics at promoters have more subtle regulatory effects than 

simply influencing cell to cell variation in expression, as they have also been 

implicated in how promoters filter information from transcription factor dynamics. 

Here, combined modeling and experimental studies suggest that promoters with 

slow open/closed transition kinetics are generally less responsive to transcription 

factor activity that is frequency or duration-modulated, whereas both slow and 

fast promoters are similarly regulated by amplitude-modulated transcription 

factors (Hao and O’Shea, 2012).  

Chromatin structure and regulatory evolution 

Early comparative genomics studies in fungi identified a strong connection 

between genes that changed regulatory behavior between species, and promoter 

chromatin architecture. In general, genes that exhibit expression “volatility” 

between species – genes that are highly-expressed under conditions of rapid 

growth in one species, but poorly-expressed under similar conditions in another – 

are the “stress” class of genes with high promoter nucleosome occupancy 

(Tirosh et al., 2006). Moreover, changes in gene regulatory program can often be 

linked to changes in nucleosome occupancy. One of the first-described and most 

dramatic examples of this behavior is found in the mitochondrial ribosomal 

protein (MRP)-encoding genes in fungi – Ascomycete species that diverged in 

this phylogeny prior to a whole-genome duplication (WGD) event (such as C. 
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albicans) typically harvest energy from carbohydrates via respiration during rapid 

growth, whereas species diverging post-WGD exhibit rapid fermentation-

dependent growth, and then switch to respiration after all fermentable carbon has 

been depleted (Conant and Wolfe, 2007). Genes related to respiration, such as 

mitochondrial ribosomal protein-encoding genes (and many other related 

genesets), are regulated with other “growth” genes in pre-WGD species, but are 

regulated with “stress” genes in post-WGD species (Ihmels et al., 2005). This 

change in regulatory strategy is linked to sequence effects on nucleosome 

occupancy, as pre-WGD species carry more antinucleosomal PolyA tracts at 

these genes and thus “program” more open chromatin, while PolyA tracts are lost 

at these genes in post-WGD species (Field et al., 2009; Tsankov et al., 2010). 

Similar changes occur at other genesets on this phylogeny, as for example 

splicing-related genes in Y. lipolytica are associated with stronger PolyA 

sequences and more highly-expressed during midlog growth than they are in 

relatively intron-depleted species elsewhere in the phylogeny (Tsankov et al., 

2010). 

 Over shorter evolutionary timescales, both cis and trans-acting sequence 

changes affect chromatin structure and gene regulation. Seminal studies by 

Brem and Kruglyak analyzed segregants of a cross between closely related S. 

cerevisiae strains to identify cis- and trans- effects of polymorphisms on gene 

expression levels (Brem et al., 2002). Subsequent analysis mapped many of 

these trans-acting polymorphisms to chromatin regulators (Lee et al., 2006). In 
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contrast, Tirosh and Barkai used hybrid diploids formed from closely-related S. 

cerevisiae and S. paradoxus to show that most gene expression divergence was 

driven by cis-acting sequence differences. Much of this cis-acting sequence 

divergence ended up affecting the strength of antinucleosomal sequences at 

promoters (Tirosh et al., 2009, 2010). Thus, while gene regulatory divergence in 

the short term BY/RM system were driven by trans-regulators, and longer-term 

gene expression divergence was linked to cis-acting sequence changes, both of 

these effects appear to be mediated via chromatin changes. 

 Comparitive genomics studies generally find that evolutionarily labile 

genes are associated with highly nucleosome-occupied promoters, but of course 

it is quite plausible that this has no causal role in gene expression changes over 

evolutionary time, instead reflecting either relaxed selective constraints, or even 

positive selection, on expression levels of “stress” genes relative to the generally 

highly-conserved “growth” genes. However, several laboratory evolution studies 

have shown that the chromatin state of a promoter indeed affects the available 

paths to altered gene expression. Verstrepen and colleagues showed that by 

selecting for increased expression of a reporter gene driven by a PolyA-

containing promoter, they could obtain yeast strains with increased PolyA lengths 

(Vinces et al., 2009). More broadly, Barkai and colleagues carried out selection 

experiments on yeast strains engineered to drive GFP from a variety of different 

promoters. Increased expression could be selected for GFPs driven both by 

relatively nucleosome-free and nucleosome-occupied promoters (Rosin et al., 
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2012). However, strains selected for increased expression from nucleosome-free 

promoters typically exhibited gene duplications, and upon removal of selection 

pressure duplicated regions were rapidly lost. In contrast, nucleosome-occluded 

promoters could easily be selected to drive higher GFP, and the mutations that 

altered GFP expression were primarily unlinked to the reporter (eg in trans). 

Moreover, analysis of unselected mutations on a variety of reporters confirmed 

that nucleosome-occupied promoters were broadly more sensitive to mutations 

than were nucleosome-depleted promoters (Hornung et al., 2012). These results 

strongly argue that the chromatin structure of promoters contributes to the 

evolvability of new gene regulatory programs. 

 In the above cases, much of the impact of chromatin architecture on 

evolution of gene regulation can be ascribed to the impact of mutational “target 

size” for highly nucleosome-occupied promoters, whose expression is affected by 

many more chromatin regulators. However, nucleosomes can also influence the 

spectrum of mutations at a given sequence, as nucleosomal DNA is less 

available to DNA repair enzymes than is linker DNA. This is observed in analyses 

of genetic variation within a species or between closely-related species, as for 

example in Medaka different types of sequence polymorphisms are observed to 

occur at genomic loci found in nucleosomes (nucleotide substitutions) vs. in 

linkers (indels) (Sasaki et al., 2009). These and similar results suggest that 

nucleosomes influence the course of sequence evolution over evolutionary time, 

thus casting a sequence “shadow” on the genome. 
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CHAPTER II: High-resolution nucleosome mapping reveals 

transcription-dependent promoter packaging. 

Abstract 

Genome-wide mapping of nucleosomes has revealed a great deal about 

the relationships between chromatin structure and control of gene expression, 

and has led to mechanistic hypotheses regarding the rules by which chromatin 

structure is established. High-throughput sequencing has recently become the 

technology of choice for chromatin mapping studies, yet analysis of these 

experiments is still in its infancy. Here, we introduce a pipeline for analyzing deep 

sequencing maps of chromatin structure and apply it to data from S. cerevisiae. 

We analyze digestion series where nucleosomes are isolated from under- and 

over-digested chromatin. We find that certain classes of nucleosomes are 

unusually susceptible or resistant to overdigestion, with promoter nucleosomes 

easily digested and mid-coding region nucleosomes being quite stable. We find 

evidence for highly sensitive nucleosomes located within “nucleosome-free 

regions,” suggesting that these regions are not always completely naked but 

instead are likely associated with easily-digested nucleosomes. Finally, since 

RNA polymerase is the dominant energy-consuming machine that operates on 

the chromatin template, we analyze changes in chromatin structure when RNA 

polymerase is inactivated via a temperature-sensitive mutation. We find evidence 

that RNA polymerase plays a role in nucleosome eviction at promoters, and is 
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also responsible for retrograde shifts in nucleosomes during transcription. Loss of 

RNA polymerase results in a relaxation of chromatin structure to more closely 

match in vitro nucleosome positioning preferences. Together, these results 

provide analytical tools and experimental guidance for nucleosome mapping 

experiments, and help disentangle the interlinked processes of transcription and 

chromatin packaging. 

Introduction 

Eukaryotic DNA is packaged in nucleosomes, composed of 147bp of DNA 

wrapped ~1.7 turns around an octamer of histone proteins (Kornberg and Lorch 

1999; Luger et al. 1997). Nucleosomes influence the expression of a huge 

fraction of yeast genes (Wyrick et al., 1999), and the precise positioning of 

nucleosomes relative to underlying DNA, controls access to protein binding sites 

and thereby affects regulatory programs (Lam et al. 2008; Lomvardas and 

Thanos 2002; Radman-Livaja and Rando 2009; Stunkel et al. 1997). In yeast, 

transcription start sites (TSSs) are generally positioned just within the +1 

nucleosome, downstream of a nucleosome-depleted region generally referred to 

as the nucleosome-free region (NFR) (Albert et al. 2007; Mavrich et al. 2008a; 

Yuan et al. 2005). Nucleosome positioning is different between promoter types; 

TATA-less promoters tend to be “housekeeping” genes and are characterized by 

a canonical NFR upstream of their TSS; conversely, TATA-containing genes tend 

to be stress-responsive, noisily expressed, are more responsive to genetic 
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perturbation of chromatin remodeling complexes, and their promoters are often at 

least partly occupied by nucleosomes (Basehoar et al. 2004; Choi and Kim 2009; 

Field et al. 2008; Ioshikhes et al. 2006; Newman et al. 2006; Tirosh and Barkai 

2008). 

While nucleosomes can package almost any sequence, work over the 

past few decades has established sequence rules that influence this packaging. 

Most importantly, rigid polyA tracts in DNA are unfavorable for nucleosome 

assembly, and can direct formation of NFRs in vitro (Drew and Travers 1985; 

Ioshikhes et al. 2006; Iyer and Struhl 1995; Kaplan et al. 2008; Kunkel and 

Martinson 1981; Segal and Widom 2009; Sekinger et al. 2005; Yuan and Liu 

2008; Yuan et al. 2005). This was recently confirmed globally in an in vitro 

reconstitution study, emphasizing a major role for nucleosome-excluding 

sequences in “programming” promoter architecture (Kaplan et al. 2008; Zhang et 

al. 2009). Much of the remainder of in vivo chromatin structure is proposed to 

result from “statistical positioning,” the idea that packing as many nucleosomes 

as possible in a short stretch of the genome will result in positioned nucleosomes 

(Kornberg and Stryer 1988; Mavrich et al. 2008a; Yuan et al. 2005).  While some 

aspects of yeast chromatin structure can in principle be predicted based on 

sequence and packing rules, a number of protein machines, such as the ATP-

dependent chromatin remodeling complexes, regulate transcription by moving 

nucleosomes (Clapier and Cairns 2009; Workman and Kingston 1998). Perhaps 

the most widespread chromatin-perturbing complex is RNA polymerase, whose 
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passage disrupts histone-DNA contacts, and at very high transcription rates 

results in nucleosome eviction (Bondarenko et al. 2006; Dion et al. 2007; Field et 

al. 2008; Lee et al. 2004; Schwabish and Struhl 2004; Studitsky et al. 1994; 

Studitsky et al. 1997). 

 The advent of high-throughput sequencing technology has enabled rapid 

genome-wide analysis of nucleosome positioning at high resolution, and has 

been used to map nucleosomes in yeast, worms, flies, medaka, and humans 

(Field et al. 2008; Mavrich et al. 2008a; Mavrich et al. 2008b; Sasaki et al. 2009; 

Schones et al. 2008; Shivaswamy et al. 2008; Valouev et al. 2008). Yet, 

analytical and experimental methods for deep sequencing analysis of chromatin 

are still in their infancy and mostly focus on averaged nucleosome occupancy 

levels at genomic loci, effectively transforming deep sequencing data into an 

analog of tiling array data.  

Here, we describe a novel analytical method for identifying nucleosome 

positions from Illumina sequencing data, and automatically estimate nucleosome 

position, occupancy, and length from S. cerevisiae data. Using parameters 

extracted from these nucleosome calls allows us to identify groups of 

functionally-related genes with significantly high or low values of a given 

parameter. Experimentally, we examine the impact of nuclease titration levels on 

this assay and identify properties of yeast chromatin that are influenced by the 

level of digestion, as well as invariant properties. Finally, we explore the role of 
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RNA polymerase in chromatin structure through the use of a temperature-

sensitive mutant in the gene encoding the large subunit of RNA polymerase II, 

RPO21 (also known as RPB1). Comparing nucleosome positions and properties 

before and after Pol II inactivation we confirm the role of RNA polymerase in 

nucleosome eviction at promoters, and find a surprising role in retrograde 

movement of nucleosomes over genes. By quantitatively analyzing changes in 

nucleosome positioning after Pol II shutoff we find that different classes of genes 

are subject to distinct perturbations by RNA Polymerase. Finally, we confirm a 

role for RNA Polymerase in perturbing nucleosomes from their 

thermodynamically-favored positions. 

Results 

Identifying Nucleosome Positions by Template Filtering  

The application of deep sequencing to mononucleosomal DNA results in 

million of reads from both ends of the mononucleosomal DNA segments. 

Published methods for calling nucleosome positions from Illumina data typically 

involve extending each single-end short sequenced read to the expected 

segment length of ~140 bp, and then examining the coverage of different 

genomic loci by the accumulated extended segments. These methods clearly 

highlight nucleosome-depleted vs. nucleosome occupied regions, for example in 

averaged gene alignments (Albert et al. 2007; Field et al. 2008; Shivaswamy et 

al. 2008). More elaborate approaches identify nucleosome positions by 
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identifying the center of these inferred segments and estimating the occupancy at 

different center locations (Shivaswamy et al. 2008).  These methods do not 

account for the possibility that nucleosomes might occupy different positions in 

subpopulations of cells, and assume uniform nucleosome lengths (ie no 

variability in digestion level at different nucleosomes). 

To overcome these issues, we developed a method for calling 

nucleosome positions, occupancy and length, using template filtering (Turin 

1960). This method is based on the observation that sequencing the ends of a 

nucleosome will result in an expected pattern of offset Forward and Reverse 

strand reads at the two ends (Figure II.1A). Due to variability in exact 

nucleosome position from cell to cell, and variability in the extent of MNase 

digestion at each end of a nucleosome, the peak of reads at each nucleosome 

end will form a distribution of variable width. Our method is based on identifying 

occupancy templates of Forward and Reverse reads that are typical of 

nucleosomes. The method then uses a fast procedure to identify locations where 

the Forward and Reverse read distributions correlate with a series of model 

templates (Figure II.1B, Supplementary Figure II.1). The method examines a 

range of distances between Forward and Reverse templates to capture over- and 

under-digestion of the ~147bp nucleosomal DNA, and determines nucleosome 

length by choosing an F-to-R offset that maximizes correlation to F and R 

templates (Figure II.1C,D). 
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Figure II.1: Template Filtering overview 

 A) Deep sequencing data for a typical stretch of the yeast genome. Coverage by forward strand 
sequencing reads are shown as red peaks, whereas coverage by reverse strand sequencing 
reads are shown as inverted green peaks. 

B) Templates. Forward and Reverse strand read distributions are cross-correlated with each of 
the seven templates shown. 

C) Correlation coefficient heat map of template 1 for Forward and Reverse templates, at varying 
center positions (x-axis) and distances (y-axis). 

D) Examples of templates spaced too far apart (top), at the optimal distance (middle), or too close 
together (bottom). Dotted lines indicate template outlines being compared to the underlying data. 

E) Read distributions explained by the optimal template matches are shown as dotted lines for 
the region from part A). 

F) Schematic of nucleosome calls and underlying gene annotations. 
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To further elaborate the method, we aimed to identify the common read 

distributions from the data. In other words, what are the typical distributions of 

end reads for the nucleosomes in an experimental dataset? We first applied our 

method using a Gaussian-shaped template to create a preliminary map of 

nucleosome positions. We next examined read distributions at the ends of these 

initial nucleosome predictions, clustered read patterns to identify typical 

behaviors, and selected seven representative templates for use in our scans 

(Figure II.1B, Supplementary Figure II.1). Six of the templates exhibited several 

peaks, potentially indicating nucleosomes with variable ends resulting from 

subpopulations and/or variable nuclease digestion. For example, nucleosomes 

with ends that match template 2 have sets of ends separated by ten base pairs 

(Supplementary Figure II.1), suggesting that the first stage in overdigestion of 

nucleosomes by micrococcal nuclease is to cut one helical turn further into the 

nucleosomal DNA. 
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Supplementary Figure II.1: Templates used for filtering 

A) The seven templates used for pattern-matching. 

B) Read distributions for nucleosome matching each template. All nucleosome ends associated 
with a given template are represented in a heatmap, with each row representing a nucleosome 
and red bars indicating the 36 nt sequenced reads.  

C) For all nucleosome ends matching the indicated template, histograms are displayed for all 
sequence reads associated with the template. 
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Our method fits the sequencing data to the best-correlated templates with 

varying distances between F and R templates. Local maxima in the correlation 

spectrum (Figure II.1C) are identified as potential nucleosome calls (Figure 

II.1E,F). To assemble the final set of nucleosomes, we use a greedy approach to 

choose the best-correlating template and distance per nucleosome (Methods). 

Occupancy is determined for each nucleosome by the number of reads 

contributing to a given nucleosome call. To account for different sequencing 

yields we normalize nucleosome occupancies to mean value of 1. 

To evaluate the quality of our method’s nucleosome calls, we used the 

nucleosome positions, templates, and occupancy calls to re-generate the 

sequenced reads which account for our called nucleosomes. This simulated 

dataset is sampled with the same number of reads as the original sequencing 

run. These simulated reads closely match the original sequencing data, and the 

small difference (residual) between the measured and reconstructed data 

indicate that our nucleosome calls account for 88% of the sequencing reads, 

indicating that the small number of extracted parameters capture the majority of 

the experimental sequencing data (Supplementary Figure II.2). 
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Supplementary Figure II.2: Nucleosome calls account for the majority of the 
sequencing data 

A) Occupancy map of forward and reverse strand reads for all yeast ORFs aligned by TSS. 
Forward strand reads are shown as red bars, reverse strand reads are shown in green. Gene 
order for parts B-D is the same as for this panel. 

B) Nucleosome calls generated by our method are shown in blue. Small overlaping areas are 
shown with yellow   

C) Simulated data regenerated from our nucleosome calls only (using selected templates and 
occupancy), shown as in A). 

D) Generated data was subtracted from real data. Small difference (residual) between raw data 
and regenerated data demonstrates that our method accounts for 88% of raw data. 
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We also examined data from 7 additional previously-published deep 

sequencing datasets (Kaplan et al. 2008; Shivaswamy et al. 2008). We find that 

the same templates are common in all datasets (Supplementary Figure II.3A), 

confirming the generality of our approach. However, we did find that the 

occurrence frequency of different templates differed between datasets, which we 

ascribe to differences in numbers of reads as well as differences in digestion 

between different MNase preparations (Supplementary Figure II.3B, see below).  

Positions of nucleosome calls were generally concordant between datasets 

(Supplementary Figures II.4, II.5), with the major difference occurring in -1 

nucleosome calls, which we also identify below as being dependent on digestion 

levels. 
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Supplementary Figure II.3: Template filtering applied to other Illumina 
datasets 

A) Template filtering was applied to seven additional published nucleosome mapping datasets. 
Shown are frequencies of various templates for all ten (Seven published plus three from this 
study) sets of nucleosome calls. 

B) Nucleosome width distributions from various datasets. Shown are histograms of nucleosome 
widths as determined by template filtering for the ten datasets above. Note that the two other 
studies both exhibit nucleosome width distributions corresponding to our “underdigested” 
chromatin. 



73 
 

 

Supplementary Figure II. 4: Comparison of template filtering and Parzen window–
based approach 

A, B) Center-to-center distance histograms for nucleosome calls from Shivaswamy et al 
compared to template filtering calls using Shivaswamy data. 

C) Curves showing nucleosomes called in this study vs. calls from Shivaswamy et al. 
For each center-to-center distance, calls unique to one study or the other are plotted, 
with green curve showing number of nucleosomes called with both methods with the 
indicated center-to-center distances. Venn diagrams above graph show intersection of 
calls at three values of K. 
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Finally, we compared our nucleosome calling method to an alternative 

calling algorithm based on identifying peaks in data where Forward and Reverse 

reads have been shifted a half-nucleosome width towards one another 

(Shivaswamy et al. 2008). Nucleosome calls were highly concordant for both 

methods (Supplementary Figure II.5A), particularly for clearly well-positioned 

nucleosomes (those that match Template 1 in our approach). Examination of 

regions where nucleosome calls differed revealed that our method fails in regions 

where only one end of a nucleosome generates reads, whereas our method 

better captures data from “fuzzy” regions such as mid-coding regions 

(Supplementary Figure II.5B,C), thereby better-capturing nucleosome occupancy 

over such regions.  
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Supplementary Figure II. 5: Differences between template filtering and Parzen 
window–based approach. 

A) As in Supplementary Figure II.4A,B, but comparing nucleosome calls from this dataset to 
Shivaswamy et al calls on their dataset. 

B) Heatmap of sequencing reads from nucleosomes called by Shivaswamy et al but not called 
using template filtering on Shivaswamy data. Note that most missed calls correspond to read 
distributions that only capture one nucleosome end. Note that this dataset is relatively 
undersequenced (~0.5 million reads), and this type of artifact is rarer in higher-coverage datasets. 

C) Heatmap of sequencing reads from nucleosomes called using template filtering but not called 
by Shivaswamy et al. Note that most missed calls generally correspond to “fuzzy” stretches of 
chromatin. 
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By examining distributions of end reads, we found that nucleosomes at 

different locations vary in their digestion patterns. Over- and under-digestion of 

DNA can be due to many possible factors, including properties of the DNA 

sequence (e.g., sequence composition, bendability, etc.), and properties of the 

nucleosome (e.g., histone modification state). To investigate these two factors 

we tested whether the digestion template at nucleosome ends is associated with 

specific sequence properties and/or specific modification annotation.  Consistent 

with previous reports of MNase sequence preference (Dingwall et al. 1981; Horz 

and Altenburger 1981), we find that different templates are associated with a 

clear sequence preference for location of A/T dinucleotides (Supplementary 

Figure II.6B). On the other hand, we also observed that multimodal templates 

such as template 3 were enriched at locations previously described as “fuzzy” or 

delocalized, such as mid-coding regions and over promoters of stress-responsive 

genes (Supplementary Figure II.6C,D). These results suggest that both 

nucleosomal subpopulations (ie delocalization) as well as sequence composition 

are significant sources of variability in patterns of nucleosome reads. While these 

two factors cannot be completely disentangled when using MNase to map 

nucleosomes, we note that the use of several templates provides an automated 

means for taking MNase sequence biases into account. 
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Supplementary Figure II. 6: Different templates capture MNase biases and 
delocalized nucleosomes 

A) Templates start distribution, as in Figure II.1C. All x axes are as for Template 1. 

B) Sequences of nucleosome ends associated with each template exhibit MNase-related biases. 
Nucleosomes of each template were aligned by their middle and dinuclotide frequency at each 
position were collected. Frequency of AA/AT/TA/TT dinucleotides at the sequence start are 
shown in green, and of GG/GC/CG/CC dinucleotides in red. Note strong bias for AT-rich 
dinucleotides at MNase cleavage sites – over 70% of all cut sites were after AA/AT/TA/TT. All x 
and y axis labels are identical to Template 1, so are excluded to reduce clutter. 

C) Association of nucleosomes at varying genomic locations with different templates. Note that 
Template 3, representing widely-separated MNase cleavage sites, is enriched in mid-coding 
regions. 

D) Enrichment of different templates at the -1, +1, and coding region average nucleosomes for 
various genesets (as in Figure II.2B). For +1 and -1 nucleosomes, two columns are show for each 
template, the first being use of the relevant template for the upstream nucleosome end and the 
second for the downstream end. Color bar on the top matches template colors from A, and green 
lines to the left show enrichment of template 3 in heat shock and stress genes. 
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Nucleosome Positioning in Growing Yeast 

Genome-wide maps of nucleosomes in actively growing yeast have been 

the subject of a rage of recent studies (Albert et al. 2007; Field et al. 2008; Lee et 

al. 2007; Mavrich et al. 2008a; Shivaswamy et al. 2008; Yuan et al. 2005). To 

further evaluate our methodology, we carried out deep sequencing of 

mononucleosomal DNA from actively growing yeast, and applied our method to 

generate a map of nucleosome locations. Our method automatically extracts 

features of interest, such as NFR width, nucleosome length (which is not 

available using previous methods), nucleosome spacing, and occupancy. To 

systematically examine these features we used a compendium of experimental 

gene annotations we previously collected (Dion et al. 2007; Wapinski et al. 2007) 

and compared these against multiple nucleosome attributes associated with each 

gene (e.g., +1 nucleosome occupancy, spacing between the +1 and +3 

nucleosome, etc.). Using the Kolmagorov-Smirnov test (Figure II.2A) we 

discovered attributes whose distribution in specific gene groups was significantly 

(FDR < 0.05) different from the background (Figure II.2B). 
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Figure II. 2: Different promoter types are differently-packaged 

A) Cumulative distribution function (CDF) plots for two significant Kolmogorov-Smirnov 
enrichments. The geneset of 270 ribosomal genes is enriched for long NFRs (left panel), and 
close +1 to +3 nucleosome spacing (right panel). For example, 45% of Ribosomal genes have 5’ 
nucleosome spacing of less than 300 bp (green line), whereas only 25% of all genes have this 
spacing. 

B) Enrichment of high or low values of various parameters for a set of promoter types. Various 
parameters such as +1 nucleosome occupancy (listed at on right) were extracted for all yeast 
promoters. Each of the geneset previously gathered (Dion et al. 2007; Wapinski et al. 2007) was 
tested (using KS test) for significantly high or low values of the various parameters. Significant 
(FDR < 0.05) high values are shown in red, and significant low values are in green. Colors 
represent log10 of the p-value of the KS enrichment (saturated at p < 1e-20). Boxes indicate gene 
classes for Part C. 

C) Averages for five promoter types as indicated in B, aligned according to +1 nucleosome 
center. Y axis represents average normalized nucleosome occupancy, in # reads per million 
mappable reads 
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This analysis highlights previously described features of yeast chromatin 

as well as novel ones. We recapitulate the dichotomy between promoter 

packaging of growth (TFIID-regulated, TATA-less, high expression growth genes) 

and stress (SAGA-regulated, TATA, noisy expression, rapid histone 

replacement) genes (Albert et al. 2007; Choi and Kim 2008; Choi and Kim 2009; 

Dion et al. 2007; Field et al. 2008; Ioshikhes et al. 2006; Newman et al. 2006; 

Tirosh and Barkai 2008) (Figure II.2B). For example, canonical growth genes, 

such as those encoding ribosome proteins, are enriched with wider NFRs and 

often also exhibit lower nucleosomal occupancy of coding regions, whereas 

stress genes, such as heat shock-induced genes, show the opposite behavior. 

This dichotomy is clearly the major feature that separates classes of genes in 

yeast, but our analysis also shows finer distinctions beyond this dichotomy. In 

general, the second distinguishing axis beyond NFR width is coding region 

nucleosome occupancy, which further can be separated into occupancy of 5’ 

nucleosomes such as the +1 nucleosome, and occupancy of mid-CDS 

nucleosomes located distal from either end of the gene. For example, within the 

“growth” class of genes, ribosomal and metabolic genes can be roughly 

distinguished by the occupancy of coding region nucleosomes (Figure II.2B,C). 

While these distinctions appear subtle, it is important to note that they are of 

similar magnitude to physiologically-relevant (Ihmels et al. 2005) changes 

observed in the chromatin packaging of mitochondrial ribosomal genes between 
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S. cerevisiae and C. albicans (Field et al. 2009), suggesting that such small 

differences can indeed play roles in transcriptional control. 

To explore the role of transcription in shaping chromatin architecture, we 

analyzed the relationship between Pol II enrichment (Methods) at a given gene 

and the various chromatin parameters described above (Supplementary Figure 

II.7). NFR width was positively correlated with transcription rate, while +1 

occupancy, mid-CDS occupancy, and +1 to +3 spacing were slightly 

anticorrelated with transcription rate. To determine the extent to which gene set 

enrichments from Figure II.2A were driven by transcription level, we corrected 

each gene’s chromatin parameters to account for transcription rate (Methods), 

and repeated the KS enrichment analysis from Figure II.2A (Supplementary 

Figure II.7D). The majority of enrichments from Figure II.2B repeated after 

correcting for Polymerase abundance (699 of 1001 retained, 302 lost, 42 

gained), indicating that different regulatory mechanisms are linked to different 

chromatin architecture of gene sets. 
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Supplementary Figure II. 7: RNA polymerase accounts for some aspects of 
chromatin architecture 

A-C) Gene-by-gene scatterplot of RNA polymerase occupancy (ChIP enrichment, x- axis) vs. 
NFR width (A), mid-CDS nucleosome occupancy (B), and +1 to +3 nucleosome spacing (C). 
LOWESS fit is shown in red. 

D) Gene set enrichments for various chromatin features are largely maintained after correcting for 
Pol2 occupancy. Extracted chromatin parameters for all genes were corrected for influence of 
Pol2 levels, and KS enrichment analysis from Figure II.2B was repeated. ~70% of enrichments 
are maintained, and only a small number (yellow bar) of enrichments were gained. 

 

 

Analysis of Nuclease Titration Levels 

A striking aspect of our analysis is that the majority of nucleosomes were 

matched using templates with multiple ends, suggesting that the majority of 

nucleosome ends are partially trimmed during a typical MNase digestion. 

Furthermore, in comparing our data to published datasets we found global 
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variation in the distribution of nucleosome widths between datasets 

(Supplementary Figure II.3B), as well as in the relative occupancy of various 

nucleosome classes (ie genome-wide averages of +1 occupancy vs. mid-CDS 

occupancy differs between our data and that of Shivwaswamy et al (Shivaswamy 

et al. 2008), not shown). Indeed, a recent study using MNase titrations followed 

by q-PCR identified variation in quantitative MNase susceptibility across 

nucleosomes associated with GAL genes (Bryant et al. 2008). We therefore 

sought to more thoroughly explore the influence of digestion level in nucleosome 

positioning and occupancy. We have previously reported little change in 

nucleosome maps as measured by tiling microarray when mononucleosomal 

DNA is isolated from an early digestion step with only ~40% mononucleosomal 

DNA (Yuan et al. 2005). However, dynamic range compression by microarrays 

might hide changes in relative abundance of nucleosomes, and we were unable 

to obtain enough DNA for microarray analysis from less-digested (<40% 

mononucleosome) titration steps. Moreover, small changes in nucleosome 

segment lengths are difficult to detect with tiling microarrays. 

Since limited digestion with trypsin has proven a valuable structural probe 

for proteins, we were also interested in whether the same might be true of limited 

nuclease digestion of chromatin. We therefore carried out a titration of 

micrococcal nuclease, and gel-purified mononucleosomal DNA from three 

different titration levels – underdigested (~15% mononucleosomes, “BY2”), 

typical digestion (~80% mononucleosomes, “BY10”), and overdigested (only 
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mononucleosomal DNA, “BY15”) (Figure II.3A). We used Template Filtering to 

call nucleosome positions in our titration data. As expected, nucleosome length 

was correlated with digestion level (Figure II.3B), with increasing digestion 

leading to shorter and shorter nucleosomes, presumably due to “chewing” of 

nucleosome ends by MNase. 

Inspection of nucleosome maps for the three digestion levels revealed 

extensive similarities between the three maps. However, notable changes occur, 

particularly between under-digested and typical digestion (Figure II.3C). To 

globally assess differences between the different titration steps, we aligned 

genes by transcriptional start site (Figure II.3D) or stop codon (Figure II.3E) and 

averaged data from all genes at the 3 different titration levels. At 5’ ends of 

genes, we found an anti-correlation between +1 nucleosome occupancy and 

digestion level as expected. +1 nucleosomes are most abundant in 

underdigested chromatin, and least abundant in overdigested chromatin. This is 

seen both in TSS-aligned averages of all genes (Figure II.3D), as well as in 

systematic analysis of changes in relative nucleosome occupancy calls 

(Supplementary Figure II.8). 
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Figure II. 3: Effects of MNase level on chromatin structure 

A) Mononucleosomal DNA was isolated from ladders from three different MNase titration levels, 
and sequenced by Illumina sequencing. 

B) Data from titration series was subjected to Template Filtering to generate nucleosome calls. 
Width distributions for nucleosomes from the three titration steps are plotted. Green, yellow, and 
red correspond to under-, mid-, and over- digested chromatin, respectively. 

C) Data for under- (green), mid- (yellow), and over-(red) digested chromatin is shown in cluster 
view. Genes are aligned using BY10 +1 nucleosome center (indicated), all three clusters have 
genes ordered by clustering for BY10 data. Red bar indicates genes with wide NFRs in mid- and 
over-digested chromatin (largely highly-expressed genes such as ribosomal genes), that are 
partially filled in under-digested chromatin. 

D) TSS-aligned nucleosome occupancy data for all genes. 

E) Stop-codon-aligned nucleosome occupancy for all genes. 

F) As in D, but only for genes with Pol2 ChIP occupancy > 1, top 7% of genes. 
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Supplementary Figure II. 8: Effects of MNase level on nucleosome occupancy and 
template usage 

A) Occupancy of nucleosomes at varying locations relative to coding regions is shown for BY2, 
BY10, and BY15 titration levels. 

B) Percentage of nucleosomes matching templates 1 to 7 is shown for BY2, BY10, and BY15. 
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The loss of promoter-proximal nucleosomes during digestion was even 

more pronounced for -1 nucleosomes, where underdigested chromatin (BY2) 

showed high levels of the -1 (and a resulting decrease in the width of the average 

NFR), whereas this nucleosome was less abundant or completely missing in 

BY10 and BY15 (Figure II.3C, red bar). A similar effect was observed at the 3’ 

NFR (Figure II.3E). The presence of an easily-digested nucleosome over the 

NFR was most commonly observed at the long NFRs associated with highly-

expressed genes (red bar), and can easily be seen in averaged data for genes 

with the highest levels of RNA polymerase (Figure II.3F). Thus, consistent with 

recent studies in Drosophila (Henikoff et al. 2009) and human (Jin et al. 2009) 

cells, we find that at least some of the “nucleosome-free” region seen in typical 

nucleosome mapping studies corresponds to a loosely-bound (as determined by 

salt extraction in those studies), easily-digested (seen here) nucleosome. 

Overall, nucleosome occupancy levels are most even in BY10, which is the 

digestion level we typically use for nucleosome mapping (Yuan et al. 2005), and 

histone modification mapping (Liu et al. 2005). 

 Together, the results of the titration series suggest the presence of easily-

digested nucleosomes or other protein complexes at the promoters of highly 

expressed genes, and point towards the necessity of knowing the extent of 

digestion when comparing nucleosome maps from different labs or different 

experiments. 
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The Role of RNA Polymerase in Chromatin Structure  

A number of recent studies have claimed that intrinsic affinity of various 

genomic sequences for the histone octamer accounts for much, or most, of the 

chromatin structure observed in vivo in yeast (Field et al. 2008; Ioshikhes et al. 

2006; Kaplan et al. 2008; Peckham et al. 2007; Segal et al. 2006; Yuan and Liu 

2008). However, experimental determination of nucleosome positioning after in 

vitro reconstitution revealed that intrinsic preferences can almost entirely be 

ascribed to the role of polydA/dT in excluding nucleosomes, with little additional 

translational positioning information encoded in the genome (Kaplan et al. 2008; 

Zhang et al. 2009). The huge discrepancy between in vitro sequence preferences 

and in vivo nucleosome positioning is likely to result from the action of numerous 

factors, most notably protein complexes in vivo that move nucleosomes from 

their preferred positions, such as the ATP-dependent chromatin remodeler Isw2 

(Whitehouse et al. 2007; Whitehouse and Tsukiyama 2006). Almost certainly the 

most widespread of these trans-acting factors is RNA polymerase II, as ~2/3 of 

the yeast genome codes for proteins, and combining distributions of RNA 

abundance (Yassour et al. 2009) with typical absolute mRNA abundances (Iyer 

and Struhl 1996) and half-lives (Wang et al. 2002) indicates that well over half 

the yeast genome is likely transcribed at least once during a given cell cycle. The 

passage of RNA polymerase disrupts DNA-histone contacts (Wasylyk and 

Chambon 1980), leading us to ask how RNA polymerase globally affects 

chromatin structure in vivo. 
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We examined the effects of RNA polymerase on chromatin structure by 

using the rpb1-1 yeast strain, which contains a temperature-sensitive allele of the 

gene encoding the large subunit of RNA Polymerase II (Nonet et al. 1987). To 

identify both the early as well as longer term effects of RNA polymerase 

deactivation, we performed MNase-seq at 0, 20, and 120 minutes after shifting 

these cells from 25 C to 37 C. Interestingly, we found that despite minimal 

change in cell density, increasing amounts of MNase were required to generate 

similar nucleosome ladders (Supplementary Figure II.9A-C) as the time course 

progressed, indicating a global role for RNA polymerase in increasing overall 

chromatin accessibility. Consistent with the increased MNase required, we found 

that nucleosome length decreased over the time course (Supplementary Figure 

II.9D). Importantly, none of our conclusions below are affected by the titration 

level, as the inferred effects of Polymerase loss do not match effects of 

overdigestion (see below). 
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Supplementary Figure II. 9: Polymerase inactivation results in globally 
inaccessible chromatin 

A-C) Gels from MNase titrations for rpb1-1 cells grown at 25 C (A), or shifted to 37 C for 20 
minutes (B), or 120 minutes (C). Note the increasing amounts of MNase required to achieve the 
same nucleosome ladder. 

D) Nucleosome length distributions for the three nucleosomal populations sequenced (boxes in 
parts A-C). Consistent with the increased MNase used at later time points, nucleosome widths 
decrease. 
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Averaging genes by TSS for the three time points reveals two effects of 

polymerase loss on nucleosome positioning (Figure II.4A,B, S10). First, NFR 

width decreases over time, largely because of gains in nucleosome occupancy at 

the -1 position (Venters and Pugh 2009). This was not a digestion artifact at later 

time points, as the nucleosome length distribution at 120 minutes was consistent 

with MNase overdigestion (Supplementary Figure II.9D), whereas increased -1 

nucleosome occupancy is a general property of underdigested chromatin (Figure 

II.2). Second, coding region nucleosomes shift downstream over time. This latter 

observation is interesting, as it is consistent with predictions from biochemical 

studies: the process of RNA polymerase transiting a nucleosome in vitro results 

in transient dissociation of 5’ DNA from the octamer, followed by recapture of 

upstream DNA on the octamer surface, resulting in a predicted retrograde shift of 

the octamer relative to Polymerase movement (Studitsky et al. 1994; Studitsky et 

al. 1997). 
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Figure II. 4: Effects of RNA polymerase on chromatin structure 

A) Nucleosomes were isolated from rpb1-1 yeast grown at 25 C, and shifted to 37C for 20 or 120 
minutes. Data are presented in TSS-aligned average. 

B) As in A), but for highly-expressed genes. 

C) Nucleosomes over genes shift downstream upon Pol2 loss. For each indicated nucleosome 
type (-1, +1, +2, +3) we plot the distribution of center-to-center distances between the 
nucleosome calls at 0 and 120 minutes after Pol2 inactivation. We find that 43% of -1 
nucleosomes, 59% of +1 nucleosomes, 61% of +2 nucleosomes, and 60% of +3 nucleosomes 
shift away from the NFR. 

D) Global view of +1 nucleosome shifts during Pol2 inactivation. Nucleosome calls for all 
promoters with a downstream +1 nucleosome shift are shown as a heatmap, aligned by the 
center of the +1 nucleosome (yellow) before Pol2 inactivation (red). After 2 hours of Pol2 
inactivation, downstream shifts of these 59% of +1 nucleosomes are apparent. 
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Supplementary Figure II. 10: Effects of RNA polymerase inactivation on gene 
category chromatin packing 

Gene sets were assessed for enrichment of different chromatin parameters as in Figure II.2B, for 
rpb1-1 yeast grown at 25 C or 37 C for 2 hours. Genesets are ordered as in Figure II.2B. 

 

 

 

We investigated nucleosome position shifts by plotting the direction of 

nucleosome shift between pairs of time points during the temperature shift 

(Figure II.4C,D). Nucleosome shifts over coding regions were clearly biased in 

the downstream direction, consistent with the averaged view in Figure II.4A. 

Importantly, -1 nucleosome shifts were not biased in either direction. This small 

(~10 bp on average) downstream shift is specific, as comparisons between other 

pairs of chromatin datasets (such as pre- and post-heat shock) show distributions 

of nucleosome shifts centered on zero (Supplementary Figure II.11). To 
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determine whether nucleosome shifts preferentially occurred over particular 

classes of genes we tested gene classes for significant deviation from the 

average shift of the -1, +1, +2, or +3 nucleosome by the KS statistic. Again, very 

highly-expressed gene classes such as those encoding ribosomal proteins or 

amino acid metabolism genes exhibited more dramatic nucleosome shifts from 

20 to 120 minutes (not shown). Highly-expressed genes are generally 

downregulated during heat stress (Gasch et al. 2000), but nucleosome shifts at 

ribosomal genes are unlikely to be a consequence of heat shock-induced 

changes – re-analysis of the heat shock data from Shivaswamy et al 

(Shivaswamy et al. 2008) do not recapitulate the shifts we observe here 

(Supplementary Figure II.11A).  
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Supplementary Figure II. 11: Downstream nucleosome shifting is specific to Pol2 
shutoff 

A) Analysis as in Figure II.5C, comparing nucleosome calls from pre- and post-heat shock 
conditions from Shivaswamy et al. Note that coding region nucleosomes show no bias for 
downstream shifts during heat stress.  

B) As above, for BY10 and BY15 data from this study. 

C) As above, for replicate in vivo data (YPD) from Kaplan et al. 
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Why do nucleosomes shift after loss of polymerase? As noted above, 

RNA polymerase is a major factor in nucleosome movement and eviction in vivo, 

and the in vivo nucleosome positions over highly-expressed genes deviate from 

in vitro nucleosome preferences to a greater extent than they do over poorly-

expressed genes. Thus, we compared our data to the in vitro data from Kaplan et 

al (Kaplan et al. 2008), reasoning that loss of RNA polymerase might allow 

chromatin to relax to more closely match local thermodynamic minima. We 

noticed that nucleosomes at many promoters indeed more closely match in vitro 

preferences after 2 hours of polymerase inactivation (Figure II.5A). 
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Figure II.5: Nucleosomes relax towards in vitro preferred locations after Pol2 loss 

A) Three examples of promoters where data from Pol2 inactivation matches in vitro nucleosome 
assembly data better than data from before Pol2 inactivation. Shown are extended read coverage 
along 1000 bp centered on TSS. Numbers shown in inset are correlations between in vitro 
coverage and t=0 (blue) and t=120 (red) in vivo coverage. 

B) Promoter chromatin architecture globally shifts towards in vitro preferences as polymerase is 
inactivated. Extended read coverage along the 1 kb centered on the TSS was extracted for all 
genes, and correlation coefficients were calculated to equivalent data for in vitro nucleosome 
reconstitution experiments (Kaplan et al. 2008). Histograms show a global shift of promoters 
towards the in vitro nucleosome pattern. 

C) Normalized occupancy of -1 nucleosome better matches in vitro data after polymerase loss. 
For all -1 nucleosomes (called at t=0 or at t=120), the difference between in vivo normalized 
occupancy and in vitro normalized occupancy at the center of the in-vivo nucleosome were 
calculated and presented as a histogram.  

D) As in C, but for all +1 nucleosomes. 
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To generalize this result, we calculated the correlation between in vitro 

nucleosome assembly data (Kaplan et al. 2008) and in vivo nucleosome 

positioning for 1 kb windows at the 5’ ends of genes (Figure II.5B). At t=0, 

correlation coefficients centered around 0.3, consistent with the ability of in vitro 

assembly to highlight NFRs  (Kaplan et al. 2008; Sekinger et al. 2005; Zhang et 

al. 2009). After 2 hours of polymerase inactivation, the distribution of correlations 

shifted to a higher value of ~0.5, indicating that RNA polymerase does help 

maintain nucleosomes in thermodynamically-unfavored locations in vivo. Of 

course, much of this is due to the above-mentioned role of transcription in -1 

nucleosome eviction (Figure II.5C). We also asked whether lateral repositioning 

of nucleosomes upon polymerase loss resulted in relaxation to 

thermodynamically-preferred positions. Strikingly, distances between +1 

nucleosomes and the nearest in vitro occupancy peak decreased after 

polymerase inactivation (Figure II.5D, Supplementary Figure II.12), consistent 

with the hypothesis that both nucleosome eviction and sliding by RNA 

polymerase antagonize the thermodynamically-preferred chromatin state. 
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Supplementary Figure II. 12: Polymerase loss results in nucleosome shifts 
towards in vitro peaks 

For each +1 nucleosome, the distance from the nucleosome center to the nearest local maximum 
from Kaplan et al’s in vitro reconstitution data (Kaplan et al. 2008) was calculated, and distances 
are presented in histograms for different times after polymerase inactivation. 
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DISCUSSION 

Genome-wide mapping of nucleosome positions in S. cerevisiae has been 

a tremendously productive method for illuminating the principles underlying 

chromatin structure and function. Deep sequencing methods have multiple 

advantages over tiling microarrays for genomic localization studies such as 

nucleosome mapping studies, including single nucleotide resolution, expanded 

dynamic range, and nearly whole-genome coverage. Here, we present a novel 

method for analyzing deep sequencing data for chromatin maps. Our method 

automatically extracts nucleosome position, occupancy, and width, and accounts 

for variability in end digestion by MNase. 

Analysis of chromatin packaging across the yeast genome confirmed 

previously-described aspects of yeast chromatin structure, including widespread 

5’ and 3’ nucleosome-depleted regions, a dichotomy between stress and growth 

genes reflected in NFR width, increased nucleosome fuzziness distal to the NFR, 

and a subtle anticorrelation between coding region nucleosome occupancy and 

transcription. We also identified finer distinctions between certain classes within 

the major stress/growth branches. Most interestingly, we found that +1 to +3 

nucleosome spacing was significantly shorter over ribosomal genes than over 

other gene types (see below). 

We also analyzed data from an MNase titration series, as different 

laboratories isolate nucleosomes from different MNase digestion levels (see, for 

example, Shivwaswamy et al (Shivaswamy et al. 2008)). Analysis of data from 
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underdigested chromatin revealed the abundant presence of nucleosome-sized 

peaks in the “NFR”. A recent analysis of Drosophila chromatin also identified 

nucleosomes in NFRs in a low-salt extraction from underdigested chromatin 

(Henikoff et al. 2009), and similar results hold in human cells (Jin et al. 2009). 

Does this material correspond to easily-digested nucleosomes, or to DNA 

protected from MNase by other proteins such as transcription factors? Two lines 

of evidence support the former hypothesis. One, the equivalent material in 

Drosophila is associated with the histone variant H3.3, indicating the presence of 

histones at these locations (Henikoff et al. 2009). Second, we only find 

nucleosomes filling in NFRs that are larger than 140 bp, suggesting that these 

are bona fide nucleosomes. Interestingly, analysis of sequence motifs in that 

exhibit occupancy differences include the CGCG motif recently shown to be 

bound by the Rsc3/30 subunits of the RSC chromatin remodeling complex (Badis 

et al. 2008), suggesting that the easily-digested -1 peak might correspond to a 

nuclease-accessible RSC-remodeled nucleosome state. 

As many features of yeast chromatin correlate with transcription rate, we 

mapped nucleosomes before and after inactivation of Pol II. We find that NFRs 

become shorter and shallower upon loss of Pol II, particularly at highly-expressed 

genes, consistent with a previously-described role for RNA polymerase in 

eviction of -1 nucleosomes (Venters and Pugh 2009). We also found a surprising, 

general role for RNA polymerase in nucleosome sliding – nucleosomes over 

coding regions generally shifted away from the NFR upon loss of polymerase 
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(Figure II.4). These results are consistent with the predictions from biochemical 

studies – in vitro, RNA polymerase is capable of transiting a nucleosome without 

evicting histones, apparently by invading a nucleosome edge and then 

propagating a bubble of DNA around the octamer surface (Hodges et al. 2009; 

Studitsky et al. 1994; Studitsky et al. 1997). This retrograde nucleosome 

movement may play a role in the stereotyped +1 nucleosome positioning in vivo, 

which is not explained by intrinsic thermodynamic preferences as measured by in 

vitro nucleosome assembly (Kaplan et al. 2008; Zhang et al. 2009). We 

speculate that after assembly of a newly-replicated DNA into nucleosomes, 

polymerase passage could be responsible for nucleosome shifts towards the 

NFR until the +1 nucleosome is as close to either polyAs or to the preinitiation 

complex as physically possible. This retrograde nucleosome movement may also 

play a role in the surprisingly tight packing of nucleosomes over highly-

transcribed ribosomal genes, and indeed loss of polymerase results of relaxation 

of the +1 to +3 spacing at these genes (Supplementary Figures II.10, II.13). 
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Supplementary Figure II. 13: Polymerase loss eliminates short +1 to +3 spacing at 
ribosomal genes 

Plots as in Figure II.2A for +1 to +3 nucleosome spacing for rpb1-1 yeast grown at 25 C (left) or at 
37 C for 2 hours (right). 

 

 

This interpretation must be tempered by dynamic studies in yeast, which 

indicate that some nucleosomes (particularly +1 nucleosomes) are rapidly 

exchanged during G1 (Dion et al. 2007; Jamai et al. 2007; Rufiange et al. 2007) 

– how is it that translational effects of transcription are observed on nucleosomes 

given that nucleosomes are often rapidly-exchanged (in some cases many times 

per cell cycle)? We consider two of many possible ways to reconcile these 

results. First, given that current locus-specific dynamic exchange measurements 

rely on transcriptional activation of tagged histones, there is a lower bound (~15-

30 minutes) for the fastest exchange rates measurable. However, if the fastest 

exchange rates are indeed on the order of ~15 minutes, then for many genes a 
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high proportion of cells in a population will have had polymerase pass through 

the gene since the last histone turnover cycle, resulting in a detectable 

polymerase-driven retrograde shift in the population measurement despite 

ongoing nucleosome replacement. Second, we do not currently know the extent 

of correlation in the dynamics of adjacent nucleosomes at the single-gene level. 

In other words, at a highly-transcribed gene with high levels of histone 

replacement throughout the gene body, does +1 eviction affect +2 eviction? If 

these do not always co-occur, then retrograde shifts of surrounding nucleosomes 

could provide a local “memory” of prior Polymerase passage, such that a 

leftward-shifted +2 would constrain the replacement location for a replaced +1 

nucleosome. 

Finally, our results bear on the relationship between thermodynamic 

sequence preferences and in vivo chromatins structure. Dramatic claims have 

been made regarding the extent to which genomic sequence dictates the 

positioning of nucleosomes in the cell (Kaplan et al. 2008; Segal et al. 2006), 

although most studies find the effects of sequence on chromatin architecture to 

be modest (Ioshikhes et al. 2006; Peckham et al. 2007; Yuan and Liu 2008). 

While in vitro chromatin assembly correlates well with in vivo nucleosome 

positions (Kaplan et al. 2008; Zhang et al. 2009), this almost entirely results from 

the depletion of nucleosomes over polyA and related sequences (Drew and 

Travers 1985; Iyer and Struhl 1995; Kunkel and Martinson 1981; Sekinger et al. 
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2005). Our results confirm the expected role for RNA polymerase in movement of 

nucleosomes away from thermodynamically-preferred positions. 

Together, these results further emphasize the role for RNA polymerase in 

shaping the chromatin landscape of the genome, and point towards the difficulty 

in disentangling cause and effect in the relationship between chromatin and 

transcription. 

Materials and methods 

Nucleosome isolation 

Yeast culture, fixation, and MNase titrations were carried out as previously 

described (Yuan et al. 2005). For rpb1-1 temperature shifts, cells were grown to 

an OD of 0.6 in YPD at 25 C, then culture aliquots were immediately shifted to 37 

C by addition of an equal volume of YPD at 49 C. After recovery of digested 

DNA, mononucleosomal was gel-purified and subjected to Illumina sequencing 

as described in Shivwaswamy et al (Shivaswamy et al. 2008). 

Data Availability 

Sequencing data have been deposited at GEO, accession #GSE18530, and are 

available at our supplemental website as well: 

http://compbio.cs.huji.ac.il/NucPosition. 
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Template Filtering Algorithm 

Using a sliding window across the genome, we cross-correlate each position with 

a pair of templates, one matching the forward reads and one the reverse reads. 

We enumerate all 7x7 possible combinations of Forward and Reverse templates. 

We repeat this scan with different spacing between both templates, to capture 

over and under digestion of the ~146bp nucleosomal DNA fragments. As a result, 

we obtain a correlation ‘heat map’ for each pair of templates containing the 

correlation coefficient for each center position and width. Next, we search for 

local maxima points within this ‘heat maps’; each maxima point is a potential 

nucleosome at a given position with a specific width. Finally, to assemble the 

final set of nucleosmes, we are using a greedy approach to select the best 

assignment of nucleosomes under overlapping constrains. Potential 

nucleosomes are sorted according to correlation score and occupancy, and are 

then selected to the final set allowing maximum overlap of 40% between 

adjacent nucleosomes. 

Selecting representative templates 

To generate variety of templates that represents the prototypical distributions of 

reads at nucleosome ends, we first applied our method using a Gaussian shaped 

template and obtained a preliminary map of nucleosome predictions. We aligned 

all predicted nucleosome ends and created a matrix of read patterns using a 

window of 80 bp flanking the edges. Next, we clustered this matrix using k-mean 

clustering and selected seven representative templates that capture  



111 
 

Correcting chromatin parameters to account for Pol2 enrichment in K-S 

tests 

We represent each gene as a vector of chromatin properties (i.e. +1 nucleosome 

occupancy, NFR width, mid CDS occupancy etc). Using a compendium of 

experimental gene annotations we previously collected (Dion et al. 2007; 

Wapinski et al. 2007) we compared the distribution of each chromatin parameter 

for each gene set vs. the background. We discovered 1001 gene sets with at 

least one enriched chromatin property. To correct the genes’ properties vectors 

for RNA polymerase levels, we plotted RNA polymerase occupancy (measured 

by microarray as in Ref (Steinmetz et al. 2006), Kim et al., 2010) vs. each 

chromatin property and calculated the LOWESS curve for each property 

(Supplementary Figure II.7A-C). We then subtracted the smoothed LOWESS 

curves from each gene, obtaining new chromatin properties vectors that 

represent the distance of each property from the LOWESS curve. We repeated 

the K-S enrichment with these new vectors.      
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CHAPTER III: A functional evolutionary approach to identify 

determinants of nucleosome positioning: A unifying model for 

establishing the genome-wide pattern 

 
ABSTRACT 

Although the genomic pattern of nucleosome positioning is broadly conserved, 

quantitative aspects vary over evolutionary timescales. We identify the cis and 

trans determinants of nucleosome positioning using a functional evolutionary 

approach involving S. cerevisiae strains containing large genomic regions from 

other yeast species. In a foreign species, nucleosome depletion at promoters is 

maintained over poly(dA:dT) tracts, whereas internucleosome spacing and all 

other aspects of nucleosome positioning tested are not. Interestingly, the 

locations of the +1 nucleosome and RNA start sites shift in concert. Strikingly, in 

a foreign species, nucleosome-depleted regions occur fortuitously in coding 

regions, and they often act as promoters that are associated with a positioned 

nucleosome array linked to the length of the transcription unit. We suggest a 

three-step model, in which nucleosome remodelers, general transcription factors, 

and the transcriptional elongation machinery are primarily involved in generating 

the nucleosome positioning pattern in vivo. 
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INTRODUCTION 

In living cells, nucleosome positions are influenced by intrinsic DNA sequence 

preferences due to the thermodynamic costs associated with wrapping stiff DNA 

around the histone octamer (Drew and Travers, 1985; Jiang and Pugh, 2009; 

Radman-Livaja and Rando, 2010). In addition, a wide variety of proteins can 

affect nucleosome positions and occupancy, most notably ATP-dependent 

chromatin remodeling complexes. The relative importance of DNA sequence and 

protein factors in determining nucleosome positioning has been subject to 

considerable debate. In vitro reconstitution of genomic DNA into nucleosomes by 

salt dialysis recapitulates gross variation in nucleosome occupancy in yeast and 

in humans – AT-rich sequences such as those found at yeast promoters are 

intrinsically nucleosome-depleted (Kaplan et al., 2009; Sekinger et al., 2005; 

Zhang et al., 2009), whereas the GC-rich sequences prevalent at human 

promoters are intrinsically nucleosome-enriched (Valouev et al., 2011). These 

studies typically find little role for intrinsic preferences in precise nucleosome 

positioning, although the enrichment of particular sequence features (10 bp 

periodicity of AA/AT/TA dinucleotides) at the +1 position in budding yeast has 

nonetheless led to forceful (Kaplan et al., 2010; Kaplan et al., 2009; Segal et al., 

2006), but disputed (Fan et al., 2010; Stein et al., 2009; Weiner et al., 2010; 

Zhang et al., 2009, 2010) claims that intrinsic DNA sequence preferences play a 

major determining role in nucleosome positioning. 
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 Conversely, several experimental approaches, largely in budding yeast, 

have revealed a key role for proteins in establishing nucleosome positions in 

vivo. While in vitro reconstitution of DNA into nucleosomes does not properly 

establish nucleosome positions at PHO5, addition of yeast whole cell extract 

enables more accurate assembly of nucleosomes at this locus (Korber and Horz, 

2004). Genome-wide analysis subsequently showed that one or more ATP-

dependent activities in yeast whole cell extract can assemble nucleosomes in 

positions that resemble, but do not completely coincide with, in vivo positioning 

(Zhang et al., 2011), thereby demonstrating a major role for nucleosome-

remodeling complexes in nucleosome positioning. Decades of biochemical 

studies have identified many specific proteins and protein complexes capable of 

altering nucleosome positions on DNA in vitro (Clapier and Cairns, 2009), and 

increasingly these factors are being implicated in proper nucleosome positioning 

in vivo (Gkikopoulos et al., 2011; Whitehouse et al., 2007; Whitehouse and 

Tsukiyama, 2006). For example, the ATP-dependent remodeling enzymes Chd1, 

Isw1, and Isw2 globally affect nucleosome positioning in vivo, as their deletion in 

yeast leads to nearly complete loss of nucleosome positioning downstream of the 

+2 nucleosome of coding regions (Gkikopoulos et al., 2011).  

In a genetic approach to this problem, diploid hybrids between the closely-

related species, S. cerevisiae and S. paradoxus, have been used to determine to 

what extent divergent nucleosome positioning on specific orthologous genes can 

be attributed to cis or trans factors, with the majority of chromatin changes 
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between these species being attributed to poly(dA:dT) elements at promoters 

(Tirosh et al., 2010). However, S. cerevisiae and S. paradoxus differ very little in 

bulk aspects of chromatin architecture. In contrast, chromatin structure exhibits 

far greater differences between more divergent species: for example, average 

nucleosome spacing differs by ~15-20 bp between S. cerevisiae and K. lactis 

(last common ancestor ~150 MYA) (Heus et al., 1993; Tsankov et al., 2010). 

 Here, we describe a functional evolutionary approach to systematically 

dissect the contributions of DNA sequence and the nuclear environment to 

nucleosome positioning in vivo.  This approach relies on the finding that there are 

species-specific differences in parameters of nucleosome positioning in a variety 

of yeast species, even though the general pattern is highly conserved (Tsankov 

et al., 2010). Specifically, we compare nucleosome maps of artificial 

chromosomes (YACs) containing large, heterologous genomic regions from 

different yeast species in S. cerevisiae with maps of the same regions in their 

native organism (Figure III.1A). In principle, features that change in the context of 

S. cerevisiae are determined by protein factors that are functionally distinct in the 

two species, whereas features that are retained when the foreign yeast DNA is 

present in S. cerevisiae are either due to intrinsic DNA sequence or to conserved 

trans-acting regulators. For example, when the S. cerevisiae HIS3-PET56 region 

is introduced into S. pombe, it retains the nucleosome-depleted promoter region, 

but not the positions of nucleosomes in the coding region (Sekinger et al., 2005).  

In addition, the generation of fortuitous functional elements arising from 
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heterologous genomic sequences makes it possible to address mechanistic 

issues that are presumably free of evolutionary constraints.  Here, we show that 

nucleosome spacing is established in trans, and that promoter nucleosome 

depletion can be established either by intrinsic sequence cues or by trans-acting 

factors.  Further, we find that +1 nucleosome positioning is most likely 

established by some aspect of the transcriptional machinery, and positioning of 

more downstream nucleosomes in the mRNA coding region is linked to Pol II 

elongation. Based on results presented here and elsewhere, we propose a 

unifying, three-step model for how nucleosome positions are established in vivo. 

RESULTS 

Generation of S. cerevisiae strains harboring artificial chromosomes with 

large segments of foreign yeast DNA 

To generate yeast artificial chromosomes (YACs, Figure III.1A), genomic DNA 

from K. lactis, K. waltii, and D. hansenii was sheared to ~100-200 kb average 

size, and ligated to the pYAC4 vector carrying sequences for S. cerevisiae 

telomeres, centromere, and origin of replication, as well as two selectable 

markers. YACs were transformed into wild-type S. cerevisiae and confirmed by 

pulsed-field gel electrophoresis (Figure III.1B). Furthermore, both ends of YACs 

containing foreign yeast DNA inserts were validated by DNA sequencing. In total, 

we generated seven strains carrying distinct YACs from the three species, with 

an average insert length of ~140 kb (Table III.1). YAC strains were grown in 

identical conditions to those previously used for mapping nucleosomes in these 
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four species (Tsankov et al., 2010), and formaldehyde cross-linked chromatin 

was digested to ~80% mononucleosomes using micrococcal nuclease (Yuan et 

al., 2005). Mononucleosomal DNA was analyzed by deep sequencing as 

previously described (Shivaswamy et al., 2008; Tsankov et al., 2010; Weiner et 

al., 2010). Figures III.1C-D show nucleosome mapping data for two genes from 

K. lactis, with data from wild-type K. lactis in blue (“endogenous”), and data for 

these same genes in the context of a YAC-carrying S. cerevisiae strain in red 

(“YAC”). Notable in these views are a number of well-described aspects of fungal 

chromatin structure – in the endogenous context, nucleosomes are generally 

well-positioned (nucleosome peaks are well separated and exhibit high peak to 

trough ratios), and both genes have a nucleosome-depleted region (NDR) that 

contains the gene’s promoter. 
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Figure III. 1: Functional evolutionary dissection of chromatin establishment 
mechanisms 
(A) Schematic of experimental design. Yeast Artificial Chromosomes are constructed carrying 
sequence from species such as K. lactis, and introduced into S. cerevisiae. Comparison of 
nucleosome mapping data between the same sequence in two different environments (its 
endogenous genome, and in S. cerevisiae) can be used to disentangle DNA-driven from trans-
mediated aspects of chromatin organization. 

(B) Chromosomal complement of parental S. cerevisiae (AB1380) and 3 different YAC-bearing 
strains. Pulsed field gel electrophoresis of YAC-bearing strains, as indicated. 

(C-D) Examples of nucleosome mapping data from two genes. Blue line indicates nucleosome 
mapping data from wild-type K. lactis (Tsankov et al., 2010), red line shows data from the same 
sequence carried on a YAC in S. cerevisiae. 

(E-F) Data for all K. lactis genes on all 3 YACs. (E) shows data for all genes from wild-type K. 
lactis, with genes sorted by NDR width, while (F) shows data from these genes on YACs, sorted 
identically. Black indicates no sequencing reads, yellow intensity indicates number of sequencing 
reads. C and D indicate the example genes shown above. 
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Strains Description 
BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

AB1380 MATa ura3-52 trp1-289 lys2-1 ade2-1 can1-100 his5 ρ+ ψ+ 

K. lactis CLIB 209 

D. 
hansenii 

NCYC 2572 

K. waltii NCYC 2644 

YAC1 AB1380 + 128 kb YAC (K. lactis Chromosome F 872404~1000550) 

YAC2 AB1380 + 143 kb YAC (K. lactis Chromosome C 339713~482935) 

YAC3 AB1380 + 136 kb YAC (K. lactis Chromosome C 443175~578764) 

YAC6 AB1380 + 115 kb YAC (D. hansenii Chromosome C 
1165392~1280355) 

YAC7 AB1380 + 216 kb YAC (D. hansenii Chromosome D 
1148162~1364529) 

YAC12 AB1380 + 120 kb YAC (K. waltii contig S0 133276~N/A*) 

YAC14 AB1380 + 131 kb YAC (K. waltii contig S33 510773~641751) 
Table III. 1: Species and YAC strain list 

Strains used in this study 

*N/A: The coordinate is unable to be identified, due to incomplete K.waltii genome sequences. 
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Promoter NDRs are largely maintained in a foreign species in a manner 

strongly correlated with poly(dA:dT) tracts 

The endogenous positions of promoter NDRs were largely maintained in the 

YACs (Figures III.1E-F) – 50% and 56% of D. hansenii and K. lactis NDRs, 

respectively, were located within 50 bp of their endogenous position, and for both 

species’ sets of YACs only 13% of NDRs did not overlap the endogenous NDR at 

all. Furthermore, the extent of the NDR, which varies considerably among genes, 

is largely maintained in the YAC-containing strains.  These data are consistent 

with the view that nucleosome depletion at fungal promoters is largely 

programmed by genomic sequence. However, the average extent of depletion 

over promoters is not as great in YACs as in wild-type (Figures III.1C-F, and 

Supplementary Figures III.1A-B), potentially as a consequence of the reduced 

expression of YAC genes (see below). This observation suggests that some of 

the depletion at promoters is not intrinsically determined by DNA sequence, 

consistent with the previous observation that nucleosome depletion at promoters 

is more pronounced in vivo than in vitro (Kaplan et al., 2009; Zhang et al., 2009; 

Zhang et al., 2011).  
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Supplementary Figure III.1: NDRs are generally better-maintained over sequence 
from K. lactis than over D. hansenii sequence 
(A-B) Nucleosome mapping data for all genes from K. lactis (A) or D. hansenii (B) are shown for 
wild-type and YACs, as indicated. Genes are sorted by wild-type NDR width. 

(C) NDR maintenance correlates with poly(dA:dT) elements. As in Figures III.2A-B, but for K. 
lactis. 

(D) Identical to Figures III.2A-B, reproduced here for comparison between D. hansenii and K. 
lactis. 
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 To further investigate the role for intrinsic sequence cues in establishing 

nucleosome depletion, we sorted genes by the difference in nucleosome 

occupancy over the proximal NDR between endogenous genes and YACs 

(Figure III.2A, Supplementary Figures III.1C-D). Notably, in both K. lactis and D. 

hansenii we observed very few genes with lower nucleosome occupancy in the 

YAC context, with the majority of promoters showing a range from little change to 

substantially increased nucleosome occupancy. Genes that maintained the same 

level of nucleosome depletion in the YAC as in wild-type were characterized by 

promoter sequences with greater numbers of long poly(dA:dT) elements (Figures 

III.2B-C, see Methods), consistent with the idea that these sequences intrinsically 

program nucleosome depletion in any context. Genes from D. hansenii tended to 

exhibit much less dramatic nucleosome depletion at promoters in the YAC 

context than in their endogenous context (Supplementary Figure III.1B). This is 

consistent with our prior observation (Tsankov et al., 2011; Tsankov et al., 2010) 

that D. hansenii promoters have fewer poly(dA:dT) sequences than most other 

organisms in the Hemiascomycota phylogeny (potentially due to their ecological 

niche in high salt environments) and with the hypothesis that D. hansenii 

promoters are more often established by trans-acting proteins such as General 

Regulatory Factors (GRFs). In this regard, promoters that gained substantial 

nucleosome occupancy when carried in the YAC sometimes, but not always, 

contained known binding motifs for transcription factors we previously (Tsankov 

et al., 2011; Tsankov et al., 2010) inferred to be GRFs in D. hansenii but not in S. 
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cerevisiae (Figure III.2D). Together, these results indicate that intrinsic sequence 

determinants (or conserved trans-acting factors) play a major role in generating 

nucleosome depletion at fungal promoters, and that poly(dA:dT) tracts are the 

primary DNA sequence determinant. 
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Figure III. 2 : Promoter nucleosome depletion is maintained over poly(dA:dT) 
elements. 
(A) D. hansenii genes sorted by the extent of change in nucleosome occupancy over the NDR. 
Left panel shows differences in nucleosome occupancy between D. hansenii and YACs for 114 
genes – blue indicates increased nucleosome occupancy in the YAC relative to endogenous 
context. Middle and right panels show nucleosome mapping data for endogenous D. hansenii 
sequences and for YACs, as indicated. (B) Strength of poly(dA:dT) element (Field et al., 2008; 
Tsankov et al., 2010) for genes, ordered as in (A). 40 gene running window average is shown. 
(C) An example of a gene with little change in nucleosome depletion between endogenous and 
YAC contexts. Sequence from this stable NDR contains multiple poly(dA:dT) elements, as 
indicated in red. (D) An example of a gene exhibiting dramatically increased nucleosome 
occupancy at the native NDR when carried on YAC. Here, this NDR includes few polyA elements, 
and carries a binding site for Cbf1, which has nucleosome-evicting activity in D. hansenii but not 
in S. cerevisiae (Tsankov et al., 2011; Tsankov et al., 2010). 
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Nucleosome positions differ markedly in the endogenous and YAC-

containing strains 

In contrast to the widespread but not universal conservation of NDRs, a given 

DNA sequence is generally packaged differently when carried in the endogenous 

species or in S. cerevisiae. Nucleosome positions change markedly in the YAC 

strains – the +1 nucleosome can be found near to (Figure III.1C), upstream (see 

below), or downstream (Figure III.1D) of its endogenous location, while 

nucleosomes farther downstream of the +1 occur farther and farther away from 

their endogenous locations.  By definition, differences in nucleosome positioning 

of a given genomic region in the endogenous organism or in S. cerevisiae cannot 

be due to intrinsic DNA sequence, but rather trans-acting factor(s). These 

measured differences are not secondary to technical artifacts such as differences 

in MNase digestion, as we observe remarkably consistent results for S. 

cerevisiae genes for the various YAC datasets (Supplementary Figure III.2). 

Interestingly, the average deviation in chromatin structure between genes in their 

endogenous context and in the YAC was quite different for the three species 

studied – K. lactis genes appeared closest to their native structure when in 

YACs, whereas chromatin structure of K. waltii sequences in YACs appeared 

random with respect to genic structure (data not shown).  
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Supplementary Figure III.2 :Bulk chromatin is not affected in YAC-bearing strains 

(A) Nucleosome sequencing data for all strains in this study was mapped to the S. cerevisiae 
genome, and data are averaged for all genes aligned by the +1 nucleosome. 

(B) Data for all S. cerevisiae genes are shown for wild-type (BY4741) and 5 YAC-bearing strains. 
Genes are sorted by K means clustering (K=4) of BY4741 dataset. 
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Nucleosome spacing is determined by protein factors in the host organism, 

not DNA sequence 

As observed by MNase cleavage of bulk chromatin, most nucleosomes in any 

given species are found in arrays in which the linker regions between adjacent 

nucleosomes are similar in size.  Interestingly, nucleosome spacing is 

substantially different between S. cerevisiae, with an average internucleosomal 

distance of ~165 bp, and K. lactis, with an average spacing of ~178 bp (Heus et 

al., 1993; Tsankov et al., 2010). We therefore used our YAC dataset to assess 

whether nucleosome spacing over K. lactis genes is established by DNA 

sequence, or by the nuclear environment. As can be appreciated in Figures 

III.1C-D, nucleosome spacing appears shorter over K. lactis genes when carried 

in S. cerevisiae, relative to the endogenous spacing. Figure III.3A shows the 

average nucleosome data for all K. lactis genes present on one of the 3 YACs, 

aligned by the endogenous location of the +1 nucleosome. Average nucleosome 

spacing decreases when these genes are carried in YACs. The distribution 

underlying this average trend is quantified in Figure III.3B. Here, we called 

nucleosome positions (Weiner et al., 2010), then plotted the distribution of all 

internucleosomal distances as indicated. K. lactis genomic sequence in its 

endogenous context is packaged with nucleosomes occurring every 178 bp, 

whereas the same sequence in the S. cerevisiae trans environment exhibits ~165 

bp nucleosome spacing, precisely the same spacing observed over native S. 

cerevisiae genes. Importantly, we observed no change in the spacing of S. 
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cerevisiae genes between wild type yeast and our YAC strains, indicating no 

artifactual effects on nucleosome spacing from, for example, MNase titration 

level (Figure III.3B, Supplementary Figure III.2).   

 

 

 

Figure III. 3: Nucleosome spacing is set in trans 
(A) Averaged data for all K. lactis genes on YACs 1-3. Genes are aligned by the +1 nucleosome 
position as defined in Tsankov et al., and data from either wild-type K. lactis or from the YAC 
strains are averaged for 184 genes, as indicated. 

(B) K. lactis sequences adopt S. cerevisiae spacing when carried in S. cerevisiae. Nucleosome 
positions were called, and the distribution of all internucleosomal distances (center to center) is 
shown for 184 K. lactis genes from wild-type or in the YACs. Similar distributions for S. cerevisiae 
nucleosome positioning from wild-type and YAC-containing strains indicates that YACs do not 
perturb host chromatin state (See also Supplementary Figure III.2). 
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The primary role for proteins in determining internucleosomal spacing is 

not surprising, as different cell types in multicellular organisms (sharing identical 

genomes) can exhibit different nucleosome spacing (Van Holde, 1989).  

Importantly, the observation that internucleosomal spacing depends on protein 

factors means that the precise positions for the vast majority of nucleosomes are 

not determined by intrinsic DNA sequence. 

The position of the +1 nucleosome is not determined by DNA sequence, but 

rather is mechanistically linked to transcriptional initiation 

The claim that the +1 nucleosome is positioned by DNA sequence (Segal et al., 

2006) has been subject to debate, not least because in vitro reconstitution 

experiments reveal no significant recovery of +1 nucleosome positioning. 

Alternatively, it has been proposed that the +1 nucleosome is positioned by either 

transcription factors such as Rap1, Abf1, and Reb1 (Kornberg and Stryer, 1988; 

Zhang et al., 2009; Zhang et al., 2011), NDRs (Mavrich et al., 2008; Yuan et al., 

2005), or the preinitiation complex (Zhang et al., 2009). 

 Interestingly, although the average position of the +1 nucleosome is 

similar between YACs and the endogenous context for both K. lactis and D. 

hansenii genes (see Figure III.3A, Supplementary Figure III.1), examination of 

individual genes shows that +1 positioning is highly variable for the same 

sequence in two different nuclear environments. The distribution of +1 

nucleosome shifts for genes carried on YACs was far more variable than the 

experimental variability measured using the background of S. cerevisiae genes – 
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while only 17% (14%-21% in different YAC strains) of S. cerevisiae +1 

nucleosomes appeared > 20 bp apart between strains, 45% of K. lactis and 57% 

of D. hansenii +1 nucleosomes in the YAC strains shifted at least 20 bp from their 

endogenous location (Supplementary Figure III.3). +1 nucleosomes could shift in 

either direction on YACs (Figure III.4, Supplementary Figure III.3), although in K. 

lactis YACs these shifts were biased towards upstream shifts (Figure III.3A). 

Thus, our observations demonstrate that pronucleosomal sequences do not 

“program” the position of the +1 nucleosome in vivo. 
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Figure III. 4: +1 nucleosome shifts associated with transcriptional changes. 
(A-B) Nucleosome data and RNA-Seq data are shown for K. lactis and D. hansenii genes in wild-
type and YACs, as indicated. RNA-Seq data for YAC-derived transcripts are normalized 
independently from S. cerevisiae transcripts here – see Supplementary Figures III.4B-C for data 
normalized genome-wide. 

(C-E) Examples of +1 nucleosome shifts associated with changes in transcription. (C) shows a 
moderate upstream shift in a +1 nucleosome with a similar change in transcript length, while (D-
E) show large scale NDR gain/loss with associated changes in transcription. Schematic 
interpretation of the nucleosome positioning for the endogenous gene is shown in blue above the 
rectangle, nucleosome positioning in the YAC is shown in red below the rectangle. Arrows 
indicate inferred TSSs (note that RNA-sequencing data are not strand-specific, but TFIIB 
mapping data support our inferred TSSs) – the furthest 5’ RNA in (E), for example, derives from 
the upstream gene as opposed to a divergent promoter. 
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Supplementary Figure III.3: +1 nucleosome shifts associated with transcription. 
(A) Distribution of shifts for +1 nucleosomes. Distributions are shown for the shifts between +1 
positions in wild-type and YAC-bearing strains. The three S. cerevisiae distributions show 
changes in +1 positioning for S. cerevisiae genes in the indicated YACs, showing that technical 
variability or analytical variability do not account for nucleosome position changes for YAC-
associated genes. 

(B) Data for all K. lactis and D. hansenii genes, from wild-type and YACs. Data are shown from –
100 to +300 bp relative to the +1 nucleosome upstream border (+1 nucleosome center indicated 
as a red line). Green box for K. lactis genes indicates a set of genes with low +1 nucleosome 
occupancy in wild-type, where the downstream shift in the YAC is likely due to failure to correctly 
call the low occupancy +1 nucleosome in the YAC. 

(C-E) Examples of K. lactis genes exhibiting different +1 nucleosome shifts in the YAC context, 
including an upstream shift (C), an unchanged +1 (D), and a downstream shift (E). 
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 The strong correspondence between +1 nucleosome positioning and 

transcriptional start sites in many species (Jiang and Pugh, 2009) led us to 

consider the hypothesis that changes in transcriptional activity might underlie the 

repositioning of the +1 nucleosomes (Zhang et al., 2009). We therefore carried 

out deep sequencing of RNA isolated from D. hansenii, K. lactis, and the S. 

cerevisiae YAC strains in this study, and carried out ChIP-Seq for TFIIB 

localization in the YAC-containing strains (a full analysis of these data will be 

published separately). Alignment of RNA-Seq data from wild-type strains with 

nucleosome mapping data confirmed prior predictions that the positioning of +1 

nucleosomes with respect to a gene’s transcription start site (TSS) varies 

between these species (Tirosh et al., 2007; Tsankov et al., 2010) – transcription 

begins further inside the +1 nucleosome in K. lactis than in D. hansenii 

(Supplementary Figure III.4A). 
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Supplementary Figure III.4:  Comparison of RNA-Seq and MNase-Seq datasets. 

(A) TSS positioning relative to +1 nucleosome. Averaged nucleosome data (solid lines) or RNA-
Seq data (shaded area) for K. lactis and D. hansenii wild type cells, as indicated. All genes are 
aligned by +1 nucleosome position. 

(B-C) Lower expression of genes on YACs relative to endogenous expression. For K. lactis (B) or 
D. hansenii (C), nucleosome data and RNA-Seq data are plotted as indicated for YAC-associated 
genes. For YAC-associated genes, RNA-Seq data are normalized to whole-genome RNA data 
(e.g. including S. cerevisiae genes, in contrast to the normalization in Figure III.4), with lower 
normalized abundance indicating that YAC-associated genes are expressed at lower levels than 
are endogenous genes, assuming similar RNA content of the various species. 

(D) RNA abundance for K. lactis genes. Normalized RNA-Seq data from K. lactis (x axis) or YAC-
bearing strains (y axis) is scatter-plotted with each point representing a single gene. mRNA 
abundance data are shown as reads per kb per million reads. Note good correlation between 
endogenous and YAC-based expression, indicating that differences between poorly and highly-
expressed genes are maintained in a foreign nuclear environment. 

(E) ChIP-Seq was carried out for TFIIB in the YAC-bearing strains. TSS-aligned data are shown 
for all S. cerevisiae genes in each strain, or for all YAC-based genes for either K. lactis or D. 
hansenii. TFIIB ChIP could not be carried out for the other organisms due to the limited cross-
reactivity of our antibody. Note that foreign promoters continue to recruit TFIIB in S. cerevisiae, 
but that for both organisms TFIIB exhibits worse localization in the YAC than expected, due to 
divergence of regulatory information between species. This is especially true for D. hansenii. 
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Comparing endogenous to YAC-based gene expression, we found on 

average that genes on YACs were expressed at lower levels than host genes – 

average sequencing reads per kilobase of coding sequence for YACs was ~40% 

of the average value for endogenous RNAs – consistent with extensive promoter 

sequence divergence between species resulting in widespread misinterpretation 

of exogenous regulatory information by the S. cerevisiae transcriptional 

machinery (Supplementary Figures III.4B-C and E). In general, we found a good 

correlation between expression levels for genes in their endogenous genome 

versus expression from the YACs (Supplementary Figure III.4D) – genes 

expressed at high levels in K. lactis remained the most highly-expressed genes 

when carried on YACs, but were expressed at lower levels relative to S. 

cerevisiae genes. In D. hansenii, we also observed increased expression of 

intergenic regions in the YACs (Supplementary Figure III.4C and see below), 

again indicating evolutionary divergence in transcriptional control sequences 

(e.g. loss of transcriptional termination signals and/or gain of cryptic promoters). 

Consistent with a relationship between +1 nucleosome positioning and 

transcription start sites, we found that the 5’ ends of RNAs in YACs shifted on 

average towards a S. cerevisiae-like location relative to the +1 nucleosome 

(Figures III.4A-B) – K. lactis RNAs started farther upstream in the YAC, whereas 

D. hansenii RNAs started farther downstream. Furthermore, +1 nucleosome 

shifts largely were accompanied by coherent shifts in inferred transcription start 

sites. These include ~90 examples such as that seen in Figure III.4C, in which 
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both RNA-Seq data and the +1 nucleosome for a given gene shift in the same 

direction. This is visualized in Supplementary Figure III.5A – RNA-Seq data for K. 

lactis genes exhibiting no +1 nucleosome shift, and for those exhibiting upstream 

+1 nucleosome shifts, is averaged for both endogenous RNA expression and 

YAC-based expression. Despite no average difference in 5’ ends of transcripts 

between these two classes in the endogenous case, we find that genes 

exhibiting upstream shifts in the +1 nucleosome also showed more strongly 5’-

shifted transcripts relative to genes without a +1 nucleosome shift, consistent 

with the idea that there is a mechanistic coupling between +1 nucleosome 

positioning and transcriptional initiation. Furthermore, we also used 5’ RACE to 

more precisely map TSSs for 4 K. lactis genes in their endogenous context and 

in the YAC, confirming that +1 nucleosome shifts corresponded to shifts in the 

location of the TSS (Supplementary Figures III.5B-E). These observations 

provide functional evidence for a mechanistic linkage between nucleosome 

positioning and transcriptional initiation, although they do not establish the cause-

and-effect relationship between these two processes.  
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Supplementary Figure III.5: Nucleosome positioning shifts are associated with 
shifts in TSS 
(A) Averaged nucleosome mapping and RNA-Seq data are shown for all K. lactis genes 
exhibiting either no +1 nucleosome shift (less than 20 bp in either direction) in the YAC, or a 20 
bp or more upstream shift in the YAC. Note that RNA-Seq data shift 5’ in both cases when K. 
lactis genes are expressed in S. cerevisiae, but that genes with 5’ nucleosome shifts exhibit a 
greater 5’ shift, consistent with a constant distance being maintained between TSS and +1 
nucleosome positioning. Note that genes with 3’ shifts in the +1 nucleosome are not included, as 
these largely represent genes where the +1 nucleosome decreases occupancy and hence is 
miscalled (Supplementary Figure III.3B). 

(B-E) TSS mapping for 4 individual genes. TSSs were mapped by 5’ RACE (Methods), and 
individual clone locations are shown as indicated below the nucleosome mapping data. Note that 
for two genes with little +1 nucleosome position shift (B, E) there is little change in TSS, whereas 
the two genes with 5’ shifts in the +1 nucleosome (C, D) also show upstream shifts in the TSS in 
the YAC. 
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Generation of NDRs in foreign coding regions via fortuitous interactions of 

S. cerevisiae activator proteins  

More dramatic cases of non-conserved nucleosome positioning are observed, 

particularly in D. hansenii -derived YACs, in which many novel NDRs arise in 

coding regions (Figures III.4D-E, Figures III.5A-B, Supplementary Figures III.6A-

B). The sequences underlying these NDRs are not associated with poly(dA:dT) 

elements (analysis not shown), as expected given that they do not intrinsically 

form NDRs in their host genomic context (Figure III.5B, blue line). Interestingly, 

these novel NDRs are associated with TFIIB binding (Figures III.5C-D) and 

concomitant changes in RNA abundance (Figures III.4D-E, Figure III.5A, 

Supplementary Figure III.6A) indicating a wholesale functional change in which a 

coding sequence from one species (D. hansenii) is used as a promoter in a 

foreign species (S. cerevisiae). These NDRs are most likely determined by S. 

cerevisiae transcription factors that fortuitously recognize and functionally act on 

foreign DNA sequences that do not act as promoters in the native organism.  In 

other words, DNA-binding transcriptional activator proteins recruit nucleosome-

remodeling complexes to these fortuitously recognized sites, thereby evicting 

histones and generating an NDR. These NDRs are associated with varying levels 

of TFIIB and RNA transcripts, presumably depending on the quality of TATA 

elements and other core promoter sequences in the vicinity. 
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Figure III. 5: Characterization of novel NDRs in YACs. 
(A) Example of a novel NDR that occurs only in the YAC but not in the native genome, and is 
associated with transcription. This new NDR occurs in the middle of a D. hansenii coding region, 
and is associated with two new shorter, divergent transcripts in the YAC context (data cover 2.2 
kb of sequence). Note that nucleosome organization correlates with transcript length – rightmost 
transcript shows greater nucleosome positioning at the 5’ end than at the 3’ end of the transcript. 

(B) Novel NDRs are generally associated with well-positioned +/-1 nucleosomes. Averaged data 
for 120 NDRs observed in D. hansenii YACs but not in the endogenous context, as indicated.  

(C-D) Novel NDRs represent functional promoters. (C) shows TFIIB ChIP-Seq data from YAC-
bearing strain for the genomic locus shown in (A), while (D) shows averaged data for all novel 
NDRs. Note that TFIIB localization in the endogenous context could not be obtained as our anti-
TFIIB antibody does not recognize TFIIB from D. hansenii. 
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Supplementary Figure III 6: Examples of new NDRs in D. hansenii YACs. 
(A-B) As in Figure III.5, another example of a novel NDR that occurs only in YACs, and is 
associated with transcription. (A) shows nucleosome and RNA data for 4 kb surrounding a YAC-
specific NDR, with (B) showing nucleosome data only for the indicated region. Note increasing 
nucleosome fuzziness in the YAC nucleosome data at the 3’ end of the novel transcript. 

(C) Extent of positioned nucleosome array is linked to novel RNA transcript length. Schematic 
interpretation of the nucleosome positioning for RNA transcripts with different lengths, derived 
from novel coding region NDRs. RNA transcript is shown in green rectangle and nucleosome 
positioning is shown in solid red (well positioned nucleosome) and transparent light red (less 
positioned nucleosome) above the rectangle. Black arrows indicate inferred TSSs. 
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Fortuitous coding region NDRs are associated with typical nucleosome 

patterns 

The existence of fortuitous and presumably evolutionarily meaningless promoters 

in D. hansenii coding regions in the context of S. cerevisiae cells makes it 

possible to determine the role of transcription in establishing the nucleosome 

positioning pattern.  Strikingly, these coding region NDRs are associated with a 

typical nucleosome pattern of highly positioned +1 and -1 nucleosomes as well 

as progressively less positioned downstream nucleosomes (Figure III.5B). Thus 

in the absence of any intrinsic nucleosome-destabilizing sequences, transcription 

factors and associated co-factors are sufficient to generate a nucleosome 

positioning pattern that is very similar to the standard pattern at endogenous 

promoters.  Furthermore, at such novel NDRs, the extent of the positioned array 

is linked to the length of the RNA transcript (Figure III.5A, Supplementary Figure 

III.6C), strongly suggesting a role for transcriptional elongation in the generation 

of the nucleosomal pattern.  These results demonstrating a functional role for 

transcription-related events appear to conflict with the conclusion that 

nucleosome-remodeling complexes are sufficient to establish aspects of the 

nucleosome positioning pattern in the absence of transcription (Zhang et al., 

2011).  However, these observations are not mutually exclusive, and indeed are 

complementary as both mechanisms are likely to contribute to establishing the 

nucleosome pattern. 
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DISCUSSION 

A functional evolutionary approach to address the determinants of 

molecular phenomena in vivo 

Here, we used a functional evolutionary approach to systematically dissect the 

role for cis-acting sequence elements and trans-acting proteins in establishment 

of nucleosome positioning in fungi. This approach, which is based on species-

specific differences in parameters of nucleosome positioning in a variety of yeast 

species (Tsankov et al., 2010), involves placing large segments of foreign yeast 

DNA in S. cerevisiae and comparing molecular properties in such strains with 

those in the native organism. In principle, non-conserved properties are 

determined by protein factors that are functionally distinct in the two species, 

whereas conserved properties are due either to DNA sequence or to conserved 

trans-acting regulators.  The use of yeast artificial chromosomes to carry the 

foreign yeast DNA makes it possible to examine many genes at once, and hence 

to obtain information that is both statistically robust and permits one to identify 

many examples of new phenomenon.  Furthermore, the ability to generate 

fortuitous functional events (e.g. the NDRs in D. hansenii coding regions) that do 

not occur in the native organisms makes it possible to address mechanistic 

questions in a manner that is, most likely, independent of evolutionary history.  

An extension of this approach should also permit one to identify factors 

responsible for the species-specific behavior, specifically by replacing a 
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candidate factor by its homolog in the foreign species and examining whether the 

pattern resembles that of the foreign species. 

More generally, this functional evolutionary approach should allow for 

elucidating the determinants of other molecular phenomena that are broadly 

conserved but show species-specific differences.  For example, more detailed 

analysis of the RNA generated in the YAC-containing strains with the 

corresponding endogenous yeast species should be informative of determinants 

of 5’ and 3’ end formation, splicing, and half-lives.  As such, this approach 

combines the virtues of evolutionary comparison and classic functional genetic 

analysis. 

A three-step model for establishing the nucleosome positioning pattern in 

vivo 

Based on results presented here and elsewhere, we propose a three-step model 

(Figure III.6) for how nucleosome positioning is established in eukaryotic 

organisms.  The first step involves the generation of an NDR, which can occur 

either by transcription factors and their recruited nucleosome remodeling 

complexes and/or by poly(dA:dT) sequences that intrinsically disfavor 

nucleosome formation.  Even at poly(dA:dT)-containing promoters, it is likely that 

transcriptional machinery contributes to nucleosome depletion, as nucleosome 

depletion is more pronounced in vivo than in vitro (Kaplan et al., 2009; Zhang et 

al., 2009), and nucleosome-remodeling complexes enhance the depletion in vitro 

(Zhang et al., 2011).  In this sense, intrinsic programming of NDRs represents a 
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specialized mechanism that is used frequently (S. cerevisiae), moderately (D. 

hansenii), or rarely (D. melanogaster), depending on the species. 

 

 

 

Figure III. 6: Three-step model for establishment of nucleosome positioning in 
vivo. 
A unifying three-step model for how nucleosome positioning pattern is generated in eukaryotic 
organisms. The first step is the generation of an NDR, either by poly(dA:dT) elements and/or by 
transcription factors and their recruited nucleosome remodeling complexes. In the second step, 
nucleosome-remodeling complexes recognize the NDRs and generate highly positioned 
nucleosomes flanking the NDR; and the RNA polymerase II preinitiation complex fine-tunes the 
position of the +1 nucleosome. In the final step, positioning of the more downstream 
nucleosomes depends on transcriptional elongation, and the recruitment of nucleosome-
remodeling activities and histone chaperones by the elongating RNA polymerase II machinery. 
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In the second step, nucleosome-remodeling complexes recognize the 

NDRs and generate highly positioned nucleosomes flanking the NDR. Strong 

positioning could, in principle, arise simply from the boundary of the NDR and/or 

from sequence preferences of the nucleosome remodelers. Indeed, it has been 

argued that this step does not require transcription factors or transcription per se 

(Zhang et al., 2011), although it is important to note that there is overall poor 

correspondence between +1 nucleosome positioning observed in vivo and that 

recapitulated using ATP-dependent extracts in the absence of transcription 

(Zhang et al., 2011) (Supplementary Figure III.7). In this regard, Zhang et al. 

compared nucleosome positioning generated by ATP-dependent extracts with 

the nucleosome positions measured from yeast lysed without crosslinking and 

allowed to redistribute prior to crosslinking. Indeed, we find mediocre 

correspondence between the “native” nucleosome positions from Zhang et al. 

and true in vivo nucleosome positions generated from crosslinked yeast 

(Supplementary Figure III.7), so the ability of whole cell extracts to recover these 

“native” positions in the absence of transcription does not have any bearing on 

the question of whether in vivo positioning is influenced by transcription prior to 

lysis of cells. Although nucleosome remodelers can generate somewhat 

positioned nucleosomes flanking the NDR and unquestionably perform far better 

than salt dialysis, they apparently are insufficient to generate the precise in vivo 

nucleosome positions, particularly for the +1 nucleosome (Supplementary Figure 

III.7).   
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Supplementary Figure III. 7: Yeast whole cell extracts poorly position 
nucleosomes 
(A) Nucleosome mapping data from intact yeast (“in vivo”), from lysed yeast equilibrated prior to 
crosslinking (“native”), or from yeast genomic DNA incubated with yeast whole cell extract and 
ATP (WCE+ATP) in vitro (Zhang et al., 2011). Yeast whole cell extract performs significantly 
better than salt gradient dialysis, as reported, but the nucleosome positions recovered 
nonetheless do not precisely match nucleosome positions recovered from intact yeast – compare 
“native” and in vivo positioning. 

(B) +1 nucleosome positioning in “native” yeast extracts exhibits systematic deviation from in vivo 
positioning. +1 nucleosome positions were called, and distance from +1 nucleosome positions in 
vivo to the positions recovered in various datasets is shown as a histogram. As a comparison for 
technical variation, we show data for +1 positioning variability in our YAC strains (to keep 
datasets on the same y axis we used a 5 bp bin size for YACs rather than the 10 bp used for 
other datasets). 
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Here, the strong, and species-specific, spacing relationship between the 

+1 nucleosome and mRNA start site that is observed both in the native and YAC 

strains indicates that there is a mechanistic connection between transcriptional 

initiation and the location of the +1 nucleosome.  Given the strong in vivo 

positioning of both the preinitiation complex and the +1 nucleosome, a spacing 

relationship between these two entities requires that at least one of these is 

anchored to a specific location, thereby permitting a defined location for the 

second entity.  As discussed above, nucleosome remodeling complexes alone 

are insufficient to generate proper positioning of the +1 nucleosome, and hence 

sequence and nucleosome remodelers are insufficient to provide an anchor.  In 

contrast, preinitiation complexes bound at core promoters are clearly sufficient to 

provide an anchor, with the location of the TBP bound to the TATA element or 

TATA-related sequence being the major determinant of the anchor point. From 

these considerations, and our finding that the TSS to +1 distance in YACs shifts 

to the S. cerevisiae spacing (Figure III.5 and Supplementary Figure III.5), we 

suggest that the preinitiation complex plays a role in fine-tuning the position of 

the +1 nucleosome. 

In the third step, positioning of downstream nucleosomes, with 

progressively less positioned nucleosomes downstream within the gene, 

depends on transcriptional elongation, and hence recruitment of nucleosome-

remodeling activities and histone chaperones by the elongating RNA polymerase 

II machinery.  This elongation-dependent step explains why nucleosome-
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remodeling complexes, though capable of weakly positioning nucleosomes 

flanking the NDR, are unable to position more downstream nucleosomes (Zhang 

et al., 2011). Conversely, yeast mutant strains lacking nucleosome-remodeling 

complexes (Chd1 and Isw1) that are recruited to coding regions by elongating 

RNA polymerase show drastically reduced positioning of downstream 

nucleosomes, but relatively normal positioning of the +1 and +2 nucleosomes 

(Gkikopoulos et al., 2011). Finally, a transcription-based step nicely helps to 

explain why nucleosome arrays occur largely in the transcribed direction even 

though highly positioned nucleosomes can occur both at the +1 and -1 position, 

as well as the curious observation that the decay of nucleosome positioning 

towards the center of genes displays a 5’/3’ asymmetry (Vaillant et al., 2010); 

both of these observations are inconsistent with a pure packing-based model. 

The above model can explain why the general pattern of nucleosome 

positioning is highly conserved among eukaryotes, yet shows species-specific 

differences in various aspects of chromatin structure.  These species-specific 

differences reflect the relative utilization of poly(dA:dT) sequences and hence 

intrinsic histone-DNA interactions, as well as differences in the enzymatic and 

recruitment properties of the nucleosome remodelers.   
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METHODS 

Growth Conditions 

All cultures were grown in medium containing: SC –Tryptophan –Uracil (Sunrise 

Sciences) (0.2%), Yeast extract (1.5%), Peptone (1%), Dextrose (2%), and 

Adenine (0.01%), as previously described (Tsankov et al., 2010).  

Preparation of YACs 

Yeast chromosomal DNA was prepared in InCert agarose blocks (LONZA), with 

a final cell concentration of 2 X 109 cells/ml. Agarose blocks with intact 

chromosomal DNA were subjected to EcoRI partial digestion with a titrated Mg2+ 

concentration, followed by size fractionation using pulsed field gel 

electrophoresis (PFGE). ~100-200 kb partially-digested DNA fragments were 

excised from the gel. YAC vector pYAC4 was purified by successive CsCl 

gradient ultracentrifugation and digested with BamHI and EcoRI, followed by calf 

intestine alkaline phosphatase treatment. Digested pYAC4 and partially-digested 

yeast chromosomal fragments were ligated by T4 DNA ligase in agarose blocks. 

Prior to YAC transformation, ligated DNA was size-fractionated again by PFGE 

and DNA larger than 100 kb was excised from the gel. The excised gel slice was 

further digested with -agarase and ligated DNA was transformed into S. 

cerevisiae host cells (AB1380), using either spheroplast transformation protocol 

or standard yeast LiCl transformation method. 
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Validation of YAC-bearing strains 

Transformants with red color, which survived double selection (Ura+/Trp+) on 

AHC plates, were collected for validation. Chromosomal DNA of candidate 

strains was prepared in agarose blocks and resolved by PFGE (Figure III.1B). 

Strains with desired YAC bands were selected, and terminal sequences from 

selected YAC clones were isolated and confirmed with DNA sequencing analysis 

(Riley et al., 1990). 

Nucleosome Isolation and Illumina Deep Sequencing 

Micrococcal nuclease (MNase) digestions were performed as previously 

described (Yuan et al., 2005). Briefly, 450mL cultures were grown to OD600 of 

~0.5 at 30°C, 220rpm. Cultures were fixed for 30 minutes at 30°C with 1.85% 

formaldehyde, then spheroplasted with 10 mg zymolyase (Cape Cod Associates) 

for 45 minutes at 30°C. Spheroplasts were subjected to 20 minutes of MNase 

digestion, and DNA was purified. MNase titrations were selected to obtain largely 

mononucleosomal DNA with some di- and tri-nucleosomal DNA apparent. 

Mononucleosomal DNA was gel purified (BioRad Freeze N’ Squeeze) and used 

to create a library for deep sequencing on the Solexa 1G Genome Analyzer, as 

previously performed Fast Link DNA Ligation Kit, Epicentre LK6201H) to Illumina 

genomic adapters, followed by a final PCR with a size-selecting gel purification 

(BioRad Freeze N’ Squeeze 732-6166). 
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Data Normalization and Nucleosome TSS Alignments 

Reads from deep sequencing were mapped back to the relevant hybrid genome 

(S. cerevisiae plus the relevant species’ chromosome), using blat. Uniquely 

mapping reads that had fewer than three mismatches were kept for analysis. 

Reads were extended by the cross correlations between those from the Watson 

and Crick strands, to create nucleosome peaks. Read count numbers were 

normalized to one by dividing each base read count by the genome-wide 

average read count per base. Gene alignments were carried out using the 

endogenous boundary of the +1 nucleosome (Tsankov et al., 2010). RNA-seq 

data was treated similarly but without extending reads. RNA abundance for YAC-

based transcripts was, on average, ~30-40% (in reads per kb per million reads) 

of the RNA abundance of endogenous S. cerevisiae transcripts. 

Nucleosome Calls 

Template Filtering (Weiner et al., 2010) was used to call the locations of 

nucleosomes.  

5’ RACE 

Trizol (Invitrogen) extracted RNA was enriched for mRNA on polyT magnetic 

beads (NEB S1419S). Calf Intestinal Phosphatase ( NEB M0290L) removed all 

phosphates prior to the hydrolysis of the mRNA cap to a phosphate with Tobacco 

Acid Pyrophosphatase (Epicentre T19250). An oligo was ligated to the 5’ end of 

the mRNA (T4 RNA Ligase, NEB) and the RNA was reverse transcribed 
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(SuperScript III Reverse Transcriptase, Invitrogen) with a tailed random hexamer. 

The cDNA was amplified with a low cycle PCR (Phusion, NEB) using primers 

matching the sequences added in the ligation and reverse transcription. A gene 

specific PCR amplified the transcription start site sequence, which was cloned 

(StrataClone, Agilent) and sequenced.  
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CHAPTER IV: General Regulatory Factors play a role in promoter 

nucleosome depletion. 

Introduction 

The packaging of DNA into chromatin provides a layer of gene regulation. 

This is in part because nucleosomes restrict access to transcription factor binding 

sites. The regulation of chromatin structure has classically been studied at the 

PHO5 and GAL1/10 loci, where gene activation by activator binding requires and 

induces chromatin reorganization. The repression of these model genes is 

dependent upon nucleosomes, as activation regardless of the environmental 

context is achieved during histone-depletion (Han and Grunstein, 1988; Han et 

al., 1988b). While activator binding can compete away histone proteins in vitro 

(Workman and Kingston, 1992), it does not always appear to be a simple case of 

competition between activators and histones in vivo (Svaren et al., 1994; 

Workman et al., 1991). The specific architecture of nucleosome and transcription 

factor binding sites can lead to a plethora of regulatory effects. For instance, the 

presence of Pho4 binding sites in nucleosomal DNA contributes to the extent of 

activation, while those unobstructed by nucleosomes determine the signaling 

threshold of activation (Lam et al., 2008).  Furthermore, artificially moving a 

nucleosome to its normal post-induction position allows for binding of TBP and 

relaxes the induction requirements for the virally induced IFNβ gene (Lomvardas 

and Thanos, 2002). Hence, the packaging of DNA into chromatin with regards to 
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promoter elements can influence gene expression by restricting access to 

binding sites.  

Genome-wide studies have observed functional transcription factor 

binding sites to be enriched in nucleosome depleted regions (Lee et al., 2007). A 

simple explanation is that the binding of transcription factors would abrogate the 

binding of nucleosomes and vice versa. The ability to interfere with nucleosome 

positioning and thus induce gene expression has been seen to differ amongst 

transcription factors; in particular Gal4 has been seen to interrupt chromatin 

structure and induce reporter gene expression, while Gcn4 requires an additional 

Rap1 site (Yu and Morse, 1999). The factors with the greatest ability to disrupt 

nucleosome binding across main genomic loci have been classed as General 

Regulatory Factors (GRFs). These GRFs have often been seen to synergize with 

transcription factors to aid in their activity by disrupting nucleosome positioning to 

promote transcription factor binding (Buchman and Kornberg, 1990; Chasman et 

al., 1990). In some cases, GRFs have been seen to recruit chromatin remodelers 

to disrupt chromatin structure (Hartley and Madhani, 2009). Despite their similar 

and sometimes interchangeable effects, GRFs appear to work by different 

mechanisms to achieve the same goal (Yarragudi et al., 2004). Given their role in 

helping to deplete nucleosomes, GRF binding sites can be predicted in 

S.cerevisiae and other species (Kaplan et al., 2009; Tsankov et al., 2011) based 

on the disparity between in vitro and in vivo nucleosome depletion over specific 

sequences.  
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In order to examine the contributions of transcription and general 

regulatory factor binding to nucleosome depletion in vivo, we exploited the 

differences in nucleosome occupancy on the same sequence when in its 

genomic Debaryomyces hansenii context and on a yeast artificial chromosome in 

S.cerevisiae. We have previously discovered several nucleosome depleted 

regions at D.hansenii promoters that gain nucleosome occupancy in the 

S.cerevisiae environment, as well as several areas on D.hansenii yeast artificial 

chromosomes that lose nucleosome occupancy in the S.cerevisiae context. 

These could be due to the loss and gain of transcription factor binding, 

respectively, depending on the TFs present in the species. In order to 

systematically map transcription factor footprints as well as nucleosomes, we 

performed paired-end MNase-seq without a mononucleosomal size selection, as 

was pioneered in the Henikoff lab (Henikoff et al., 2011).  

Results 

Using paired-end sequencing of the entire product of a micrococcal 

nuclease digestion, we are able to map MNase footprints from approximately 

20bp to mono- and di- nucleosomal sizes. Nucleosome depleted regions tend to 

be enriched for smaller protected fragments (Figure IV.1A&B), which presumably 

represent protection by transcription factors at the promoter.  In some cases, 

multiple TF footprints map to nucleosome depleted regions (Figure IV.1A). The 

enrichment of TF footprints is reproducible from MNase digestions in the wild 
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type S.cerevisiae laboratory strain to the S.cerevisiae background of the 

D.hansenii yeast artificial chromosome strains. D.hansenii nucleosome depleted 

regions are also enriched for TF footprints (Figure IV.1B, right panel). However, 

the D.hansenii promoters that gain nucleosome occupancy in the S.cerevisiae 

environment lose this footprinting (Figure IV.2A), which is consistent with the idea 

that transcription factors present only in D. hansenii prevent the binding of 

histones.  In order to see if the converse is true, we mapped TF footprints 

surrounding the newly depleted regions on D.hansenii sequence in the yeast 

artificial chromosome strains. The new NDRs do indeed coincide with the gain of 

TF footprints (Figure IV.2B). This is consistent with either the binding of TFs in 

the S.cerevisiae environment generating nucleosome depletion or the loss of 

nucleosome occupancy allowing for binding of TFs. 
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Figure IV. 1: Enrichment of transcription factor footprints in NDRs. 

(A) Genome snapshot of MNase protected fragments in 10bp slices show enrichment of TF-sized 
footprints (sometimes multiple) in NDRs. Generated by Assaf Weiner in the Friedman lab. 

(B) TSS aligned averages scaling from 20 to 300 base pairs in 10bp slices show average TF 
occupancy at promoters. 
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Figure IV. 2: Transcription-factor binding is associated with NDR formation. 

(A) TSS aligned averages of all D.hansenii genes present on the YACs in their native context 
(left panel) and in the S.cerevisiae context (right panel), scaling from 20 to 300bp show loss 
of TF protection, along with previously documented NDR fill-in. 

(B) Average of nucleosome-sized fragments surrounding D.hansenii YAC neoNDRs in the native 
(blue) and YAC (red) contexts (upper panel) and for 20-80bp footprints (bottom panel) show 
gain of TF footprints at previously defined YAC neoNDRs. 

 

 

In order to determine what transcription factors might be involved in the 

differential footprinting seen on D.hansenii YACs, we searched for motif 

enrichment in transcription factor sized (20-80bp) footprints. DREME (Machanick 

and Bailey, 2011) analysis revealed that the Cbf1 motif was much more highly 

enriched (E-value of 7.4e-024) in TF footprints in D.hansenii than in S.cerevisiae. 

Cbf1 has previously been predicted to be a GRF associated with nucleosome 
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depletion in D.hansenii but not in S.cerevisiae (Tsankov et al., 2010). 

Interestingly, aligning TF footprints on the Cbf1 motifs in S.cerevisiae shows that 

these sequences are in fact bound in S.cerevisiae (Fig3B). However, the 

nucleosome profiles around Cbf1 motifs in S.cerevisiae show less nucleosome 

depletion and the less well-defined array than similar alignments in D.hansenii 

(Figure IV.3B). In order to determine if this was a gain-of-function in the 

D.hansenii Cbf1, we constructed strains that replaced the endogenous copy of 

CBF1 in S.cerevisiae for that of D.hansenii. The deletion of CBF1 in S.cerevisiae 

does lead to an increase in nucleosome occupancy at its binding sites in 

promoters (Figure IV.3C), consistent with a role for TF binding in promoter 

nucleosome depletion. Mapping of nucleosomes and TFs in the “Cbf1 swap” 

strain indicates that the D.hansenii copy of Cbf1 neither induces greater 

nucleosome depletion nor generates more well-positioned arrays at Cbf1-bound 

promoters in S.cerevisiae. This may indicate that Cbf1’s role as a GRF in 

D.hansenii is dependent upon some D.hansenii-specific association with another 

factor (or factors), or this may be due to the involvement of other S.cerevisiae 

TFs that help to induce the nucleosomal arrays around the binding site.  
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Figure IV. 3: Cbf1 acts as a GRF in D.hansenii, but does not possess inherent 
nucleosome ordering properties. 

(A) DREME analysis of D.hansenii TF footprints over S.cerevisiae shows Cbf1 motif 
enrichment. 

(B) Average alignments surrounding Cbf1 motifs present in YAC-born D.hansenii sequence 
show binding of the motif in S.cerevisiae as well as D.hansenii, but weaker nucleosome 
depletion and array formation on and around the motif. 

(C) Average alignments of TF-sized (upper panel) and nucleosome-sized (bottom panel) 
fragments surrounding Cbf1-bound motifs for wild type, ∆cbf1, and Dhan-CBF1 strains 
show binding of D.hansenii CBF1 to these sites, but no increased nucleosome depletion 
or stronger array formation.  
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Discussion 

Nucleosome depletion is formed by both cis and trans factors. Therefore 

nucleosome depletion can result from anti-nucleosomal sequence hindering the 

wrapping of DNA into a nucleosome, binding of sequence-specific factors 

abrogating nucleosome binding, or from the activity of chromatin remodelers. In a 

previous study (Hughes et al., 2012), we observe the loss and gain of NDRs on 

D.hansenii sequence depending on the environmental context, indicating that 

these NDRs are not cis regulated and thus excluding the former cause.  When 

we systematically map TF and nucleosome footprints on D.hansenii and 

S.cerevisiae sequence, we see the enrichment of TF footprints in nucleosome 

depleted regions. This is consistent with a role for TFs in competing with 

nucleosomes and helping to generated NDRs in trans. As we would expect to 

follow from this, the NDRs that gain occupancy on D.hansenii sequence in an 

S.cerevisiae cell also lose binding of TFs, while the sequences that lose 

nucleosome occupancy in the S.cerevisiae environment gain footprinting of TFs 

here. This is consistent with our previous supposition that the generation 

neoNDRs in the YACs is due to the binding of a transcription factor that 

competes with the histone proteins. However, we cannot rule out the possibility 

that another factor disrupts the nucleosome in a species-specific context, and 

this allows for binding of TFs.  
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Previous nucleosome mapping across the yeast phylogeny has implicated 

general regulatory factors (GRFs) in generating nucleosome depletion and has 

further predicted the evolution of both general regulatory factors themselves as 

well as the frequency of their use in NDR generation (Tsankov et al., 2010). 

Consistent with the prediction of Cbf1 as a GRF in D.hansenii based on the 

enrichment of its motif in this species, we saw a greater enrichment of the Cbf1 

motif in D.hansenii TF footprint than in S.cerevisiae’s. Interestingly, we saw that 

there were still TF footprints on the Cbf1 motif in S.cerevisiae, however these did 

not associate with as strong a nucleosome depletion or as well positioned a 

nucleosomal array as seen in D.hansenii. This suggests that the activity of Cbf1 

has evolved differently in these two species. In order to see if NDR and 

nucleosomal array generation was a gain-of-function inherent to D.hansenii Cbf1, 

we generated an S.cerevisiae cbf1 deletion mutant and a strain that was 

complemented with D.hansenii Cbf1. As expected for a role of TFs in excluding 

nucleosomes, we did see filling in of NDRs, where Cbf1 footprinting was lost in 

the deletion mutant. The S.cerevisiae strain with D.hansenii’s CBF1 does not 

appear to generate any greater nucleosome depletion nor affect the positioning 

of nucleosomal arrays at Cbf1-bound promoters. This argues that the Cbf1 

protein itself does not lead to the GRF activity in D.hansenii, but may be a result 

of recruitment of a remodeler (or other factor) in D.hansenii. It is possible that 

remodeler recruitment could represent one mechanism by which GRFs can 

distinguish themselves from run-of-the-mill TFs.  
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Materials and Methods 

Yeast strains: 

The strains bearing D.hansenii yeast artificial chromosomes were those used in 

ChapterIII and were generated by Yi Jin in the Struhl lab. JYAC6 contains a 

portion of chromosome C spanning 1165392-1280355 base pairs on a 

URA3/TRP5 linearized vector, while JYAC7 inserted sequence houses 1148162-

1364529 from chromosome D. These strains were compared to the laboratory 

S.cerevisiae wild type strain, BY4741, and D.hansenii strain NCYC 2572. 

Deletion of CBF1 from diploid S.cerevisiae was performed via yeast homologous 

recombination with a URA3 PCR product, tailed with 40bp of homologous 

sequence from either side of the CBF1 coding region. Single colonies were 

selected for the deletion on URA- media and confirmed via colony PCR, before 

tetrad dissection and similar selection and confirmation. Replacing this gene with 

the D.hansenii copy was achieved also by yeast homologous recombination by 

amplifying the D.hansenii copy from genomic DNA with tailed primers that had 

40bp of homology to the same S.cerevisiae sequence surrounding the CBF1 

coding region. Single colonies were selected via growth on MET- media (as the 

strains were genotypically methionine prototrophs, but cbf1 deletion generates a 

phenotypically methionine auxotroph).  
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Primer Sequence Purpose 
SCbf1::URA3 5’ AATACGGTTTTCTACACTTTTATTAACGATGAA

CTCTCTGGGATTCGGTAATCTCCGA 
Cbf1 deletion 

SCbf1::URA3 3’ TTTAACTCTCAAGCCTCATGTGGATTATCGCT
CCTAGTGCGGGTAATAACTGATATAATT 

Cbf1 deletion 

SCbf1::DCbf1 
5’ 

CTTAAAATATAATACGGTTTTCTACACTTTTATT
AACGATGTCGAAAAGATCATC 

Cbf1 swap 

SCbf1::DCbf1 
3’ 

GAGACTCGAAATACATTTAGCTATCTATTTTTA
ACTCTCATTTCATATTCTTTTCGTCC 

Cbf1 swap 

Cbf1 55up 5’ CAAGTACCAACATCAAGTGC PCR confirm 
Cbf1 41 down 
3’ 

CAGATACATAGGGAGACTCG PCR confirm 

Cbf1-Dhan in 
3’1 

ATCGCAATCTCGTCCTTC PCR confirm 
(swap) 

Cbf1-Dhan in 
5’2 

CGAACGACAAGTTGAAGC PCR confirm 
(swap) 

URA3 5’3 GGGTGTATACAGAATAGCAGAATGGGCAGA PCR confirm 
(deletion) 

URA3 R1 TTGGCGGATAATGCCTTTAGCGGCTTAACT PCR confirm 
(deletion) 

Table IV. 1: Primers used for Cbf1 strain construction 

Cbf1 deletion primers were used in a URA3 PCR reaction from yeast plasmid pRS416 and the 
PCR product was used in a high efficiency transformation to replace CBF1 coding region with 
URA3. Cbf1 swap primers amplified D.hansenii genomic DNA, and the PCR product was 
transformed into the deletion mutant to incorporate the D.hansenii CBF1 coding sequence into 
the S.cerevisiae CBF1 genomic location. Cbf1 55up 5’ was used in tandem with Cbf1-Dhan in 3’1 
and URA3R1 to confirm Cbf1 swap or deletion, respectively, while Cbf1 41down 3’ was used with 
Cbf1-Dhan in 5’2 and URA3 5’3 to PCR the other side of the swap or deletion, respectively. 

 

 

Yeast Growth: 

Yeast were grown in a version of compromise media (0.2% Synthetic Complete –

Trp –Ura, 1% bacto-peptone, 0.5% yeast extract, 2% dextrose) which was used 

across the yeast species (Tsankov et al., 2010); the media was modified to have 

reduced tryptophan and uracil, as the yeast artificial chromosomes bore URA3 
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and TRP5 selectable markers. Prior to liquid growth, yeast artificial chromosome 

strains were grown on AHC plates, which was more stringent for YAC retention. 

Yeast cultures were grown at 30°C shaking at 220rpm in an Innova 44 shaker. 

Micrococcal Nuclease Digested DNA Isolation: 

Yeast cultures (200mL) were fixed with 1.85% formaldehyde at 30°C, shaking, 

for 30 minutes. Yeast cultures were pelleted and washed. Cell pellets were 

resusupended in 1.2mL of cell breaking buffer (10mM Tris, pH 7.4, 20% glycerol) 

with Sigma protease inhibitors and split into 2 screw cap tubes with 

approximately 0.6mL of 0.5mm zirconia/silica beads (Biospec Products 

11079105z). The cell wall was broken in a Mini-Beadbeater-96 (Biospec 

Products) in a cold magnetic rack by shaking twice for 2 minutes on the bead 

beater and an additional 1 minute and 17 seconds on the bead beater, each of 

these was separated by 1 minute and 15 seconds on ice. The cells were checked 

under a microscope to ensure that most were broken; the lysed cells were 

separated from the beads by spinning them through a puncture in the bottom of 

the tubes into 5mL tubes. The cells were spun at maximum speed in a 4°C 

eppendorf centrifuge and the supernatant was discarded. The cells were 

resuspended up to about 2.4mL with NP buffer (50mM sodium chloride, 10mM 

Tris pH7.4, 5mM magnesium chloride, 1mM calcium chloride, 0.5mM spermidine, 

1μL/mL β-mercaptoethanol, and 0.01% NP-40) and 0.6mL of cells was aliquoted 

to four tubes with micrococcal nuclease aliquoted in the lid. The cells were mixed 
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with the enzyme and incubated at 37°C for 20 minutes, after which 150μL of 

STOP buffer (50% sodium dodecylsulfate, 0.05M ethylenediaminetetraacetic 

acid) and 5μL 20mg/mL proteinase K and the digestions were incubated at 65°C 

overnight to reverse crosslinks and remove proteins. Mononucleosomal DNA 

was purified by a PCI extraction and precipitation with 0.3M sodium acetate in 2-

propanol and then dissolved in 60μL of 1X NEB buffer 2. RNA was removed with 

2μL of 20mg/mL RNase solution (Sigma) at 37°C for 1 hour. Digestion ladders 

were assessed by running 5μL on a 2% agarose gel. Digestions were chosen to 

have mostly mononucleosomal-sized DNA with a little dinucleosomal and a hint 

of trinucleosomal DNA. Half (25μL) of the appropriate digestion was treated with 

calf intestinal phosphatase (0.75μL) at 37°C for 45 minutes. This was cleaned up 

with a PCI extraction and ethanol precipitated.  

Deep Sequencing Library Preparation: 

Estimated 1000ng of digested DNA was end-cleaned with END-it (Epicentre) in a 

40μL reaction. The reaction was cleaned-up via PCI extraction and ethanol 

precipitation for at least 1 hour and was then A-tailed with Klenow exo-minus 

DNA Polymerase (Epicentre) in a 25μL reaction. This reaction was similarly 

cleaned up. A 15μL ligation reaction (Fast Link, Epicentre) was performed at 

room temperature for 1 hour and the reaction mixture was made up to 25μL and 

the ligation was continued at 16°C overnight. The ligation reaction was cleaned 

up with 1.8X Agencourt AMPure XP beads (Beckman Coulter), washed twice 
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with 70% ethanol, and eluted with 39μL water. Two-thirds of the ligated DNA was 

used for two 25μL Pfx PCR reaction, using 10 and 12 cycles of the PCR 

extensions. A portion of the PCR reactions (4μL) was run on a gel to check the 

presence and size of the product. A final PCR with the remaining one-third of the 

ligated material was repeated with the best cycling conditions for each sample. 

PCR reactions were pooled and mixed with 1.8X AMPure beads, washed on the 

beads two times with 70% ethanol, and eluted in 20μL water. One tenth of the 

purified library was used to quality check the library by StrataCloning, which 

requires an initial A-tailing reaction with Taq DNA Polymerase. The libraries were 

submitted to the UMass deep sequencing core to be mixed at 1:1 molar ratios 

and sequenced on a paired-end Hi-Seq lane.  

Data Analysis: 

Raw, fastq files were separated by barcode using Novobarcode, and the ends 

were trimmed of adaptor read-through sequence with a homemade perl script. 

Reads were aligned to the sacCer3 genome (or to the D.hansenii chromosome 

sequences CR382133-9, sequenced 2008/09/10, downloaded from 

genolevures.org) using bowtie2 with the –dovetail option. For the yeast artificial 

chromosomes strains, reads were aligned to a chimeric genome containing the 

whole sacCer3 genome along with the two D.hansenii chromosomes. The 

aligned reads were filtered to keep uniquely mapping concordant reads and 

separated into size classes, representing transcription factors (~20-80bp) and 
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nucleosomes (~120-160), as well as separating into 10bp binned size classes 

20-300bp (for V-plots). In order to generate transcription start site alignments, the 

TF and nucleosome size class reads were extended across the fragment size 

(using either end of the paired-end read data) and each base pair in all fragments 

was counted and totaled, using a homemade perl script. The genome-wide 

average base pair count was normalized to one, and the normalized reads were 

used to generated TSS alignments 500bp upstream to 1000bp downstream of 

the edge of the +1 nucleosome as defined in Tsankov et al. (Tsankov et al., 

2010). Similar alignments were generated surrounding the previously defined 

“neoNDRs” from Hughes et al. (Hughes et al., 2012) and for Cbf1 motifs. To 

make V-plots, the 10bp binned fragments were similarly counted and gene 

alignments were made and averaged across genes for each size class and 

viewed in Java TreeView.  

In order to determine motifs in the TF footprints, the bowtie2 aligned SAM files 

were mapped to the relevant genome or chimeric genome on SeqMonk, which 

was used to generate probes that represented locations of high protection (the 

top 10% of probe values for 20-80bp fragments). These probes were further 

filtered to remove ones that were highly protected in nucleosome-sized 

fragments. The sequence at these locations was extracted from the chromosome 

sequence and was used in DREME (Machanick and Bailey, 2011) to look for 

enrichment in D.hansenii over S.cerevisiae footprints. 
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CHAPTER V: Chd1p is a trans-acting factor that sets 

nucleosome spacing 

Introduction 

Nucleosomes wrap ~147bp of DNA in almost 2 turns around histone 

proteins and form the basic repeating unit of chromatin. Chromatin affects the 

accessibility of the underlying DNA sequence, and hence, where nucleosomes 

are positioned is important to the regulation of the genome. This has been 

particularly notable at yeast genes, where nucleosomes are depleted over the 

promoter and form a well-positioned array over the gene body, almost 

universally. While sequence has been shown to play a role in nucleosome 

depletion at promoters (Kaplan et al., 2009), trans-acting factors play a larger 

role in nucleosome positioning across the genome (Zhang et al., 2011).  

ATP-dependent chromatin remodelers contain a SNF2 ATPase domain 

that provides the energy to disrupt histone-DNA contacts. There are four major 

classes of these remodelers: SWI/SNF, INO80, ISW, and, CHD. Along with the 

ATPase motor, these remodelers all carry accessory domains, and interact with 

additional subunits, that contribute to different outcomes of remodeling events in 

vitro (Clapier and Cairns, 2009). SWI/SNF remodelers are often associated with 

histone eviction or movement in trans to another DNA molecule, while ISW and 

CHD remodelers result in sliding in cis along DNA. SWR/INO80 play key roles in 
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altering the subunit composition of nucleosomes, as they exchange the histone 

variants H2A and H2A.Z in the nucleosome.  

In vitro assays have shown directionality of remodeler activities: Isw1a, 

Isw2, and Chd1 all lead to centering of nucleosomes on a DNA fragment 

(Stockdale et al., 2006), while Isw1b and human SWI/SNF move nucleosomes to 

the ends of DNA (Bouazoune et al., 2009). The composition of the accessory 

domains/subunits of these remodeling complexes is assumed to play a role in the 

different outcomes of the remodeling reactions. Accessory domains are involved 

in recognizing histone modifications or variants as well as DNA, and regulate the 

activity of remodelers (Clapier and Cairns, 2009).  For instance, Isw2, Isw1a, and 

Chd1, all preferentially bind nucleosomes with extranucleosomal DNA, leading to 

the hypothesis that this preference may be integral to their centering activity 

(Hota et al., 2013). In fact, replacing the DNA binding domain of Chd1 with a 

domain targeting other nucleosomes resulted in an activity that shifts 

nucleosomes to the edge of a DNA molecule (Patel et al., 2013).  

 Chd1 is composed of N-terminal tandem chromodomains, an ATPase 

domain, and C-terminal SANT/SLIDE DNA binding domain connected to the 

ATPase domain by a linker. Both the chromodomains and the DNA binding 

domain have been crystallized with the ATPase domain. In the former, the 

chromodomains were seen to fold against the two lobes of the motor, seemingly 

holding them in a configuration that is not consistent with ATP hydrolysis, and 
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obscuring a DNA binding surface on the ATPase domain (Hauk et al., 2010). 

These structural observations are consistent with the negative regulation of Chd1 

activity by the N-terminus seen in in vitro assays; this regulation is overcome in 

the presence of histones. On the other hand, the DNA binding domains appear to 

positively regulate the activity of Chd1 in vitro. The DNA binding activity of Chd1 

may also be involved in directing sliding of nucleosomes, as artificial fusion of 

Chd1 with a sequence-specific DNA-binding domain slides nucleosomes towards 

the DNA binding site (McKnight et al., 2011). The linker connecting the DNA 

binding domains to the ATPase motor has been shown to be required for 

coupling ATP hydrolysis to nucleosomal movement (Patel et al., 2011).  

Deletion of Chd1 in Saccharyomyces cerevisiae leads to loss of 

nucleosome positioning at the 3’ end of genes. This becomes even more 

extreme when this deletion is coupled with deletions of Isw1 and Isw2, as this 

triple deletion mutant exhibits complete loss of nucleosomal phasing after the +2 

nucleosome (Gkikopoulos et al., 2011). Consistent with these observations from 

budding yeast, the two Schizosaccharyomyces pombe orthologs of Chd1 also 

play central roles in nucleosomal array formation (Pointner et al., 2012). 

Furthermore, Chd1 is involved in suppressing aberrant histone turnover in the 

gene body of long genes (Radman-Livaja et al., 2012; Smolle et al., 2012). 

Despite its stronger role in gene body nucleosome positioning, there is conflicting 

evidence as to the localization of Chd1 to genes. While crosslinked Chd1 has 

been seen across the coding region of some genes (Simic et al., 2003), native 
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ChIP shows it to be primarily enriched at the promoter region (Zentner et al., 

2013). These seemingly incompatible results may be explained by two 

observations regarding Chd1 binding. Chd1 genetically interacts with yFACT and 

elongation factors (Biswas et al., 2007; Simic et al., 2003), and these factors 

have been proposed to help localize Chd1 to coding regions. Chd1 association 

with the gene body may be transient, given its preference for binding 

nucleosomes with a longer stretch of extra-nucleosomal DNA than the average 

yeast linker DNA. Despite the knowledge of Chd1 and its regulatory domains’ in 

vitro activity, how these influence in vivo chromatin organization remains unclear. 

Previously we have used a yeast artificial chromosome (YAC) system to 

identify those chromatin characteristics that are influenced by trans regulation 

(Hughes et al., 2012), based on aspects of chromatin that differ when the same 

DNA sequence is carried in two different environments (K. lactis vs. 

S.cerevisiae). From this study, we established that the majority of nucleosomes 

are positioned by trans-acting factors, as spacing of nucleosomes was 

environmentally sensitive (internucleosome distance on K.lactis sequence 

adopted the tighter spacing of the S.cerevisiae genome). The existence of a 

“molecular ruler” whose measurement differs between the species allows for a 

complementation assay to determine what factor determines the measurement 

between nucleosomes. We therefore generated S.cerevisiae “factor swap” 

strains, in which deletion of an endogenous gene was complemented with the 

K.lactis ortholog, and performed MNase-Seq to map nucleosomes in these 
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strains. We confirmed that deletion of Chd1 lead to loss of 3’ nucleosome 

positioning, and found that K.lactis Chd1 was able to complement this loss of 

positioning and additionally generated nucleosomal arrays with increased 

spacing. Generation of chimeric Chd1 genes revealed that the Chd1 N-terminus 

is responsible for much of this increased linker length.  

Results 

In order to test chromatin remodelers for internucleosomal spacing 

function, we deleted candidate factors from Saccharomyces cerevisiae and 

complemented them with the gene from Kluyveromyces lactis, a species that 

exhibits ~15bp greater distance between coding region nucleosomes than does 

S.cerevisiae (Heus et al., 1993; Tsankov et al., 2010). By mapping nucleosomes 

in the deletion and complementation strains, we can potentially identify proteins 

responsible for the differential measurement between nucleosomes in these 

species. Several observations in the literature suggested that histone H1 might 

be responsible for an organism’s average linker length (Heus et al., 1993). 

Curiously, recent physical models of fungal nucleosome spacing were able to 

successfully model internucleosomal spacing and apparent nucleosome width for 

11 out of 12 species, with K.lactis being the lone failure (Möbius et al., 2013) – 

the observation was hypothesized to result from high levels of H1 interfering with 

“breathing” of DNA on nucleosomes in this species. However, deletion of the 

linker histone, Hho1, from S.cerevisiae and its replacement with the K.lactis copy 
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did not alter the nucleosome phasing pattern across the yeast genes (Figure 

V.1A). 

We next considered the hypothesis that the Isw1 remodeler might be 

responsible for the difference in nucleosome spacing between these species. 

The crystal structure of the DNA binding portions of Isw1a suggested that this 

complex could measure the distance between nucleosomes due to its contact 

with DNA at both the entry and exit points of the nucleosome (Yamada et al., 

2011); this is consistent with its spacing of nucleosome arrays in vitro (Vary et al., 

2003). However, neither the deletion nor complementation of Ioc3 and Isw1 

(Isw1a complex) altered nucleosome spacing in S.cerevisiae (Fig1B). Other than 

a slight increase in 5’ nucleosome occupancy, the deletion of the Isw1a complex 

does not alter average genic nucleosome organization. 
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Figure V. 1: K.lactis Chd1 generates increased internucleosome spacing 
throughout coding regions 

A) Average TSS aligned nucleosome profiles show that neither Hho1 deletion nor swap affects 
nucleosome spacing on S.cerevisiae DNA. 

B) As in (A), but for Isw1a. 
C) Average TSS aligned nucleosome profiles show Chd1 deletion causes loss of 3’ nucleosome 

positioning. K.lactis Chd1 generates increased internucleosome spacing. 
D) Histograms (upper panels) and cumulative distribution plots (lower panels) show that +1 to +3 

nucleosome distance (left panels) is increased by K.lactis Chd1, but to a lesser extent than 
for +3 to +5 nucleosomes (right panels). 

 



179 
 

 



180 
 

 Deletion of Isw1 along with Chd1 disrupts nucleosome positioning 

downstream of the +2 nucleosome (Gkikopoulos et al., 2011). Additionally, Chd1 

has nucleosome spacing activity in vitro (Stockdale et al., 2006), so we chose to 

test the hypothesis that Chd1 plays a role in linker measurement in vivo. We 

confirmed published results showing that deletion of Chd1 results in disorganized 

3’ nucleosome positioning (Figure V.1C) (Gkikopoulos et al., 2011). Interestingly, 

complementation with K.lactis Chd1 causes an increase in nucleosome spacing 

at the 3’ end of genes (Figure V.1C). By calling nucleosome peaks and 

determining the distance between adjacent nucleosomes, we see that 

nucleosomes at the 5’ end of genes are spaced farther apart in the presence of 

K.lactis Chd1, although to a lesser extent than nucleosomes farther into the gene 

body (Figure V.1D). Chd1 thus appears to be involved in the measurement of 

internucleosome distances, and evolutionary divergence between the 

S.cerevisiae and K.lactis copies results in altered measurement of linker length. 

However, there are other factors present that influence linker length, as the 

increase in nucleosome spacing seen with the introduction of K.lactis Chd1 does 

not fully account for the longer linker lengths seen in the K.lactis genome. 

Chd1 affects spacing of gene body nucleosomes, and it has previously 

been observed to genetically and physically interact with yFACT as well as the 

Paf1 complex (Biswas et al., 2007; Simic et al., 2003). It has been hypothesized 

that Chd1 exerts its effects on gene body nucleosomes by binding to the longer 

extranucleosomal DNA present as elongating RNA polymerase exposes 
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nucleosomal DNA (Zentner et al., 2013). If Chd1’s function is targeted to gene 

body nucleosomes via RNA polymerase elongation, then the increased linker 

length in the presence of K.lactis Chd1 should be stronger at more highly 

transcribed genes. Separating genes into quartiles based on RNA Polymerase II 

occupancy in their coding regions revealed that the most highly-expressed genes 

exhibit a greater increase in nucleosome spacing in the presence of K.lactis 

Chd1 than the lowest expressed genes (Figure V.2A). Interestingly, the effects of 

K.lactis Chd1 do not appear to differ between those genes with the highest and 

lowest occupancy of Chd1 from native ChIP (data not shown). These results do 

not exclude the possibility that Chd1 primarily functions during transcription to 

help set the ordered spacing of nucleosomes in the array, but argues that either 

the continued presence of Chd1 is not required for its activity in the gene body or 

active Chd1 does not stably interact with gene bodies without crosslinking.  
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Figure V. 2: Chd1 spacing activity is greatest at the most highly-expressed 
genes. 

A) Average TSS alignment profiles (left) and cumulative distribution plots (right) of 
internucleosome distances show that there is a greater increase from wild type S.cerevisiae 
to K.lactis swap Chd1 copy at genes with the greatest Pol2. 

B) As in (A), but showing that genes with the coldest gene body nucleosome have a slightly 
greater increase in spacing with K.lactis Chd1. 

C) As in (A), but showing the genes whose 3’ turnover is most affected by Chd1 deletion are 
also more affected by Chd1 copy. 
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We next compared data from our Chd1 swap strains with published 

datasets which assayed the effect of Chd1 on replication-independent histone 

replacement (Radman-Livaja et al., 2012; Smolle et al., 2012). Both of these 

studies found that loss of Chd1 lead to an increase in histone turnover at the 3’ 

ends of long genes, suggesting that this remodeler acts either to stabilize 

nucleosomes during transcription or to aid in their reassembly after transcription. 

Interestingly, those genes which show the greatest increase in 3’ turnover in 

chd1 mutants also exhibit a greater increase in spacing in strains carrying the 

K.lactis Chd1 (Figure V.2C) – these genes thus are the most responsive to both 

primary activities of Chd1 in vivo. However, K.lactis Chd1 had no greater effect 

on increasing nucleosome spacing in genes with the highest wild-type gene body 

turnover than in genes with the lowest turnover (Fig2B), indicating that turnover is 

unlikely to be the primary determinant of Chd1 access and activity.   

Having identified a pair of Chd1 orthologs that direct different 

internucleosome spacing, we sought to generate chimeric Chd1 proteins in order 

to identify the “molecular ruler” responsible for linker length. ATP-dependent 

chromatin remodelers bear a similar ATPase motor, but have distinct accessory 

domains/subunits that recognize DNA and histone modifications and variants. 

These domains regulate the localization and activity of the remodelers. In Chd1, 

these accessory domains include tandem chromodomains at the N-terminus, and 

DNA binding domains at the C-terminus that flank the central helicase. The 

chromodomains have been shown to negatively regulate the ATPase activity of 
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Chd1 in the absence of histones, while the DNA binding domains positively 

regulate its activity (Hauk et al., 2010). It had been postulated that the DNA 

binding domain served to anchor the remodeler and generate torsion in a power 

stroke to move nucleosomes; however the rigid coupling of the DNA binding 

domain to the ATPase was shown to be unnecessary for nucleosome 

remodeling, arguing against the power stroke model for Chd1 and Drosophila 

ISW (Ludwigsen et al., 2013; Nodelman and Bowman, 2013). Interestingly, a 

longer linker does allow for a site-specific Chd1 to remodel nucleosomes farther 

away from its binding site (Nodelman and Bowman, 2013). In order to test which 

domain(s) of Chd1 are responsible for its measurement activity, we generated 

chimeras between K.lactis and S.cerevisiae Chd1 (Fig3A), and tested these 

chimeric proteins for longer measurement in the S.cerevisiae genome.  
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Figure V. 3: The N-terminus of Chd1 bears the majority of the differential 
measurement in the species. 

A) Schematic of Chd1 chimerae divisions. 
B) TSS alignments of ATPase (left), C-terminal (middle), and N-terminal (right) chimerae show 

that the ATPase domain does not contribute to differential nucleosome spacing, while the C- 
and N-termini contribute to spacing differences. 

C) Cumulative distribution plots support the differential spacing seen for TSS alignments (B). 
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As expected, the highly conserved ATPase domains did not generate any 

increase in linker measurement (Figure V.3B). Replacing the C-terminus from 

S.cerevisiae Chd1 with that from K.lactis caused a very slight increase in 

nucleosome spacing (Fig3B). The greatest effect of a single domain swap was 

observed in chimeric proteins carrying the N-terminus of Chd1 from K. lactis 

(Figure V.3B), although even in this mutant we did not recover the full effect of 

the full length protein swap. The N-terminal chromodomains have been shown to 

regulate the activity of Chd1 by interfering with the association of the ATPase 

lobes; it has been proposed that histone binding induces a conformational 

change that allows the helicase domain to bind DNA and hydrolyze ATP (Hauk et 

al., 2010). While chromodomain2 is well conserved between S.cerevisiae and 

K.lactis chromodomain1 is slightly more divergent (Figure V.4B). Interestingly, 

the N-terminal portion of Chd1 (residues 1-118) is typically truncated in proteins 

used for biochemical analysis, so little is known about their involvement in Chd1 

structure and function. In order to test the involvement of the chromodomains 

and N-terminus, we generated chimerae for the N terminus. Surprisingly, we saw 

that swapping N-terminal portion of S.cerevisiae Chd1, comprising amino acids 

1-195, for the K.lactis sequence led to a greater increase in average genic 

nucleosome spacing than did the K.lactis chromodomains (Figure V.4C&D). 

While the increased measurement between nucleosomes in K.lactis appears to 

be concentrated in the N-terminal portion of Chd1, the spacing activity is 

distributed throughout the protein, as the full length K.lactis Chd1 has a greater 
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effect than any chimera on S.cerevisiae nucleosome spacing. The N-terminal 

portion of Chd1 could contribute to the measurement differences between the 

species by differentially regulating the ATPase activity in the presence of 

histones, or by altering the recruitment or abundance of the protein.  



188 
 

Figure V. 4: N-terminus but not chromodomains is required for the increased 
measurement seen in the N-terminal chimera. 

A) Alignment of N-terminal 196 amino acids of S.cerevisiae and K.lactis Chd1. 
B) Alignment of S.cerevisiae and K.lactis Chd1 chromodomains. 
C) Average TSS alignment profiles show that swapping the amino acids N-terminal of (upper) 

the chromodomains, but not the chromodomains (lower), of S.cerevisiae Chd1 for K.lactis 
generate greater nucleosome spacing. 

D) Cumulative distribution plots of nucleosome peak spacing agrees with the N-terminal amino 
acid-dependent increases seen in the TSS alignments (C).  
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Discussion 

Here, we present evidence that Chd1 is involved in spacing nucleosomes 

and in particular that it plays a role in the difference between internucleosome 

spacing in the yeast species, S.cerevisiae and K.lactis. This shows that a 

chromatin remodeler is involved in actively spacing nucleosomes. We see that 

Isw1a is not involved in the measurement differences between the species, but 

does not preclude this complex, which has in vitro spacing activity, from a 

conserved role in internucleosome spacing. In fact, clearly other factors play a 

role in the increased spacing seen in K.lactis, as Chd1 alone does not generate 

K.lactis spacing in the S.cerevisae background.  

Our finding that K.lactis’ Chd1 has a greater effect in increasing genic 

nucleosome spacing at the most highly expressed genes corresponds well with 

Chd1 association with transcribed genes. This could be due to interactions with 

elongation associated factors or from binding to transiently increased 

extranucleosomal DNA from transcription-associated histone turnover.  K.lactis 

Chd1does not have an increased effect on nucleosome spacing for genes with 

higher turnover as would be expected if histone turnover were necessary for 

Chd1 activity, in fact genes with decreased turnover tend to exhibit greater 

K.lactis Chd1 induced spacing increases. Since Chd1 is involved in the 

repression of 3’ turnover (Radman-Livaja et al., 2012; Smolle et al., 2012), it is 

possible that Chd1 itself, or other remodelers such as Isw1, might mask 
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transcription-induced turnover that allows for Chd1 binding to extranucleosomal 

DNA. However, the genes with the greatest turnover in the chd1 deletion strain 

are no more affected than genes with the least amount of turnover. Our results 

do support the recruitment of Chd1 by transcription factors, such as Paf1 or 

yFACT, and do not rule out transcription-associated exposure of extra-

nucleosomal DNA via partial unwrapping.  

While the spacing activity of Chd1 is not completely localized to a single 

domain, the N-terminus of Chd1 appears to bear most of the increased 

measurement seen in K.lactis. This portion of the protein contains tandem 

chromodomains that have been observed to participate in negative regulation of 

Chd1’s sliding activity in the absence of histones. However, the majority of the N-

terminus’ contribution to increased spacing appears to be N-terminal of the 

chromodomains, a region that has not been structurally characterized and is 

generally lacking in biochemical assays. The N-terminus of K.lactis Chd1 could 

potentially affect the folding of the protein and could lead to differential 

recognition of histone tails and thus alter regulation of ATPase activity by the 

chromodomains or its recruitment. Alternatively, the N-terminus of K.lactis Chd1 

could affect the stability of the protein, and the differences between K.lactis and 

S.cerevisiae internucleosome spacing could result from different protein 

abundance.  
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Materials and Methods 

Yeast strains: 

Yeast strains were derived from the diploid S288C strain, BY4743, in which one 

copy of the HIS3 gene had been restored. Deletion of the coding region was 

performed via high efficiency transformation with a URA3 PCR product bearing 

homology to either side of the coding region. The deletion mutation was selected 

for on URA- media and was confirmed via colony PCR for single colonies. After 

the deletions were confirmed, cells were patched out onto YPD plates with high 

(5%) glucose for up to 16 hours at 30°C and were then sporulated at room 

temperature in sporulation media (1% potassium acetate, 0.1% yeast extract, 

0.05% glucose) for several days. Once enough ascii were formed, as assessed 

by microscopy, they were tetrad dissected and replica plated to plates to confirm 

their genotype for the relevant deletion by growth on URA- media as well as LYS- 

and HIS- media, in order to compare strains with the same auxotrophies: all 

deletion strains were leu2∆0. For K.lactis HHO1 and ISW1IOC3 complemented 

strains, these genes were amplified from K.lactis genomic DNA with primers 

containing restriction enzyme sites; the resultant product was digested and 

ligated into the pRS415 yeast centromeric plasmid with LEU2 marker (HIS3 

marker for IOC3). The deletion strains were transformed with either vector alone 

or the plasmid bearing the K.lactis gene. For Chd1, the K.lactis complementation 

strains were made via homologous recombination of the K.lactis PCR product 
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with 40bp of homology to either side of the S.cerevisiae gene in the haploid 

deletion strain. Transformants with this product were selected on 5-FOA media 

after an overnight outgrowth in YPD and integration was confirmed via colony 

PCR. Additionally, for a wild type comparison, an S.cerevisiae PCR product was 

reintegrated into the deletion strain and selected as for the K.lactis 

complementation.  
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Primer Sequence Purpose 
Hho1-for TATTTATGGGCACCTGATAATGCTTGGCAGCGAG

GGAAGCGATTCGGTAATCTCCGA 
Hho1 deletion 

Hho1-rev GTTTGATAGTATTGCTATCACCATTGACATTCTCG
TTTGGGGGTAATAACTGATATAATT 

Hho1 deletion 

Isw1-for AGCTATGCAAAAACCAGCTAGAGGTGGATGTAG
AAATACCGATTCGGTAATCTCCGA 

Isw1 deletion 

Isw1-rev TAGTATGATTATATATTTTTCTTCAGAAGCATGGT
GTAGGGGGTAATAACTGATATAATT 

Isw1 deletion 

Ioc3::KANRF GCAGCTCTTCCGCACAGCTTGCTGACCATGATCA
TGATCGTTCCCCGAAAAGTGCCACCTG 

Ioc3 deletion 

Ioc3::KANRR GCCTGTAAGGAGTTTCACAATCTTCACGTTCGTT
GAAAGCCGACAGCAGTATAGCGACCAG 

Ioc3 deletion 

Chd1::URA3 5’ CCTTTTCTAATTTAATTCTCACTTATAATGGCAGC
CAAGGGATTCGGTAATCTCCGA 

Chd1 deletion 

Chd1::URA3 3’ AAAATTGTTTCACTTCTTTTGAGACTCTGTTATCT
TGTCGGGGTAATAACTGATATAATT 

Chd1 deletion 

Hho1_XhoIF AATACTCTCGAGACGGACAATAAAACG K.lactis HHO1 
plasmid 

Hho1_SacIIR ATTCGACCGCGGATTAACTTTATTTCTTGGAC K.lactis HHO1 
plasmid 

Isw1_XhoIF ACTTTGCTCGAGTCCAAATTAATACACAATATAG K.lactis ISW1 
plasmid 

Isw1_SacIIR AAAACACCGCGGCCACTCTACCATTCTTGC K.lactis ISW1 
plasmid 

Ioc3_XhoIF TCAAGTCTCGAGGACTGCCAGCTTCTCC K.lactis IOC3 
plasmid 

Ioc3_SacIIR GCTTTTCCGCGGAAAGAGTGAACGGCCATCC K.lactis IOC3 
plasmid 

SChd1::KChd1 
5’ 

ATTCAAAGCAGAACCTTTTCTAATTTAATTCTCAC
TTATAATGGTACAGGATTTACCAG 

CHD1 swap 

SChd1::KChd1 
3’ 

GAAGGAACAATGGAAAATGTGGTGAAGAAAAATT
GTTTCAATGTTCAGAGGCTTTGATT 

CHD1 swap 

Tabel V. 1: Primers used for Chd1 deletion and “swap” strain construction. 

HHO1, ISW1, and CHD1 were deleted from S.cerevisiae by transformation with PCR products 
generated using pRS416 as a template for URA3. IOC3 was deleted with KANR PCR from 
pFA6:HA:KanMX6 with the above primers. Sequences for amplifying URA3 and KANR are 
italicized. HHO1, ISW1, and IOC3 were amplified with the above primers from K.lactis genomic 
DNA and cut with the appropriate restriction enzyme (restriction enzymes sites are underlined) 
and ligated into cut vector (pRS415 for ISW1 and HHO1 and pRS413 for IOC3). K.lactis CHD1 
coding sequence was amplified from K.lactis genomic DNA with S.cerevisiae CHD1-tailed 
primers; K.lactis CHD1 sequence is italicized.  
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Primer Sequence Purpose 
SChd1_BamHI F ATCCCAGGATCCTTATCACATCCCA Clone CHD1 
SChd1_SacII R ATTACTCCGCGGTGCCCTATAGTACACAC Clone CHD1 
S::KChd1_swapN 5' AAAGCAGAACCTTTTCTAATTTAATTCTCA

CTTATAATGGTACAGGATTTACCAGACG 
Chimera: K.lac 
(1-351) 

S::KChd1_swapN 3' AATTACTGGAATATTGTGGGAGGATCTTA
GAGTTTTCTCTGTTTTGGAACTCTTTTACC 

Chimera: K.lac 
(1-351) 

S::KChd1_swapC 5' 
 

TAAAGCTGATATAGATTGGGATGATATCAT
TCCAGAAGAAGAACTCAAGAAACTAAAGG 

Chimera: K.lac 
(954-1525) 

S::KChd1_swapC 3' 
 

GGGGAAGGAACAATGGAAAATGTGGTGAA
GAAAAATTGTTTTAATGTTCAGAGGCTTTG 

Chimera: K.lac 
(954-1525) 

S::KChd1_swapA 5' 
 

GAAATTGGCACCTGAACAAGTGAAACATT
TTCAAAACAGAACCAATTCCAAGATAATGC
C 

Chimera: K.lac 
(352-953) 

S::KChd1_swapA 3' CCTTGCGTTTCTGCTCTTCATCTTGGAGTT
TTTTTAGTTCATCTTCGGGGATAATGTCA 

Chimera: K.lac 
(352-953) 

S::KChd1_chromoswa
p 5' 

TGTGCATGAAGCATCTGCCAATCCTCAAC
CAGAGGACTTCCATAGCATCGACATCGTT
G 

Chimera: K.lac 
(177-351) 

S::KChd1_chromoswa
p 5'b 

TGTTATCAATCACAGACTAAAGACATCTTT
GGAAGAAGGAGGATCGACGAAGAATCGT
AG 

Chimera: K.lac 
(195-351) 

SChd1 100up 5' ACTAACGACAAAGTTTCTCAAAGG S.cerevisiae 
CHD1 

K::SChd1_unsNswap 
3’  

CTTCCTTCAAACGATGATCGACAACGATG
TCGATGCTATGGAAGTCCTCTGGTTGAGG 

Chimera: K.lac 
(1-176) 

K::SChd1_unsNswap 
3’b  

TGATGGAATCCACATCCCATCTACGATTCT
TCGTCGATCCTCCTTCTTCCAAAGATGTC 

Chimera: K.lac 
(1-194) 

Tabel V. 2: Primers used to generate chimeric CHD1. 

Restriction enzyme (sequence underlined) tailed primers were used to amplify from S.cerevisiae 
(BY4741) genomic DNA and clone CHD1 into cut pRS415 vector. Yeast homologous 
recombination was used on this plasmid to replace S.cerevisiae CHD1 sequence with K.lactis’ by 
digesting the Chd1 plasmid and transforming along with the K.lactis generated PCR products for 
swapN, swapC, and swapA. K.lactis chromodomains were swapped by homologous 
recombination of PCR product amplified from K.lactis genomic DNA using S::K_chromoswap 5’ or 
5’b and S::KChd1_swapN 3’ in the S.cerevisiae CHD1 plasmid. PCR product amplified with 
SChd1 100up 5’ and K::SChd1_unsNswap 3’ or 3’b was recombined into the N-terminal chimeric 
CHD1 plasmid to generate plasmids containing the first 176 or 194 amino acids of K.lactis CHD1 
in place of the S.cerevisiae sequence. These plasmids were linearized and transformed into the 
deletion strain to integrate the chimerae.  
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Yeast Growth: 

Hho1 and Isw1Ioc3 strains were grown in Synthetic Dextrose +URA3  media to 

maintain plasmids. Chd1 integrated strains were grown in YPD media. All yeast 

were grown in 200mL of media at 30°C with 220rpm shaking in an  Innova 44 

incubator overnight until about 0.5 OD600.  

Mononucleosomal DNA Isolation: 

Yeast cultures (200mL) were fixed in 1.85% formaldehyde at 30°C, shaking, for 

30 minutes. Yeast cultures were pelleted, washed, and resusupended in 1.2mL 

of cell breaking buffer (10mM Tris, pH 7.4, 20% glycerol) with Sigma protease 

inhibitors and split into 2 screw cap tubes with approximately 0.6mL of 0.5mm 

zirconia/silica beads (Biospec Products). The cell wall was broken in a Mini-

Beadbeater-96 (Biospec Products) in a cold magnetic rack with two 2 minutes on 

the bead beater and an additional 1 minute and 17 seconds on the bead beater, 

each of these was separated by 1 minute and 15 seconds on ice. The cells were 

checked under a microscope to ensure that most were broken; the lysed cells 

were separated from the beads by spinning them through a puncture in the 

bottom of the tubes into 5mL tubes. The cells were spun at maximum speed in a 

4°C eppendorf centrifuge and the supernatant was discarded. The cells were 

resuspended up to about 2.4mL with NP buffer (50mM sodium chloride, 10mM 

Tris pH7.4, 5mM magnesium chloride, 1mM calcium chloride, 0.5mM spermidine, 
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1μL/mL β-mercaptoethanol, and 0.01% NP-40) and 0.6mL of cells was aliquoted 

to four tubes with micrococcal nuclease aliquoted in the lid. The cells were mixed 

with the enzyme and incubated at 37°C for 20 minutes, after which 150μL of 

STOP buffer (50% sodium dodecylsulfate, 0.05M ethylenediaminetetraacetic 

acid) and 5μL 20mg/mL proteinase K and the digestions were incubated at 65°C 

overnight to remove the histone proteins. Mononucleosomal DNA was purified by 

a PCI extraction and precipitation with 0.3M sodium acetate in 2-propanol and 

then dissolved in 60μL of 1X NEB buffer 2. The DNA was digested with 2μL of 

20mg/mL RNase solution (Sigma) at 37°C for 1 hour. Digestion ladders were 

assessed by running 5μL on a 2% agarose gel. Digestions were chosen to have 

mostly mononucleosomal-sized DNA with a little dinucleosomal and a hint of 

trinucleosomal DNA. Half (25μL) of the appropriate digestion was treated with 

calf intestinal phosphatase (0.75μL) at 37°C for 45 minutes. The 

mononucleosomal band was gel purified from a 1.8% agarose gel, using Freeze 

N’ Squeeze columns (BioRad), and was PCI extracted and ethanol precipitated 

overnight. 

Deep Sequencing Library Preparation: 

About 250ng of mononucleosomal DNA was end-cleaned with END-it (Epicentre) 

in a 40μL reaction. Agencourt AMPure XP beads (Beckman Coulter) beads were 

used to clean-up the reaction with 1.8X beads and washed once with 70% 

ethanol. The beads were resuspended with 21.25μL water and the DNA was 



198 
 

then A-tailed with Klenow exo- DNA Polymerase (Epicentre) in a 25μL reaction 

on the beads. This reaction was cleaned up on the beads by adding 1.8X ABR 

buffer (15% PEG, 2.5M sodium chloride) and washed with 70% ethanol. The 

beads were resuspended with 11.75μL water and 0.6μL 10nM barcoded 

adapters was added; a 15μL ligation reaction was performed at room 

temperature for 1 hour and the reaction mixture was made up to 25μL and the 

ligation was continued at 16°C overnight. The ligation reaction was cleaned up 

on the beads by adding 1.3X ABR buffer, washed twice with 70% ethanol, and 

eluted with 39μL water. Two-thirds of the ligated DNA was used for two 25μL Pfx 

PCR reaction, using 10 and 12 cycles of the PCR extensions. A portion of the 

PCR reactions (4μL) was run on a gel to check the presence and size of the 

product. A final PCR with the remaining one-third of the ligated material was 

repeated with the best cycling conditions for each sample. PCR reactions were 

pooled and mixed with 1.3X AMPure beads, washed on the beads two times with 

70% ethanol, and eluted in 20μL water. One tenth of the purified library was used 

to quality check the library by StrataCloning, which requires an initial A-tailing 

reaction with Taq DNA Polymerase. KAPA Library Quantification Kit was used on 

a serial dilution of 1μL of each library to estimate the relative concentrations, and 

the libraries were mixed 1:1 and sent to the UMass deep sequencing core for 

either Hi-Seq or GAII (N-terminal Chd1 chimerae) sequencing. 
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Data Analysis: 

Raw, fastq files were separated by barcode, using Novobarcode. Sequences 

were aligned to the SacCer3 genome using bowtie2 with its defaults, and filtered 

to keep only the uniquely mapped reads, separating reads into Watson and Crick 

aligned. In order to make TSS alignments, aligned reads were counted using 

bedtools genomecoverage for every basepair. The cross-correlation between 

Watson and Crick reads was used to infer fragment length and reads were 

extended to the fragment length and recounted for the full fragment, using 

bedtools genomecoverage. The genome average base pair count was averaged 

to one and alignments were made  using 500 base pairs upstream of the edge of 

the +1 nucleosome (as defined in Tsankov et al., 2010) (Tsankov et al., 2010) to 

the end of the gene.  

In order to call nucleosome positions, the first base pair of each reads was added 

up and the Watson and Crick reads were combined in order, first by chromosome 

then base pair, generating a tab delimited file with chromosome, base pair, F/R, 

and count. This file was then used in a Template Filtering algorithm with 7 

nucleosome templates (developed in Weiner et al., 2010) to call nucleosome 

positions genome wide. In order to assign nucleosomes to genes and designate 

the +1 and -1 nucleosomes, a homemade perl script scanned nucleosome calls 

up to 500 base pairs upstream of the coding region to find the nucleosome 

depleted region (a linker length greater than 100 base pairs) upstream of the 
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gene, the +1 and -1 nucleosomes were designated as the flanking nucleosomes, 

and the positions of the genic nucleosomes were assigned to each gene. The 

average distance between the genic nucleosomes was determined for each 

gene, as was the distance between the centre of the +1 and +3 and +3 and +5 

nucleosomes.  

The RNA Polymerase II occupancies defined in the unstressed wild type strain in 

(Kim et al., 2010) were used to separate genes by Pol2 occupancy. The wild type 

and chd1 mutant strain turnovers were used from (Radman-Livaja et al., 2012) to 

separate genes by average coding region turnover as well as the difference in 3’ 

turnover. Data from N-ChIP of Chd1 performed in (Zentner et al., 2013) was used 

to separate genes by Chd1 immunoprecipitation levels.  
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CHAPTER VI: Discussion 

Nucleosomes restrict access to the underlying DNA sequence, and hence 

contribute to regulating processes that occur on DNA, including gene expression. 

In order for transcription to initiate, transcription factors compete with 

nucleosomes for binding to DNA. Furthermore, RNA Polymerase contends with 

the nucleosomal barrier to transcription initiation and elongation. The packaging 

of the eukaryotic genome must allow for regulated access of transcription factors 

and the transcriptional apparatus to DNA. The blocking of transcription factor 

access to a chromatin template is partially relieved by the surprisingly 

characteristic nucleosome depletion at promoters that was discovered in 

genome-wide microccocal nuclease mapping of chromatin (Yuan et al., 2005). 

Indeed, nucleosome organization at promoters tends to be the most open at 

more highly expressed, growth or housekeeping genes as compared to more 

lowly expressed, stress responsive or tissue-specific genes (Ioshikhes et al., 

2006; Schones et al., 2008; Tirosh and Barkai, 2008; Yuan et al., 2005).  

Given the strong conservation of genic chromatin architecture and its 

suspected contributions to gene expression, discovering the factors involved in 

establishing nucleosome positions surrounding genes has been a fundamental 

pursuit in the field. Sequence preference plays a role in nucleosome depletion 

(Kaplan et al., 2009), but the extent to which sequence determines chromatin 

architecture is debated (Zhang et al., 2009). NDR generation via sequence-
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based exclusion of nucleosomes is compatible with constitutive expression; 

however, the utility of sequence-based nucleosome depletion is less clear for 

regulated NDR formation and gene expression. While yeast promoters often 

contain sequences that prevent nucleosome formation, human promoters lack 

these “programmed” NDRs; this at least partially reflects the scarcity of 

unexpressed genes in yeast relative to humans. Clearly, inducible genes would 

benefit from trans regulated promoter access, as is the case for promoters such 

as PHO5 (Almer et al., 1986).  

Overall, this body of work examines the relative contributions of cis and 

trans factors to nucleosome positioning in an in vivo, hybrid system. Hybrid 

approaches are useful in distinguishing between cis and trans effects, and 

previous studies in either haploid segregants of S.cerevisiae strains or diploids 

generated from closely related yeast species have linked gene expression and 

promoter chromatin to trans and cis determinants (Brem et al., 2002; Tirosh et 

al., 2010). Using YACs allows us to make comparisons between more divergent 

species than was possible with prior hybrid approaches which depended on 

successful mating, thus providing us with greater power to observe trans 

regulation. Using our YAC system we conclusively show that while sequence 

preference (or conserved trans-acting proteins) plays a role in promoter 

chromatin structure – based on the maintenance of NDRs on the same sequence 

in different environments – the preponderance of nucleosomes are positioned by 

trans-acting factors. This is particularly evident in the generation of larger genic 
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internucleosome spacing by a K.lactis factor, relative to the spacing generated in 

S.cerevisiae, on the same DNA sequence. In fact, even the +1 nucleosome and 

the NDR, which present the boundary against which downstream nucleosomes 

are packaged, are variable in different nuclear environments.  

While we do confirm that sequence biases play a role in S.cerevisiae 

NDRs, this is not a consistent theme across other organisms, and in fact, 

sequence-based nucleosome depletion is not even strongly maintained across 

Hemiascomycete yeast, as D.hansenii sequence is less apt to inform 

nucleosome depletion. This is perhaps linked to differential requirements to 

regulate access to the promoter region, as most S.cerevisiae genes are 

expressed and do not require tissue-specificity or developmental regulation as in 

metazoans. Nevertheless, we clearly see a role for trans factors in clearing yeast 

promoters.  A role for trans acting factors, such as GRFs and remodelers, in 

establishing NDRs would allow for another tier of control in gene expression, by 

regulating the access of the preinitiation complex to DNA.  

In Chapter III, we confirm that trans regulators are involved in and 

sometimes required for the generation of many NDRs. While this is less apparent 

in species like S.cerevisiae and K.lactis, where promoter sequence content is 

fairly predictive of nucleosome depletion, others, such as D.hansenii, appear to 

require the input of trans factors for at least half of their NDRs. In fact, this 

approximation, based on the number of YAC borne promoters that gain 
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nucleosome occupancy, is likely an underestimate due to the presence of 

conserved trans acting factors between yeast species. Human genes which 

encode nucleosome occupancy over their promoters via high GC content (Tillo et 

al., 2010) are even more likely to be dependent on trans acting factors for an 

open and active state.  

Trans acting factors could participate in nucleosome depletion through 

remodeling chromatin or competing with histones for a binding site. Given the 

association of YAC-specific neoNDRs with YAC-specific transcripts, it is likely 

that transcription factors are frequently involved in NDR generation through the 

latter mechanism. Indeed, we show in Chapter IV that transcription factor 

footprints are enriched in both native and YAC-specific NDRs, and are absent in 

conditions where the sequence is occupied by nucleosomes. The simplest 

explanation is that these transcription factors compete with histones; however, 

we cannot rule out the contribution of chromatin remodelers at these locations, 

and in fact we believe that recruitment of chromatin remodelers may be an 

important property of some sequence-specific binding proteins. This could be 

what distinguishes Cbf1 as a General Regulatory Factor in D.hansenii, as we 

show in Chapter IV that the D.hansenii protein itself does not inherently contain 

nucleosome organization activities. Interestingly, in the absence of Cbf1, 

nucleosome occupancy is increased at loci where it binds in S.cerevisiae, 

proving that transcription factor binding can compete with histones, or recruit 

histone-evicting activities, to generate NDRs. Studies to find what feature(s) of 
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D.hansenii Cbf1 differ from that of S.cerevisiae could reveal what defines GRF 

identity and function. 

Binding of transcription factors is not the only event in gene expression 

that is capable of affecting nucleosome positions. In Chapter II, we address the 

ability of RNA polymerase II to disrupt nucleosomes. We see that even the +1 

nucleosome, which has been argued to be the most well-positioned by sequence 

(Brogaard et al., 2012), is shifted downstream upon transcriptional inactivation. 

This retrograde movement of genic nucleosomes during transcription is 

consistent with RNA polymerase passing nucleosomes backwards as it transits 

the gene, as has been seen in vitro (Studitsky et al., 1994, 1997).  Furthermore, 

the phasing of nucleosomal arrays decays without active transcription. 

Additionally, in Chapter III we saw the de novo generation of well-positioned 

arrays with the advent of transcription from the heterologous sequence of 

D.hansenii YACs. This substantiates the involvement of transcription elongation 

and associated factors in helping to form well-positioned arrays.  

The genome-wide positioning of the TSS just within the borders of the 

yeast +1 nucleosome that we show in Chapter II and others have also 

documented (Yuan et al., 2005) was initially puzzling; how does transcription 

initiation occur from a location that is partially obscured by a well-positioned 

nucleosome? This question has lead to a related one: what establishes the 

relationship between the positioning of the TSS and +1 nucleosome? This could 
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result from either the +1 nucleosome restricting TSS selection or PIC assembly 

stabilizing formation of the adjacent +1 nucleosome. In Chapter III we continue to 

observe an intimate relationship between transcription initiation and nucleosome 

organization, where a species-specific relationship is maintained despite shifts in 

TSS selection or de novo generation of functional promoters. We determine that 

a trans acting factor is establishing this relationship for each species, and we see 

that the TSS and +1 nucleosome positions are set by a trans acting factor or 

factors and not by sequence. While transcription clearly plays a role in shaping 

chromatin structure both at the +1 nucleosome and downstream, the relationship 

between chromatin and transcription, particularly the stereotyped TSS to +1 link 

(discussed in Appendix AI,) does not appear to be a simple one. The simplest 

model to explain the link between transcription and chromatin organization is that 

sequence and transcription factor binding coordinate to generate NDRs, which 

stabilize the adjacent +1 nucleosome and allow for PIC assembly; transcription 

then serves to fine tune the position of the +1 nucleosome and to generate 

phased nucleosomal arrays. Evidently sequence and transcription as well as 

other factors cooperate to establish in vivo nucleosome positions, where 

sequence primarily plays a role in promoter nucleosome depletion, and 

transcription and other trans-acting factors are involved in the formation of 

chromatin structure at the promoter as well as in the gene body.  

We saw that the distance between nucleosomes is measured by a trans 

acting factor that appears to be associated with RNA polymerase II. The fifth and 
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final chapter expands on the finding from Chapter III that nucleosome spacing is 

guided by a trans acting factor or “molecular ruler”. This means that an 

evolutionary difference in a trans factor, which actively spaces nucleosomal 

arrays, causes an increased measurement between nucleosomes; this has the 

benefit that deleting candidate factors from S.cerevisiae and complementing the 

deletion with the K.lactis copy would lead to increased spacing in S.cerevisiae.  

In Chapter V, we generate complementation strains of candidates for 

nucleosome spacing and map nucleosomes. While neither the K.lactis copies of 

the linker histone, Hho1, nor the Isw1a complex caused an increase in 

nucleosome spacing in S.cerevisiae, replacing S.cerevisiae Chd1 with the 

K.lactis copy did result in increased nucleosome repeat length. Consistent with 

reports of Chd1 interacting with elongation factors (Biswas et al., 2007; Simic et 

al., 2003), genes with the highest RNA polymerase occupancy exhibit a greater 

increase in internucleosome distance in the presence of K.lactis Chd1 than do 

genes with lower polymerase occupancy. However, high levels of nucleosome 

turnover do not appear to be necessary for Chd1 spacing activity. This could 

mean that Chd1’s activity in the gene body is dependent on its association with 

elongation factors and does not require transcription-associated turnover as has 

been postulated (Zentner et al., 2013), or that Chd1 spacing activity does require 

greater exposure of DNA than the linker, but that this comes from partial 

unwrapping of the nucleosome rather than wholesale turnover.  
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While the increased internucleosomal length generated by K.lactis Chd1 is 

distributed throughout the protein, the first 176 amino acids, upstream of the 

chromodomains, are the smallest domain that can generate increased linker 

length when swapped between species. Little is known about the extreme N-

terminus of the protein as the first 117 amino acids are typically omitted in 

biochemical assays. This is particularly interesting for a few reasons. Firstly, 

these residues that are uncharacterized in vitro appear to have in vivo 

significance. Secondly, in vitro assays have reported that recombinant Chd1 

missing the N-terminus is capable of in vitro centering activity (Hauk et al., 2010), 

indicating that while these residues lead to some difference in the measurement 

between the species they are not required for sliding and spacing of 

nucleosomes. Potentially, the N-terminus may modulate the folding of the 

chromodomains against the ATPase lobes of Chd1 and sensing of the histone 

H4 tail, or it may influence the stability and thus protein expression levels of 

these species’ Chd1. In this case the nucleosome linker length differences 

between species would not result from a change in the activity or physical 

measurement of the protein, but from the amount of active protein available 

across the gene body. Protein abundance, stability, and localization studies are 

ongoing, and should shed light on the possibility of the N-terminus of K.lactis 

Chd1 altering spacing by this latter mechanism. 

The generation of an S.cerevisiae strain that differs only in the copy of 

Chd1, leading to an increase in internucleosome spacing, presents an interesting 
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opportunity to examine the importance of nucleosomal array spacing in the 

regulation of the genome. Does the space between nucleosomes have a 

functional consequence on gene expression? Does it alter how the elongating 

polymerase deals with the nucleosomal barrier? Does it change longer range 

chromatin interactions and packaging? The functional consequences of 

nucleosomal spacing can now be determined with this new tool. 

Chromatin has a great capacity to regulate gene activation by integrating 

multiple layers of information. It provides robustness to maintain gene expression 

levels by allowing access to open, highly expressed genes and hindering 

assembly of the transcriptional machinery at closed, unexpressed genes. 

Additionally, the responsiveness of chromatin to RNA polymerase transit may 

help to maintain a genic chromatin signature consistent with gene expression, 

thus perpetuating a chicken-and-egg cycle. The multi-faceted regulation of 

chromatin structure allows for the further tuning of gene expression by more than 

just transcription factor presence. By integrating sequence biases, transcription 

factor binding sites, and recruitment of chromatin remodelers, the cell can enact 

myriad responses. This can be appreciated in the tuning of expression levels 

from promoters constructed with different TF binding sites and anti-nucleosomal 

sequences (Raveh-Sadka et al., 2012). Preventing nucleosomes from 

obstructing TF binding sites by the incorporation of anti-nucleosomal sequences 

should aid in the robust expression of genes. On the other hand, the requirement 

of trans acting factors to antagonize nucleosome occupancy can lead to variable 
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responses depending on the expression level and recruitment of the trans 

factor(s). Our results conclusively establish a large contribution by trans 

regulators to genic chromatin architecture and thus indicate that chromatin can 

evolve and be modulated with alteration of even an individual regulator.  
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CHAPTER AI: Defining the order of the relationship between the 

locations of the TSS and +1 nucleosome. 

Introduction 

The surprisingly well defined location of the S.cerevisiae transcription start 

site (TSS) about 10bp into the +1 nucleosome was an early revelation of genome 

wide nucleosome mapping (Yuan et al., 2005). In contrast to larger eukaryotes, 

in S.cerevisiae TSSs are not located at a fixed distance from the TATA box 

(Chen and Struhl, 1985; Zhang and Dietrich, 2005). This has lead to the so-

called “scanning” model for transcription initiation, in which RNA Polymerase 

scans DNA starting from about 20bp downstream of the TATA box (Giardina and 

Lis, 1993) until it reaches an appropriate initiator sequence (Inr); in this model, 

the +1 nucleosome could serve to restrict the movement of polymerase and 

thereby help determine the position of the TSS. In fact, ChIP exo data for the 

preinitiation complex in yeast showed that the TBP associated factor, Taf1, was 

well-positioned relative to the +1 nucleosome rather than a poorly conserved 

TATA box, suggesting a role for the +1 nucleosome in restraining the TSS 

selection at these TATA-less promoter (Rhee and Pugh, 2012). On the other 

hand, transcription can also play a role in shaping the chromatin architecture; in 

vitro transcription assays have shown the transit of polymerases to move 

nucleosome upstream or result in dimer or whole octamer eviction (Bintu et al., 

2011; Kulaeva et al., 2010). Additionally, in Chapter II we have observed the 
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shifting of +1 nucleosomes into the gene body, upon loss of RNA Polymerase 

activity (Weiner et al., 2010). TFIIB appears to play a role in defining the 

transcription start site, as S.pombe TFIIB and RNA Polymerase II generate start 

site selection typical of S.pombe in an S.cerevisiae cell extract system (Li et al., 

1994). Additionally, mutations in the TFIIB “B reader” domain, such as E62K, 

shift start site selection to downstream Inrs, presumably by modulating the 

threading of the template strand through the template tunnel in RNA Polymerase 

II-TFIIB structure (Kostrewa et al., 2009). These contrasting observations raise 

the question of whether the stereotyped relationship between +1 nucleosomes 

and TSSs arises because the preinitiation complex helps stabilize nucleosome 

formation nearby, or because positioned nucleosomes help constrain Pol2 

scanning and thereby influence TSS selection. As an approach to disentangle 

the order of TSS selection and +1 nucleosome establishment, we mapped TSSs 

and nucleosomes in a yeast strain carrying a mutation in TFIIB known to affect 

transcription start site selection at some promoters, sua7E62K (Pinto et al., 

1994). 

Results and Discussion 

TSS mapping in the sua7 mutant revealed that this mutation does not 

globally induce downstream shifts in start site selection at all genes; in fact, TSS 

changes in this mutant are rarely a simple shift in location (Fig. AI-1A). It is 

possible that detectable TSS shifts are confounded by decreased stability in 
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some transcripts arising from aberrant TSSs. Additionally TSS selection is 

influenced by local sequence as well as the copy of TFIIB. If the location of the 

TSS is set and then transcription from this spot dictates the position of the +1 

nucleosome, we would expect a shift in the +1 nucleosome at genes with altered 

TSS selection. In general we observed that most genes do not experience a 

shifted +1 nucleosome in the sua7E62K mutant (Fig. AI-1B) even in many cases 

where TSS selection is shifted (Fig. AI-2B). This may represent an instance 

where the TFIIB mutant shifts the minimal distance from the TSS to a 

downstream sequence that is not usually restricted by the wild type nucleosome 

architecture.  
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Figure AI. 1: The sua7E62K mutant does not shift TSS selection downstream 
genome-wide. 

Mapping of TSSs in sua7E62K (centre panel) and wild type (right panel) yeast shows that TSS 
selection is not simply shifted downstream in the mutant as has been seen at individual loci, and 
in some cases leads to tightening up of TSSs. 
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We do observe some cases of concurrent shifts in TSS utilization and +1 

nucleosome location, but also genes where alterations in transcription and 

nucleosome architecture are discordant (Fig. AI-2A-E). At the extremity, Fig. AI-

2C shows the concurrent gain of an NDR and increase in TSS abundance at this 

gene in the sua7E62K mutant. Alterations in chromatin structure in the sua7E62K 

mutant, which is not expected to have any direct effect on nucleosomes, support 

a role for transcription or PIC formation in nucleosome architecture. However, we 

cannot establish any particular cause and effect relationship between TSS and 

+1 nucleosome position from this data. This negative result is inconclusive, as 

these data represent population averages – subtle changes in TSS locations are 

easy to find due to the digital nature of these data, while nucleosome peak 

locations are “blurred” by MNase chewing. This is potentially illustrated for 

YOR198C, shown in Fig. AI-2D, where the low occupancy +1 nucleosome loses 

even more nucleosome occupancy. This appears to be accompanied by a slight 

shift in preference for a downstream TSS peak that is present in both strains. The 

downstream TSS could thus represent a preferred sequence that is masked in a 

greater population of the wild type culture than in the sua7E62K mutant 

population. However there are many instances where the differential location of 

the +1 nucleosome is not accompanied by any alteration in TSS selection (Fig. 

AI- 2E). It is possible that shifts in the +1 nucleosome are concordant with shifts 

in TSS, but that transcripts originating from certain loci are less stable and cannot 
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be detected by TSS mapping of steady state transcripts. Furthermore, shifts in 

nucleosomes could conceivably result from indirect effects via alteration of 

expression of any number of chromatin regulators. 
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Figure AI. 2: Nucleosome positioning is affected in the sua7E62K mutant. 

A) A scatterplot of shifts in the major TSS peak and shifts in the +1 nucleosome shows that the 
+1 nucleosome and TSS selection are not correlated. 

B) YML074C represents a gene where TSS selection shits downstream but is not accompanied 
by alterations in +1 nucleosome positioning. 

C) YJR007W shows a striking case where the loss of a positioned nucleosome to generate an 
NDR in the TFIIB mutant is associated with a large increase in transcription. 

D) YOR198C shows a decrease in partial nucleosome occupancy along with an increase in 
downstream TSS selection. 

E) YBR210W is a case where the TFIIB mutation does not manifest in TSS selection but does 
result in nucleosome shifts. 
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Materials and Methods 

Yeast strains and growth: 

The YSB143 SUA7 shuffle (genotype: MATa ura3-52 leu2-3,112 his3d200 

sua7∆LEU2 [pRS313-SUA7 CEN/ARS HIS3 AmpR]) and YSB176 sua7E62K 

(genotype: MATa ura3-52 leu2-3,112 his3d200 sua7∆LEU2 [pRS313-sua7-35 

(E62K) CEN/ARS HIS3]) strains were kindly provided by the Buratowski lab. 

Yeast (2 cultures each) were grown in 450mL YPD (1% yeast extract, 2% bacto-

peptone, 2% dextrose) cultures overnight at 28°C overnight shaking at 220rpm in 

an Innova 44 incubator to an OD600 of ~0.5. One set of cultures was pelleted, 

snap frozen, and stored at -80°C for later RNA extraction and TSS mapping, 

while the other was fixed with 1.85% formaldehyde of nucleosome mapping via 

micrococcal nuclease sequencing. 

RNA Isolation: 

RNA was extracted by vortexing cell pellets in 6mL Trizol and ~2.5μg beads for 5 

minutes, followed by chloroform extraction and 2-propanol precipitation of the 

aqueous phase. About 400μg of resuspended RNA was cleaned and DNaseI 

treated on Qiagen RNAeasy columns. polyA RNA was enriched on NEB oligo dT 

magnetic beads with two rounds of selection by adding 1/3 the volume of 2M 

Lithium Chloride to the first eluant and reapplying to oligo dT beads. Lithium was 

removed from the RNA via Qiagen RNeasy MinElute and ~2μg was used for TSS 

library construction. 
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TSS Library Construction (performed by Ting Ni in the Zhu Lab as in (Ni et al., 

2010)): 

RNA was treated with 2.4U of Bacterial Alkaline Phosphatase (0.4U/μL, Takara) 

for 40 minutes at 37°C in a 100μL reaction with RNase inhibitors. The reaction 

was cleaned up by a phenol:chloroform and then chloroform extraction and 

precipitated with GlycoBlue. BAP-treated RNA was treated with 20U Tobacco 

Acid Pyrophosphatase (Epicentre, 10U/μL) in a 100μL reaction with RNase 

inhibitors to remove the mRNA cap and leave a ligatable 5’ phosphate. This 

reaction was similarly cleaned up. RNA was then ligated to a chimeric linker in a 

100μL T4 RNA ligation reaction with 25% PEG 8000, 200U of T4 RNA Ligase 

(NEB), and RNase inhibitor. The ligation was cleaned up via phenol:chloroform 

and chloroform extraction and excess linker was removed with RNeasey 

MinElute kit. Reverse transcription was performed in a 40μL reaction, first 

incubating 20μL of RNA with 20pmoles of dNTPs and 20pmoles of Mme_RTN6 

primer at 65°C for 5 minutes and snap chilling; the final reaction contained 5mM 

DTT, 6ng/μL actinomycin D (freshly diluted) and 2μL SSIII reverse transcriptase  

in 1X FS buffer (Invitrogen). RNaseH (2U, Invitrogen) was used to remove the 

RNA strand and the cDNA was purified in a Zymo Research clean n’ 

concentration kit, eluting in 20μL water. A quality control end-point PCR was 

performed with 0.25μL of cDNA with primers for the sequences added in the 

ligation and RT steps to check for the presence of product.  A low cycle 50μL 

PCR in 1X HF buffer (Finnzymes) containing 500nM of each primer for the added 
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sequence and 0.2mM dNTPs was performed with 0.5μL Phusion (Finnzymes). 

5μL ExoI exonuclease was added to the PCR, incubating at 37°C for 45 minutes 

and inactivating at 80°C for 20 minutes to remove excess primers. The amplified 

DNA was purified with Zymo Research DNA clean n’ concentrate and eluted in 

11μL water. The product was circularized, using 0.9μL 10μM TSS_Col3_short 

oligo and 1.5μL 5U/μL Ampligase (Epicentre), after combining 10μL of the RT-

PCR with 3μL 10X Ampligase buffer, 1.5μL Optikinase (5U/μL, USB), 1.5μL 

100mM ATP, 0.3μM 100mM DTT, and 11.3 μL water and incubating at 37°C for 

30 minutes and heat inactivating the Optikinase at 95°C for 2 minutes. After 

adding Ampligase and the oligo, the circularization proceeded with 5 cycles 

(95°C, 30sec; 68°C, 2min; 55°C, 1min; 60°C, 5min) and then 5 cycles (95°C, 

30sec; 65°C, 2min; 55°C, 1min; 60°C, 5min). Oligo and linear products were 

removed with the addition of 3μL ExoI (NEB) and 0.6μL ExoIII (NEB) and 

incubation at 37°C for 45min and 80°C for 20min. Four reaction of rolling circle 

amplification were performed with 2μL circularized product in a 20μL reaction 

containing 1mM dNTPs, 0,2mg/mL BSA (NEB), 1X Phi29 buffer (NEB), 10μM 

N6T2 oligo, 10U Phi29 DNA polymerase, UV-treated (NEB), and 2μL DMSO. 

RCA was performed at 10°C for 10min, 28°C, for 16hours, and 65°C, for 10min. 

The circular RCA product was confirmed with an XhoI digestion (using 2μL of the 

total combined reactions). RCA products were purified with phenol:chloroform 

and then chloroform extraction followed by ethanol precipitation. Approximately 

16μg of RCA product was digested with 20U of MmeI in a 200μL reaction 
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containing 1X NEB buffer 4 and 50μM S-Adenosylmethionine at 37°C for 30min. 

The digestion was loaded on a 6% acrylamide gel and separated at 100V for 

2hours and then 200V for 30min. The 94bp band was cut from the gel and eluted 

in 400μL gel elution buffer (0.1%SDS, 0.32M sodium chloride, 10mM magnesium 

acetate) rotating at 4°C overnight. The eluant was extracted with 

phenol:chloroform, then chloroform, and was ethanol precipitated with GlycoBlue. 

The digested product, containing the TSS and a downstream tag flanking a 

central sequence from the ligation and PCR oligos, was ligated in a 5μL T4 DNA 

Ligation reaction (NEB) with 16% PEG 8000 and 4000U T4 DNA Ligase (NEB) to 

375nM Illumina paired-end primers (PE2_AN2 and PE2_BN2) at 16°C overnight. 

The ligation reaction was phenol:chloroform and chloroform extracted and 

ethanol precipitated with GlycoBlue and subsequently separated on an 8% 

acrylamide gel at 1W for 1 hour. The 180bp band was cut out and eluted in 

400μL gel elution buffer at 4°C overnight. This was purified in a Zymo Research 

DNA clean n’ concentrate kit and a final low cycle PCR was performed in a 50μL 

1X HF buffer (Finnzymes) reaction with 50nM each PE2_AFN2_short and 

PE2_BRN2_short, 500nM each PE2_A_short and PE2_B_short oligos, 0.2mM 

dNTPs, and 0.5μL Phusion DNA Polymerase (Finnzymes). PCR cycles were as 

follows: 98°C, 30sec, 2cycles (98°C, 10sec; 66°C, 10sec; 72°C, 30sec), 10cycles 

(98°C, 10sec; 69°C, 10sec; 72°C, 30sec), and 72°C for 10min. The PCR reaction 

was purified with Zymo Research DNA clean n’ concentrate kit, and this was 

used for paired-end Illumina deep sequencing. 
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Oligo Sequence Used 
Chimeric linker CTCAAGCTTCTAACGATGTACGCTCG

rArGrUrCrCrArArC 
Ligation to TSS 

Mme_RTN6 GCGGCTGAAGACGGCCTATCCGACN
NNNNN 

Reverse 
transcription 

Mme_F CTCAAGCTTCTAACGATGTACGCTCG
A 

First low cycle 
PCR & quality 
check 

Mme_R GCGGCTGAAGACGGCCTATCC First low cycle 
PCR & quality 
check 

TSS_Col3_short GCCGTCTTCAGCCGCCTCAAGCTTCT
AACGATGTACG 

Bridge oligo for 
circularization 

PE2_AN2 ACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTNN 

Illumina adapterA 

PE2_AN2b /5Phos/AGATCGGAAGAGCGTCGTGTA
GGGAAAGAGTGTAGATCTCGGT 

Illumina adapterA 

PE2_BN2 /5Phos/AGATCGGAAGAGCGGTTCAG
CAGGAATGCCGAGACCGATCT 

Illumina adapterB 

PE2_BN2b AGATCGGTCTCGGCATTCCTGCTGAA
CCGCTCTTCCGATCTNN 

Illumina adapterB 

PE2_AFN2_short AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACA 

Final pcr 

PE2_BRN2_short CAAGCAGAAGACGGCATACGAGATC
GGTCTCGGCATTCCT 

Final pcr 

PE2_A_short AATGATACGGCGACCACCGAGA Final pcr 
PE2_B_short CAAGCAGAAGACGGCATACGAGA Final pcr 

Table AI. 1: Oligos used for constructing TSS mapping libraries. 

 

Nucleosomal DNA Isolation: 

Formaldehyde-fixed yeast cultures were pelleted and washed. Cell pellets were 

resusupended in 39mL Buffer Z (1M Sorbital, 50mM Tris pH7.4) containing 28μL 

β-mercapoethanol. Cells were spheroblasted in this buffer at 30°C for 

approximately 40 minutes. The spheroblasts were pelleted at ~3500rcf for 10 

minutes at 4°C. The cells were resuspended up to about 2.4mL with NP buffer 
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(50mM sodium chloride, 10mM Tris pH7.4, 5mM magnesium chloride, 1mM 

calcium chloride), containing 0.5mM spermidine, 1μL/mL β-mercaptoethanol, and 

0.01% NP-40, and 0.6mL of cells was aliquoted to four tubes with micrococcal 

nuclease aliquoted in the lid. The cells were mixed with the enzyme and 

incubated at 37°C for 20 minutes, after which 150μL of STOP buffer (50% 

sodium dodecylsulfate, 0.05M ethylenediaminetetraacetic acid) and 5μL 

20mg/mL proteinase K and the digestions were incubated at 65°C overnight to 

remove the histone proteins. Mononucleosomal DNA was purified by a PCI 

extraction and precipitation with 0.3M sodium acetate in 2-propanol and then 

dissolved in 60μL of 1X NEB buffer 2. The DNA was digested with 2μL of 

20mg/mL RNase solution (Sigma) at 37°C for 1 hour. Digestion ladders were 

assessed by running 5μL on a 2% agarose gel. Digestions were chosen to have 

mostly mononucleosomal-sized DNA with a little dinucleosomal and a hint of 

trinucleosomal DNA. Half (25μL) of the appropriate digestion was treated with 

calf intestinal phosphatase (0.75μL) at 37°C for 45 minutes. The 

mononucleosomal band was gel purified from a 1.8% agarose gel, using Freeze 

N’ Squeeze columns, and was PCI extracted and ethanol precipitated overnight. 

Nucleosomal Deep Sequencing Library Preparation: 

About 250ng of mononucleosomal DNA was end-cleaned with END-it (Epicentre) 

in a 50μL reaction. Qiagen MinElute columns were used to purify the reaction 

and DNA was eluted in 20μL water. DNA was then A-tailed with Klenow exo- 
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DNA Polymerase (Epicentre) in a 50μL reaction. This reaction was cleaned up on 

Qiagen MinElute columns and elutes with 10μL water to which 0.5μL Illumina 

genomic adapters was added; a 15μL ligation reaction was performed at room 

temperature for 1 hour and the reaction mixture was made up to 25μL and the 

ligation was continued at 16°C overnight. The ligation reaction was cleaned up 

on Qiagen MinElute columns and eluted with 20μL water. This was amplified with 

Pfx PCR reaction (Invitrogen) containing 0.5μL each Illumina genomic primers 

1.1 and 2.1, 0.6mM dNTPs, 1mM magnesium sulfate, and 1uL Pfx. A portion of 

the PCR reactions (4μL) was run on a gel to check the presence and size of the 

product. The final PCR product was purified with Freeze N’ Squeeze (BioRad) 

from a 1.8% agarose gel. One tenth of the purified library was used to quality 

check the library by StrataCloning, which requires an initial A-tailing reaction with 

Taq DNA Polymerase. 30μL of approximately 10nM amplified libraries were 

submitted for GAIIX Illumina deep sequencing.  

Data Analysis, Nucleosomes: 

Deep sequencing reads were aligned to sacCer2 using blat, and only uniquely 

aligned reads with fewer than 3 mismatches were retained. The cross correlation 

between reads mapping to the Watson and Crick strands were determined and 

reads were extended by this amount to generate nucleosome fragments. 

Coverage was counted at each base pair and the genome wide average count 

was normalized to one. Counts were then aligned around the edge of the +1 

nucleosome as defined in (Tsankov et al., 2010). In order to call nucleosome 



225 
 

centre peaks, the edge of reads were added up and used in a Template Filtering 

code developed in (Weiner et al., 2010). The +1 and -1 nucleosome were defined 

as the nucleosomes flanking a nucleosome depleted region (linker between 

edges of called nucleosomes greater than 100) upstream of a coding region.  

Data Analysis, TSS: 

Reads were filtered to keep only reads from the TSS side, which ended in the 

reverse complement of the chimeric linker sequence (ending in 

GTTGGACTCGAGCGTACATCGTTAGAAGCTTGAG), which was trimmed. 

These trimmed reads were aligned to sacCer3 with bowtie2 defaults, and 

uniquely (MAPQ>10) mapped reads were kept. The TSS represents the reverse 

complement of the final base pair, so SAM FLAG representing Crick mapping 

were retained as TSS for Watson genes and vice versa. TSS counts were added 

up for each base pair genome wide and these counts were aligned surrounding 

the edge of the +1 nucleosome as defined in (Tsankov et al., 2010). For 

observing TSS shifts, TSS peaks were defined as the location of the highest 

value in a 200bp window surrounding the edge of the +1 nucleosome.  
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CHAPTER AII: The involvement of the preinitiation complex in 

promoter nucleosome occupancy and turnover 

Introduction 

Nucleosome packaging has been recognized to be dynamic; stable 

binding of histones would prevent the inducible expression of genes that are 

repressed by nucleosome packaging. Nucleosome turnover, as measured by the 

replacement of histone octamers by inducibly expressed, tagged histones, is 

highest at promoters (Dion et al., 2007). In fact, promoter nucleosomes are “hot” 

regardless of the gene body nucleosome turnover. While nucleosome turnover in 

the gene body correlates with RNA Polymerase II occupancy, promoter 

nucleosome turnover does not (Dion et al., 2007). Nucleosome depletion at yeast 

promoters is generally established by both sequence and trans acting factors, as 

to some extent transcription factors compete with histones to generate 

nucleosome depletion (Workman and Kingston, 1992). The preinitiation complex 

itself might help to maintain nucleosome depletion at promoters. Dynamic 

competition between histones and transcription factors could conceivably lead to 

turnover in the promoter. In order to determine the role of the preinitiation 

complex in promoter turnover and NDR formation, we measured turnover in the 

absence of the TATA binding protein (TBP) in a TBP anchor away strain. 
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Results and Discussion 

Depletion of TBP, and hence PIC formation, does not dramatically affect average 

promoter depletion (Fig. AII-1A). Therefore the PIC does not appear to be 

globally responsible for nucleosome depletion; as anticipated, other transcription 

factors or chromatin remodelers play upstream roles in NDR formation, prior to 

the binding of TBP. Additionally, sequence-mediated depletion could be involved 

in the depletion of promoters thus allowing for maintained nucleosome depletion 

in the absence of TBP. However, TATA-containing promoters do experience 

some nucleosome fill-in of their NDRs, as compared to the relatively invariant 

TATA-less promoters (Fig. AII-1B).  
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Figure AII. 1: TBP-depletion has a slight effect on promoter and genic nucleosome 
occupancy. 

A) TSS alignments show that on average NDR formation is slightly decreased with the loss of 
TBP, as is genic nucleosome occupancy. 

B) Average TSS alignments for TATA-containing genes shows a greater dependence on TBP 
for nucleosome depletion at these genes. 

C) As (B) for TATA-less genes, showing that NDR formation is independent of TBP, but genic 
nucleosome occupancy is more greatly affected.
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TATA-containing genes tend to be less stably expressed than TATA-less 

genes and their expression is more often dependent upon chromatin remodelers 

(Basehoar et al., 2004; Ioshikhes et al., 2006); they also display a less prominent 

NDR and less well-positioned nucleosome arrays (Albert et al., 2007; Tirosh and 

Barkai, 2008). It appears that the PIC may help to maintain or direct nucleosome 

depletion at these promoters, potentially via the recruitment of remodelers. It is 

also possible that these genes are induced with rapamycin treatment and hence 

experience transcription-associated nucleosome depletion in the TBP anchor 

away strain at 30 minutes; however the anchor away strain background harbors 

mutations that prevent rapamycin-induced expression changes, and there was 

no detected increase in gene expression of selected ribosomal protein genes 

(data not shown). 

Nucleosome turnover in the control, untreated with rapamycin, is highest on 

average at the -1 nucleosome upstream of the NDR (Fig. AII-2A, centre panel); 

this holds true during the rapamycin induced depletion of TBP (Fig. AII-2A, left 

panel). In general, nucleosome turnover is slightly reduced in the TBP depleted 

conditions (Fig.AII- 2A, right panel; Fig. AII-2B), this is particularly true for TATA-

less genes, where newly incorporated HA is not increased over the background 

level as compared to the control. These promoters also tend to experience less 

turnover, so TBP does not appear to be a major regulator of promoter 

nucleosome turnover. Much like promoter nucleosome depletion, it appears that 
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other transcription factors or chromatin remodelers define the high turnover rates 

seen at yeast promoters. The greater effect seen at TATA-less promoters might 

reflect the lesser role of other chromatin regulators in gene expression and 

promoter nucleosome architecture seen at these genes (Basehoar et al., 2004; 

Tirosh and Barkai, 2008).  



231 
 

 

 

Figure AII. 2: Loss of TBP slightly decreases histone turnover. 

A) Heatmaps showing the log2 of the enrichment of H3-HA over total H3 at 30 minutes after 
TBP depletion in an anchor away strain (centre panel) or in a control (left panel), along with 
the difference map (right panel), which shows general decreae in histone turnover, but 
conservation of histone turnover patterns. 

B) Average histone turnover profiles surrounding the TSS shown for all (left), TATA (centre), and 
TATA-less (right) genes shows that promoter histone turnover is most affected by TBP at 
TATA-containing genes. 
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Materials and Method 

Yeast strains and growth: 

A  C-terminal triple HA-tagged H3 under the control of a galactose inducible 

promoter on a plasmid with an ADE2 selectable marker was used for ChIP 

analysis of histone turnover. These strains also contained an SPT6-FRB 

generated by the integration of an SPT6::KANMX6 pcr product at the C-terminus 

of SPT6.  Strains were generated in the anchor away background strain, 

HHY221 (relevant genotype MATa, tor1-1, fpr1::loxP-LEU2-loxP, RPL13A-

2×FKBP12::loxP, ade2-1, trp1-1, his3-11, ura3). Additionally BAR1 was disrupted 

with a loxP-K/URA3-loxP cassette. 

Yeast were grown to an OD600 of ~0.4-0.5 in Casamino acid medium lacking 

adenine with 2% raffinose and 0.1% glucose, at which point they were arrested in 

G1 with 600ng/mL of alpha factor (Primm srl, Italy) for 3 hours. HA-tagged 

histone expression was induced with the addition of 2% galactose, and 

concurrrently to induce depletion of TBP from the nucleus by anchor away 

rapamycin (LC laboratories) was added at a final concentration of 4μg/mL. While 

for controls 0.5% glucose was added instead of rapamycin to reduce the 

galactose induction of HA-tagged H3. For chromatin immunoprecipitation (ChIP), 

100mL aliquots of culture were removed just prior to these additions (T0) and at 

30 minutes post induction of HA-tagged H3 and TBP depletion. 
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Chromatin Immunoprecipitation: 

Cross-linking was performed with 1.2% formaldehyde at 30°C for 10 minutes and 

quenched with 330mM glycine for 5 minutes at room temperature. Cells were 

washed with cold Tris buffered saline and resuspended in FA lysis buffer (50mM 

HEPES-KOH, pH 7.5, 140mM sodium chloride, 1mM EDTA, 1% Triton X-100, 

0.1% sodium deoxycholate) with 1mM PMSF. Cells were broken with an equal 

volume of acid-washed glass beads with 40 minutes of vortexing at 4°C. Cells 

were pelleted and resuspended with 0.5% SDS. A Sonifier Cell Disruptor B-30 

with duty 90 and output limit 250 on pulsing 10 times with 1 minute on ice in 

between was used to shear chromatin. Cell debris were pelleted, and the 

supernatant was sonicate 3 times. 30uL protein A-Sepharose beads, which had 

been preincubated with 2μg/mL herring sperm DNA and 20μg/mL BSA in FA-

lysis buffer and washed twice with FA-lysis buffer, was combined with 100μL 

extract,  800μL FA-lysis buffer, and antibody at 4°C overnight. HA-tagged H3 and 

total H3 were immunoprecipitated with anti-HA antibodies (2μL, clone 16B12, 

Covance) and anti-H3 antibodies (1μL, #1791, Abcam), respectively. Beads were 

washed once each with 1mL FA-lysis buffer, FA500-lysis buffer (50mM HEPES-

KOH, pH 7.5, 500mM sodium chloride, 1% Triton X-100, 0.1% sodium 

deoxycholate), Buffer III (10mM Tris-HCl, pH 8.0, 1mM EDTA, 250mM lithium 

chloride, 1% NP-40, 1% sodium deoxycholate), and twice with Tris-EDTA pH 8. 

The ChIP material was precipitated twice from the beads with 100μL elution 

buffer B (50mM Tris-HCl, pH 7.5, 1% sodium dodecyl sulfate, 10mM EDTA) at 
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60°C for 10 minutes and the eluants were combined. Crosslinks were reversed 

with the addition of 200μL Tris-EDTA pH 8 and 3μL proteinase K (20mg/mL) for 4 

hours to overnight at 65°C. DNA was extract twice with phenol chloroform and 

once with chloroform followed by ethanol precipitation. Precipitated DNA was 

washed with cold 70% ethanol and dissolved in 100μL water.  

Deep Sequencing Library Construction: 

Samples were treated with RNaseA solution (Sigma, 20mg/mL) for 1 hour at 

37°C in 1X NEB buffer 2 followed by a 45 minuted Calf Intestinal Phosphatase 

treatment. DNA was extracted with phenol chloroform isoamyl alcohol and 

ethanol precipitated with GlycoBlue. DNA ends were cleaned up with END-it 

(Epicentre) at room temperature for 1 hour. AMPure XP beads (Beckman-

Coultier) were used to perform a double size selection, first depleting longer 

fragments with 0.5X beads and applying the supernatant to 1.3X more beads to 

size select upwards of 100bp. The beads were resuspended and A-tailing was 

performed on the beads with Klenow exo- polymerase (Epicentre). Cleanup was 

performed on the beads with the addition of 1.8x ABR buffer (15%PEG, 2.5M 

sodium chloride) and two 70% ethanol washes. The beads were resuspended 

and DNA was ligated with NEXTFlex (Bioo Scientific) multiplexed adapters on 

the beads (FastLink, Epicentre). Cleanup was performed as above, expect DNA 

was eluted with 39μL water and 2/3 of this was used for 18 and 20 cycle Pfx 

(Invitrogen) PCR reactions; the better of the two reaction conditions (as 
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determined by visualization on an agarose gel) was repeated with the final 1/3 of 

material. StrataClone was performed on 1/10 of the final PCR product to test the 

quality of the library. Samples were mixed in equimolar amounts (determined by 

KAPA Library Quantitation) and submitted to the UMass Deep Sequencing Core 

for HiSeq 100SR with multiplex indexing.  

Data Analysis: 

Sequence data was converted to a fasta format and aligned to the sacCer3 

genome via blat. Only uniquely mapped reads with fewer than 3 mismatches 

were retained for mapping nucleosomes. In order to generate nucleosome 

profiles the cross correlation of the reads mapping to the Watson and Crick 

strands was determined and reads were extended by this value. The number of 

reads per base pair was counted and the genome wide average was normalized 

to one. Normalized counts were aligned surrounding the edge of the +1 

nucleosome (as defined in (Tsankov et al., 2010)) and were averaged in 10bp 

bins. In order to observe enrichment for newly incorporated, HA-tagged histones, 

the log2 value of the ration of HA to H3 was used.  
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CHAPTER AIII: Mix n’ matching whole cell extracts for in vitro 

reconstitution of chromatin structure 

Introduction 

Nucleosome positioning is influenced by both cis and trans acting factors. 

While the sequence content of S.cerevisiae promoters helps to deplete the 

region of nucleosomes (Kaplan et al., 2009), trans acting factors play a large role 

in dictating nucleosome positions. This was clearly demonstrated by the in vitro 

reconstitution of chromatin in yeast whole cell extract; here ATPase activity of the 

whole cell extract was required for the reconstitution of more native-like 

chromatin structure (Zhang et al., 2011). Additionally, in Chapter III we have 

validated the importance of trans acting factors to nucleosome depletion and 

positioning in an in vivo context (Hughes et al., 2012). The whole cell extract 

reconstitution system presents an elegant method that could be used to 

determine the factors necessary and sufficient for in vivo nucleosome 

architecture. This system has in fact been used with further purification of the 

whole cell extract to pinpoint the RSC chromatin remodeling complex as 

necessary for chromatin organization at some promoters (Wippo et al., 2011). In 

order to determine if whole cell extracts from a yeast species could reconstitute 

chromatin structure on heterologous DNA sequence, similarly to what we 

observed with yeast artificial chromosomes in vivo, we mapped nucleosomes on 
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in vitro reconstituted chromatin in the presence of whole cell extract from different 

yeast species. 

Results and Discussion 

We mapped nucleosomes on S.cerevisiae, K.lactis, and S.pombe sequence 

which had been reconstituted in the presence of ATP-supplemented whole cell 

extract from each of these species. In all cases, the matched sequence and 

whole cell extract performed the best in generating nucleosome depleted 

promoters flanked by well-positioned nucleosomes, however this is still incapable 

of forming in vivo nucleosomal arrays (Fig. AIII-1).  The inability of species’ whole 

cell extracts to substitute for one another may represent the specialization of 

trans factors for the sequence content of the corresponding genome. While 

NDRs are partially formed on S.cerevisiae and K.lactis sequence by salt gradient 

dialysis alone, whole cell extract from both of these species helps to further 

deplete these regions. This suggests that the sequence in these species’ NDRs 

is hardwired for some depletion, but trans acting factors that are present in their 

whole cell extracts are also involved in depletion. It appears that the S.cerevisiae 

extract contains more abundant or more potent trans acting factors involved in 

nucleosome depletion, as the S.cerevisiae extract has greater nucleosome 

depletion activity on K.lactis sequence than the K.lactis extract. Interestingly, 

S.pombe extract produced the poorest nucleosome profiles, perhaps consistent 

with its divergence from budding yeast. Furthermore, S.pombe extract did not 
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lead to greater nucleosome depletion than salt gradient dialysis alone, indicating 

that trans acting factors involved in S.cerevisiae and K.lactis NDR formation are 

not conserved in S.pombe.  However given the lack of well-positioned 

nucleosomes in the reconstitution of S.pombe sequence with its own extract, this 

may represent degradation of the extract or the presence of a nuclease in 

S.pombe extracts that has been thought to plague in vivo MNase sequencing in 

this species (Lantermann et al., 2010).  
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Figure AIII. 1: Reconstitution with WCE from heterologous species does not 
generate in vivo nucleosome profiles. 

Reconstituted chromatin with S.cerevisiae (blue), K.lactis (purple), S.pombe (yellow), or no (grey) 
whole cell extract on S.cerevisiae (top), K.lactis (middle), and S.pombe (bottom) DNA is 
overlayed on in vivo TSS alignment averages for these species, shown in area fill. S.pombe 
extract performs poorly in all reconstitutions, while the other two extracts improve nucleosome 
depletion as well as some nucleosome positioning on S.cerevisiae and K.lactis DNA over salt 
gradient dialysis alone. In all cases, in vivo nucleosome maps show the most well-positioned 
nucleosomes.  
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Nucleosome depletion was the most conserved feature in general, as is 

consistent with the enrichment of polyA tracts in yeast promoters (Field et al., 

2008; Kaplan et al., 2009). Interesting, unlike in the in vivo YAC context, the 

S.cerevisiae whole cell extract was unable to generate S.cerevisiae spacing of 

nucleosomes on K.lactis  sequence, and nor did the application of K.lactis whole 

cell extract increase internucleosomal distance, as we might expect from the 

trans regulation of nucleosome spacing observed with YACs in Chapter III 

(Hughes et al., 2012). Nucleosomes are less well-positioned by whole cell extract 

than they are in the in vivo context, making interdyad measurements difficult. 

This could indicate that either whatever factor or factors are responsible for the 

measurement difference are unstable or depleted in the whole cell extract, or it 

could be consistent with a role for elongating polymerase in recruiting spacing 

factors. This latter explanation would fit with our observation in Chapter V that 

K.lactis Chd1 is able to generate wider nucleosome spacing in S.cerevisiae, 

particularly at genes with greater RNA Polymerase II abundance.  

Materials and Methods 

Reconstitutions and nucleosomal DNA isolation were performed by Nils 

Krietenstein in the Korber lab as described in (Zhang et al., 2011).  

Nucleosomal library construction was performed by Megha Wal in the Pugh lab 

as described in (Zhang et al., 2011), and was sequenced on Illumina HiSeq. The 

45bp reads were mapped to the relevant genome. 
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Data Analysis: 

Watson and Crick mapped reads were counted up genome wide using bedtools 

genome coverage (Spom sequence) or a homemade perl script to count 

overlapping fragments, and the cross correlation between these reads was 

determined to infer the nucleosomal fragment length. Reads were extended to 

represent the nucleosome fragment and were recounted as above. The genome-

wide average was normalized to one and these counts were aligned surround the 

edge of the +1 nucleosome, as defined in (Tsankov et al., 2010). These maps of 

reconstituted chromatin were compared to previously sequenced nucleosome 

maps of S.cerevisiae ((Zhang et al., 2011), “in vivo”), K.lactis (Tsankov et al., 

2010), and S.pombe (Tsankov et al., 2011). 
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