13 research outputs found

    Estimating Vehicle Miles Traveled on Local Roads

    Get PDF
    This research presents a new method to estimate the local road vehicle miles traveled (VMT) with the concept of betweenness centrality. Betweenness centrality is a measure of a node’s or link’s centrality on a network that has been applied popularly in social science and we relate it to traffic volumes. We demonstrate that VMT on local roads exhibits a scale-free property: it follows two piecewise (double) power law distributions. In other words, the total local VMT can be obtained by properly connecting the two distributions at a breakpoint, each having a slope of the power law distribution. We show that the breakpoint can be predicted by using certain network topological measures, which indicates that the breakpoint may be an inherent property for a particular network. We also show that the highest betweenness centrality point can be estimated using network measures. Furthermore, we prove that the estimated VMT is not sensitive to the power of the power law distributions. This research highlights a potentially new direction of effort for local road VMT estimation

    Estimating Vehicle Miles of Travel on Low Functional Classes of Roadways

    Get PDF
    In this research, new methods to estimate vehicle miles traveled (VMT) for lower functional classes of roadways are introduced. The methods are based on the inherent correlation between VMT and roadway densities in each roadway class. This research found that the relationship between VMTs of different functional classes of roadways has to do with roadway typological structures according to functional classifications. To begin with, the analytical relationship between local VMT and collector road VMT was derived by assuming a grid network. The purpose was to find key relevant terms (basically roadway densities) in the relationship, which were used to define the format of regression equations. Next, the author proposed two types of regression models, one using density ratios as explanatory variables and the other using logarithmic value of roadway densities. Several simulation networks were set up to verify those proposed models using community road patterns categorized according to three different measures. The author found that the proposed models worked well for medium and high connectivity networks, but they were inadequate for simulating low connectivity networks. Moreover, the equation using logarithmic terms provided a better result in every numerical test. Next, the author verified the proposed regression equations in real situations. The results showed that the proposed regression models work very well in estimating urban local VMT of Minneapolis (grid networks). However, the relative error was much bigger in estimating local VMT of Bryan/College Station (non-grid networks). Finally, the author introduced a practical application procedure and also discussed the possible sources of errors in this study. This research introduces a potentially more efficient method (logarithm) for estimating VMT for lower functional classes of roadways

    Road transport and emissions modelling in England and Wales: A machine learning modelling approach using spatial data

    Get PDF
    An expanding street network coupled with an increasing number of vehicles testifies to the significance and reliance on road transportation of modern economies. Unfortunately, the use of road transport comes with drawbacks such as its contribution to greenhouse gases (GHG) and air pollutant emissions, therefore becoming an obstacle to countries’ objectives to improve air quality and a barrier to the ambitious targets to reduce Greenhouse Gas emissions. Unsurprisingly, traffic forecasting, its environmental impacts and potential future configurations of road transport are some of the topics which have received a great deal of attention in the literature. However, traffic forecasting and the assessment of its determinants have been commonly restricted to specific, normally urban, areas while road transport emission studies do not take into account a large part of the road network, as they usually focus on major roads. This research aimed to contribute to the field of road transportation, by firstly developing a model to accurately estimate traffic across England and Wales at a granular (i.e., street segment) level, secondly by identifying the role of factors associated with road transportation and finally, by estimating CO2 and air pollutant emissions, known to be responsible for climate change as well as negative impacts on human health and ecosystems. The thesis identifies potential emissions abatement from the adoption of novel road vehicles technologies and policy measures. This is achieved by analysing transport scenarios to assess future impacts on air quality and CO2 emissions. The thesis concludes with a comparison of my estimates for road emissions with those from DfT modelling to assess the methodological robustness of machine learning algorithms applied in this research. The traffic modelling outputs reveal traffic patterns across urban and rural areas, while traffic estimation is achieved with high accuracy for all road classes. In addition, specific socioeconomic and roadway characteristics associated with traffic across all vehicle types and road classes are identified. Finally, CO2 and air pollution hot spots as well as the impact of open spaces on pollutants emissions and air quality are explored. Potential emission reduction with the employment of new vehicle technologies and policy implementation is also assessed, so as the results can support urban planning and inform policies related to transport congestion and environmental impacts mitigation. Considering the disaggregated approach, the methodology can be used to facilitate policy making for both local and national aggregated levels

    STABILITY AND PERFORMANCE OF NETWORKED CONTROL SYSTEMS

    Get PDF
    Network control systems (NCSs), as one of the most active research areas, are arousing comprehensive concerns along with the rapid development of network. This dissertation mainly discusses the stability and performance of NCSs into the following two parts. In the first part, a new approach is proposed to reduce the data transmitted in networked control systems (NCSs) via model reduction method. Up to our best knowledge, we are the first to propose this new approach in the scientific and engineering society. The "unimportant" information of system states vector is truncated by balanced truncation method (BTM) before sending to the networked controller via network based on the balance property of the remote controlled plant controllability and observability. Then, the exponential stability condition of the truncated NCSs is derived via linear matrix inequality (LMI) forms. This method of data truncation can usually reduce the time delay and further improve the performance of the NCSs. In addition, all the above results are extended to the switched NCSs. The second part presents a new robust sliding mode control (SMC) method for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties, to introduce adjustable parameters for control design along with the SMC method, and new Lyapunov-type functional. Then, a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems are derived via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel Lyapunov-type functional for the uncertain stochastic systems is used to design a new robust control for the general case where the derivative of time-varying delay can be any bounded value (e.g., greater than one). It is theoretically proved that the conservatism of the proposed method is less than the previous methods. All theoretical proofs are presented in the dissertation. The simulations validate the correctness of the theoretical results and have better performance than the existing results

    Crossroads 2000 Proceedings, 1998

    Get PDF
    Crossroads 2000 was the second biennial transportation research conference cosponsored by the Center for Transportation Research and Education (CTRE) at Iowa State University and the Iowa Department of Transportation. This proceedings is the set of papers presented at the conference. Twenty-five categories of papers were presented in five concurrent sessions. Reflecting the increasingly critical role of intelligent transportation systems (ITS) in maintaining and enhancing transportation safety and efficiency, one category in each concurrent session addressed an area of ITS. However, papers were included from all areas of interest, ranging from transportation infrastructure design to transportation policy. The proceedings contains 58 papers

    Game Theory Relaunched

    Get PDF
    The game is on. Do you know how to play? Game theory sets out to explore what can be said about making decisions which go beyond accepting the rules of a game. Since 1942, a well elaborated mathematical apparatus has been developed to do so; but there is more. During the last three decades game theoretic reasoning has popped up in many other fields as well - from engineering to biology and psychology. New simulation tools and network analysis have made game theory omnipresent these days. This book collects recent research papers in game theory, which come from diverse scientific communities all across the world; they combine many different fields like economics, politics, history, engineering, mathematics, physics, and psychology. All of them have as a common denominator some method of game theory. Enjoy

    International Conference on Civil Infrastructure and Construction (CIC 2020)

    Get PDF
    This is the proceedings of the CIC 2020 Conference, which was held under the patronage of His Excellency Sheikh Khalid bin Khalifa bin Abdulaziz Al Thani in Doha, Qatar from 2 to 5 February 2020. The goal of the conference was to provide a platform to discuss next-generation infrastructure and its construction among key players such as researchers, industry professionals and leaders, local government agencies, clients, construction contractors and policymakers. The conference gathered industry and academia to disseminate their research and field experiences in multiple areas of civil engineering. It was also a unique opportunity for companies and organizations to show the most recent advances in the field of civil infrastructure and construction. The conference covered a wide range of timely topics that address the needs of the construction industry all over the world and particularly in Qatar. All papers were peer reviewed by experts in their field and edited for publication. The conference accepted a total number of 127 papers submitted by authors from five different continents under the following four themes: Theme 1: Construction Management and Process Theme 2: Materials and Transportation Engineering Theme 3: Geotechnical, Environmental, and Geo-environmental Engineering Theme 4: Sustainability, Renovation, and Monitoring of Civil InfrastructureThe list of the Sponsors are listed at page 1

    Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

    Get PDF
    Innovations in Road, Railway and Airfield Bearing Capacity – Volume 3 comprises the third part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field
    corecore