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Abstract 

An expanding street network coupled with an increasing number of vehicles testifies to the 

significance and reliance on road transportation of modern economies. Unfortunately, the use of road 

transport comes with drawbacks such as its contribution to greenhouse gases (GHG) and air pollutant 

emissions, therefore becoming an obstacle to countries’ objectives to improve air quality and a barrier 

to the ambitious targets to reduce Greenhouse Gas emissions. 

Unsurprisingly, traffic forecasting, its environmental impacts and potential future configurations of 

road transport are some of the topics which have received a great deal of attention in the literature. 

However, traffic forecasting and the assessment of its determinants have been commonly restricted 

to specific, normally urban, areas while road transport emission studies do not take into account a 

large part of the road network, as they usually focus on major roads. 

This research aimed to contribute to the field of road transportation, by firstly developing a model to 

accurately estimate traffic across England and Wales at a granular (i.e., street segment) level, secondly 

by identifying the role of factors associated with road transportation and finally, by estimating CO2 

and air pollutant emissions, known to be responsible for climate change as well as negative impacts 

on human health and ecosystems. The thesis identifies potential emissions abatement from the 

adoption of novel road vehicles technologies and policy measures. This is achieved by analysing 

transport scenarios to assess future impacts on air quality and CO2 emissions. The thesis concludes 

with a comparison of my estimates for road emissions with those from DfT modelling to assess the 

methodological robustness of machine learning algorithms applied in this research. 

The traffic modelling outputs reveal traffic patterns across urban and rural areas, while traffic 

estimation is achieved with high accuracy for all road classes. In addition, specific socioeconomic and 

roadway characteristics associated with traffic across all vehicle types and road classes are identified. 

Finally, CO2 and air pollution hot spots as well as the impact of open spaces on pollutants emissions 

and air quality are explored. Potential emission reduction with the employment of new vehicle 
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technologies and policy implementation is also assessed, so as the results can support urban planning 

and inform policies related to transport congestion and environmental impacts mitigation. 

Considering the disaggregated approach, the methodology can be used to facilitate policy making for 

both local and national aggregated levels. 
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1. Introduction 
 

1.1. Background 
 

Anthropogenic Greenhouse gases (GHGs) have significantly increased since the pre-industrial era and 

are considered as main contributors of climate change and daily temperature extremes that have been 

observed around the globe (IPCC, 2022). In particular, among the GHGs, Carbon Dioxide (CO2) has 

been identified to hold the largest share, estimated to contribute between 72% and 76% of the total 

GHG emissions globally (Olivier and Peters, 2019; US Environmental Protection Agency, 2017). The 

continuous growth of CO2 emissions – which according to recent data peaked in the previous decade 

– may have irreversible impacts on the Earth’s ecosystems and human health and can damage the 

economy (Chaabouni and Saidi, 2017; Freitas et al., 2017). 

However, the increase in GHGs emissions on a global scale is not the only disturbance related to the 

environment and human health. Other gases such as Nitrogen Oxides, Carbon Monoxide and 

Particulate Matter, (normally referred as Air Pollutants) originating from the combustion of fossil fuels 

(Aoki, 2017) for the needs of electricity, industry and transportation have been proved to affect the 

economy (Taghizadeh-Hesary and Taghizadeh-Hesary, 2020; Xie et al., 2019), and also have significant 

impacts on human health (Hamanaka and Mutlu, 2018), such as cardiovascular and respiratory 

diseases, as well as mortality (Bergstra et al., 2018). The World Health Organisation (WHO) identifies 

six major air pollutants, namely Particulate Matter (PM), Carbon Monoxide (CO), Nitrogen Oxides 

(NOx), Ozone (O3), Sulfur Oxides (SO2) and Lead (Pb) (Manisalidis et al., 2020), estimated to cause 

approximately 4.2 million deaths every year around the globe (WHO, 2016). Nonetheless, air 

pollutants do not only relate to impacts on human health. In fact, air pollution and climate change are 

interrelated, since several air pollutants are also significant contributors to global warming  (Guerreiro 

et al., 2016), while air quality can also affect climate and vice versa, with both having direct or indirect 

effects on health (Orru et al., 2017). 
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Consequently, to tackle the threats of climate change and air pollution, countries have introduced 

several measures aiming to reduce their emissions, such as the ratification of the Paris Agreement. 

Signed by 195 countries around the world committing to reduce GHG emissions, the agreement 

functions as a tool to keep global temperature rise below 2 0C compared to pre-industrial levels (U.N, 

2015). 

To mitigate the impacts of GHGs the UK, as an independent country, has introduced the Climate 

Change Act 2008, committing to reduce its GHG emissions to 80% by 2050, compared to 1990 figures 

(HM Government, 2011). More recently, the UK has announced a more ambitious plan to reduce 

carbon emissions by 68% by 2030 compared to the 1990 levels (UK Government, 2020) supported by 

investing in green energy across various sectors (HM Government, 2020) and also introduced the ‘Net 

Zero’ strategy, aiming to eliminate GHG emissions from all sectors (including transport) by the middle 

of this century (HM Government, 2021). 

In addition, the UK has adopted the Clean Air Strategy where specific targets and associated actions 

are set to reduce the emissions of air pollutants from various sectors. The desired emission reductions 

are set for 2030 using 2005 as the base year and differ depending on the pollutant (DEFRA, 2019). 

Moreover, some local authorities in the UK have introduced Clean Air Zones1 (CAZs), where local 

measures are applied to achieve immediate improvement in air quality and health, but also focus on 

the transition towards low emission economies (DEFRA, 2020). At the time of writing, London is the 

first city in the UK that has introduced  a CAZ – namely Ultra Low Emission Zone (ULEZ) – in April 2019 

and is about to be expanded in 2021 (Greater London Authority, 2019), while the cities of Bath and 

Birmingham have recently joined the scheme.  

 
1 CAZs are essentially predefined geographic areas – normally urban – focusing on the improvement of air 
quality, encouraging the operation of low emission vehicles. Encouragement can be supported by the 
introduction of restrictions – in the form of charges – to enter the CAZ (DEFRA, 2020). 
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1.2. Road Transport: Significance, complexity, and the impact on air quality 
 

Road transportation is a complex and broad field that has been explored from different perspectives 

and disciplines, at aggregate and disaggregate levels for purposes such as traffic flow forecasting (e.g., 

Abadi et al., 2015; Yu and Cho, 2008), planning urban infrastructure (e.g., Batty et al., 2003) and 

assessing environmental impacts (e.g. Chapman, 2007; Ellison et al., 2013). The significance of and 

dependence on road transport can be appreciated based on both the historically increasing number 

of vehicles and an expanding street network. In particular, there has been an increase of over five 

million vehicles in the UK during the last decade, with an increase of 53% since the records began in 

1994 (Department for Transport, 2020a), the majority of those being cars. In addition, the last decade, 

2,000 more miles of roads have been constructed, when for the last twenty years the figures are more 

than double, exceeding 5,000 miles (Department for Transport, 2020b). 

However, the increasing use of road transport comes with its drawbacks, such as its contribution to 

noise levels, GHGs and air pollutant emissions. Recent data show that despite a decrease in total UK’s 

GHG emissions by 32% since the 1990s, emissions from road transport have increased by 6% during 

the same period (Office for National Statistics, 2019). In fact, road transport alone makes up 

approximately 20% of the UK’s total GHG emissions (Office for National Statistics, 2019) and 92% of 

emissions originating from transport – and in particular CO2 (Latake and Pawar, 2015) – having global 

impacts and contributing to climate change (IPCC, 2022). In addition, road transport is a significant 

source of air pollutants – such as Nitrogen Oxides (NOx), Particulate Matters (PM) and Carbon 

Monoxide (CO) – contributing up to 80% of total transport pollutant emissions (Department for 

Transport, 2018a). These pollutants are responsible for negative impacts on human health and 

ecosystems (DEFRA, 2018) and even though there has been a significant reduction in air pollutant 

emissions, damage to human health can occur even at low levels (European Environmental Agency, 

2014; Ricardo Energy & Environment, 2019). Consequently, there can be no argument that for the UK 

to meet its targets, focus should be placed on the road transport sector. 
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1.3. Literature gap and motivation 
 

Considering the significance and contribution of road transport to GHG emissions and air pollution, to 

date, a number of studies has focused on the estimation of emissions from road transport to further 

understand environmental and health implications and facilitate policy making. However, numerous 

limitations and diverse results are observed, usually depending on the selected modelling approach 

and data availability, subject to area/country of application. For example, emissions are usually 

estimated at an aggregated level such as national, regional or city-wide (e.g., Borge et al., 2012; Ong 

et al., 2011; Sookun et al., 2014). Therefore, conclusions about local impacts cannot be drawn. In 

addition, some countries – such as the UK – estimate emissions on roads of minor importance based 

on average regional flows (Pang et al., 2016; Tsagatakis et al., 2017), due to lack of traffic 

measurements on these roads. Considering that minor roads are less crowded, but make up 87% of 

total road length in the UK (Department for Transport, 2019), the aforementioned methodological 

approach implies incomplete and unreliable emission estimation across the full extent of the road 

network. 

Consequently, it becomes obvious that availability of traffic information across the full extent of the 

road network, is critical to address this issue. However, traffic data collection to this extent is 

challenging and costly, and therefore transport departments rely on automatic traffic counters (ATCs). 

Still, ATCs are normally not integrated throughout the road network. In the UK – as in most countries 

– ATCs are only installed at selected locations on major roads covering only a fraction of the network, 

while data for minor roads are usually collected manually, seasonally and at selected locations. 

Lack of traffic count measurements across the road network, underlines the need for a method to 

estimate these values as accurately as possible at all possible locations on the road network. To date, 

a number of attempts has been made to estimate traffic for roads where data is not available. In 
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particular, estimation of Annual Average Daily Traffic (AADT)  – a measure of traffic volume2 defined 

as the average number of vehicles at a given location on an average day over a year3 (McCord et al., 

2003; Roess et al., 2011) – has been investigated in studies on motorized (e.g., Lowry, 2014), and non-

motorized transport (e.g., Hankey et al., 2017; Lu et al., 2017). AADT data that can be collected by 

ATCs where passing vehicles are monitored on a 24 hour basis, are used for a number of applications 

in road transport studies, such as accident prediction (e.g., Çodur & Tortum, 2015), GHG emission 

estimation (e.g., Puliafito et al., 2015), noise exposure estimation (e.g. Morley and Gulliver, 2016; Shu 

et al., 2014) and economic evaluations of safety projects (e.g. Wang et al., 2013) among others. AADT 

values are also fundamental for road construction, planning, maintenance and pavement design 

studies (Leduc, 2008).  

However, although research on AADT estimation has been improved with the incorporation of novel 

modelling approaches, significant limitations can still be observed. Firstly, studies are usually limited 

within the boundaries of urban areas  (e.g. Doustmohammadi & Anderson 2016, Kim et al. 2016), or 

preoccupied with AADT estimation on particular road classes, such as  major roads (e.g. Caceres et al. 

2012). This implies that estimations for rural or suburban areas are neglected, while only a few studies 

incorporate minor roads (e.g. Apronti et al. 2016, Morley & Gulliver 2016). Secondly, estimations are 

mainly conducted on total AADT while traffic volumes for different vehicle types is largely unexplored. 

The latter is considered fundamental to estimate emissions originating from road transport, since GHG 

and air pollutant emissions are expected to differ depending on the vehicle type, while it can also 

facilitate policy making as well as urban and environmental planning. Thirdly, the majority of studies 

focuses on estimation accuracy (e.g. Fu et al., 2017; Shojaeshafiei et al., 2017), without considering 

the impact that several characteristics – such as land use – have on road transport. Furthermore, the 

 
2 I am aware that the terms “traffic flow” and “traffic volume” are used interchangeably in the literature. In my 
thesis, I follow Zhao and Park, (2004) and use the term “traffic volume” for AADT. Further information on these 
terms can be found in Appendix A. 

3 AADT is given by (Leduc, 2008): 𝐴𝐴𝐷𝑇𝑖 =  ∑
𝑇𝐶𝑖,𝑗

24

365

365
𝑗=1  , where 𝑇𝐶𝑖,𝑗

24 is the 24 hour traffic count on road link 𝑖 at 

day 𝑗. 
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explanatory variables4 used in several models are limited and consequently many potential affecting 

factors are not taken into account. This is also fundamental not only to facilitate traffic volume 

estimation, but also to examine the complexity of road transport and how it interrelates with urban – 

and where possible rural – infrastructure and demographics. The latter is again vital for decision 

making in the transport field, but also across a wide range of interconnected sectors such as urban 

and environmental planning and of course the economy. 

1.4. Aims and objectives 
 

The aim of my thesis is two-fold. First, is to identify the degree of influence specific factors have on 

traffic volume (i.e., AADT) variations across the road network. Second, is to assess the quantity of CO2 

and three air pollutants (PM, NOx, and CO) originating from road transport and identify potential 

emissions abatement through technological developments of road vehicles and policies development.  

The thesis intends to contribute to the road transport literature by addressing and potentially 

overcoming the identified limitations of the modelling implemented so far, as discussed in section 1.3. 

That is, CO2 and the three air pollutants emission estimation – and potential abatement – is conducted 

at link (i.e., street segment) level for all segments, while a comprehensive set of factors that affect 

traffic volumes for different vehicle types is examined. England and Wales are used as an empirical 

study to examine the influence of factors on traffic as well as estimate emissions and emission 

abatement. In addition, while emissions will be estimated for England and Wales and robustness 

checks will be performed to assess the methodological effectiveness (i.e., evaluation), an additional – 

experimental – case study is conducted for the Greater London area. The case study aims to perform 

a policy assessment, where the effects of the recently introduced ULEZ and its potential extension on 

the three air pollutants will be examined.  

 
4 Explanatory variables indicate the characteristics considered to “explain” the deviations of AADT on the road 
network. These are essentially variables considered to affect AADT – further discussed in chapters 2, 3 and 4.  
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To meet the aim of the thesis, the following objectives have been drawn: 

• Objective 1 – To understand the road transport and emission modelling approaches currently 

used in the literature. 

• Objective 2 – To model traffic volume and evaluate the model performance. 

• Objective 3 – To model and estimate present (i.e., base-year) emissions and emission 

projections 

Addressing the first objective, enables the identification of the structure and underlying processes of 

road transport and emission models. Provided that to estimate emissions from road transport traffic 

information is required, this will allow to conclude on the most suitable road transport and 

corresponding emission models – i.e., a competent conjoint approach. After addressing the first 

objective, the modelling approach to the case of estimating AADT to the full extent of the road 

network in the study area can be applied (objective 2). Considering that the selected approach can 

model traffic volumes as a function of affecting characteristics, objective 2 allows to address one of 

the aims of the thesis – to identify and assess the impact specific factors have on traffic volume. 

Moreover, by evaluating the model’s performance will allow to proceed with confidence to estimate 

emissions. As a word of clarification, it should be noted, that AADT estimation can generally be divided 

into current-year and future-year estimations (Castro-Neto et al., 2009), with the former using data 

from existing traffic counters to develop models capable of estimating AADT at locations where counts 

are not available when new data are used (Selby & Kockelman, 2013) and the latter incorporating 

historical traffic data, aiming to estimate short or long term future AADTs at the same locations. This 

work focuses on the former, where the model is developed and applied on data from existing traffic 

counters, so as to test its accuracy and potential application on street segments where counters are 

not available. Finally, modelling present and future emissions corresponding to the third objective, 

builds on the findings of the second objective and facilitates to address the second aim of the thesis – 

to assess the quantity of CO2 and the three air pollutants and identify potential emission abatements. 
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Taking into account – current and future – air quality policies as well as considering present and 

projected vehicle fleet composition and traffic projections figures, will allow to estimate both existing 

and succeeding emissions and thus conclude on potential abatement and evaluate policy efficiency. 

Moreover, by comparing the emission modelling outcomes with other established modelling 

approaches, will allow the assessment of the emission model, and also to double-validate the 

transport model and evaluate the overall process.  

As a final note, it should be highlighted, that the scope of the thesis is to assess the impact of 

technological developments and implementation of policies on CO2 and air pollutants’ emissions in 

England and Wales. The thesis develops and assesses a modelling approach experimenting with novel 

methodologies, where traffic and emissions can be estimated on a granular level. Taking into account 

that policies are implemented for the UK as a whole and that road transport forms only a part of the 

total emissions where targets are set, the model and its associated outcomes can be used to inform 

policy making and also provide some evidence for the potential to achieve the emission goals. 

1.5. Thesis structure 
 

The thesis is organised in six chapters and five appendices, the latter containing additional information 

and results for corresponding chapters, that have not been included in the main body of the thesis. 

Following the introduction, chapter 2 focuses on the literature review, related to the concepts of 

transport and emission modelling. Specifically, in section 2.1 the chapter is briefly introduced. Section 

2.2 presents the traffic data collection processes and discusses potential uncertainties in the derived 

data, while in section 2.6 the factors that have been found to affect traffic volumes are investigated, 

with the factors grouped and discussed individually. Section 2.4 presents the three major road 

transport modelling approaches that have been widely used in the literature, followed by 

corresponding applications in research. In section 2.5 focus is placed on studies where AADT 

estimation is conducted, while in section 2.6 the emission factor development methods are presented. 

In section 2.7 the road emission modelling approaches and their applications in research are discussed 
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and in section 2.8 the concept of transport scenarios is briefly discussed, where examples from three 

different families of scenarios are presented. Finally, in section 2.9 the chapter is concluded. 

Chapter 3 focuses on the development of a road transport model. Section 3.1 briefly introduces the 

chapter contents and section 3.2 presents the data that has been collected as well as the data 

manipulation process. In section 3.3 the methodology is presented, where firstly the selected road 

transport modelling approach is justified and then the steps to develop the model are described. 

Section 3.4 presents the modelling results and section 3.5 discusses the findings. In section 3.6 the 

chapter is summarised. 

Chapter 4 identifies the road transport determinants, so as to address the first aim of the thesis. Again, 

section 4.1 introduces the chapter and section 4.2 describes the utilized dataset. In section 4.3 the 

method to identify and quantify the effect of the characteristics on traffic volumes is presented and 

the data is analysed. The analysis results are presented in section 4.4 and discussed in detail in section 

4.5. Finally, section 4.6 summarises the chapter. 

Chapter 5 focuses on the estimation of emissions for the two case studies – England and Wales, and 

Greater London. Section 5.1 provides the overview of the chapter. In section 5.2 additional datasets 

are presented and merged with data from preceding chapters. Section 5.3 firstly discusses and justifies 

the selected road emission modelling approach. Secondly, it presents the emission model and finally, 

the ULEZ and scenario analysis is undertaken. In section 5.4 the results for both case studies are 

demonstrated, while extensive discussion of the findings is presented in section 5.5. Again, section 5.6 

summarises and concludes the chapter. 

Finally, chapter 6 concludes the thesis. This chapter summarises the findings and identifies and 

discusses existing limitations and offers suggestions for potential future research. 
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2. Transport and emission concepts 
 

2.1. Chapter overview 
 

This chapter intends to cover the major topics related to the aims and objectives of this research that 

can be found in the literature, so as to understand the progress that has been made in the field of 

road transport studies and facilitate the process of traffic volume and emission modelling. In 

particular, section 2.2 starts with investigating the traffic data collection methods, where potential 

uncertainties in data quality are also identified. In section 2.3 the literature on studies investigating 

the factors affecting traffic and their relative effect on traffic volumes is reviewed. This will enable 

strengthening the knowledge on the effect these factors have on traffic volumes and also to build the 

list of potential factors to be explored. Moreover, based on the reviewed literature – and domain 

knowledge – specific factors not taken into account can be identified, so that they can be considered 

and assessed in this research. Furthermore, considering the outcomes of the reviewed studies, the 

variation of effects of these factors across different areas, regions, and countries, can be identified 

and compared with the findings in the UK. That is, the effect of the same factors can differ significantly 

depending on the study area, since homogeneity across countries and/or cities cannot be assumed. 

Considering that estimating emissions from road transport traffic data extracted from transport 

models is required, in section 2.4 road transport modelling approaches are explored and then focus is 

placed on AADT estimation models (section 2.5). The goal is to understand these processes and 

conclude on the most suitable approach for this research. In section 2.6 a review of the emission factor 

development methods is taking place and in section 2.7 emission modelling approaches are explored. 

Coupled with the transport modelling literature, this is necessary to conclude on the most suitable 

model to estimate emissions from road transport, based on available data and the selected transport 

model. Section 2.8 investigates transport scenarios developed by different institutions. Based on the 

scenarios’ reliability, relevance, and data availability, the scenarios to explore can be concluded, so as 
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to produce emission projections. Finally, in section 2.9 the chapter is summarised and a brief 

discussion on how the topics covered will be used in the thesis takes place. 

2.2. Traffic data collection 
 

To extract information and monitor the road network for better management the Department for 

Transport (DfT) utilizes raw data extracted from Automatic Traffic Counters (ATCs), which are installed 

at selected locations across the network (Morley and Gulliver, 2016), normally placed on roads of 

major importance exhibiting higher traffic levels such as motorways and Trunk roads. However, 

considering the costs to integrate ATCs to the full extent of the road network the DfT also collects raw 

data from manual counts that are undertaken seasonally for different road classes (Department for 

Transport, 2016a), with each road being classified as either major or minor. The major road network 

includes Motorways and ‘A’ roads indicating main arteries with heavy traffic flows and often many 

lanes, used for long distance travel, with ‘A’ roads further subclassified in Trunk and Principal roads 

(Department for Transport, 2018b). The minor road network includes ‘B’, ‘C’ and Unclassified (‘U’) 

roads, which are of lesser significance, carry lower traffic and are normally maintained by local 

authorities (Department for Transport, 2018b). By utilizing the collected raw data from both the ATCs 

and manual counts, the DfT performs a series of calculations to extrapolate AADT values, at the 

locations where traffic counts are undertaken. The methodology applied to extrapolate these AADT 

values, depends on the road class, with the concluding AADT providing information about the total 

counts as well as traffic counts by different vehicle types.  In this section the methodology to collect 

traffic count data for the different road classes is introduced. Moreover, the methodology to 

extrapolate AADT values from the raw data is presented and associated discrepancies are discussed. 

2.2.1. Manual Traffic Counts 

Manual counts comprise the majority of traffic counts on the road network, with approximately 

10,000 counts conducted every year in both major and minor roads, represented as links with a unique 

ID (Department for Transport, 2013). Counts are undertaken by trained enumerators over a 12-hour 
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period – 7am to 7pm – (Department for Transport, 2016a) during ‘neutral days’ – indicating days 

where traffic is expected to behave similarly. There are 110 neutral days in a year, which are normally 

weekdays between March and October with public holidays excluded (Department for Transport, 

2013). Considering the large amount of road links in the country, not all links are counted every year. 

In the case of major roads, different links are manually counted, with counts undertaken annually or 

on a cycle of 2, 4 or 8 years, while for minor roads, a representative sample is selected every year, and 

the growth between two consecutive years is applied to estimate traffic counts for the latest year 

(Department for Transport, 2013).  

2.2.2. Automatic Traffic Counters (ATCs) 

ATCs are permanent installations normally embedded on the road surface using inductive loops and 

piezoelectric sensors – or a combination of both – to record information such as vehicle length and 

wheelbase, used to distinguish between vehicle types (Department for Transport, 2017). Inductive 

loop detectors essentially consist of wires embedded under the road surface and are widely utilized 

sensors in traffic management systems (Leduc, 2008). These sensors function as an electrical circuit, 

where the metal parts of a passing vehicle interact with the loop, acting as a magnetic field and 

therefore creating electric current (Oluwatobi et al., 2021). A roadside device can then record these 

signals. Piezoelectric sensors, offer easy installation and low maintenance cost (Han et al., 2013; Yonar, 

2019), and operate in a similar principle converting kinetic to electric energy (Ayaz et al., 2022). These 

sensors are also embedded under the road surface, although the system utilizes the pressure applied 

by the vehicle on the sensor to create an electric signal, proportional to the degree of pressure 

(Jinturkar and Pawar, 2016; Rajab et al., 2011). The signal can again be recorded by a device, placed 

on the side of the road. However, other technologies are occasionally utilized, such as video counts, 

radar, rubber tubes and Automatic Number Plate Recognition cameras (ANPR), while the DfT has also 

plans to enrich the dataset in collaboration with Highways England and local authorities (Department 

for Transport, 2018c). 
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ATC data are collected continuously from approximately 180 devices spread across the major road 

network in Great Britain (GB). The devices record both the number of passing vehicles as well as their 

physical properties, producing a 24-hour figure as a combination of two 12-figures (7am-7pm and 

7pm-7am) for each day of the year (Department for Transport, 2013). In addition to traffic counts, 

ATCs produce supplementary information – the expansion factors and growth factors – that is used to 

extrapolate AADT for the major and minor road network (Nosal et al., 2014). To calculate both 

expansion and growth factors, all roads with ATCs are firstly classified in 22 categories (shown in Table 

B-1 in the Appendix). Notice that ATCs within the Greater London area are handled differently, where 

only four categories are used. Expansion factors are calculated by firstly dividing the 24-hour counts 

over 365 days by the 12-hour day figure (7am to 7pm) for each neutral day, and then calculating the 

median of each ATC expansion factor for each of the categories (Department for Transport, 2010). 

This results into over 16,000 factors, corresponding to neutral days, expansion factor categories and 

vehicle types (Department for Transport, 2013). The growth factors indicate traffic growth at national 

level and are used to calibrate manual count points when counts have not been undertaken in the 

reference year. 

2.2.3. Annual Average Daily Traffic (AADT) extrapolation 

To extract AADT values for major and minor road, the expansion and growth factors derived from ATCs 

are utilized in a two-step process. Firstly, the relevant expansion factors are multiplied by the 12-hour 

total, depending on the vehicle type, count date and expansion factor category (Table B-1) for all 

manual counts and then, the growth factors are applied to the previous year’s AADT for calibration, 

for the remaining roads (Department for Transport, 2013).  

However, the reliability of the final AADT is questionable, considering the procedure to conclude on 

these values. Uncertainty in the data is mainly related to the data collection process, although 

drawbacks can be identified in the calculation of AADT with the utilisation of expansion and growth 

factors. For example, in the case of ATCs, although the devices are overall considered reliable, like any 
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device they may suffer from malfunctions (Bickel et al., 2007; Chen et al., 2018; Medeiros et al., 2010). 

This can consequently result into short- or long-term data gaps, with missing traffic count values being 

propagated through the process and consequently providing erroneous AADT values (El Esawey et al., 

2015). Moreover, studies have identified discrepancies in the extracted traffic counts from ATCs when 

evaluated with ground truth data. For example, Chauke, (2015) collected manual traffic count data at 

the location where ATCs are already installed. This research concluded that discrepancies between 

the recorded traffic counts and the ground truth data normally range between 2% to 5%, although in 

some cases, discrepancies can exceed 5%. In addition, variations in traffic count accuracy have been 

observed between urban and rural areas with traffic counts in urban areas being more accurate 

(Gadda et al., 2007). Issues related to ATCs traffic counts can also be observed in the case of vehicles’ 

classification, where vehicles may be misclassified (Bharadwaj et al., 2016), with LGVs and cars being 

confused in most cases (Yu et al., 2010), due to comparable size and characteristics. This confusion 

occurs mainly due to low sensitivity of the systems used to monitor traffic, an issue that can be 

resolved with systems using multiple technologies combined (e.g., inductive loops with laser 

scanners), considered to provide more accurate data (Bellucci and Cipriani, 2010). However, counting 

and classification errors are not explicit for ATCs, with similar issues being observed in the case of 

manual counts. Specifically, Zheng and Mike, (2012) in their study in the UK, have concluded that 

manual counting errors are normally less than 1%, although classification errors are more significant, 

averaging between 4% and 5%. Finally, considering that AADT from manual counts are essentially 

estimated from a sample, it is fair to conclude that the reliability of the dataset is questionable. 

2.3. Drivers of road traffic 
 

Traffic volume on each road is dependent on various factors that can be attributed to specific 

characteristics of the road and its surrounding environment, as well as its adjacent roads and 

neighbouring areas. Moreover, different factors may have a different degree of influence on traffic 

volume, while some may specifically affect particular types of vehicles. Thus, to identify these factors 
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and the magnitude at which they affect traffic volume is important, not only to understand road 

transport and traffic deviations across the road network, but also to provide further insights for 

interrelated sectors, such as urban planning, policy making and the economy. 

The factors and their effect on road transport are usually identified with the employment of statistical 

modelling, or through behavioural studies. In behavioural studies, the effects are explored based on 

qualitative analysis normally relying on data collected from surveys and interviews, where statistical 

modelling can also be involved. The effects of the characteristics (i.e., factors) in cases where statistical 

modelling is present, can be explored by examining the derived coefficients. However, depending on 

the method used, the effect of factors on traffic cannot always be directly assessed – e.g., in the case 

where ‘black box’5 or simulation models are employed (Burns et al., 2020). 

In the following subsections (2.3.1–2.3.5), a synopsis of studies exploring several characteristics 

thought to affect traffic is provided. It should be noted that an attempt to capture all the potential 

factors identified in the literature has been conducted. However, due to the different nature of the 

reviewed studies as discussed above, the impacts of factors on traffic cannot necessarily be assessed. 

Thus, focus on the effects of these factors on traffic is presented and discussed when available. 

The identified attributes can generally be classified in five major categories: roadway characteristics, 

socioeconomic factors, land use, public transport and parking facilities. 

2.3.1. Roadway attributes 
 

Roadway attributes are related to various characteristics of the road segment at the location where 

the traffic count point is placed. For example, Xia et al., (1999) investigated the effect of 12 variables 

(i.e., attributes) on AADT, to conclude that the number of lanes, road environment and functional 

classification (i.e., the road being arterial or collector) all exhibit high positive coefficients, with the 

 
5 ‘Black-box’ models are considered the models where there is lack of transparency on the predicted outcomes 
and consequently the predictions are not explained in a way that people can understand (Rudin, 2019).  
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number of lanes and functional classification explaining 50% and 26% of traffic volume variation 

respectively. Out of the four regression models tested by Zhao and Chung, (2001) in Florida, the best 

performing model – validated by Mean Square Error (MSE) – indicates that functional class and 

number of lanes are the most significant predictors with high positive coefficients. Number of lanes 

and road class have since been used in many following studies. Specifically,  Zhao & Park (2004), Yang 

et al., (2011), Doustmohammadi & Anderson (2016) and Shojaeshafiei et al. (2017) have all 

incorporated these attributes in various US states, with Zhao and Park, (2004) and Doustmohammadi 

and Anderson, (2016) again concluding that that number of lanes are statistically significant with high 

positive coefficients. Road width, has been used as an variable among others by Chen et al., (2019).  

Selby & Kockelman (2013) used speed limits for street segments to conclude that they are important 

to capture traffic deviations – coupled with number of lanes and road class – in their study in Texas, 

although the impact is minor in urban areas. Speed limits have also been used by Fu et al. (2017), while 

Apronti et al. (2016) incorporate type of road surface to distinguish between paved and unpaved 

roads, considering the large number of unpaved roads in the study area (Wyoming, US). The same 

study, also incorporates a ‘highway accessibility’ variable applied to low volume roads which is found 

in a number of previous studies as well (e.g. Mohamad et al. 1998; Selby & Kockelman 2013; Xia et al. 

1999; Zhao & Park 2004), although applied to capture connectivity of higher class roads with 

motorways. In addition, Sarlas & Axhausen (2014) take into account road density in the vicinity of 

traffic count points, found to be statistically significant, although having low correlation with traffic. 

Other studies have also introduced topological roadway characteristics for traffic analysis, such as the 

degree of connectivity6 (e.g. Jiang and Liu, 2009; Pun et al., 2019) and several centrality measures (e.g. 

Gao et al., 2013; Jayasinghe et al., 2015; Zhao et al., 2017) . Finally, Chen et al., (2019) used a 

Generalised Linear Mixture Model (GLMM) and the Synthetic Minority Over-sampling Technique 

(SMOTE) with twenty variables in Seattle. The findings show that 17 and 15 variables respectively are 

 
6 From graph theory, the degree of connectivity can be defined as the number of connecting links of a node – 
i.e. the number of adjacent nodes connected to a certain node (Lieberthal and Gardner, 2021).  
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statistically significant with the “Spatial weighted volume”7 having the highest positive coefficient. 

Roadway characteristics also indicate high positive signs, while five variables for GLMM and seven for 

SMOTE have negative coefficients with local streets and one-way roads exhibiting the highest. 

2.3.2. Socioeconomic characteristics 
 

Socioeconomic characteristics are the most common attributes used in the literature and are taken 

into account in almost all studies. Specifically, population of local settlements exhibits a positive 

coefficient in most studies (e.g. Apronti et al., 2016; Mohamad et al., 1998; Seaver et al., 2000; Zhao 

and Chung, 2001; Zhao and Park, 2004) indicating that the higher the population the higher the traffic 

values will be observed. Population has also been considered by  Selby & Kockelman (2013), Fu et al. 

(2017), Raja et al., (2018) and Zhang and Chen, (2020) drawing similar conclusions, with these studies 

conducted in three US states (Texas, Alabama, Kentucky) and the Republic of Ireland (Fu et al., 2017).  

However, Doustmohammadi and Anderson, (2016) find that population has negative correlation with 

traffic volume as opposed to findings from other studies in their study in Alabama, US. 

The number of households and household income is used by Eom et al. (2006), to find that household 

income has negligible association with traffic volumes, based on two different models, while Apronti 

et al. (2016) used employment and per capita income. Other socioeconomic attributes considered as 

drivers of traffic used in applied studies include age of population, gender balance in the population 

and car ownership (e.g. Cervero & Kockelman 1997; Stead 2001; Zhao & Chung 2001; Zhang 2007; 

Aditjandra et al. 2012). Findings from these – behavioural – studies indicate that age has negligible 

association with driving – and consequently higher traffic volumes – and that car ownership is related 

with increased driving. Similarly, Jahanshahi & Jin (2016) state that car ownership indicates higher 

traffic volumes, although correlation varies across areas. However, one has to bear in mind that car 

ownership is strongly connected to household income (Silva et al., 2012). 

 
7 Defined as the “the sum of other roads’ weighted AADT divided by the reciprocal of squared Euclidean distance, 
in counts/sq. feet” (Chen et al., 2019) 
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2.3.3. Land use 
 

Land use variables indicate the surrounding environment at the location where the count point is 

placed, with the majority of studies mainly distinguishing the traffic count points at either being on 

urban or rural areas (e.g. Eom et al. 2006, Fu et al. 2017, Zhao & Chung 2001, Zhao & Park 2004), with 

urban areas usually demonstrating higher traffic values. However, other studies have introduced more 

detailed land use classification. For example, Xia et al. (1999) classified land use by introducing 

business, residential and fringe areas while Kim et al. (2016) classified land use as commercial, 

residential, industrial and miscellaneous, to find that commercial areas are the ones that are highly 

correlated with traffic among the rest of the land use types.  

In Seaver et al., (2000) among the 45 characteristics considered, the attribute indicating the number 

of farms is statistically significant with a positive sign. However, one has to bear in mind that the study 

is conducted on local rural roads, indicating that traffic is likely to be affected by different factors as 

opposed to roads in urban areas. Apronti et al. (2016) refined this approach by introducing a more 

detailed classification, considering several types of agricultural land use, forest and recreational sites 

among others, while finally, Chen et al., (2019) considered the number of industrial and commercial 

properties within 150ft of the road segment, together with a land use mixture variable8. 

2.3.4. Public transport 
 

Public transport variables are almost entirely absent from AADT estimation studies. As an example, 

Sarlas & Axhausen (2014) incorporated density of public transport stops in the vicinity of traffic count 

points. On the other hand, behavioural studies have investigated the impact of public transport supply 

on mode choice and road traffic. Cervero (1994) finds that residents near rail stations are more likely 

to use public transport, which is associated with lower use of private road vehicles. Stead (2001) 

discovered that bus frequencies are associated with travelled distances by individuals and mode 

 
8 Defined as the entropy of five different land use types within 150ft of road segment. 
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choice, albeit findings differ across geographic areas. Aditjandra et al. (2012) also conclude that public 

transport accessibility is associated with lower individual driving. 

2.3.5. Parking availability 
 

The influence of parking availability and costs in AADT is also absent from the majority of AADT 

estimation studies that have been reviewed in the literature. The only identified study is Chen et al., 

(2019), where the average parking cost in the vicinity of each road segment is considered. On the 

other hand, parking correlation with mode choice and therefore road traffic, is an established area of 

research in behavioural studies, where Hess (2001) and Zhang (2007) conclude that availability of 

parking encourages individual car use. In addition, there is a considerable literature about the 

occurrence of parking as a pulling factor for traffic, especially in those cases where free or low-cost 

parking is available. Studies conclude that traffic can be generated to the areas where parking is 

available, but can also contribute to the increase of traffic at the surrounding areas (e.g. Arnott and 

Inci, 2006; Shoup, 2006; Kelly and Clinch, 2009; Arnott and Williams, 2017; Inci et al., 2017). 

2.4. Road transport modelling approaches and applications 
 

Road transport has been studied through the lenses of several disciplines with numerous attempts to 

capture its complexity. To date, the available road transport modelling approaches make use of 

simulation and statistical models, usually also incorporated within larger interactive models. In this 

section, the three most common transport modelling approaches are presented and briefly discussed: 

(i) The Four Step Model (FSM), (ii) the Activity Based Model (ABM) and (iii) the Direct Demand Model 

(DDM). 
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2.4.1. Four Step Model (FSM) 
 

2.4.1.1. Model description 

The FSM is a procedure during which the study area is split into Traffic Analysis Zones (TAZs)9 where 

the modelling process takes place based on trips travelled between TAZs. Modelling is conducted on 

four steps, where different models are applied on each of the steps, namely (i) trip generation, (ii) trip 

distribution, (iii) mode choice and (iv) traffic assignment. 

➢ Step 1 – Trip Generation 

The trip generation step, estimates the total number of trips that either originate or terminate in each 

TAZ based on the amount of activity (Brustlin et al., 2012) and it is the most important step due to the 

fact that if errors are introduced they can be propagated to the next steps (Ortuzar and Willumsen, 

2011). Trips are generated by trip generation models using a growth factor10 and regression modelling, 

and are defined as a movement from a point of origin to a point of destination (Ortuzar and Willumsen, 

2011). 

➢ Step 2 – Trip Distribution 

The trip distribution step links the trips for each pair of TAZs so that travel patterns are represented 

through an Origin–Destination (OD) matrix (Martin and McGuckin, 1998). In this step, distribution 

models are estimating the values (i.e., the number of trips) in each OD matrix cell on the basis of any 

available information. The most common model for trip distribution is the Gravity Model which takes 

the trips that are produced at one zone and distributes them to other zones, on the basis of impedance 

which is assumed to capture underlying travel behaviour (McNally, 2007). 

 
9 TAZs are subject to constraints and guidelines which are difficult to consider and implement in a single TAZ 
design process (Martínez et al., 2009). Consequently, TAZs number is based on the study’s purpose and data 
availability (McNally, 2007). 
10 This growth factor is related to variables such as population, income and car ownership (Ortuzar and 
Willumsen, 2011). 
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➢ Step 3 – Mode Choice 

Mode choice estimates and allocates OD trips to the available transportation modes based on trip 

maker, journey and transport facility characteristics (Ortuzar and Willumsen, 2011). The modelling is 

based on discrete choice analysis (Ben-Akiva and Bierlaire, 1999), with Multinomial Logit (MNL) and 

its extension, the Nested Logit (NL) (Ben-Akiva, 1973) models being the most common approaches. 

➢ Step 4 – Trip Assignment 

Finally, the trip assignment step, distributes traffic on the network according to a certain route choice 

principle (Lam and Lo, 2004). The most widely used models for trip assignment are: 

i. All-or-nothing assignment (AON) 

This is the simplest route choice and assignment method, which assumes that there are no congestion 

or capacity effects, and the trips are assigned based on the minimum cost path (i.e., travel time) 

between origin 𝑖 and destination 𝑗. 

ii. User equilibrium assignment (UE) 

First defined by Wardrop, (1952) and later formalised by Ortuzar and Willumsen, (2011), “Under 

equilibrium conditions traffic arranges itself in congested networks in such a way that no individual 

trip maker can reduce the path costs by switching routes”. 

iii. Stochastic user equilibrium assignment (SUE) 

The Stochastic User Equilibrium (SUE) models include both pure stochastic as well as user optimised 

equilibrium conditions, and a more realistic perspective is examined, where a traveller chooses the 

path according to the minimum perceived travel cost rather than the actual one (Lam and Lo, 2004). 
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2.4.1.2. Model applications 

FSMs have been explored and applied to estimate travel demand in several studies. In this subsection, 

two representative applications of FSMs are briefly described. First, the National Transport Model 

(NTM) for Great Britain and second, the European-level Trans–Tools (TT) model. 

NTM, is a passenger transport model combining cross sectional with time series data extracted from 

surveys, census as well as forecast datasets (Department for Transport, 2012). In particular, the 

National Trip End Model (NTEM) produces the total number of trips so that the Demand Model, which 

is the core module of the system, estimates trips between OD pairs and mode types based on 

generalised costs of possible alternatives. The National Rail Model and the Great Britain Freight Model 

also provide information to the Demand Model for rail and freight, respectively. 

The TT model is built in a Geographic Information System (GIS) framework and it incorporates an 

economic model, a freight trade and freight choice model as well as a passenger demand model (Rich 

et al., 2009). The passenger demand model creates matrices for car demand and air passengers 

estimated and adjusted based on traffic counts (Rich et al., 2009). The road traffic assignment model 

calculates averaged daily traffic, split into particular time periods using Stochastic User Equilibrium. 

2.4.2. Activity Based Model (ABM) 
 

2.4.2.1. Model description 

The Activity Based Model (ABM) shares similarities with the FSM in the sense that activities are 

generated, destinations are identified, modes are determined and routes are predicted and like FSMs, 

ABMs involve the utilization of different models (Castiglione et al., 2014). ABMs, which have been 

developed as an advanced alternative to FSMs, seek to represent travel choices made by individuals 

(Chiu et al., 2011) and model a sequence of trips, defined as tours and classified by purpose (Ortuzar 

and Willumsen, 2011). ABMs are part of a wider model system where interaction between individual 

models occurs with the major component being the ‘Population Synthesis’ providing 
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sociodemographic information to the system (Brustlin et al., 2012). ABMs can be classified in three 

different modelling approaches namely (i) constraints based models, (ii) utility maximising models and 

(iii) computational process models (Rasouli and Timmermans, 2014). 

i. Constraint based models 

These are the first generation of ABMs and their objective is to examine whether an individual activity 

agenda is feasible within a space time context (Rasouli and Timmermans, 2014). 

ii. Utility maximising models 

Utility maximising is the most widely ABM approach in use. These models are based on the concept 

that individuals maximise their utility when scheduling daily activities (Ben-Akiva and Bowman, 1998) 

and consist of a series of utility maximisation based discrete choice models, such as Nested Logit (NL) 

and Multinomial Logit (MNL) (Rasouli and Timmermans, 2014). 

iii. Computational Process models 

The computational process is a new experimental rule-based method, that aims to go a step further 

and imitate the way individuals think and act when building schedules (Pinjari and Bhat, 2011), hence 

in a more realistic way as opposed to the unrealistic utility maximising assumption of econometric 

models. 

2.4.2.2. Model applications 

ABMs have also been incorporated in several applications. As examples the Comprehensive 

Econometric Micro-simulator for Daily Activity-Travel Patterns (CEMDAP) model, developed at the 

University of Texas, Austin by Bhat et al., (2004) is a system of econometric models representing 

decision making behaviour of individuals (Pinjari et al., 2008). The two systems comprised in the model 

are the generation–allocation module which models the decisions of household adults to undertake 

various travelling activities, and the scheduling module that uses these decisions as inputs to model 

the complete activity patterns considering constraints such as work or school and determine choices, 
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such as number of tours and stops. The Florida Activity Mobility Simulator (FAMOS) model, is a two-

module microsimulation model system (Pendyala et al., 2005), with one module generating the 

household attributes and another the activity travel patterns for individuals (Kitamura and Fujii, 1998).  

Finally, the ALBATROSS model11 developed at the Eindhoven University by Arentze and Timmermans, 

(2004), is considered the most comprehensive computational process ABM (Rasouli and Timmermans, 

2014). The model takes as input an activity schedule, a list of constraints, household and individual 

characteristics, zone data and transport system characteristics. The scheduling module is the system’s 

core part which controls the scheduling processes in a sequence of steps, with each step modelled 

using decision trees to indicate the probability of choice, given personal characteristics and previous 

choice. ALBATROSS has been used, among others, by Beckx et al., (2009) combined with an emission 

model to assess emissions generated from passenger cars in the Netherlands. In addition, the 

Forecasting Evolutionary Activity-Travel of Households and their Environmental Repercussions 

(FEATHERS) model (Bao et al., 2018) which is the extended Flemish version of ALBATROSS (Balac and 

Axhausen, 2016; Zhuge et al., 2017) has been applied by Lee et al., (2012) and validated with smart 

card data by Cho et al., (2015) in Seoul. 

2.4.3. Direct Demand Model (DDM) 
 

2.4.3.1. Model description 

Direct Demand Models (DDMs) are statistical – empirical approaches developed as an alternative to 

the standard travel demand models (Hankey et al., 2017) such as FSMs and ABMs. They can be seen 

as aggregated models aiming to explain traffic volume as a function of relevant factors thought to 

influence traffic. DDMs, which have been described as “the empirical equivalent of the conventional 

demand function of economic theory” (Wardman et al., 1994), aim to incorporate trip generation, 

distribution and mode choice into one single equation (Ortuzar and Willumsen, 2011). DDMs are 

 
11ALBATROSS stands for: A Learning-based Transportation Oriented Simulation System (Arentze and 
Timmermans, 2004).  
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classified into purely direct models, relating demand to mode, as well as trip and traveller 

characteristics with the use of a single estimated equation, and partially direct models that “exploit 

attributes of differences between modal choice and total demand for travel” (Kepaptsoglou et al., 

2017). The latter, is essentially a two-stage process where the first step explains the total demand 

across all modes and the second distributes the demand with a mode choice model (Gaudry et al., 

2000). 

2.4.3.2. Model applications 

DDMs have been extensively used in several transport fields ranging from air transport to rail and 

metro ridership, road transport and bike and pedestrian studies. For example, Gelhausen et al., (2018) 

developed a DDM to forecast passenger and flight volumes at German airports. Regression analysis of 

passenger and flight volume time series data is applied, while taking into account economic variables 

as well as major demand shocks, such as the German Unity and 9/11 attacks. Fagnant and Kockelman, 

(2016) developed a DDM to estimate peak hour cyclist counts at locations where counts are not 

available. Number of lanes, parking presence and socioeconomic variables are used, among others, as 

inputs to a Poisson regression and two negative binomial models. Similarly, Hankey et al., (2017) 

implement DDMs in a small town to estimate bicycle and pedestrian traffic flow, using land use and 

socioeconomic variables within a buffer distance around the count stations, by applying stepwise 

linear regression and using R2 as a goodness of fit measure. DDMs have also been extensively applied 

in rail and metro ridership. Gutiérrez et al., (2011) developed multiple regression DDM models to 

estimate the number of passengers boarding each metro station as a function of the station 

characteristics, socioeconomic factors, and environment dimensions. Focus is placed on the use of a 

distance decay weighting function to capture particular characteristics within the station’s catchment 

area. Cardozo et al., (2012), conduct a study on metro ridership in Madrid and compare a 

Geographically Weighted Regression (GWR) with Ordinary Least Squares (OLS) using station, 

socioeconomic and land use characteristics. Zhao et al., (2014) use DDM to identify associations 
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between station ridership and influencing factors in Nanjing metro in China through a multiple 

regression model. They employ 11 variables associated with ridership at station level, such as land 

use, intermodal and station characteristics. Kepaptsoglou et al., (2017) provide an example of partial 

DDM where a traffic assignment model is used to obtain travel times and costs between TAZ centroids, 

fed into a linear regression model to estimate traffic demand as a function of travel times and costs. 

DDMs have also been extensively used in road transport studies. For example, Anderson et al., (2006) 

applies a multiple linear regression model to predict average daily traffic and uses road characteristics 

and socioeconomic variables within a buffer as predictors. DDMs have also been used to predict other 

transport-related variables. As an example, Sarlas and Axhausen, (2014), use spatial regression models 

to estimate average morning peak hour speed of each road link at an extended part of Switzerland’s 

major road network. Finally, DDMs are also often used to estimate AADT, as discussed in more detail 

in the next section. As an example, Lowry, (2014) estimates AADTs in a small community based on 

modified versions of stress centrality (OD Centrality) (Shimbel, 1953) as the only predictors. OD 

Centrality is calculated using multipliers for parcel land use data, similar to but, different from the trip 

production and attraction steps of FSMs. 

2.5. Annual Average Daily Traffic (AADT) estimation models 
 

AADT estimation in particular, is not a novel concept with analyses conducted for over 30 years now 

(e.g. Neveu 1983, Fricker & Saha 1987). To date, a number of approaches has been applied and tested 

using known traffic volumes extracted from traffic count points to estimate AADT values at locations 

where traffic counters are not available. These are usually statistical approaches (i.e., DDMs) where 

regression models are applied to estimate AADT with the utilization of explanatory variables. 

However, it should be noted that statistical modelling can also be used to identify and assess the 

effects of the explanatory variables on traffic volumes as discussed in section 2.3, although in this 

section, focus is placed elsewhere. Specifically, in this section I precent and discuss the three principal 

– statistical – approaches normally employed for AADT estimation that I have identified in the 
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literature, namely Linear Regressions, Spatial Statistic models and several Machine Learning (ML) 

techniques. 

2.5.1. Linear regression models 
 

Linear regression models are the most popular models in the literature, with applications identified in 

early AADT estimation studies. For example, Mohamad et al. (1998) applied linear regression in county 

roads12 across forty counties in Indiana. Out of the 11 predictors tested, four have been found to be 

statistically significant – county population, location of count point (i.e., urban/rural), access to 

motorway and total arterial mileage of the county. The model has been validated by collecting new 

AADT data in eight randomly selected counties in the State. Xia et al. (1999) used a linear regression 

model from a sample of 450 count stations to estimate AADT for non-state roads in Florida. The model 

used six independent variables and is validated by using 10% of the sample. A multiple regression 

model has also been used by Seaver et al., (2000) to estimate AADT in rural roads in Georgia, US. Zhao 

& Chung (2001) extended the work of  Xia et al., (1999) by using a larger dataset, incorporating land 

use and accessibility variables. The model is again validated using 10% of the sample and examining 

the R2 and Mean Square Error (MSE) values. Zhao and Park, (2004) used a similar set of variables and 

applied OLS this time to compare with other modelling approaches, to conclude that linear regression 

provides the lowest estimation accuracy. Yang et al., (2011), tested linear regression models in North 

Carolina and more recently, Apronti et al., (2016) used linear regression to estimate AADT values on 

low volume roads in the state of Wyoming, US. Similarly, Doustmohammadi & Anderson (2016) 

applied linear regression with land use data in two small and medium sized cities in Alabama. For 

validation, different but similar sized cities were selected to apply the developed model and a T-test 

is used to test for model accuracy. Raja et al., (2018) tested three different linear regression models 

using 150 traffic count points in low volume roads in the same US state. The models are validated 

 
12 County roads are defined as roads under the responsibility of county highway departments, rather than state 
departments of transportation (Mohamad et al., 1998). 
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using 55 points from the main sample and are compared based on R2. Pun et al. (2019) applied a 

multiple linear regression model in Hong Kong using a set of 850 traffic counters in the area. The model 

is again assessed using the R2 metric, while the Root Mean Square Error (RMSE) is used to assess its 

accuracy. Finally, OLS has still been used recently among other models by Zhang and Chen, (2020) for 

AADT estimation in Kentucky, US and by Pulugurtha and Mathew, (2021) to estimate AADT on local 

roads in North Carolina. 

2.5.2. Spatial statistical models 
 

Evolution in the field of spatial statistics and development and availability of spatial datasets has led 

to the application of spatial methods for AADT estimation. In these models, spatial location and 

correlation are taken into account so that data points are weighted according to their distance from 

the location where the dependent variable is to be estimated (Loyd, 2007). Among several 

approaches, Kriging interpolation and Geographic Weighted regression (GWR) are the most popular 

spatial models used in road transport studies. However, although these models are available and can 

be easily applied within various GIS platforms13 – such as GeoDa, ArcGIS and GWR4 – and other data 

analytics software14, their application is fairly limited in this field. For example, Wang & Kockelman 

(2009) applied Kriging interpolation with Euclidean distances among traffic count stations in Texas, 

using 20% of the data to validate the model and finding that AADT values are overestimated by 33%. 

Kriging with additional – explanatory – covariables (i.e., CoKriging) has been applied by Eom et al. 

(2006) and Shamo et al., (2015) in North Carolina, and by Selby & Kockelman (2013) in the US state of 

Washington, all using different types of semivariograms15 and part of the dataset to validate the 

models. Kim et al. (2016) also used CoKriging16 in South Korea, while more recently, Kriging for AADT 

 
13 GeoDa and GWR4 have been developed in academia by Anselin et al., (2010) and Nakaya, (2014) respectively, 
while ArcGIS is developed by the Environmental Systems Research Institute (ESRI). GWR4 can be used for GWR 
analysis only, while GeoDa and ArcGIS also incorporate Kriging analysis. 
14 Open-source data analytics software such as R and Python can conduct spatial analysis. 
15 The semivariogram is a tool that is used to measure spatial autocorrelation – essentially a measure of variance 
(Hohn, 1999; Olea, 1999) 
16 CoKriging is essentially similar to the Kriging technique, where additional variables are used to predict the 
dependent variable (Stein and Corsten, 1991). 
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estimation has been used in comparison with GWR by Selby & Kockelman (2013) in Texas and by 

Mathew and Pulugurtha, (2021) again in North Carolina. In both of these studies, Kriging outperforms 

GWR, although the models’ validation – measured with Mean Absolute Percentage Error (MAPE) – 

shows that estimation errors still remain high, between 59% and 63% in Selby and Kockelman, (2013)17 

and at 84% in Mathew and Pulugurtha, (2021). GWR to estimate AADT has also been used by Zhao & 

Chung (2001) and Zhao & Park (2004) in Florida. 

2.5.3. Machine Learning and Data Mining models 
 

More recently, rise on the applications of Machine Learning (ML) and Data Mining algorithms in 

various disciplines, has shown that these methods can provide higher estimation accuracy in 

regression problems (Brathwaite et al., 2017; Paredes et al., 2017; Sekhar et al., 2016) and 

consequently these approaches have reached AADT estimation studies. However, to my knowledge 

at the time of writing, applications are mainly focused on production of future AADT predictions based 

on historical data, while ML use has been scarce for AADT estimation at unmeasured locations. Studies 

where ML is used to estimate AADT are presented below18.  

ML applications can be found in Shojaeshafiei et al. (2017), where the K-STAR (K*) and Random Forest 

(RF) algorithms are applied to estimate AADT in Alabama. The models are validated using the R2 and 

the Nash-Sutcliffe (N-S) statistic. By comparing the models, this study found that RF performs better 

compared to K*. Wu and Xu, (2019) also used RF to estimate AADT at selected roads in Washington 

state and compared it with a linear regression model, to find that the models exhibit similar 

performance. RF has also been tested by Das and Tsapakis (2019) for AADT estimation in Vermont. 

 
17 The range of MAPE values refers to different types of road classes modelled in this study. 
18 Considering the large and constantly expanding number of ML algorithms developed by computer scientists, 
one has to take into account that identifying all algorithms in the literature is a very challenging task. I 
acknowledge that numerous new models – possibly applied on AADT estimation and more broadly in road 
transport studies – can potentially be found in the literature. However, this is beyond the purposes of the thesis. 
Instead, some well-established algorithms in the literature are identified, presented, and also applied in the 
following chapters. 
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The model has again been compared with linear regression using RMSE. As opposed to Wu and Xu, 

(2019), in this study the outcomes show that RF provides better estimates.  

Together with RF, Pun et al., (2019) applied Support Vector Regression (SVR) and multiple linear 

regression using AADT from 850 counters in Hong Kong. The models are evaluated using R2 and RMSE 

to find that multiple linear regression performs – slightly – better compared to the other models, with 

higher R2 and lower RMSE values. SVR has also been used by Sun and Das, (2019) in low volume roads 

of 8 parishes in Luisiana. SVR is compared with Poisson and Negative Binomial models to conclude 

that SVR delivers higher estimation accuracy compared to the other models. 

SVR has also been compared with Artificial Neural Networks (ANNs). For example, Khan et al., (2018) 

applied SVR and ANN to estimate AADT in South Carolina, using a sample of 164 traffic count points 

located on different road classes in the State. Model training is conducted using two thirds of the data 

and validation is taking place with the rest of the sample and by calculating RMSE and MAPE for each 

model. The results show that SVR provides more accurate estimations.  

Fu et al. (2017) have also used ANNs to estimate AADTs in the Republic of Ireland. MAPE values are 

compared with OLS estimations based on 96 traffic counters that have been used to train and test the 

models (i.e., MAPE is calculated ‘in-sample’). Validation reveals that ANNs perform better than OLS 

with MAPE being 23% and 67% for each model respectively. This study also appears to be the first 

attempting to extend the study area to country level. 

Several modifications of ANNs can also be found in the literature. For example, Tawfeek and El-

Basyouny, (2019) used a Deep Neural Network (DNN) to estimate AADT in Alberta, Canada, using a 

sample of 1,350 traffic counters. The model is compared with OLS using R2, to conclude that DNN can 

improve the R2 values by around 35%.  
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Finally, cluster analyses can also be found in traffic volume estimation studies. Specifically, Gecchele 

et al. (2011) tested different clustering methods (i.e., K-means, K-medoids, PAM19) to group traffic 

counters using temporal traffic volume patterns, indicating that groups of roads with similar traffic 

patterns can also be identified. These groups where used to create seasonal factors that can be later 

used for AADT calculation. However, although the study makes use of clustering algorithms, it focuses 

on temporal pattern identification and seasonal traffic volume estimation and does not take into 

account other characteristics that can affect traffic volumes. A similar approach has been used by 

Caceres et al. (2018), where hourly traffic patterns and AADT values from 455 intercity road traffic 

counters, have been used. The hourly patterns have been utilised to create groups (i.e., clusters) and 

three different linear regression models have been applied within each group to estimate AADT. The 

models are validated using the initial (i.e., measured) AADT values from the traffic counters, with 75% 

of the sample been used for training and 25% for validation. MAPE values range from 15% to 46% 

depending on the model. 

2.6. Emission factors  
 

Emission factors are coefficients that relate the amount of the pollutant released with the 

corresponding activity that causes the emission (Abdallah et al., 2020) and are considered vital to 

estimate the amount of pollutant released from a specific source (Nghiem et al., 2019). These factors 

have been developed for numerous pollutants in various sectors – such as industry, housing and 

transport – and are essential for the computation of emissions. For road transport in particular, the 

emission factors indicate the amount of the emitted pollutant per unit mass of fuel burned, energy 

consumed or more commonly per distance driven (Facanha and Horvath, 2007). The accurate 

development of emission factors is critical, considering that imprecise factors and their utilization in 

corresponding emission models (further discussed in section 2.7) can result in significant discrepancies 

in emission estimations (Shen et al., 2014). In this section, the various methods that are used to 

 
19 PAM stands for: Partitioning Around Medoids (Kaufman and Rousseeuw, 1990).  
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measure road vehicle emissions and develop the emission factors are presented. Based on this, several 

advantages and limitations related to each of the emission measurement methods are discussed.  

2.6.1. Emission measurement methods 

Emission factors are normally developed by utilizing emission data collected during vehicle emission 

monitoring experiments. The factors are derived for several vehicle categories – or even single vehicles 

as well as entire vehicle fleets – using different techniques. The extrapolated factors from the 

experiments depend on various parameters such as vehicles’ type and age, corresponding emission 

technology, fuel type and quality as well as maintenance, operating and ambient air conditions (Franco 

et al., 2013; Nghiem et al., 2019). This indicates that emission factors can change over time, 

considering increased vehicle mileage, improvement in engine emission technologies and change in 

fuel specifications (Brimblecombe et al., 2015; Carslaw and Rhys-Tyler, 2013; Dallmann et al., 2012). 

The measurement technique, coupled with the operating conditions and the types of vehicles selected 

for each experiment, all indicating significant determinants related to the quality of the derived 

emission factors. Measurement of emissions to derive emission factors are normally conducted using 

two different methods, namely (i) controlled conditions and (ii) real-world conditions (Jamriska and 

Morawska, 2001; Smit et al., 2010). 

2.6.1.1. Controlled conditions 

The controlled conditions method is the most widely used (Raparthi et al., 2021; Seo et al., 2021) and 

refers to experiments conducted in lab environments where several parameters introducing variability 

such as driver behaviour, environmental and traffic conditions are controlled (Ježek et al., 2015). The 

controlled condition experiments are conducted with the use of either chassis or engine dynamometer 

devices under different predefined settings – known as test cycles – aiming to simulate real driving 

conditions, such as free flow or urban driving (André et al., 2006). 

Test cycles are essential for all chassis and engine dynamometer experiments, and consequently, the 

capacity to which real-world driving conditions are in fact represented is vital for the quality of the 
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experimental outcomes (Joumard et al., 2006). The test cycles are classified in two types, the steady-

state and transient cycles. Steady-state cycles involve continuous operation of the engine using 

constant speed and load, testing on different modes for a sufficient amount of time, until the 

emissions are stabilized (Franco et al., 2013). Then, when the predefined number of modes is tested, 

the emission measurements are normally joined using a weighted average method, with weights being 

specified for each mode (Artelt et al., 1999). On the contrary, variations in the vehicle’s operating 

conditions are introduced during the transient test cycle experiments (Franco et al., 2013). The 

variations may include continuous change in vehicle’s speed and load among others, aiming to 

represent real-world operating conditions and account for driving situations such as idling 

deceleration and acceleration (Barlow et al., 2009; Franco et al., 2013).  

The chassis dynamometer test cycles are mainly transient (Yanowitz et al., 2000), where the – chassis 

– dynamometer imitates the resistance force that is exercised on the wheels of the vehicle for each 

cycle (Yang et al., 2018). During the testing, the vehicle is tied down to remain still and it is operated 

by a driver who follows a gear change pattern to comply with a predefined time-speed profile and stay 

within the required speed threshold (Nine et al., 1999). The tailpipe emissions are finally fed into a gas 

analyser to measure emissions (Yang et al., 2018). On the other hand, the engine dynamometer test 

cycles are mainly steady-state (Franco et al., 2013), although tests can also be undertaken on a 

transient cycle basis (e.g., Jiang et al., 2009; Jin et al., 2017). During these tests, the engine and exhaust 

are removed (Bunker et al., 1997; Jiang et al., 2009) and  the dynamometer is connected to the engine 

shaft, so that the resistance imposed to the engine is directly simulated (Kęder et al., 2014; McCormick 

et al., 1998). 

2.6.1.2. Real-world conditions 

Measuring emissions under real-world conditions involves the utilization of several techniques such 

as tunnel measurements, remote sensing and on-road or on-board measurements, with all being used 

extensively in numerous studies. 



48 
 

Tunnel measuring methods involve the collection of emissions data from both ends of the tunnel, split 

by direction. The overall flow of pollutants from all vehicles passing through the tunnel is measured 

for a predefined timeframe (Jamriska et al., 2004), where the pollutant is related to the traffic flow 

(Hueglin et al., 2006). The difference in pollutant concentrations between inlet and outlet is measured 

and the total pollution is then calculated by multiplying it with the estimated airflow through the 

tunnel, with wind speeds also taken into consideration (Franco et al., 2013). Tunnel measurement 

emissions are very common in the literature and examples can be found in Grieshop et al., (2006) who 

conducted emission measurements in the state of Pennsylvania, US, Abdallah et al., (2020) in Beirut, 

Lebanon and Raparthi et al., (2021) in India among others. 

Measuring emissions via remote sensing is a method that has been firstly introduced by Stedman and 

Bishop, (1990) and involves instantaneous measurement of the concentration ratios of pollutants in 

the exhaust plume of the passing vehicle (Huang et al., 2018). The system for measuring emissions is 

based on the concept of absorption spectroscopy (Burgard et al., 2006) indicating that gases absorb 

light at particular wavelengths and normally consists of an infrared (IR) and ultraviolet (UV) beam 

sources as well as speed and acceleration sensors. When the vehicle crosses the sensor, the system is 

triggered and it measures the speed and acceleration of the passing vehicle, while the IR and UV 

sensors identify the absorption of light at specific wavelengths when the beam passes through the 

exhaust plume (Smit et al., 2021). Remote sensing is a quick, efficient and effective method to monitor 

tailpipe emissions under real-world driving conditions (Chan et al., 2004) and consequently has 

become popular in many studies over the years, with examples demonstrated in Jimenez et al., (2000) 

who tested remote sensors to measure NO and NO2 for Heavy Goods Vehicles (HGVs) and Davison et 

al., (2020) measuring CO2 and NOx. 

On-road – or chase – emission measurements are undertaken with the use of two vehicles following 

each other (Rubino et al., 2008). Essentially, a mobile laboratory equipped with emission 

measurement devices “chases” (i.e., follows) individual vehicles and collects sample of the gases 
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extracted from its tailpipe (Milenković et al., 2020; Shorter et al., 2005). Similar to the remote sensing 

method, the equipment consists of IR and UV analyzers (Krecl et al., 2021) with additional instruments 

such as heated flame ionization detectors (HFIDs), non-dispersive ultraviolet (NDUV) analyzers (e.g., 

Chen et al., 2007; Liu et al., 2011), video recording equipment as well as meteorological and 

positioning systems (Rubino et al., 2008; Shorter et al., 2005) being used among others. The method 

can thus provide real-world emission data under different operating conditions and has been applied 

in numerous studies around the world. For example Westerdahl et al., (2009) measured CO and Black 

Carbon (BC) in Beijing, China, and Wen et al., (2019) who measured NOx, CO, CO2 and BC also in 

Chengdu, China. In other countries, Herndon et al., (2005) used the chase method to measure SO2 and 

CH4 from buses in New York City, while multiple experiments can be identified in Finland. Specifically, 

Järvinen et al., (2019) again measured emissions from city buses in Helsinki while Karjalainen et al., 

(2014) in Alastaro and Wihersaari et al., (2020) experimented on PM emission measurements from 

petrol and diesel cars respectively. 

Finally, on-board (or Portable Emission Measurement Systems – PEMS) are arrangements of emission 

measurement devices such as gas analyzers and data recorders (Kihara et al., 2000) that are carried 

on board the vehicle and collecting data under real traffic conditions, while GPS, weather stations and 

accelerometers are also usually integrated on the vehicle (Oprešnik et al., 2012). In PEMS the 

emissions are transferred directly from the tailpipe to the on-board unit through pipes, where the 

analyzer estimates the real-time emissions (Ma et al., 2012). Emission measurements are normally 

undertaken for CO, CO2, HC and NOx (e.g., Boughedaoui et al., 2008; Unal et al., 2004) and although 

its applications have not been very common before the 2000s (Kihara et al., 2000), relatively recent 

improvements and developments that made it commercially available, has increased its use 

(Mamakos et al., 2011). For example, Cheng et al., (2019) and Zhang et al., (2020) used an on-board 

system to measure NOx emissions from heavy-duty vehicles in China, while heavy- and light-duty 

vehicle’s emissions where also measured by Weller et al., (2019) in Austria. PEMS for two wheeled 

vehicles is also demonstrated in Vojtisek-Lom et al., (2020) who used a mini-PEMS to measure CO, 
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CO2, HC and NOx and similarly, by Murena et al., (2019) for CO, CO2 and NOx emissions. PEMS 

applications on diesel and petrol cars can be found in many studies in recent years (e.g., Fitz et al., 

2021, 2020; Mahesh et al., 2019, 2018; Pouresmaeili et al., 2018; Seo et al., 2021). 

2.6.2. Emission factor development 

The development of emission factors is dependent on the emission measurement methods with 

several uncertainties associated with each of the methods. The development of emission factors 

under controlled conditions is normally undertaken by plotting the aggregated results from various 

test cycles and then fitting a regression line on the data (Franco et al., 2013). Hence, it becomes 

obvious that this method cannot sufficiently capture the exact emission impact of each different 

driving cycle, while variabilities in the emission factors from different vehicles and pollutants have 

been observed in numerous studies (Choi and Frey, 2010). Although emission factors developed using 

chassis or engine dynamometer testing can model emissions and fuel consumption for multiple 

vehicle configurations and driving patterns (Kousoulidou et al., 2012), they cannot be representative 

of real on-road driving conditions, while there is normally a limited number of vehicles tested 

(Jamriska and Morawska, 2001; Morawska et al., 2005). Specifically, absence of real world driving 

conditions such as ambient temperatures and road gradients are simulated under favourable 

conditions, resulting in lower fuel consumption and corresponding emissions rates (Mellios et al., 

2011). Moreover, engine dynamometer testing in particular, is even less useful due to the fact that 

results are provided in quantity of pollutant per unite of engine energy output (e.g., 𝐾𝑊ℎ−1) and 

therefore it is again not directly pertinent to real driving conditions (Franco et al., 2013). 

On the other hand, measuring emissions in real-world conditions offers a more accurate and realistic 

approach (Unal et al., 2004), although several limitations and uncertainties still apply, depending on 

the method. For example, emission factors developed from tunnel measurements are calculated by 

considering the pollutant mass concentrations in each side of the tunnel, its cross sectional area in m2 

and the distance between the two monitoring stations as well as the wind speed, number of sampled 
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vehicles and sampling duration (Franco et al., 2013; Pierson et al., 1996; Pierson and Brachaczek, 

1982). However, these capture emissions originating not only from tailpipes but also from brake and 

tyre wear, while the emissions are captured at aggregated levels and cannot be distinguished by 

vehicle type (Geller et al., 2005). Moreover, the emissions measurements are affected by wind, 

normally generated by larger vehicles and thus having impact on the resistance imposed particularly 

to smaller vehicles,  therefore affecting emissions too (Corsmeier et al., 2005). 

In remote sensing emission measurements, emission factors are normally fuel-based, where the 

tailpipe concentration of the pollutant is taken into consideration and divided by the estimated fuel 

consumption of the vehicle (Singer and Harley, 1996). Conversion from fuel-based to distance-based 

emission factors requires an estimation of instantaneous fuel economy (Franco et al., 2013). In 

contrast with tunnel measurements, remote sensing techniques can monitor a large number of 

vehicles at disaggregated level – i.e., by vehicle type (Franco et al., 2013) although these methods are 

also associated with numerous limitations. For example Unal et al., (2004) state that there is a 

significant difficulty dealing with multiple lanes on a given road as well as vehicles in close vicinity. 

Moreover, the vehicle load which affects the generated emissions cannot be evaluated precisely 

(Boughedaoui et al., 2008), while the emissions are measured for only part of the vehicle’s journey 

and are not representative for emissions at different driving conditions (Franco et al., 2013; Unal et 

al., 2004). The latter can be overcome with the utilization of on-road (i.e., chase) emission 

measurement methods, where emission factors are developed in a similar way to remote sensing, 

although a representative sample of vehicles across numerous driving conditions can be monitored. 

However, a major disadvantage of this method is that the mobile laboratory should be placed to a 

minimum of ten meters distance from the vehicle being chased (Morawska et al., 2007) and therefore 

introducing uncertainty with regard to the prevision of emission measurement, while a maximum 

chase speed of 120km/h is imposed (Franco et al., 2013). 
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Finally, emission factor development from PEMS – i.e., on-board systems – is analogous to the chassis 

dynamometer process, where bins of large emission datasets are collected and mass emissions are 

plotted against the corresponding mean speed from the bin (Franco et al., 2013), where a regression 

line can be fitted. PEMS are simple and relatively inexpensive to install on a wide variety of vehicles 

and have therefore been extensively used in recent years. PEMS, overall overcome several of the 

limitations identified for both controlled and real-world conditions, considering that the equipment is 

carried on-board, while measurements are taking place during several driving conditions. However, 

the latter also introduces a degree of uncertainty, since ambient temperature may vary, while the 

impact of human factor (e.g., the driver’s behaviour) can also affect the generated emissions (Matzer 

et al., 2017). Hence, one of the main disadvantages of PEMS is the low reproducibility of the 

measurements (Lozhkina and Lozhkin, 2016; Weiss et al., 2011). Moreover, the equipment needed 

can add significant weight on the vehicle – approximately 30kg-80kg – (Leatherman, 2018; Weiss et 

al., 2011), and therefore can introduce bias in the measurements, specifically in the case of low-weight 

vehicles. Finally, the number of pollutants that can be modelled is limited (Franco et al., 2013; 

Hausberger et al., 2022), while the measurement of hot and pulsating tailpipe gas flow during real-

world driving conditions has been shown to exhibit a 23% uncertainty with PEMS (Hausberger et al., 

2022). 

Overall, it has been seen that emission factors can be derived, using numerous different methods to 

measure emissions with several uncertainties associated with each of these methods. This can result 

into significant discrepancies in the extrapolated emission factors depending on the selected method, 

also affecting the outputs of emission estimation models (discussed in section 2.7) that make use of 

these factors. However, the factors do not only depend on the method selected, but on numerous 

other characteristics, such as the criteria for vehicle selection for the experiments, the ambient 

conditions and the impact of human factor (e.g., driving conditions) that has been found to 

significantly affect the tailpipe emissions (Wihersaari et al., 2020). Moreover, the fuel characteristics 

are also significant contributors in emissions, with fuel type, volatility and composition all being 
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important in the emission factor development process (Unal et al., 2004). Again, it should be noted 

that emission factors can change over time due to various factors such as vehicle deterioration due to 

increased mileage (Brimblecombe et al., 2015), technological improvement in fuel specifications as 

well as emission control technologies (Carslaw and Rhys-Tyler, 2013; Dallmann et al., 2012). 

Considering the uncertainties associated with the development of emission factors, disparities 

between official reported emission figures and real-world emissions from vehicles are likely to be 

identified, as it has also been reported in numerous studies (e.g., Fontaras et al., 2017; Tietge et al., 

2015) 

2.7. Emission modelling approaches and applications 
 

As with transport models, estimation of GHG and air pollutant emissions from road transport can be 

conducted with the use of various emission models classified depending on geographic scale of 

application, methodological approach and generic model type (Boulter et al., 2007). In particular, road 

transport emission models can be classified into static and dynamic, with each type exhibiting 

advantages and disadvantages, mainly related to data availability, required computer processing and 

the scale of application. Static and dynamic models are further classified into (i) traffic situation, (ii) 

instantaneous, (iii) average speed and (iv) aggregate emission factor models (Elkafoury et al., 2013). 

The first three classes are also introduced in De Blasiis et al., (2013) and are generally accepted and 

widely used in the literature, although some studies use different classifications. For example, Boulter 

et al., (2007) introduce variations of average speed and instantaneous models, Esteves - Booth et al., 

(2002) classify the models based on the type of emissions, and Fallahshorshani et al., (2012) based on 

input data, study scale and type of pollutants being modelled. The major requirement for all emissions 

models is activity (i.e., traffic) data, extracted from transport models. For the sake of clarity and to 

avoid confusion among the aforementioned approaches; the traffic situation, instantaneous and 

average speed terminology is henceforth used. In this section, emission modelling approaches and 
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their applications in research studies are presented. Moreover, other alternative emission modelling 

approaches that have been identified, are also discussed. 

2.7.1. Traffic situation models 
 

Traffic situation models estimate emissions related to particular traffic patterns, using emission 

factors for each situation (Smit et al., 2009). The situations are defined in terms of road type, area 

type, speed limit and congestion level where a specific traffic patterns occurs – i.e., “stop-and-go” 

driving, “free-flow”, “heavy” and “saturated”  (Smit et al., 2009). These models require information 

on Vehicle Kilometres Travelled (VKT) and on the traffic situation applied to each road link (Baškovic 

and Knez, 2013). 

Incorporation of traffic situation models can be found in a number of cases, such as the Handbook of 

Emission Factors for Road Transport (HBEFA) developed on behalf of and used by several European 

countries, such as Germany, Austria, Switzerland and Sweden (iCET, 2015). HBEFA, which is essentially 

an emission factor database, provides emission factors based on defined traffic situations (Wyatt, 

2017) and has been used in several studies. For example, Borge et al., (2012) used HBEFA to estimate 

Nitrogen Oxides (NOx) in Madrid and Fontaras et al., (2014) to estimate Carbon Monoxide (CO), Carbon 

Dioxide (CO2) and NOx emissions, with both studies concluding that the model overestimates 

emissions. On the contrary, Elkafoury et al., (2015) tested HBEFA on CO to conclude that the model 

underestimates emissions. The Assessment and Reliability of Transport Emissions Models and 

Inventory Systems (ARTEMIS) is another traffic situation model (Boulter and McCrae, 2007; Wang and 

McGlinchy, 2009) built to improve the European tools for emission modelling from all transport modes 

at national, international and regional levels (iCET, 2015). It consists of a collection of sub-models 

(Joumard et al., 2008), where emission estimations are based on the classification of vehicles – e.g., 

heavy duty, motorcycles, etc. (Andre et al., 2008). The model has been used by Martinet et al., (2017) 

to measure compound emissions for diesel and petrol vehicles and by Iodice and Senatore, (2015) for 
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CO, Hydrocarbons (HC) and NOx for two wheeled vehicles. Liu et al., (2016) also used ARTEMIS 

emission factors to estimate CO2 in Sweden. 

2.7.2. Instantaneous emission models 
 

Instantaneous emission models relate emission rates to vehicle operational modes (Baškovic and 

Knez, 2013), so that a traffic simulation module provides vehicle operation data and the emission 

module assigns an emission factor to each combination of instantaneous speed and acceleration rates 

(Elkafoury et al., 2013) for each interval. 

The Passenger car and Heavy duty vehicle Emission Model (PHEM) developed at the Graz University 

of Technology (Hauseberger and Rexeis, 2017) is the most significant example of an instantaneous 

model (Fallahshorshani et al., 2012). PHEM is based on parameters from real driving conditions 

considering factors such as road gradients and vehicle loading (Hausberger et al., 2009). It is essentially 

a system of different modules that simulates engine power and speed, where emissions are 

interpolated based on “engine maps” obtained from emissions measurements and empirical engine 

test (Rexeis et al., 2013). PHEM is incorporated in HBEFA model, providing evaporation emission 

factors for air pollutants and CO2 emissions (Wyatt, 2017). 

2.7.3. Average speed emission models 
 

Average speed models use average rather than instantaneous emission factors varying according to 

the average speed of a vehicle (Boulter et al., 2007) and applied to a street segment or an entire 

journey (Smit et al., 2009). 

The COmputer Program to calculate Emissions from Road Transport (COPERT) is the most widely used 

average speed tool for air pollutants and GHGs (Ntziachristos and Samaras, 2000), where emission 

factors are expressed as a function of the average speed over a complete driving cycle (Ntziachristos 

et al., 2009) and can also be used to provide distance-based emission factors (Ren et al., 2016). COPERT 

has been used and integrated in numerous studies and models, such as the National Atmospheric 
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Emissions Inventory (NAEI) in the UK, providing emission maps based on spatial datasets and traffic 

count data (Tsagatakis et al., 2017). In other studies COPERT has been used by Vanhulsel et al.,(2014) 

to estimate CO2, NOx and PM2.5 on major roads in Belgium and by Ong et al., (2011) to assess the 

impact of a shift from private cars and motorcycles to public transport, as well as the impact of a shift 

from conventional fuel use to natural gas on GHG and air pollutant emissions in Malaysia. In China, 

Wang et al., (2011) used the model to estimate emissions from passenger cars for three future 

scenarios, while in the UK Mascia et al., (2017) used COPERT to predict impacts of CO2, NOx and Black 

Carbon based on different traffic management measures in Glasgow. 

2.7.4. Other models 
 

There are many other – less common – models that can be found in the literature for estimating 

emissions from road transport, where the extent of application for each model varies across counties. 

For example, in the US the most popular being the Motor Vehicle Emission Simulator (MOVES) that 

has replaced MOBILE (Zhou et al., 2015), while in Europe the Transport Emission Model (TREMOD) 

and the Network Emission Model (NEMO) are in use, although their application is fairly limited 

compared to the models described. In the UK, the UK Transport Carbon Model (UKTCM) and the 

Background, Road and Urban Transport modelling of Air quality Limit values (BRUTAL) model have 

also been used. UKTCM is a system of sub-models and developed to provide annual projections for all 

passenger and freight transport supply and demand as well as estimate CO2, CO, NOx, Sulfur Dioxides 

(SO2), Total Hydrocarbon (THC) and PM emissions (Brand, 2010). BRUTAL is based on the previous 

ASAM (ApSimon et al., 1994) and UKIAM (Oxley et al., 2003) models, using GIS and incorporating 

datasets extracted from NAEI and COPERT. A different approach based on dispersion kernels is 

incorporated in the SHERPA-city application developed by Degraeuwe et al., (2021) and applied in 

Madrid to estimate NOx and NO2 concentrations. 

However, as an alternative and sometimes combined with the set models discussed, a different 

methodological approach has been applied. In particular, GHG and air pollutant emissions can be 
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estimated by multiplying emission factors with activity data (e.g., annual vehicle kilometres travelled 

– VKT), similar to the methodology used in NAEI to estimate hot exhaust emissions (Brown et al., 

2018). Vehicle Kilometres Travelled (VKT) can be calculated by multiplying AADT with the length of 

each link (Zheng and Weng, 2016), which is an essential indicator for accurate VKT calculation (Leduc, 

2008). This approach has been used in Sookun et al., (2014) to estimate GHG, NOx, CO and SO2 in 

Mauritius where traffic counts (i.e. AADT) for all road classes are split by fuel type, and fuel 

consumption is calculated by vehicle type and road class. Similarly, Setyawan et al., (2015) estimate 

NO, CO2, SO, PM and CO for a particular road in Indonesia and Jung et al., (2017) calculated VKT from 

traffic counts to estimate CO, NOx, PM2.5  and VOC emitted from trucks on major roads in a Korean 

metropolitan area. Labib et al., (2018) also utilised traffic counts to calculate VKT and emissions factors 

for each fuel and vehicle type to estimate CO2 in Dhaka, Bangladesh and Patarasuk et al., (2016) 

estimated road transport emissions from VKT based on AADT, to distribute emissions along the road 

network in Salt Lake City, Utah. Finally, Puliafito et al., (2015) used AADT values to calculate VKT and 

estimate CO2 on a grid level in Argentina and Fu et al., (2017) calculated VKT from estimated AADT 

values to finally estimate PM2.5, NOx and HC emissions for each road link in the Republic of Ireland, 

again being the only identified study to extend estimation at a very granular level. 

2.8. Transport scenarios 
 

Transport scenarios are developed at national and international levels by different institutions, public 

bodies, private companies, and the academia. The scenarios aim to project the future of transport 

based on several factors such as demographic characteristics, technological developments and 

policies implementation. Depending on the scenario, transport is considered either as part of the total 

energy system or as an individual sector, while road transport usually forms a separate sector of total 

transport figures. Individual scenarios for road transport are normally developed by transport 

departments across countries. To date, numerous scenarios have been developed. Investigation of 
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these scenarios will allow to conclude on the ones to be assessed to facilitate emission projections. In 

this section, examples from three families of these scenarios are described.  

In the UK the Department for Transport, (2018) develop five different scenarios based on projections 

from the National Transport Model (NTM). NTM uses the national trip end model (NTEM) dataset, 

considering 2015 as the base year and providing scenarios up to 2050 based on a number of factors 

affecting travel demand, such as car ownership, population, and income. Projections are conducted 

for miles travelled by vehicle type (i.e., Cars, Light Good Vehicles, Heavy Goods Vehicles and Public 

Service Vehicles), road class (i.e., motorways, trunk, principal and minor roads) and area type (urban 

and rural) for the nine English regions20 and Wales. Average speeds as well as CO2, NOx and PM10 

emissions are also projected for the same areas. All scenarios project increased total traffic growth (in 

vehicle miles travelled), for all vehicle types, although changes in road traffic vary depending on the 

area, while under some scenarios, distance travelled is reduced for certain vehicle types and/or 

regions. For example, scenario 5 projects a decrease of travelled miles for Heavy Goods Vehicles 

(HGVs) in all areas except London. Emissions decrease in all areas in all five scenarios mainly due to 

assumptions of increasing fuel efficiency of the vehicle fleet and increasing use of biofuels (counted 

as zero emissions). The NOx emission reductions also rely on the effectiveness of European standards 

to control actual driving conditions.  

Road transport projections have also been considered using the UK Times Model (UKTM) – an energy 

system model developed at the regional and national levels (Daly and Fais, 2014). UKTM also includes 

CO2, Methane (CH4), Nitrous Oxide (N2O) and Hydrofluorocarbons (HFCs) emission projections and is 

divided into three supply and five demand sectors, where transport is considered as one of the 

demand sectors. Projections for road transport are made up to 2050, considering 2010 as the base 

year. Among the scenarios used in the ADVENT21 research project, a scenario for total fuel demand in 

 
20 The nine English regions are: North West, North East, Yorkshire and the Humber, West Midlands, East 
Midlands, East of England, Greater London, South East, and South West. 
21 ADVENT stands for: Addressing the Valuation of Energy & Nature Together 
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road transport implies biofuels remaining at the same levels as the base year, oil fuels decreasing and 

electricity and hydrogen increasing. Moreover, transport demand (i.e., VKT) by type of vehicle is also 

collapsed by engine type, where hydrogen cars and vans show a significant increase, while diesel and 

petrol cars and vans are eliminated by 2050. HGVs remain constant, while the total road transport 

demand is increasing. UKTM is also used by the Committee on Climate Change (CCC) in the 5th Carbon 

Budget Report (Daly and Fais, 2014), where scenarios for several energy systems are incorporated. 

However, transport scenarios are based on the NTM for baseline projections of VKT and emissions 

(Committee on Climate Change, 2015). These scenarios combine expectations without additional 

effort to reduce emissions, with assessments of cost-effective requirements to achieve 2050 targets. 

The scenarios are focused on GHG reductions at national level that can further be disaggregated. 

However, road transport is incorporated in the wider “surface transport” category that also includes 

rail (freight and passenger). 

Four different scenarios have been developed in collaboration between the universities of Sussex and 

Leeds (Watson et al., 2004) for the use of hydrogen in the UK, considering 2000 as the base year and 

projecting to 2050. The scenarios are defined around two dimensions based on governance 

(regionalisation and globalisation) and values (consumerism or community). Hydrogen use in 

transport varies in all scenarios from 5% at the low investment in transport technology scenario to 

80%-100% at the Global Sustainability scenario where high investment on new low energy and low 

emission vehicles occurs and moderate car ownership growth applies. Based on these scenarios, Page 

et al., (2004) focus on the use of hydrogen in road transport, to identify its impact on total transport 

energy consumption, using a transport model developed for the purposes of the research. Total 

transport energy consumption is increased in all scenarios where the “Global Sustainability” is the only 

one where approximately 50% of the consumption is covered by hydrogen. 
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2.9. Chapter summary 
 

In this chapter the progress around major topics on road transport to date has been reviewed. In 

accordance with the aims of the thesis, focus has been placed on the topics of traffic data collection 

and emission factor development, road transport and emission modelling, the identification of the 

drivers of road traffic volume and the development of scenarios, so as the future of road transport 

can be assessed. 

It has been seen that road transport can be modelled via simulation (i.e., FSM and ABM) or statistical 

approaches (i.e., DDM) and that emission models require traffic information to produce estimations. 

Consequently, the selection of transport modelling approach is vital, since depending on the transport 

model a corresponding emission model should be applied. However, the selection of road transport 

modelling approach is highly dependent on the availability of the corresponding activity (i.e., traffic) 

and the associated (i.e., factors) data that have also been identified as the drivers of road traffic. In 

addition, it has also been seen that the correlation of these factors with traffic may vary, subject to 

the modelling approach as well as the geographic area of application (i.e., country, state, city, etc.). 

This implies that transport model selection is also dependent on the availability of data and vice versa. 

Following the above, the next chapter acts upon and addresses two of the topics discussed in this 

chapter: transport related datasets and transport modelling; that will also form the foundation for the 

rest of the thesis. Specifically, data availability is explored, and related datasets are collected, 

introduced, and manipulated. Moreover, the approach to model traffic volumes is determined and 

applied. Finally, the modelling outcomes are critically discussed and assessed. 
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3. Road transport modelling 
 

3.1. Chapter overview 
 

The task of road transport modelling involves the utilization of multiple information corresponding to 

various characteristics affecting traffic, and of course the employment of the analogous model. 

Specifically, traffic volume modelling and AADT estimation is normally approached as a regression 

problem and conducted with the application of statistical models, such as the ones presented in 

section 2.5. However, as it has been discussed (see section 1.3) there are numerous limitations 

associated both with the models as well as the data.  

This chapter focuses on the development of a methodology to estimate AADT at locations where 

traffic measures have not been conducted, while also attempting to address the identified limitations 

of the modelling implemented so far. In particular, this approach aims to address three key points: (i) 

the incorporation of a comprehensive set of driving factors the majority of which are not taken into 

account in the current literature, (ii) the consideration of all road classes (i.e., major and minor) and 

regions in the area of interest (i.e., England and Wales) and (iii) the improvement in estimation 

accuracy. In order to do so, information is extracted from a number of spatial and non-spatial datasets 

from different sources, with the datasets being manipulated in a GIS environment and fed into a hybrid 

model, based on ML techniques. The methodological output reveals traffic patterns across urban and 

rural areas and is demonstrated to produce accurate results for the road classes examined. The 

method can be used to provide outputs at different geographical scales, so it can be used both for 

macro and micro analyses. 

The chapter is presented in six sections. Section 3.2 describes the datasets that will be used and the 

corresponding sources. In section 3.3 the methodology to estimate AADT at unmeasured locations is 

presented, the selected modelling approach is justified and then the process to estimate AADT and 
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validate the model is presented. Section 3.4 presents the derived modelling results and in section 3.5 

I discuss the findings. Finally, section 3.6 summarises the chapter.  

3.2. Data 
 

A number of spatial and non-spatial datasets have been extracted from various sources and 

manipulated within a GIS environment to design features (i.e., variables/factors) – discussed in 

subsection 3.3.2. Selection of specific datasets is based on the identified factors in section 2.3, 

although not all factors identified and used in the literature are available for England and Wales. For 

example, at the time of data collection, the number of lanes and speed limits were not available for 

the road network. However, I make use of many datasets to create features potentially affecting 

AADT, additional to those considered in the literature so far, since incorporating more data has the 

potential to improve model performance (Domingos, 2012). In this section a detailed description of 

the datasets is presented. A summary of all used datasets is shown in  Table C-1 in the Appendix. More 

specifically, the datasets used are: 

i. Traffic count points 

Traffic count points were derived from the UK’s Department for Transport (DfT) and consist of 

approximately 19,000 geocoded count points in England and Wales for 2015, and are classified as 

Major (Motorways22 and ‘A’ roads) and Minor (‘B’, ‘C’ and ‘U’ roads). The count points provide 

information about the number of vehicles (i.e., AADT) driving at that particular point. It is important 

to mention that the counts further distinguish among five vehicle types (Two-wheeled motor vehicles, 

 
22 Motorways have not been utilised at this stage of my research considering that traffic on these roads is not 
directly affected from its surrounding characteristics (Eom et al. 2006, Zhao & Chung 2001). Moreover, traffic 
volume is available for all motorways in England and Wales and consequently there is no need to estimate AADT 
for these roads. Motorways have been used at a later stage of the thesis to facilitate emission estimation (see 
chapter 5). 
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Cars and Taxis, Buses and Coaches, Light and Heavy Goods Vehicles). However, in this chapter, focus 

is placed on the estimation of total AADT – i.e., not distinguishing between vehicle types23. 

For this dataset, I further check for potential missing information and exclude faulty counters where 

identified. Using the locational information this dataset has been converted into a spatial form and 

mapped as shown in Figure 3-1. 

Figure 3-1: Major and minor traffic count points locations in England and Wales 

 

In Table 3-1 the number of traffic count points and the corresponding traffic volume (i.e., AADT) for 

the four road classes modelled in this chapter (i.e., ‘A’, ‘B’, ‘C’ and ‘U’ roads) are presented while in 

Figure 3-2, the average and the range of AADT (i.e., total number of motorized vehicles) for the same 

four classes is shown. 

 
23 Utilisation of vehicle information is further explored in chapter 4 where the impact of variables on each vehicle 
type is explored and in chapter 5 where emissions are estimated. 
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Table 3-1: Number of traffic counters and volume for each road class 

Road Class Total number of points Total traffic volume Traffic volume per point 

A 14,670 276,364,386 18,839 

B 1,032 7,151,442 6,930 

C 1,058 3,592,136 3,395 

U 2,041 2,182,208 1,069 

 

Figure 3-2: Maximum (left), average (centre) and minimum (right) AADT values for all road types 

 

 

ii. Road Network 

The Integrated Transport Network (ITN) and ITN Urban Paths (ITNUP) spatial datasets have been 

extracted from Ordnance Survey (OS) and consist of the entire road network in Great Britain (GB) as 

of 2015. The ITN dataset contains information such as length of each segment in the network, road 

class and locations of junctions for all roads, while the ITNUP dataset contains man-made footpaths, 

subways, steps, and footbridges as well as cycle paths in all urban areas of Great Britain over 5km2 

(Ordnance Survey, 2018) as shown in Figure 3-3. 



65 
 

Figure 3-3: Road network spatial datasets (ITN & ITNUP) 

 

iii. Socioeconomic characteristics 

Socioeconomic characteristics are derived from the Office for National Statistics (ONS), and include 

information about population, population density, workplace population, workplace density, number 

of households and median income based on data collected in 2011, and are available at the Lower 

Super Output Areas (LSOAs)24 level. LSOAs are spatial datasets derived from OS for the same year (i.e., 

2011) where the socioeconomic characteristics from ONS and the number of registered cars and vans 

– derived from the Office for Low Emission Vehicles (OLEV) for 2011 – are matched. Essentially, there 

are three datasets used to create a spatial dataset incorporating the characteristics needed for this 

research. The two non-spatial datasets (i.e., socioeconomic characteristics and registered number of 

vehicles) are matched with the spatial LSOA dataset. Matching is conducted in GIS using LSOA names 

 
24 Lower Super Output Areas are approximately 35,000 areas designed by the Office for National Statistics (ONS) 
for England and Wales, with population minimum of 1000.  
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and corresponding unique coded IDs, that have been available for all three datasets. A sample is 

shown in Figure 3-4.  

Figure 3-4: Population density (left) and registered number of vehicles (right) by LSOA in England and Wales 

 

iv. Public transport 

Geolocated bus stops and bus stations as well as Train and Light Rail stations25 have been derived from 

the National Public Transport Access Nodes (NaPTAN) database in 2016. Again, using the location 

information, the datasets have been mapped as shown in Figure 3-5 and Figure 3-6.  

 
25This dataset includes all National Rail as well as all local metro, tram, and light rail system stations. These 
include the Tyne and Wear Metro (Newcastle), Merseyrail (Liverpool), Manchester Metrolink (Manchester), 
Nottingham Express Transit – NET (Nottingham), Supertram (Sheffield), West Midlands Metro (Birmingham and 
Wolverhampton), West Yorkshire Metro (Leeds) and Blackpool Tramway as well as all London rail-based 
transport modes – i.e., London Underground, London Overground, Docklands Light Railway (DLR) and London 
Tramlink. 
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Figure 3-5: Bus stops locations in Central London 

 

Figure 3-6: Train and light rail stations in the Greater London Area 
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v. Urban areas 

Urban area polygons are spatial datasets derived from OS that designate the urban areas’ boundaries 

in 2016, as these areas are defined by the Ministry of Housing Communities and Local Government, 

and Defra report (Bibby & Brindley, 2014). In Figure 3-7 all urban areas in England and Wales are 

shown. In addition, the six largest (i.e., major) urban areas in England and Wales are highlighted as 

defined by Pointer, (2005). These areas are: The Greater London, West Midlands (Birmingham, 

Wolverhampton, and Coventry), Greater Manchester, West Yorkshire (Leeds and Bradford), Tyneside 

(Newcastle and Sunderland) and Liverpool (also including Wirral and Knowsley) Urban Areas. These 

polygons are used to indicate whether a point is located in an urban or rural environment. 

Figure 3-7: Urban and major urban areas in England and Wales 

 

vi. Land use 

Finally, land use data have been extracted from various sources. First, a list of rateable values for non-

domestic properties in England and Wales as of 2017 is provided by the Valuation Office Agency (VOA). 
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The VOA dataset contains approximately 2.5 million records classified in over 100 classes based on a 

coding system, while addresses and postcodes for the properties are also included. This dataset had 

to be geocoded and existing categories were reclassified to 17 new classes, to reduce complexity. The 

new classes are shown in Table C-2 in the Appendix. Moreover, considering that ports and airports 

have an impact on the transport network of their surrounding area (Hesse, 2013), their locations as of 

2015, are derived from the British Port Association and the Civil Aviation Authority respectively. Using 

the locational information ports and airports can be converted to spatial datasets and mapped as 

shown in Figure 3-8. Finally, electric vehicle charging point locations in 2016 are taken from OLEV. 

Considering location availability, the land use datasets can again be mapped. A summary of all used 

datasets is shown in Table C-1 in the Appendix. 

Figure 3-8: Ports’ and airports’ locations in England and Wales 
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3.3. Methodology 
 

The methodology to estimate AADT comprises of two major stages followed by a series of consecutive 

steps. Firstly, in subsection 3.3.1 the three major modelling approaches presented in section 2.4 are 

revised and the major issues and challenges for these approaches are discussed, so as to conclude on 

the most suitable approach for the research and justify the model selection. Then, in subsection 

3.3.2.2 a detailed description of each step followed to develop a model for AADT estimation is 

provided. All the analysis in this and the following chapters has been conducted using ArcGIS (ArcMap 

and ArcCatalog) – version 10.4, QGIS Desktop – version 2.18.7 with GRASS 7.2.0 and RStudio – version 

1.2.1335. 

3.3.1. Modelling approach 
 

From section 2.4, where the three main approaches for transport modelling have been presented, one 

can see that FSMs and ABMs are mainly simulation models attempting to explain and replicate 

transportation behaviour, either at aggregated (FSMs) or disaggregated levels (ABMs). These models 

almost exclusively utilise data extracted from surveys (Wang et al., 2016). However, big data for 

transport studies – such as smart card data – have been used in recent studies (e.g. Aslam and Cheng, 

2018) and have provided researchers with additional sources and methods to study behaviour and 

estimate mode choice at zonal or individual level, offering larger samples at long observation periods 

at negligible cost (Anda et al., 2017). In addition, novel methodological approaches, such as 

sophisticated statistical models and machine learning algorithms, are nowadays applied for mode 

choice analysis (e.g. Bolbol et al. 2012, Sekhar et al. 2016) which are credited with reducing prediction 

errors compared to the traditional discrete choice models (Brathwaite et al., 2017; Paredes et al., 

2017; Sekhar et al., 2016). In fact, FSM and ABM studies based on either travel surveys or even newer 

datasets have their own drawbacks. Firstly, studies based on sample datasets to draw inferences for 
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the total population, may be susceptible to sampling bias26 so that it is likely that errors generated 

during the first step of an FSM or the population synthesis of an ABM and propagated across the 

process. This is called by Castiglione et al. (2014) “aggregation bias”, related to the fact that individuals 

of the same group with similar characteristics are assumed to behave similarly, although this mainly 

applies to FSMs. Secondly, data requirements and computational costs to simulate travelling 

behaviour for a large area, such as a country, at a granular level are difficult to accommodate. Thirdly, 

both FSMs and ABMs include several assumptions about transport behaviours, such as household’s 

income, access to auto mode, and availability of alternative travel modes, which may fail to account 

for particular population groups and their daily travel needs (Nostikasari, 2015). ABMs also require 

input assumptions about sociodemographic and economic characteristics, multimodal transportation 

networks, and other key factors influencing travel behaviour (Castiglione et al., 2014). Fourthly, the 

use of utility maximising assumption incorporated in some models can also be unrealistic (Pinjari and 

Bhat, 2011). Finally, validation for FSMs and ABMs is an iterative process that would be best conducted 

after each step of FSMs and each output of ABMs, although data limitations sometimes prevent this 

with the implication that the accuracy of the data validation may suffer. In any case, this makes model 

validation complex and time consuming. 

On the other hand, DDMs can address some of the limitations related to FSMs and ABMs. First, the 

DDMs’ aggregated nature and ability to model demand in a single equation imply lower information 

and data requirements (Cardozo et al., 2012). This approach also implies that data samples are not 

required, as estimation can be implemented on the whole population, so that one does not need to 

make any assumptions and extrapolation on the impact in the population based on observed samples. 

In addition, as the DDMs are statistical empirical approaches (Hankey et al., 2017) not aiming to 

simulate travel behaviours, model outputs can easily be validated against observed data. In fact, 

 
26 Sampling (or sample selection) bias is defined as the bias that can be evident if the individuals 
participating/sampled from the population are systematically different from those who do not participate (i.e., 
those who have not been included in the sample) (Cuddeback et al., 2004). 
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Horowitz (2006) states that aggregated DDMs are particularly useful when trying to predict a single 

quantity such as Vehicle Kilometres Travelled (VKT) or emissions in large geographic area such as a 

country, an argument that can partially be based on the lower data requirements and less complexity 

of DDMs compared to FSMs and ABMs. Finally, DDMs can also provide a very granular output, which 

allows for in depth analysis between the dependent and independent variables, so that one can 

capture dynamics missed by other models or more complicate effects such as self–selection27 

(Cervero, 2006) or provide a more direct measure of the impact of independent variables on the 

dependent (Cardozo et al., 2012). 

However, DDMs have also been sometimes criticised due to the fact that they do not explicitly 

incorporate mode choice (Hancock, 2008). Nevertheless, for the aims of this research, DDMs are 

considered more suitable. Due to their statistical perspective and ability to provide a sensible 

relationship between traffic and its determinants, DDMs allow drawing inferences for the most 

significant drivers of traffic volumes (discussed in section 2.3), and associated emissions, in specific 

geographical areas. Consequently, by using relevant data and variables there is no need to make 

assumptions for travel behaviours and related characteristics; thus, providing a more realistic 

perspective on traffic volumes and produced pollutants. Finally, the performance of these statistical 

models can easily be assessed, by using validation metrics based on observed values (i.e., measured 

traffic volumes), allowing for precise estimation. Consequently, a statistical approach – rather than 

simulation – to model AADT is considered more suitable and is used in this chapter. 

3.3.2. AADT modelling 
 

To estimate AADT, three major steps are considered. First, the data described in section 3.2 are used 

to design the variables to be used as model inputs. All variables are designed using GIS. Second, the 

variables are fed into the selected algorithms and validation metrics to assess model’s performance 

 
27 Self-selection is defined by Mokhtarian and Cao, (2008) as “the tendency of people to choose locations based 
on their travel abilities, needs and preferences” (Van Wee, 2009). 
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are used. Finally, the weighted average errors for each road type and across the road network are 

calculated. 

3.3.2.1. Feature design 

The initial step in the approach is to consider each point’s spatial position and incorporate 

characteristics of the point’s environment and location. In order to do this, the fact that urban areas 

generate and attract more activity and that the larger the area the more transport is generated 

(Caceres et al., 2018) has to be taken into account. However, one has to bear in mind that the urban 

areas dataset contains all build up areas whether they are large urban centres or small towns, likely 

to exhibit different traffic. Moreover, points marginally contained within or marginally excluded from 

the urban area polygons (Figure 3-7) have to also be taken into account. To address these three issues, 

it is firstly determined whether each point is located at either urban or rural environment and also 

four distance measures are calculated: (i) distance from urban area (ii) distance from major urban area 

(iii) distance from urban area centroid and (iv) distance from major urban area centroid. A centroid is 

defined as the geometric centre of each urban/major urban area polygon. This variable is designed to 

capture the distance of each point to the relative urban/major urban area centre (i.e., city/town 

centre) – likely to affect traffic. Distances to urban areas are calculated as straight lines (i.e., Euclidean 

distances) from each point to the nearest edge of the nearest urban/major urban area polygon, while 

for centroids, distances are calculated as straight lines from each point to the centroids. 

In terms of roadway characteristics, two indicators for toll roads28 and ring roads are introduced and 

also the “road nature” related to each count point is taken into account, which demonstrates whether 

a point is located on a single carriageway, dual carriageway, slip road or roundabout as indicated by 

OS, and either Trunk29 or Principal road as indicated by the Department for Transport (2014). 

 
28 The “toll road” feature also includes the London Congestion Charge Zone, where all count points within the 
zone are considered to be toll roads.  
29 Trunk roads indicate long distance roads, usually connecting cities and having heavy traffic flows (Department 
for Transport, 2014) 
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In terms of variables reflecting the characteristics of an area, rather than a single point, the work of 

Koperski et al. (1998) based on the concept of service areas which are created around each point is 

followed. This is an improvement on the work of Zhao and Chung, (2001), Zhao and Park, (2004), Sarlas 

and Axhausen, (2014) and Doustmohammadi and Anderson, (2016) who use buffers of different radii 

around traffic count points. Service areas construct buffers by taking into account the street network 

instead of Euclidean distances. This measure is considered to be more suitable for this case study, 

since it can capture the actual predefined distance, a vehicle has to cover from/to the traffic count 

point. The service areas are of six different sizes (500m, 800m, 1000m, 1600m, 2000m and 3200m) for 

all road types as shown in Figure 3-9. The concept of service area is used in the case of land use, 

accessibility to motorways and some of the public transport characteristics. Service areas are overlaid 

with the VOA and charging points datasets as well as with the ports and airports datasets, to assess 

land use within each area. Accessibility to motorways which is associated with higher traffic volumes 

(Apronti et al., 2016; Zhao & Park, 2004), is also assessed by overlaying service areas with motorway 

junctions. Bus stops and bus stations are treated the same way.  

Figure 3-9: Count point service areas 
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Finally, the socioeconomic characteristics – already available at LSOA level as described in section 3.2 

– are taken into account as are train and light rail stations. For the latter the ITNUP30 dataset is firstly 

utilized and 800 metres service areas around each train station are created31. When ITNUP is not 

available (e.g., if a train station is located at any rural area), the ITN is used instead. Then, the 

proportion of each LSOA covered by station service areas is calculated, so as a station accessibility 

attribute is also available at LSOA level. Lastly, the count point service areas with LSOAs are overlayed 

so as to consider all intersecting LSOAs with each service area and introduce socioeconomic and 

station accessibility characteristics for each count point. Specifically, the mean values for station 

accessibility, population density, workplace density, income and workplace plus population density 

are incorporated, the last variable being used in Fu et al. (2017). In addition, the summed values of 

population, workplace population, number of households and registered vehicles are also calculated. 

The feature design process generates 41 independent (33 numerical - 8 categorical) and the 

dependent variable (AADT). The variables are summarised in Table 3-2. 

Table 3-2: Independent variables 

Variable Description Type 

1. Urban/Rural A count point’s surrounding environment Categorical 

2. Distance to Urban Area The straight Euclidean distance from a count point to an urban area 

polygon edge 
Numerical 

3. Distance to Major Urban Area The straight Euclidean distance from a count point to a Major 

urban area polygon edge 
Numerical 

4. Distance to Urban Area Centroid The straight Euclidean distance from a count point to the 

geometrical centre of an urban area polygon 
Numerical 

5. Distance to Major Urban Area Centroid The straight Euclidean distance from a count point to the 

geometrical centre of a major urban area polygon 
Numerical 

6. Toll Road Whether or not the count point is located at a toll road Categorical 

7. Ring Road Whether or not the count point is located on a ring road Categorical 

8. Road Nature Whether the count point lies on a single or dual carriageway, slip 

road or roundabout 
Categorical 

9. Road Category Whether the count point lies on a Primary or Trunk Road Categorical 

10. Junction Accessibility Whether the road where the count point is located has access to a 

motorway based on the specified service area 
Categorical 

 
30 Notice that the use of ITNUP indicates that access to train stations can be by foot as well, using the footpaths, 
subways, steps, footbridges, and cycle paths, although this data is available for urban areas only.  
31 The 800 metres threshold is considered as the standard distance one would consider walking to reach a station 
in most research (e.g. Cardozo et al. 2012, Gutiérrez et al. 2011). 
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11. Charging Points The number of charging points within each service area Numerical 

12. Ports Whether the road where the count point is located has access to a 

port based on the specified service area 
Categorical 

13. Airports Whether the road where the count point is located has access to an 

airport based on the specified service area 
Categorical 

14. Bus Stops The number of bus stops within each service area Numerical 

15. Bus Stations The number of bus stations within each service area Numerical 

16. Train Accessibility The adjacent LSOAs’ average train station coverage Numerical 

17. Population The total population of a count point’s intersecting LSOAs Numerical 

18. Population Density The average population density of a count point’s intersecting 

LSOAs 
Numerical 

19. Workplace Population The total workplace population of a count point’s intersecting 

LSOAs 
Numerical 

20. Workplace Population Density The average workplace population density of a count point’s 

intersecting LSOAs 
Numerical 

21. Workplace plus Population Density The average workplace plus population density of a count point’s 

intersecting LSOAs 
Numerical 

22. Income The average median income of a count point’s intersecting LSOAs Numerical 

23. Households The total number of households of a count point’s intersecting 

LSOAs 
Numerical 

24. Registered Vehicles The total number of registered cars and vans of a count point’s 

intersecting LSOAs 
Numerical 

25-41. VOA (17 features – Table C-2) The total number of VOA elements in the predefined count point’s 

service area 
Numerical 

 

3.3.2.2. Traffic volume (AADT) estimation 

Considering the large geographic extent and mixed characteristics, it is expected that AADT values and 

other variables to exhibit large variations across the study area. For example large differences are 

expected between urban and rural areas (Morley & Gulliver, 2016). For this reason, a clustering 

algorithm to take into account (dis)similarities among count points and their surroundings and group 

points with similar characteristics is firstly applied. Then, three models, namely standard multivariate 

linear regression, Random Forests (RF) and Support Vector Regression (SVR) within each cluster are 

applied and each model’s accuracy is assessed by using validation metrics. 

In order for the models to be comparable based on the selected validation metrics, all the designed 

features are fed to all models without undertaking further statistical tests (e.g., checking for 

collinearity or feature importance). That is, if one model is able to automatically handle complexities 
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within the dataset, it is considered as an asset of the particular model. The process is applied for each 

road class (‘A’, ‘B’, ‘C’ and ‘U’)32 and each service area size individually. Finally, for each road class the 

service area where the algorithm resulted into the lowest errors is selected and the selected points 

are merged to construct the full dataset, so as the optimal service area size for each road class and 

point location can be detected. That allows to identify the optimal distance where the traffic on a 

particular road is influenced by its surroundings. 

3.3.2.2.1. Clustering 

For the clustering stage, the K-prototypes (Huang, 1998) algorithm, suggested by He (2006) is used, 

which integrates the K-means and K-modes processes for numeric and categorical data respectively  

(Huang, 1997a) to cluster mixed type data33 – see list of variables in Table 3-2. K-prototypes, instead 

of taking samples from the dataset, uses the whole dataset and thus it does not suffer from sampling 

bias, and it is less computationally intensive compared to K-medoids or various Hierarchical Clustering 

algorithms that can handle mixed variable types. For numerical variables, K-prototypes uses squared 

Euclidean distances as in K-means, while for categorical variables, the dissimilarity measure is defined 

by the total mismatches of the attribute categories of two objects (Huang, 1998) so that the overall 

distance metric is equal to the squared Euclidean distance to measure (dis)similarity for numerical 

variables and the matching (dis)similarity for the categorical variables, 

𝑑(𝑋, 𝑌) =  ∑(𝑥𝑗 − 𝑦𝑗)
2

𝑚𝑟

𝑗=1

+ 𝛾 ∑ 𝛿

𝑚𝑐

𝑗=1

(𝑥𝑗 , 𝑦𝑗) (1) 

 
32 Again, motorways are excluded at this stage of the analysis considering that traffic on these roads is not 
directly affected from its surrounding characteristics (Eom et al., 2006; Sun and Das, 2019; Zhao and Chung, 
2001). 
33 This choice has been dictated by the fact that most clustering algorithms, for example the K-means, do not 

take into account categorical data, as based on the Euclidean distance. Alternatives such as the chi-square 
(Greenacre & Primicerio, 2015) have been found to perform poorly (Faith et al., 1987; McCune & Grace, 2002).  
Kaufman & Rousseeuw (1990) advocates the use of the K-medoids algorithm incorporating the Gower’s 
similarity coefficient (Gower, 1971) although the computational cost when using this type of similarity metric 
increases significantly and it is therefore unsuitable for large datasets (Huang, 1998).  
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where 𝑋 and 𝑌 are the two mixed-type objects for each point 𝑗, 𝑚𝑟 and 𝑚𝑐 are the numbers of 

numeric and categorical attributes respectively and 𝛾 is a weight to avoid favouring either type of 

attribute (Huang, 1997b). 𝛿 indicates the dissimilarity (mismatches) for the categorical variables, 

where: 

𝛿(𝑥𝑗, 𝑦𝑗) =  {
0 (𝑥𝑗 = 𝑦𝑗)

1 (𝑥𝑗 ≠  𝑦𝑗)
(2) 

Moreover, the data are also transformed to address the problem of different measurement units and 

ranges. Data transformations make features dimensionless to overcome the problems resulting from 

the dependence on different measurement units and the deviations among variable variances that 

affect cluster quality and formations (Rokach & Maimon, 2015; Zhang et al., 2019) so that each 

variable can play an equal role in the analysis (Greenacre & Primicerio, 2015; Han et al., 2012; 

Mohamad & Usman, 2013). Large variable range tend to have large effect on the resulting clustering 

structure (Kaufman and Rousseeuw, 1990; Mohamad and Usman, 2013). As variable measurement 

units and their respective ranges play a significant role in the cluster formations, methodological 

guidance on the use of transformation is very clear-cut in the literature, as applying data 

transformation is considered essential for most practical applications to enhance performance 

(Bishop, 2013). In particular, numerical variables should be transformed to scale their effect on the 

results (Larose, 2005) and conventional distance measures (e.g. Euclidean) should not be used without 

applying transformations on the data (Mohamad and Usman, 2013). 

In terms of the specific transformation, the most common form of normalisation – the   min-max 

normalisation – is applied, which sets all variables within the range of 0 to 1 based on: 

𝑥′ =  
𝑥𝑖 − min (𝑥)

max(𝑥) − min(𝑥)
(3) 

where 𝑖 indicates the data instance and min (𝑥) and max (𝑥) are the minimum and maximum values 

of each variable, respectively. It is also taken into account that the parameters thought to be more 

relevant in separating the groups should be assigned a higher influence factor (Hastie et al., 2009), – 
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i.e. weight34 – to raise their importance of certain variables which are considered more critical in 

cluster formation (Gebotys & Elmasry, 1989; Hummel et al., 2017). Weights can be  assigned by 

multiplying the variables with a constant (Akhanli & Hennig, 2017; Hammah & Curran, 1999). In this 

case, the scope is to form clusters where AADT values are similar and independent variables are 

relatively correlated with the dependent variable (i.e., AADT) within the same cluster, to achieve 

accurate predictions. The upper goal is for the dependent variable to have a high enough weight 

(range) to influence the formation of the cluster, although without dominating it. Considering that 41 

independent and 1 dependent features of different types and ranges are available, applying the K-

prototypes algorithm without transforming the data, results into clusters dominated by the 

independent variables only, while the same output is observed when all variables have equal 

influence. On the other hand, transforming only the predictors, results into clusters dominated by 

AADT values, since the ranges are extremely different. Hence, the work of Bacher et al. (2004) who 

apply random lower weights to variables separating the clusters to achieve equal influence and 

similarly, Opsahl & Panzarasa (2009) who also assign random weights between 1 and 10 to links 

(edges) on their work on clustering networks is followed. That is, the variable ranges are changed and 

weights of 1 and 10 to the independent and dependent variables are assigned respectively35. This is 

achieved by implementing a generalised version of the min-max standardisation above which can be 

used to transform a range of values into another [α, β], i.e. 

𝑥′ = (𝛽 − 𝛼)
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
+ 𝑎 (4)36 

 
34 The weights can be unequal among the variables to define their influence (Friedman & Meulman, 2004) and 
can also be zero if they do not possess any important information (Hammah & Curran, 1999). 
35 I acknowledge that some variables do not directly affect all vehicles; hence their contribution to AADT may be 
questionable – e.g., charging points are only useful for electric vehicles. However, in this stage I do not examine 
the contribution of each variable to different types of vehicles, but to AADT for all motorised vehicles. Moreover, 
in this chapter I focus on AADT estimation and model comparison, thus I have chosen to give all independent 
variables the same weight, so as to be able to draw rational inferences when comparing models. 
36 As it can be seen, the required ranges are set by applying data transformations and consequently weighting is 
achieved without multiplying by a constant. 
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with 𝛼 = 1 and 𝛽 = 10 the required range can be obtained. In the case of the AADT, values within 

the range of 1 to 10 are set, while the value of 0 for the dependent variable is not considered, since 

there are no observations with zero value. Regarding the choice of weights on the variables, more 

information is provided in Appendix C. 

As the K-prototypes algorithm requires defining the number of clusters (K) before clustering is 

implemented, the “elbow” method which is considered as the optimal since it is the only one 

considering mixed data types37 is employed. The elbow method examines the percentage of variance 

as a function of the number of clusters (Bholowalia & Kumar, 2014), the idea being that starting with 

K=2 and increasing the number of clusters, at some point the marginal gain drops dramatically and 

gives an angle in the graph (Kodinariya & Makwana, 2013) indicating the optimal K. When testing 20 

clustering processes (i.e., 𝐾 = 2, 3, . . . , 20), for each of the 4 road classes and 6 service area sizes, the 

optimal number for K ranged between 4 and 6 depending on the case examined each time. For 

simplicity, five clusters for all cases are selected, e.g., Figure C-1 in the Appendix. 

3.3.2.2.2. AADT estimation 

To estimate AADT in each cluster, the dataset is firstly randomly split into two groups, 80% of the 

observations for training and 20% for testing. The training dataset is used to implement three different 

models, namely (i) standard multivariate linear regression (OLS), (ii) Random Forest (RF) and (iii) 

Support Vector Regression (SVR). 

The multivariate linear regression model is as follows: 

𝐴𝐴𝐷𝑇𝑖 = 𝛽0 +  𝛽1𝑥𝑖1+ . . + 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖 (5) 

where: 𝐴𝐴𝐷𝑇𝑖 is the dependent variable at the 𝑖𝑡ℎ observation, 𝑖 = 1, … , 𝑛, 𝑥𝑖𝑗  is the value of the 𝑗𝑡ℎ 

independent variable in the 𝑖𝑡ℎ observation, 𝑗 = 1, … , 𝑚, 𝛽0 is a constant term, 𝛽𝑗 is the regression 

 
37 Other methods include the “Silhouette” method (Rousseeuw, 1987), the Calinsky – Herabasz Criterion (Calinski 
and Harabasz, 1974), Bayesian Information Criterion – BIC (Schwarz, 1978) and Akaike Information Criterion – 
AIC (Akaike, 1974) among others. 
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coefficient for the 𝑗𝑡ℎ independent variable, 𝜀𝑖  is the error term and 𝑚 is the number of independent 

variables. 

Random Forest (RF) is a machine learning technique, used both for classification and regression 

modelling (Strecht et al., 2015), introduced by Breiman (2001). RF is a collection of decision trees, an 

example of so-called ensemble methods, based on bootstrapping (Efron, 1979) and bootstrap 

aggregation (Breiman, 1996). The RF regression prediction is given by: 

𝑓𝑟𝑓
𝐵̂ =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

(6) 

where: 𝐵 is the number of trees and 𝑇𝑏(𝑥) is the 𝑏𝑡ℎ random forest tree grown from 𝑏 bootstrapped 

data. Here, 500 trees and 5 variables for the forest to sample at each split are used. 

Finally, Support Vector Regression (SVR) is the extension of Support Vector Machine (SVM) classifier 

(Cortes & Vapnik, 1995) proposed by Drucker et al. (1997). SVR aims to find a function 𝑓(𝑥) where 

predicted values are at most 𝜀 from the observed ones. The general SVR equation for non-linear 

predictions is given by Basak et al., (2007):  

𝑓(𝑥) =  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑁

𝑖=1

𝑘〈𝑥𝑖 , 𝑥〉 + 𝑏 (7) 

where: 𝛼𝑖 , 𝛼𝑖
∗ are the Lagrange multipliers for each data instance 𝑖, 𝑘〈𝑥𝑖, 𝑥〉 is the kernel38 and 𝑏 is the 

bias. Here the radial basis Kernel is used and by replacing in (7) the equation becomes: 

𝑦 =  ∑(𝑎𝑖 − 𝑎𝑖
∗) ∗ exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2
)

𝑁

𝑖=1

(8) 

where: 𝛾 =
1

2𝜎2 and set to 0.1, and 𝜎 is the standard deviation. 

  

 
38 The kernel refers to a function that maps data from one space to another higher dimensional feature space 
(Hastie et al., 2009) 
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3.3.2.2.3. Validation 

Prediction accuracy is validated using the test set comprising 20% of the dataset. Two validation 

measures are used, the Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =  
100

𝑛
∑ |

𝐴𝑖 −  𝐹𝑖

𝐴𝑖
|

𝑛

𝑡=1

(9) 

where: 𝐴𝑖  is the observed value, 𝐹𝑖 is the predicted value and 𝑛 is the number of observations, and 

the Root Mean Square Error: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝐹𝑖 − 𝐴𝑖)2𝑛

𝑡=1

𝑛
(10) 

3.3.2.2.4. Weighted average 

Weighted average is calculated on the lowest identified MAPEs for each model 𝑗 across clusters 𝑖 for 

each road class 𝑐, 

𝑊𝑀𝐴𝑃𝐸𝑗,𝑐 = ∑ (
𝐴𝐴𝐷𝑇𝑖,𝑐

∑ 𝐴𝐴𝐷𝑇𝑖,𝑐
) ∗ 𝑀𝐴𝑃𝐸𝑖,𝑗,𝑐

𝐾

𝑖=1

(11) 

where: 𝑊𝑀𝐴𝑃𝐸𝑗,𝑐 is the weighted average MAPE for model 𝑗 in road class 𝑐, 𝐴𝐴𝐷𝑇𝑖,𝑐 is the total traffic 

volume for cluster 𝑖 at road class 𝑐, 𝑀𝐴𝑃𝐸𝑖,𝑗,𝑐 is the MAPE for cluster 𝑖, model 𝑗 and road class 𝑐 and 

𝐾 is the number of clusters. Then, the overall weighted average MAPE across road types for the whole 

road network for each model 𝑗, is similarly calculated: 

𝑂𝑊𝑀𝐴𝑃𝐸𝑗 =  ∑ (
𝐴𝐴𝐷𝑇𝑐

∑ 𝐴𝐴𝐷𝑇𝑐
) ∗ 𝑊𝑀𝐴𝑃𝐸𝑗,𝑐 (12) 

where: 𝐴𝐴𝐷𝑇𝑐 is the total traffic counted for road class 𝑐. Similarly, the weighted values for the 

corresponding RMSEs are also calculated. 
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3.4. Results 
 

Based on the evaluation metrics (i.e., MAPE and RMSE) used to assess the performance of each 

regression model (i.e., RF, SVR and OLS), in this section the results for the clusters and corresponding 

service areas where higher estimation accuracy is achieved are presented. 

As the first result from this chapter, it is interesting to comment on the estimated clusters, as they 

exhibit similar patterns across road types. This is shown in Figure 3-10, where the clusters and related 

optimal service area sizes are colour coded. In particular, for each of the four road types, i.e. ‘A’, ‘B’, 

‘C’ and ‘U’: 

− Cluster 1 (red) contains points located on roads where traffic counts tend to be higher, such 

as ring and trunk roads in the case of ‘A’ road class and evenly split between urban and rural areas. 

For ‘B’, ‘C’ and ‘U’ roads points are placed at locations of higher transport significance, almost 

exclusively located in urban areas. 

− Cluster 2 (yellow) includes relatively high traffic values with points in ‘A’ roads located both 

in urban and rural environments, while for other road types, this cluster is mainly formed by points 

within urban locations. 

− Cluster 3 (blue) consists of medium AADT values with points for all road types located within 

urban areas, mainly concentrated in city centres. In particular, ‘A’ road points are observed within 

designated major urban areas as well as the city centres of some medium and small urban centres. 

− Cluster 4 (white) also contains medium AADT, although usually with smaller values than those 

in cluster 3. These points are mainly located in suburban areas of large urban centres as well, but also 

in the centre of smaller settlements. Some of the points are also observed in rural areas, especially in 

the case of lower-class roads. 

− Finally, cluster 5 (green) contains the lowest AADT values which are normally located in rural 

areas and the outskirts of urban centres. 
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Figure 3-10: Clusters for 'A' (top left), 'B' (top right), 'C' (bottom left) and 'U' (bottom right) roads 
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Moreover, this work casts light on the performance of different methods across the five clusters 

formed for each of the four road types. Figure 3-11 to Figure 3-14 display both the MAPEs and RMSEs 

for the 120 combinations of clusters and road types for each of the three methods implemented in 

this chapter. 

Figure 3-11: MAPE (top) and RMSE (bottom) for 'A' roads 

 

 



86 
 

Figure 3-12: MAPE (top) and RMSE (bottom) for 'B' roads 

 

 

 



87 
 

Figure 3-13: MAPE (top) and RMSE (bottom) for 'C' roads 
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Figure 3-14: MAPE (top) and RMSE (bottom) for 'U' roads 

 

 

 

 

As one can see in Figure 3-11 to Figure 3-14 and Table 3-3, the two Machine Learning methods are 

fairly equivalent and outperform the regression method. In the case of the SVR, the MAPE ranges 

between 2% (cluster 3 in ‘C’ roads) and 276.9% (cluster 5 in C roads) while the MAPEs achieved by RF 

range between 2.2% (cluster 3 in ‘B’ roads) and 288% (cluster 5 in ‘C’ roads). Among the three 
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methodologies implemented, linear Regression exhibits the highest MAPEs in almost all cases, with 

values falling between 2.1% (cluster 3 in ‘C’ roads) and 324.8% (cluster 5 in ‘C’ roads). Linear 

Regression also produce a very big error in cluster 1 of ‘U’ roads, probably due to the very small 

number of observations in this cluster (31 points – 25 for training and 6 for testing). Considering this 

result unreliable, it is excluded from Figure 3-14, although it is interesting to see that the SVR performs 

well also in this case despite the very small sample. Similar conclusion emerges when assessing the 

performance of the methodologies implemented in this study based on the RMSEs, therefore adding 

robustness to the conclusion that the two Machine Learning methods are fairly equivalent and 

outperform the regression method (Table 3-3). It is worth mentioning however that RF produces lower 

RMSE than SVR in the case of cluster 1 – ‘A’ roads which is by far the combination with the highest 

level of traffic (Table C-3). Linear Regression continues to produce the largest errors and again results 

into very large error in cluster 1 at ‘U’ roads (not shown in Figure 3-14). 

One can also appreciate from Figure 3-11 to Figure 3-14 that the predicting patterns, as measured by 

the MAPE and RMSE are similar for all models, with higher MAPEs usually observed in cluster 5 and 

higher RMSEs in cluster 1 across road types. This is however a simple reflection of the fact that cluster 

5 comprises observations with relatively low traffic which translates in higher MAPE, while cluster 1 

contains cases with high level of traffic so that the RMSE (which tends to be influenced by the level of 

the observations) is corresponding high. The range of the RMSE values across clusters make 

comparison difficult – as an example it goes from about 5,000 in the case of cluster 1 to as a low as 55 

in the case of cluster 5 in C roads. The relatively small values for most combinations of clusters and 

roads in Figure 3-11 to Figure 3-14 shows that the 3 methods produce similar results when measured 

in terms of vehicles per day, in a way that they may all satisfy users’ needs unless they focus on specific 

types of roads and traffic volumes for which a specific method can work better than another. 

This is confirmed by Table 3-3, which presents MAPEs and RMSEs, first averaged across clusters and 

eventually across road types to obtain an overall MAPE and an overall RMSE for each model. Traffic 
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volumes – presented in Table C-3 – are used throughout as weights in the averaging process. One can 

see that MAPE is highest for ‘C’ and ‘U’ roads and smaller for ‘A’ and ‘B’ roads with the lowest ones 

observed at ‘B’ roads. Moreover, one can see more clearly that SVR is the best performing model when 

measured based on the weighted MAPE, while regression has the highest MAPE for all road types. SVR 

again outperforms RF in ‘B’, ‘C’ and ‘U’ roads, with the MAPE of SVR being 0.2% lower than RF in ‘B’ 

roads and increasing at ‘C’ and ‘U’ roads respectively, e.g., 27% versus 29.3% in the case of ‘U’ roads. 

For ‘A’ roads, however, the performance of SVR and RF is essentially identical and the gap of these 

two methods with the linear regression shrinks to 0.8 percent, as is the overall MAPE with SVR 

performing slightly better than RF but only by 0.01%. 

In terms of RMSEs, it can be seen that the errors are higher for higher class roads and decrease for the 

lower-class roads as expected. This same expected pattern is also observed within the clusters of each 

road class for the unweighted errors as shown in Figure 3-11 to Figure 3-14 and Table 3-3.  However, 

RMSE values are lower in ‘B’ compared to ‘C’ roads where AADT values are usually lower as shown in 

Figure 3-2. The averaged RMSEs show that errors are again higher for Linear Regression and are also 

balanced between SVR and RF, with RF resulting to lower errors half of the time. However, observed 

differences are small and the mean difference between RF and SVR is 217 vehicles across all road types 

in favour of RF. 
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Table 3-3: Original and Weighted MAPEs and RMSEs 

Road 

Class 
Cluster 

Service 

Area 
MAPE (%) RMSE (vehicles per day) Number of points 

   OLS RF SVR OLS RF SVR  

A Roads 

1 – red 800 7.7% 6.7% 6.9% 10,418 8,987 10,410 521 

2 – yellow 1600 4.5% 4.3% 4.4% 1,720 1,652 1,718 2,170 

3 – blue 500 32.3% 32.8% 31.3% 1,339 1,316 1,334 1,672 

4 – white 500 12.0% 11.9% 11.8% 752 742 746 5,627 

5 – green 500 38.2% 34.1% 35.2% 628 578 620 4,680 

Weighted 

Average 

 15.2% 14.4% 14.4% 2,429 2,193 2,423 14,670 

B Roads 

1 – red 800 8.6% 5.0% 2.7% 2,636 1,295 869 86 

2 – yellow 1000 3.2% 2.3% 2.5% 440 334 376 216 

3 – blue 800 2.5% 2.2% 2.1% 207 166 177 184 

4 – white 800 3.3% 3.2% 3.1% 105 94 92 252 

5 – green 2000 47.8% 43.3% 46.6% 163 149 151 284 

Weighted 

Average 

 7.4% 5.9% 5. 7% 815 471 381 1,022 

C Roads 

1 – red 500 16.5% 7.7% 7.8% 5,002 2,609 2,888 59 

2 – yellow 800 3.9% 3.6% 3.3% 339 293 292 207 

3 – blue 1000 2.1% 2.3% 2.0% 85 86 77 147 

4 – white 800 87.5% 87.0% 78.1% 87 73 68 218 

5 – green 1600 324.8% 288.0% 276.9% 73 56 61 427 

Weighted 

Average 

 37.1% 31.8% 30.3% 1,408 796 863 1,058 

U Roads 

1 – red 3200 368.7% 10.6% 4.6% 58,650 1,210 768 31 

2 – yellow 800 3.9% 3.9% 3.6% 216 210 211 187 

3 – blue 1000 21.7% 19.6% 18.4% 72 64 65 557 

4 – white 1000 71.4% 67.3% 64.0% 31 27 26 1,070 

5 – green 500 146.1% 144.0% 134.6% 42 34 33 196 

Weighted 

Average 

 75.2% 29.3% 27.0% 7,327 235 181 2,041 

ALL 

ROADS 

Overall 

Weighted 

Average 

 15.69% 14.48% 14.47% 2,413 2,119 2,336 18,791 

 

Finally, the pattern of the optimal service areas, i.e., the area producing the lowest MAPE, across 

clusters and road types, as shown in Figure 3-15 can be elaborated. Here, a clear pattern is evident for 

road classes ‘B’ and ‘C’, where the service areas are small and similar for clusters 1 to 4 and increase 

at cluster 5. On the contrary, the optimal service areas for ‘U’ roads follow the opposite pattern 

starting at large service area for cluster 1 and gradually decreasing to reach the minimum (500 metres) 

for cluster 5. Service areas for ‘A’ roads are of medium size and also minimise for clusters 3, 4 and 5. 

Moreover, it can be observed that small to medium service areas dominate the figures, with only two 

large service areas observed at ‘U’ roads cluster 1 (3200 metres) and ‘B’ roads cluster 5 (2000 metres).  
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Figure 3-15: Optimal Service Areas by road class (left) and cluster (right) 

 

In addition, one can observe that clusters 3 and 4 fluctuate around small to medium service area sizes 

and tend to increase as the road class decreases in significance (from ‘A’ to ‘U’), in contrast with cluster 

2 where the service area decreases together with the respective road class. Cluster 1 exhibits an 

increasing pattern and cluster 5 – representing the “rural” areas – is optimised at small service areas 

for road classes ‘A’ and ‘U’ and at higher ones for ‘B’ and ‘C’ roads. 

3.5. Discussion 
 

This chapter has focused on the development of a methodology to estimate AADT at locations where 

traffic counters are not available. The procedure has been applied to AADT figures collected from DfT 

for all available road classes in England and Wales from this dataset, therefore providing a rigorous 

and comprehensive test of the process outlined in this chapter. Several variables postulated to affect 

traffic flows were firstly included, based on results from previous studies in the literature, as inputs 

into predictive models. These variables portray a detailed representation of roadway, land use, 

socioeconomic and public transport characteristics. Specifically, utilisation and manipulation of spatial 

data within GIS, facilitated feature design and the analysis, so as to incorporate related socioeconomic, 
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land use and roadway attributes – used as AADT predictors – which are directly associated with the 

count points’ spatial locations.  

The output from the models has been assessed using statistical validation metrics normally employed 

in the literature, in particular MAPE and RMSE. As the focus of this approach in this chapter is on 

estimation, the metrics above were computed on the test dataset, i.e., 20% of the sample, that were 

available. The fact that the choices conform to the standard in the literature both in terms of inputs 

and metrics to assess the output make the results compelling, as high accuracy of the AADT predictions 

obtaining out-of-sample MAPEs as low as 2% can be delivered. This contrast with the majority of 

results arising from the applications in the literature, where in some cases lowest errors are 50% for 

similar road types (e.g. Selby & Kockelman 2013) or ranging between 39% and 400% in others (e.g., 

Wang et al., 2013). 

The significant improvement in accuracy can be attributed to two interrelated aspects of this 

approach: data transformation and clustering. First of all, the clustering algorithm revealed groups 

where data exhibit similar characteristics while the application of data transformations allowed the 

clustering algorithm to create groups where both similar AADT values and related characteristics have 

been taken into account. This can be concluded both from section 3.4 where the clusters are 

presented and even more so from Figure 3-16 where points in city centres are clustered together, 

indicating areas with similar characteristics (e.g., a large number of shops and businesses) and picking 

up underlying roads39. 

 
39 In the case of roads, the north circular (the ring road in north London) is clearly visible among the red dots. 
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Figure 3-16: A road clusters for Greater London (left) and Greater Manchester (right) 

 

However, error deviations among the models, clusters and road types presented in Table 3-3, show 

that the models’ performance – in terms of MAPE – is dependent on two conditions. First is the value 

of the dependent variable (i.e., the amount of traffic per traffic count point) within each cluster, where 

high MAPEs are observed for clusters with low AADT values – usually clusters 4 and 5 – in most cases. 

Nonetheless, this expected outcome is due to the fact that the estimated variable can have values 

very close to zero (Caceres et al., 2018) and consequently even slight deviations would exaggerate the 

error. For example, a misprediction of 10 vehicles would have a different impact on MAPE for an 

observed value of 100 compared to an observed value of 100,000. However, the exception of the 

unexpectedly high MAPE in cluster 3 (blue) for ‘A’ roads, can be due to the characteristics of the areas 

where the points are located. As it is shown in more detail in Figure 3-16 and Figure 3-17 the points 

tend to be at city centres of large and major urban areas, usually associated with diverse land use and 

complexity. Thus, this cluster could be further disaggregated so that patterns not currently identified 

could be revealed, having the potential to improve accuracy (Greenacre & Primicerio, 2015). 
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Figure 3-17: Cluster 3 - 'A' roads 

 

Second condition to affect models’ performance is the number of data instances (i.e., sample) within 

each cluster, particularly in the case of Linear Regression. Specifically, Linear Regression results into 

very high MAPE for the smallest sample across the data set (31 points at cluster 1 – ‘U’ roads) and also 

is over 9% higher compared to RF and SVR for the second smallest sample (59 points at cluster 1 – ‘C’ 

roads) and 3.5% - 6% higher for the third smallest sample (86 points at cluster 1 – ‘B’ roads). Sample 

effect is also noticeable at the RMSEs, where Linear regression again produces very large error in 

cluster 1 at ‘U’ roads, while all models also result into high RMSEs at cluster 1 at ‘C’ roads even 

compared with cluster 1 – ‘B’ roads where traffic counts are higher, as shown in Table 3-3.  

It is important to mention that sample size affects overall model performance. For example, models 

perform similarly – and potentially more accurately – in the case of ‘A’ roads, including most of the 
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traffic count points comprised in the sample (i.e., approximately 15,000 out of 19,000 points). As ‘A’ 

roads account for over 95% of the total traffic in the database – see Table C-3 – it turns out that the 

overall MAPE is fairly similar to the MAPE for ‘A’ roads, to the great benefit of linear regression in 

terms of comparison across methods. That is, if one is to take into account the traffic values estimated 

by DfT (Table C-4) it appears that ‘A’ roads account for 57%, while ‘C’ and ‘U’ roads combined – where 

errors are higher – account for 34% of the total traffic. Consequently, MAPEs weighted based on Table 

C-4 results in only 8% higher error for OLS compared to RF (27.2% versus 19.2%) and 8.6% higher error 

compared to SVR (27.2% versus 18.6%). This leads to the conclusion that again SVR performs better 

than RF and Linear Regression performance is overstated by the sample.  

As a final remark, I look into cluster 1 at ‘A’ roads. From Figure 3-18 it can be observed that the points 

clustered here are mainly associated with ring roads (e.g., north circular in London – also in Figure 

3-16), motorway extensions (e.g., part of A23 from Crawley to Brighton – Figure 3-19) as well as roads 

connecting urban centres – usually trunk roads – such as the A19 (Figure 3-19). Moreover, 96% of 

these points in this cluster are dual carriageways, 15% ring roads and over 10% have access to 

motorways within 800 metres. In addition, from Table C-3 it can be seen that points in this cluster 

have an average of approximately 75,000 vehicles per count point, while for motorways (not included 

in this stage of the analysis) there are approximately 74,000 vehicles per point. This leads to the 

conclusion that count points included in this cluster can potentially have strong similarities with 

motorways, indicating that traffic on these roads is not necessarily related with the road’s immediate 

surrounding environment. 
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Figure 3-18: Cluster 1 - 'A' Roads 

 

Figure 3-19: A23 (left) and A19 (right) roads in cluster 1 
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3.6. Chapter summary 
 

In this chapter two main topics that form the foundation of this thesis have been covered, and by 

doing addressing some of the road transport modelling limitations identified in the literature. First, a 

comprehensive set of drivers of road traffic volumes based on the factors discussed in the reviewed 

literature has been created. Second, a hybrid – clustering-regression – model to estimate AADT for all 

road classes has been developed and validated. 

Based on the aims of this research, the developed model can be used to inform the selection of the 

emission modelling approach. Moreover, considering the AADT estimation accuracy achieved, it is safe 

to assume that emissions can also be accurately estimated. On the other hand, the proposed 

methodology exhibits several limitations that need to be addressed before modelling emissions. These 

are identified and discussed at a later stage of the thesis (chapter 5). 

As a further limitation, the methodology presented in this chapter does not assess or discuss the 

impacts of the identified factors on road transport, since focus has been placed on estimation 

accuracy. However, the dataset created in this chapter and the model outcomes can be utilised to 

investigate the effects of the variables on AADT, as discussed in the following chapter. 
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4. Determinants of road traffic volume 
 

4.1. Chapter overview 
 

AADT modelling presented in chapter 3 has focused on the accurate estimation of traffic volumes for 

all vehicles across different road classes. The model presented, although it can be useful for numerous 

applications in road transport studies – such as accident prediction, noise exposure and emissions 

estimation – it is not informative in terms of the precise effect the identified drivers (Table 3-2) have 

on AADT. This is fundamental not only to facilitate traffic volume estimation, but also to examine the 

complexity of road transport and how it interrelates with urban – and where possible rural – 

infrastructure and demographics. The latter is vital for decision making in the transport field, but also 

across wide range of interconnected sectors such as urban and environmental planning and of course 

the economy. 

In this chapter, the association of driving factors on traffic volumes (i.e., AADT) is investigated, aiming 

to understand the complexity of road transport and address the first aim of the thesis – to identify the 

degree of influence specific factors have on traffic flow variations across the road network. The 

analysis is again focused on the four different road classes as classified by Department for Transport, 

(2014) and are examined individually (‘A’, ‘B’, ‘C’ and ‘U’ roads)40. The analysis is conducted for five 

different vehicle types41 where a statistical model is applied, and the most statistically significant 

variables are identified so that their impact on AADT can be assessed. 

The chapter is presented in six sections. Section 4.2 presents the dataset used and section 4.3 

describes the methodology applied to understand the impact of various factors on AADT. In section 

4.4, the results for each road class and vehicle type are presented, and in section 4.5 the findings for 

all road classes are analysed and discussed. Finally, section 4.6 summarises the chapter. 

 
40 As a reminder, motorways are not examined due to the fact that traffic on these roads is not affected from 
the surrounding characteristics (Eom et al., 2006; Sun and Das, 2019; Zhao and Chung, 2001). 
41 Cars, buses, Light Good Vehicles, Heavy Good Vehicles, and two-wheeled vehicles.  
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4.2. Data 
 

In this chapter, the dataset constructed in chapter 3 is used, as presented in subsection 3.3.2.1. 

However, for each road type and count point, instead of looking at total AADT values, the traffic 

volumes for each of the five different vehicle types – i.e., Cars, Buses, Light Good Vehicles (LGVs), 

Heavy Good Vehicles (HGVs) and two-wheeled – as classified by DfT are taken into account. One has 

to recall that the count points are partitioned in five different clusters and therefore, are characterised 

by the variables where in some cases exhibit considerable variation. Consequently, the distribution of 

the variables is not similar across the clusters and some variables have zero values in some clusters. 

However, a generalised pattern related to traffic volumes emerged – as shown in section 3.4 – with 

AADT decrease starting from cluster 1 towards cluster 5 for all road types (Figure 4-1). Moreover, the 

clusters appear to be significantly affected by the location of traffic counters, being placed in urban, 

suburban or rural areas (Table 4-1). The independent variables are presented in Table D-1  in the 

Appendix. 

Table 4-1: Traffic counters' locations and service areas for each cluster 

Group 
Number 

Colour 
Code 

Road Class Location 

‘A’ ‘B’ ‘C’ ‘U’  

Service Areas Size (in metres) 
 

Number of Points 

1 Red 
800 800 500 3200 ‘A’ roads – evenly split between urban and rural areas 

‘B’,’C’ and ‘U’ roads – mainly in urban areas 521 86 59 31 

2 Yellow 
1600 1000 800 800 ‘A’ roads – evenly split between urban and rural areas 

‘B’,’C’ and ‘U’ roads – predominantly in urban areas 2,170 216 207 187 

3 Blue 
500 800 1000 1000 

‘A’ roads – predominantly in major urban areas and 
centres of smaller urban 
‘B’ roads – evenly split between urban and rural 
‘C’ and ‘U’ roads – predominantly urban 

1,672 184 147 557 

4 White 

500 800 800 1000 
‘A’ and ‘U’ roads – predominantly in urban areas 
‘B’ and ‘C’ roads – split between urban and rural (many in 
the centres of smaller settlements as well as outskirts and 
suburbs of large urban centres) 

5,627 252 218 1,070 

5 Green 
500 2000 1600 500 Almost exclusively rural. Some points for ‘U’ roads are 

located at smaller settlements. 4,680 284 427 196 

Total Number of Points 14,670 1,022 1,058 2,041 18,791 

Proportion of Points in 
each road class 

78.07% 5.44% 5.63% 10.86%  
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Figure 4-1: Total AADT Values by Road Class and Cluster 

 

4.3. Methodology 
 

As discussed in section 2.3 to understand the impacts of the identified factors on AADT the 

employment of statistical or behavioural models is required, so as quantitative or qualitative analysis 

can be conducted. In chapter 3, a statistical approach to model AADT based on numerous variables 

(i.e., features) has been applied, where it is found that ML models perform better compared to the 

traditional OLS statistical approach. However, although ML algorithms have proved to provide more 

accurate results, these models may lack strong theoretical basis and are sometimes considered ‘black-
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boxes’ (Adler et al., 2018; Krause et al., 2018; Steindl and Pfeiffer, 2017), which means there is a lack 

of knowledge in the internal process (Burns et al., 2020; Lakkaraju et al., 2017) making them unsuitable 

for interpreting the outcomes (Brathwaite et al., 2017). This is reflected both in AADT estimation 

studies (e.g. Das and Tsapakis, 2019) and other disciplines (e.g. Churpek et al., 2017; Zhang et al., 

2018), where ML models provide more accurate results compared to other models, but the exact 

impact of predictors on the response variable cannot be assessed and interpreted. 

Hence, to understand the impact of the identified factors on AADT, the coefficients obtained from 

statistical modelling are examined. This is done by first transforming the data in a form enabling 

comparison of coefficients across variables and then, by applying a regression model and extract the 

statistically significant coefficients. From Table D-1 in the Appendix, one can see that numerical 

variables are mainly count variables although a number of continuous variables measured in different 

units are also included – e.g., distances (in meters) and income (in British pounds – GBP). To allow 

comparison of the coefficients, all variables are standardised, using what is sometimes called the z-

transformation. Any count or continuous variable, 𝑥, regardless of the distribution, can be 

transformed into a variable with mean of 0 and a standard deviation of 1, given that they have finite 

mean 𝜇 and standard deviation (SD) 𝜎 : 

𝑥′ =  
𝑥 − 𝜇 

𝜎
 (13) 

This transformation will allow to compare and assess the impact of each – independent – variable on 

the dependent – i.e., AADT (Diez et al., 2012). 

Moreover, logarithmic transformation on the dependent variable is also applied to address the fact 

that the distribution of the dependent variable is skewed to the right for all roads and subgroups (Zoico 

et al., 2010). Therefore, the coefficients of predictors on the dependent variable as percentage 

impacts (Troy et al., 2012), rather than absolute units, can be interpreted. 
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To model the relationship between the independent and dependent variables, the Least Absolute 

Shrinkage and Selection Operator (LASSO) method (Tibshirani, 1996) is used. Lasso is both a regression 

and variable selection method, that aims to produce a set of statistically significant predictors to 

minimise the estimation error (Musoro et al., 2014). This is done by imposing a penalty term on the 

model parameters so that some regression coefficients shrink to zero (Ogutu et al., 2012) and 

consequently these variables are excluded. The so-called L1 penalty is applied by using the parameter 

𝜆 controlling the shrinkage level, so that the set of coefficients estimated by Lasso minimises the 

expression in the curly braces below  (Hastie et al., 2009): 

𝛽𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

} (14) 

where 𝑦𝑖  and 𝑥𝑖 are the outcome and predictor variables respectively and 𝛽 represents the 

coefficients. 

The parameter 𝜆 is key, as changing its values can affect the number of chosen variables and estimated 

coefficients. Specifically, the larger the value of 𝜆, the greater the level of shrinkage and the fewer 

variables retained by Lasso. Therefore, for each 𝜆, the k-fold cross validation method (e.g. Melkumova 

and Shatskikh, 2017; Yang and Zou, 2015) is applied to select the optimal value. During this process, 

the sample is randomly split into k partitions. The k-1 subsets are used to train the model and the 

remaining subset is used to test how well the model fit the data by computing the cross-validation 

error. The process is repeated with a different subsample and the error is computed for each iteration. 

The value providing the lowest error is selected (Moreno-Torres et al., 2012; Wong, 2015). 

However, to account for randomness in the subset selection, a repeated k-fold cross-validation is 

applied. This process replicates k-fold cross-validation multiple times, with the data being rearranged 

for each iteration (Yadav and Shukla, 2016). Here k=10 is used and tested on 100 repetitions. The 

average value for optimal lambda across the repetitions is calculated and used as the parameter in 

Lasso. 
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4.4. Results 
 

In this section, results are presented for each road class and vehicle type separately. The results from 

Lasso include only a subset of variables, as some of the variables have zero coefficient. In some cases, 

this happens for a great share of the variables, while in other cases most variables are retained, and 

in those instances, only those having a high impact on AADT are discussed. Moreover, variables with 

coefficients exhibiting similar patterns across all groups are identified and presented, in addition to 

those with high positive or negative coefficients. It is worth pointing out that the meaning of 

coefficients is different across variable types. In the case of continuous variables, the estimated 

coefficients represent percentage changes in traffic volumes arising from an increase of 1 standard 

deviation (SD) in the variable. In the case of categorical variables, the coefficients represent 

percentage change when switching from the base category to the other category as seen in Table D-2 

in the Appendix, showing the results for all road classes. In this section, the Lasso regression outcomes 

for all roads are presented. The complete set of results can be seen in Table D-3 to Table D-10. 

Discussion and interpretation of all the findings are presented in section 4.5. 

4.4.1. ‘A’ roads 
 

In this road type it can be observed that in the case of roads with high traffic volumes (e.g., cluster 1 

and cluster 2), Lasso returned a set with relatively few variables. Similarly, a relatively small number 

of variables is selected for high volumes vehicle types (e.g., cars) compared to vehicles with lower 

volume. Moreover, the categorical variables have a significant impact across all groups and vehicle 

types (Table D-3 and Table D-4). 

4.4.1.1. Cars 

In the case of cars, the effect of some variables varies significantly across clusters. For example, the 

number of households and the number of registered vehicles exhibit high positive coefficients in 

cluster 3 and high negative in cluster 5. On the other hand, some categorical variables have similar 
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major impact on car volumes across almost all clusters. Dual carriageways are correlated with high 

volumes in most clusters, compared to single carriageways, indicating an increase ranging from 17% 

in cluster 3 to 49% in cluster 5. Ring roads have a higher level of traffic, up to 20% in clusters 3 and 4, 

while Road category is also statistically significant, particularly in the case of low volume clusters such 

as 4 and 5. Compared to primary rural roads, primary urban roads have lower traffic volumes up to 

30%. Trunk roads, on the other hand, are related to higher traffic volumes, up to 12%. Several 

categorical variables have a strong effect only in some clusters, while in other clusters they are 

dropped. This occurs in the case of access to motorways, associated with high traffic volumes only in 

cluster 5 by 30% compared to roads with no access. Occurrence of ports is significantly negatively 

correlated with car volumes in clusters 3 and 5, by 49% and 36%, respectively. Similarly, traffic volumes 

are lower in urban areas in the case of cluster 4 (by 14%) and 5 (by 26%). In some cases, correlation of 

a certain factor with traffic volumes is high but does not manifest itself in the same direction across 

clusters. For example, traffic volumes are 27% lower in the case of toll roads in cluster 3 but 33% 

higher in cluster 5.  

The distances from urban and major urban areas are statistically significant on most clusters, having 

high signs in low volume clusters. It can be observed that the further a count point is from an urban 

or major urban area the lower the car traffic volumes with values as high as 42% in cluster 5, 

considering all other factors being equal. Distances to these areas’ centres have the opposite effect, 

indicating a potential increase in traffic volumes with values reaching 66% in cluster 5. Two land use 

variables – petrol stations and sporting facilities – have positive coefficients in all clusters indicating a 

potential increase on traffic volumes as high as 5%. The number of shops is correlated with lower car 

volumes by 11% in cluster 3. In terms of socioeconomic variables, it can be observed that population 

exhibits high positive coefficients in clusters 3 and 5 (17% and 9%), while population and workplace 

population densities usually have a positive sign ranging from 1% to 5% for most clusters. Income also 

has a positive effect across all clusters reaching 13% in cluster 5. For public transport, train station 

accessibility has a minor negative sign in clusters 1, 2 and 5 and positive for clusters 3 and 4 up to 6%, 



106 
 

while the number of bus stops is associated with lower car volumes across all clusters although there 

is a positive sign of 5% on cluster 5. 

4.4.1.2. Buses 

In the case of buses, among the categorical variables, existence of dual carriageway correlates with 

higher bus volumes from 6% to 32% in all clusters except cluster 2, while fewer buses are expected in 

ring roads, where the there is a negative correlation by -11% in cluster 1 to as much as -30% in cluster 

4. Road category tends to have a strong positive correlation in clusters with high traffic volume while 

it tends to have a negative coefficient in those with low volumes. Specifically, a very high positive 

coefficient (64%) is observed in the case primary urban roads in cluster 1, while the same category 

exhibits a negative (-20%) in cluster 5 where counters are located mainly in rural areas. Among the 

categorical variables which have an effect only in some clusters, access to motorways is associated 

with higher traffic by 11% and the road being in urban areas with lower traffic volumes by 33% in 

cluster 5. 

The set of distances from urban and major urban areas and the respective centres have mixed signs 

on bus traffic. In the case of distance to major urban areas a potential increase by 44% on traffic 

volumes is indicated, although the further apart from major urban areas centres there is a negative 

sing indicating a potential decrease up to 25%. In terms of land use variables, negative signs are 

observed for variables supporting the use of private vehicles, such as vehicle facilities and parking 

variables, each being related to a 10% reduction in cluster 3. There are however instances where the 

impact of these variables is positive, e.g., vehicle facilities in cluster 1. Among the socioeconomic 

variables, workplace population and population densities have positive signs in almost all cases up to 

17% in cluster 3. Population has a positive sign ranging from 16% to 60% while number of registered 

vehicles has a negative up to 21% in cluster 4. Among the factors related to public transport, the 

number of bus stops is associated with higher bus traffic between 8% in cluster 1 and 33% in cluster 
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5. Train station accessibility has a positive coefficient only in the case of cluster 3, indicating higher 

bus traffic by 13%. 

4.4.1.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs) 

LGVs and HGVs are overall affected by similar variables, with estimated coefficients having the same 

sign, most likely because these vehicles are used for similar purposes, i.e., goods transport. In the case 

of categorical variables, ring roads exhibit high positive signs ranging from 6% to 37% and are normally 

higher for HGVs. Also, trunk roads are correlated to more LGVs and HGVs, up to 22% for LGVs and 

112% for HGVs compared to primary rural roads. Dual carriageways are associated with high traffic 

volumes as opposed to single carriageways, up to 44% for LGVs and 76% for HGVs, while access to 

motorways is related to 27% and 50% increase respectively, particularly in low volume clusters. 

Presence of ports has high positive impact on HGVs traffic, up to 55%, although small negative effects 

are observed for LGVs. Distance to urban areas has negative signs in most cases, ranging from -0.13% 

up to -47% for LGVs and -53% for HGVs, although distance to urban city centres has positive signs up 

to 86% and 95% for LGVs and HGVs respectively. In terms of socioeconomic variables, workplace 

population is related to higher LGVs and HGVs volumes in almost all clusters up to 5% for LGVs and 

21% for HGVs. For the public transport variables, bus stops have negative signs on both vehicles in 

most clusters with the coefficients ranging from -2% to -6% for LGVs and up to -17% for HGVs. 

4.4.1.4. Two wheeled vehicles 

Similar to other vehicles, the categorical variable related to dual carriageways correlates with 

significantly increased two-wheeled vehicle volumes up to 32%, with the highest increase occurring in 

cluster 3. Among the distance variables, high positive coefficients (up to 83%) are observed in relation 

to distance to city centres, while negative signs up to -45% can be seen for the distances to urban area 

boundaries, particularly in the case of major cities. For the socioeconomic characteristics, income has 

high positive coefficients across all clusters ranging from 11% in group 5 to 81% in cluster 3. Similarly, 

the number of households is associated with increased volumes from 4% in cluster 5, to 24% in cluster 
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2. Population density is also associated with higher volumes – about 35% for the mainly ‘urban’ cluster 

and the high-traffic cluster. High negative signs are evident for the registered vehicles variable 

reaching -21% in cluster 3. 

4.4.2. ‘B’ roads 
 

For ‘B’ roads, there are fewer instances of coefficients taking high values regardless of the sign across 

clusters of roads, compared to what was discussed in the case of ‘A ‘roads, indicating that different 

characteristics correlate to traffic volumes across different road clusters. Only a few variables are 

observed to be highly correlated with traffic volumes in the case of buses and two-wheeled vehicles, 

where patterns similar to ‘A’ roads are observed (Table D-5 and Table D-6). 

4.4.2.1. Cars 

In the case of cars, the association between traffic volumes and the majority of statistically significant 

variables is negligible, while only a small number of variables exhibit a relatively high positive or high 

negative correlation. In particular, in the case of categorical variables, one can observe that the 

location of points in urban areas (compared to the rural benchmark) is significant only in cluster 3, 

with a negative coefficient of -7% for counters in urban areas – indicating that urban ‘B’ roads are 

related with less car volumes compared to rural. In the case of distances to urban areas and urban 

centres negative coefficients are observed at -3% and -2% for clusters 1 and 3 respectively. However, 

a few socioeconomic variables are statistically significant and are sometimes highly correlated with 

car traffic volume. As an example, income has a positive coefficient of 8% in cluster 5, but only 2% 

cluster 1 and a negative coefficient of -1% in cluster 3. Workplace population has a positive coefficient 

of 5% on cluster 1, while workplace density has a negative of -7% for cluster 4. For public transport 

variables, it is observed that accessibility to train/light rail stations is correlated with lower car traffic 

by 2% for cluster 4 and by 3% for cluster 3.  
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4.4.2.2. Buses 

Also, in the case of buses, relatively few variables are retained by the lasso estimator. Distance to 

urban area centres has a high coefficient (12% and 33%) for clusters 2 and 1 respectively, where points 

in cluster 1 are concentrated around major urban areas. Among the socioeconomic variables, 

population and population density also have high positive signs, up to 29% in cluster 2. With regards 

to public transport variables, bus stops have a high positive coefficient, ranging between 22% and 

24% in three out of five clusters, as one would expect. 

4.4.2.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs) 

For LGVs and HGVs the categorical variable indicating road category has high negative coefficient, 

particularly in the case of HGVs, being associated with lower HGV traffic volumes of 26% and 21% in 

clusters 2 and 3 respectively. In the case of LGVs, road category indicates lower traffic volumes by 6% 

in cluster 3 being the highest sign estimated across the dataset for this particular road class. Distance 

to urban areas has the highest positive coefficient for HGVs, up to 24% in cluster 4 and distance to 

urban centres a negative sign indicating lower HGVs traffic volume by 13% in the same cluster. For 

LGVs and HGVs two statistically significant land use variables have positive signs for both vehicle types 

across road groups. Warehouses are correlated with higher LGVs and HGVs volumes ranging from 1% 

to 7% for LGVs and from 11% to 22% for HGVs. Similarly, the coefficients for factories range from 2% 

to 4% for LGVs and from 1% to 5% for HGVs. In the case of public transport variables, bus stops exhibit 

a negative coefficient for both vehicle types, although it tends to be significantly higher for HGVs, 

reaching -20% in cluster 4. Finally, among the socioeconomic variables, the number of households has 

a negative sign in most clusters, up to -15% in group 3 for HGVs, indicating that household occurrence 

is associated with lower HGVs volumes.  
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4.4.2.4. Two wheeled vehicles 

Similar to the results for ‘A’ roads presented earlier, distance-related variables exhibit high positive 

signs, with values up to 15% in cluster 2, while socioeconomic characteristics are again those mostly 

associated with two-wheeled vehicle traffic. In particular, income has positive sign across all groups, 

ranging from 3% in cluster 3 to 25% in cluster 5. Workplace and population density are also highly 

correlated with the two-wheeled vehicles volumes in most clusters, with coefficient signs ranging from 

11% up to 38%. On the contrary, negative coefficients are evident for the registered vehicles variable 

(i.e., “car_van” – Table D-5), ranging between -3% and -14% indicating the lower traffic volume levels 

of two-wheeled vehicles in those areas where a higher number of cars are registered. Finally, among 

the public transport variables, the occurrence of bus stops indicates lower volumes up to 14% in 

cluster 3. 

4.4.3. ‘C’ roads 
 

Also, in the case of ‘C’ roads, only a small number of variables have been selected by Lasso. Specifically, 

a small number of variables is selected in cases where traffic volumes are low, such as in clusters 4 

and 5, or for those vehicle types where traffic is relatively low across the clusters such as buses (Table 

D-7 and Table D-8). 

4.4.3.1. Cars 

In the case of cars in ‘C’ roads, like with other road classes, the highest positive coefficients are 

observed in relation to the categorical variable indicating dual carriageway roads, which is related to 

car volumes being higher by 2% in cluster 2 and 19% in cluster 1 compared to single carriageways. The 

highest negative coefficients are observed in the case of distance-related variables up to 24% in cluster 

4 for distances to urban areas, and up to 13% in cluster 5 in the case distance to urban areas’ centres. 

The land use variables representing vehicle related facilities (see Table D-1 in the Appendix and Table 

3-2) and education related buildings and facilities (i.e., “Research” – e.g., schools and universities – in 
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Table D-7) have positive signs for clusters 2 and 4 ranging from 2% to 5%. Sporting facilities are also 

related to higher traffic, as much as 9%, while parking infrastructure has a positive sign up to 5%. On 

the contrary, occurrence of factories is associated with higher car volumes in some clusters (up to 8%) 

but lower in others, up to -3%. The presence of offices also has a negative coefficient in clusters 2 and 

3 indicating lower traffic volumes of 2% and 7% respectively. Public services buildings – indicated by 

the variable “public” in Table D-1 – has a negative coefficient of 7% for cluster 2.  

Socioeconomic variables are particularly important in cluster 4 and 5, where count points are primarily 

located in rural areas. Specifically, population is related to higher car traffic volumes by 12% and 21%, 

respectively. The number of households has a positive sign of 9% in cluster 5, while the coefficient of 

income is 13% in cluster 4. In the case of the other clusters, these variables tend to have a small signs, 

if any. 

4.4.3.2. Buses 

In the case of buses, the distance to urban areas variable has high negative coefficients across most 

clusters, ranging from -7% to -22%. The signs of distance to urban city centres on bus volumes, 

however, is less uniform, going from a negative of 13% in cluster 4 to a positive of 23% in cluster 2. In 

the case of land use variables, healthcare and education facilities have both positive signs ranging 

from 5% to 16%, while the leisure facilities are related to a positive sign of 12% in cluster 3. Large 

differences across clusters are observed for other variables related to land use, such as parking 

facilities, exhibiting positive coefficients in cluster 1 and 4 at 5%, but a high negative coefficient for 

cluster 3 (-20%). Similarly, the variable “Public” – indicating public services buildings (see Table D-1 in 

the Appendix) – has a negative sign of -10% for cluster 2, but positive for clusters 1 and 3, at 2% and 

12% respectively. Vehicle related infrastructure – indicated by the variable “Vehicle” in Table D-1 – 

tend to be related with lower bus volumes as high as 22% in cluster 3.  

Socioeconomic variables play a significant role for buses in this road class. In particular, high signs can 

be observed in the case of population density, with coefficients ranging from -7% in cluster 5 to 39% 
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in cluster 2. The number of households also exhibits negative signs in clusters 2 and 5, being 28% and 

2%, respectively. 

Finally, public transport variables have a positive coefficient across all clusters where they are 

retained. The signs of the number of bus stops are particularly strong in clusters 2 and 3, at 32% and 

37% respectively. Bus stations also have a positive sign of 12% on cluster 3 while accessibility to train 

stations is correlated with higher bus volumes by 10% in cluster 4. 

4.4.3.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs) 

For LGVs and HGVs, distance-related variables have mixed coefficients signs. Distance to urban areas 

has a low positive coefficient for both vehicle types in cluster 3 (4% for LGVs and 2% for HGVs). The 

coefficients signs are higher but negative in other clusters – e.g., -11% for LGVs in cluster 4 and -7% 

for HGVs in cluster 5. Similarly, distance to major urban areas has a positive coefficient for LGVs in 

cluster 1 (4%) but negative in cluster 4 (-8%). For HGVs the sign is also negative in cluster 3 (-2%). 

Distance to urban centres has also a negative sign on LGVs volumes at -5% in cluster 4 and -6% in 

cluster 5. 

The land use variables of warehouses and factories have significant correlation with both vehicle types 

across almost all clusters. In particular, the presence of warehouses indicates higher LGVs volumes up 

to 10% and HGVs up to 26%, and the presence of factories indicates higher LGV volumes up to 13% in 

cluster 4 and HGV volumes up to 15% in cluster 3. Sporting facilities, healthcare infrastructure, and 

farming and agriculture facilities are all associated with higher LGVs volumes by 9%, 5% and 4.5% 

respectively in low traffic clusters. On the contrary, the number of shops is associated with lower LGV 

volumes by -4% and -3% in clusters 1 and 3 respectively. 

In terms of socioeconomic characteristics, population is related to higher LGVs volumes by 6% in 

cluster 4 and by 12% in cluster 5, while workplace population is correlated with higher HGVs volumes 

in cluster 5 by 13%. On the contrary, the number of registered vehicles – indicated by the variable 
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“car_van” in Table D-1 – indicates fewer HGVs by -7% in cluster 3 and by -18% in cluster 2. Among the 

public transport variables, number of bus stations is associated with lower LGV and HGV volumes in 

clusters 2 and 3 up to -6%, although train/light rail accessibility has a positive coefficient (8%) for HGVs 

in cluster 2. 

4.4.3.4. Two wheeled vehicles 

Again, similar to road classes ‘A’ and ‘B’, the categorical variable “road nature” is statistically 

significant indicating that dual carriageways carry 22% more two-wheeled vehicles in cluster 2 

compared to single carriageways. The distance-related variables exhibit positive signs in most of the 

clusters, indicating higher two-wheeled traffic volume ranging from 4% in cluster 3, up to 18% in 

cluster 2. The highest negative coefficient is observed for the land use variable indicating the number 

of shops at -17% in cluster 2. Similar to ‘A’ and ‘B’ road classes, the socioeconomic characteristics play 

a significant role for two-wheeled vehicles, where the high coefficients are observed. In particular, 

population density is related to higher traffic volumes up to 20%, while workplace and population 

density also having a positive sign in clusters 2 and 3 at 14% and 29% respectively. In the same clusters, 

income is related to higher traffic volumes by 10% and 5%. The number of registered vehicles has a 

negative sign in cluster 2 at 9%. Finally, the public transport variable of bus stops also exhibit a 

negative coefficient of -3% in cluster 2 and by -16% in cluster 3. 

4.4.4. ‘U’ roads 
 

Again, in the case of ‘U’ roads, few variables have been selected by Lasso. However, in contrast with 

the other road classes, there is no specific pattern of variable coefficients across clusters or vehicle 

types (Table D-9 and Table D-10). 

4.4.4.1. Cars 

For cars, a larger number of variables has been selected in clusters with lower traffic volumes, but 

none of the variables is observed to have similar either positive or negative sign across clusters. In 
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fact, more variables are selected in cluster 5 where the highest and lowest coefficients are observed. 

More specifically, distance to urban areas is associated with lower car volumes in cluster 5 by -16%. 

In terms of land use characteristics, four variables have a relative significant coefficient. In particular, 

the number of public buildings and infrastructure – indicated by the variable “Public” in Table D-1 – 

has a positive sign of 6% in cluster 5. In the same cluster, education related facilities – indicated by the 

variable “Research” in Table D-1 – are related to more cars by 8%, while the number of offices has a 

significant positive sign of 22%. Charging points have a positive coefficient of 7% in cluster 5, although 

there is a negative sign of -7% in cluster 4.  

The highest positive coefficient is observed for the socioeconomic variable of registered vehicles at 

66% in cluster 5, although the coefficient is 4% in cluster 4. Population density also has a positive sign, 

indicating higher car volumes in cluster 5 by 13%, although it indicates lower traffic by 10% and 6% in 

clusters 3 and 4, respectively. Workplace and population density is correlated with higher car traffic 

by 26% in the low traffic volume cluster as well. The highest negative coefficient is observed for the 

population variable in cluster 5, indicating lower traffic volume by -36%. Finally, income has a positive 

coefficient of 4% in cluster 4. 

In terms of public transport characteristics, it is observed that the presence of bus stations correlates 

with lower car volumes up to -9% (cluster 1). Train station accessibility also indicates lower car volume 

by -12% in cluster 3, although it correlates with higher volumes by 13% in cluster 5. The number of 

bus stops is related with higher car volumes by 33% in cluster 5 only. 

4.4.4.2. Buses 

For buses, distance to urban areas has a negative sign across all clusters with values ranging from -9% 

in cluster 1 to -20% in cluster 2. 

The land use variable of warehouses has a positive coefficient in cluster 1 at 70% although the 

coefficient signs for clusters 2 and 3 are negative, indicating lower bus traffic by -14% and -9% 
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respectively. Similarly, the presence of superstores is associated with higher bus volumes at cluster 1 

by 36% and lower in cluster 4 by -2%. The presence of factories indicates lower bus traffic by -22% at 

cluster 2. In terms of socioeconomic variables, the number of registered vehicles correlates with lower 

bus volumes at clusters 3 and 4 by -22% and -3% respectively. Income also has negative coefficients 

in three clusters. In particular, signs are negative in clusters 2, 3 and 4 indicating lower bus traffic 

volumes by -10%, -5% and -6% respectively.  

Similar to other road classes, among the public transport variables, the number of bus stops is 

significantly correlated with higher bus volumes in all clusters where it is selected by Lasso, with 

coefficient signs ranging from 2% in cluster 4 to 86% in cluster 2. 

4.4.4.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs) 

For LGVs and HGVs distance-related variables have both negative and positive coefficient signs 

ranging from -8% to 4% for LGVs and from -10% to 32% for HGVs. 

The land use variable of warehouses has positive coefficients for both vehicle types and across all 

clusters, ranging from 1% to 11% for LGVs and from 6% to 35% for HGVs. However, in contrast with 

other road classes the occurrence of factories has mixed signs on LGV volumes, with a negative 

coefficient of -5% for LGVs in cluster 3 and a positive of 2% in cluster 4. In the same cluster, factories 

are correlated with higher HGVs volume by 12%. In terms of socioeconomic characteristics, income 

has a high positive coefficient of 45% for HGVs in cluster 1 and a negative of -3% for LGVs in cluster 3. 

The number of registered vehicles is associated with lower HGV traffic in clusters 1, 2 and 3 by 30%, 

17% and 22% respectively. Finally, population and population density also indicate lower traffic 

volumes for both vehicle types up to -26% for LGVs in cluster 3 and up to -5% for HGVs in cluster 4. 

4.4.4.4. Two wheeled vehicles 

For this vehicle type the majority of distance-related variables have positive signs. In particular, the 

coefficients for the distance to urban and major urban centres variables range from 2% in cluster 5, to 
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16% in cluster 3. However, the distance to urban areas has mixed signs on two-wheeled vehicles, 

indicating higher traffic volumes by 2% in cluster 2, but lower in cluster 3 by 4%. The highest negative 

coefficients among the land use variables are observed for healthcare facilities at -8% and factories at 

-7%, both observed in cluster 3. Moreover, petrol stations are related with lower two-wheeled vehicle 

traffic by -3% in cluster 2 and by -10% in cluster 3 respectively. 

Socioeconomic variables again have significant coefficient signs for this vehicle type, similar to other 

road classes. Population density, workplace density and income, are all associated with higher traffic 

volume up to 26%. Moreover, the number of households is associated with increased traffic volumes 

by 10% in cluster 2 and by 66% in cluster 3. On the contrary, the highest negative coefficient is 

observed for the population variable in cluster 3, indicating lower traffic volume by -24%. 

Finally, the effects of public transport characteristics vary across groups. Train station accessibility is 

related with decreased traffic by 5% in cluster 4, although the variable exhibits a positive sign of 19% 

in cluster 2. Similarly, the number of bus stops is related with decreased volumes by 5% in cluster 3 

and by 1% in cluster 4, although it exhibits a positive sign in cluster 5, increasing traffic volume by 13%. 

4.5. Discussion 
 

This chapter focused on the identification of several characteristics that are associated with traffic 

volumes of the five different vehicle types, normally used by DfT. The coefficients were analysed by 

road class and vehicle type, further classified in five subgroups (i.e., clusters). In this section, the results 

presented in section 4.4 are discussed and the causes behind the statistically significant variables 

produced by Lasso are identified. Due to the large number of variables, focus is placed on those 

exhibiting similar patterns across road types and clusters and those with the highest impact on each 

vehicle’s traffic volume as indicated by the coefficients. 

As a general observation it can be seen that most coefficients take the expected value across road 

classes, vehicle types and clusters. However, one has to bear in mind the imbalanced number of traffic 
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counters for each road type (Table 4-1) and that for smaller road classes traffic counts are taken 

seasonally and manually, and eventually adjusted to estimate AADT (Department for Transport, 2013, 

2014), therefore adding additional uncertainty to the results. Moreover, the number of vehicles 

driving through roads with lower traffic volumes is small, so that zero counts are not uncommon for 

some vehicle types, and most count points are in urban areas. 

The significant effect of some variables across all road classes and clusters is also observed. 

Specifically, carriageway type is significant for ‘A’, B’ and ‘C’ roads, with dual carriageways being 

correlated with higher traffic volumes for most vehicle types. More vehicles are expected to drive 

through dual carriageways – as opposed to single – due to safety and increased speed limits (Butcher, 

2017; Pitaksringkarn et al., 2018) and lower design standards for single carriageways (Gitelman et al., 

2017). The effect of this variable is not significant for ‘U’ roads, due to the fact that there are not many 

dual carriageways in these roads. Moreover, it can be observed that the set of distance variables 

affects all vehicles in all road classes. The effects of the variables selected by Lasso for each vehicle 

type are discussed for all the investigated road classes as follows: 

4.5.1. Cars 
 

In the case of cars, income is statistically significant in all road classes and most clusters with positive 

sign, apart from cluster 3 in ‘B’ roads. The positive signs are explained by the fact that the higher the 

income the more likely one is to own a car (Silva et al., 2012). For ‘A’ roads, income has a positive 

coefficient on all clusters with higher sign in cluster 5 – the one with the lowest public transport 

coverage. For ‘B’, ‘C’ and ‘U’ roads the variable is significant with smaller signs in clusters 4 and 5 

where counters are located mainly in rural and/or suburban areas, confirming results for ‘A’ roads. 

The positive coefficient  of income, particularly in rural areas confirms findings in Oakil et al., (2018), 

where commuting is more likely to occur with private vehicles, due to lack of public transport (Diao 

and Ferreira, 2014) and long waiting times (Becker and Axhausen, 2017). 
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Distance to urban and major urban areas is also statistically significant across all road classes and most 

clusters. The pattern observed indicates that the further from urban areas the less cars are on the 

streets. The coefficients tend to be higher for low volume clusters across all roads, a logical outcome, 

since most counters are within urban areas where volumes are higher. Similarly, distance to urban 

centres is significant at all road classes, although the signs are usually positive and higher for ‘A’ roads. 

Moreover, the high positive coefficients for distance to major urban centres observed for ‘A’ roads, 

are explained by the fact that urban centres are usually better served by public transport. In the case 

of major urban centres, the results are significantly affected by the Greater London area, where there 

is a high public transport coverage and congestion charges apply in the city centre. 

Studies have shown that the effect of sporting facilities on traffic volumes depend on the scale of 

facilities and activities taking place (Humphreys and Pyun, 2018), with large scale events taking place 

in large sport facilities significantly increasing traffic in the surrounding area (Ghosh et al., 2019; Kim 

et al., 2017). Considering that many different types of facilities are included in the “sport” variable 

(Table D-1), it can be assumed that higher coefficients relate to larger venues, where people usually 

drive to attend events (Ghosh et al., 2019). Smaller ones relate to smaller sport infrastructure such as 

sporting centres or golf courses, attracting fewer people. 

Considering that the number of shops and offices attracts more people, car traffic would be expected 

to follow (Choudhary and Gokhale, 2019). This is observed in cluster 5 (mainly rural), providing one 

more evidence about the reliance to private vehicles in rural areas (Jain et al., 2018; Zahir and Haron, 

2019). However, high negative coefficients are observed in clusters 3 and 4 for ‘A’ roads and clusters 

2 and 3 for ‘C’ roads. Here, traffic counters are located in urban centres (Table 4-1) and the coefficients 

can be related to higher public transport coverage (Figure 4-2 and Figure 4-3). 

The occurrence of public transport where one would expect to be associated with lower car volumes 

(Cervero, 1994; Handy, 1996) is evident across all road classes and most clusters with some exceptions. 

Train accessibility is associated with lower car volumes in clusters 3 and 4 in ‘B’ and ‘U’ roads (i.e. 
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predominantly urban); an expected outcome, also validated by the majority of similar studies (e.g. 

Aditjandra et al., 2012; Cervero, 1994). However, in ‘U’ roads, public transport has mainly positive 

coefficients in cluster 5. This is due to the fact that cluster 5 represents rural areas (Table 4-1), 

indicating that people access stations with private vehicles, considering that these areas are more 

likely to exhibit an absence of buses serving the stations. For ‘A’ roads, where train station accessibility 

has negative signs in cluster 5 and positive in clusters 3 and 4, the coefficient is related to competition 

between car and public transport modes, due to the fact that train stations are usually located near 

heavy traffic roads (Kwon et al., 2016). 

Figure 4-2: Bus Stops Distribution for ‘A’ Road Groups 3 (left), 4 (middle) and 5 (right) 

 

Figure 4-3: Train/Light Rail Accessibility Distribution in ‘A’ Road Groups 3 (left), 4 (middle) and 5 (right) 

 

The coefficients from socioeconomic variables associated to population, workplace population and 

related densities indicate that the higher the population, the higher the number of cars on the streets, 
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a finding that complies with outcomes from other models (e.g. Mohamad et al., 1998; Zhao and Chung, 

2001; Zhao and Park, 2004). On the contrary, density indicators are usually associated with lower car 

volumes confirming findings of Zhang, (2007), as compact areas discourage car usage. However, 

densities are usually associated with higher traffic volumes in cluster 5, again indicating that these – 

predominantly rural – areas depend more on private vehicles.  

Finally, a few variables are correlated with car volumes on specific road classes and clusters, 

particularly in the case of ‘A’ roads. Specifically, one would expect high positive coefficients on ring 

roads, since they are usually large roads designed to carry and distribute large traffic volumes radially 

across the network (Jianqin et al., 2015). Access to motorways with positive coefficient in cluster 5 is 

also expected, since roads service as entry points to motorways carry more vehicles compared to 

roads of the same class without access and these are often located in rural areas. A number of studies 

also confirms my findings (e.g. Dombalyan et al., 2017) related to the negative coefficient for toll roads 

in cluster 3, with lower traffic volume compared to toll-free roads of similar size42. Toll roads tend to 

obstruct traffic volumes due to toll stations (Abdelwahab, 2017) and people tend to avoid roads where 

a fee is needed. The negative signs for ports in clusters 3 and 5 are expected, as freight vehicles are 

likely to generate the highest share of traffic, although one should notice that only very few counters 

are located close to ports for both clusters. Finally, the presence of petrol stations associated with 

higher levels of car traffic is related to additional traffic generated by the station itself as cars drive in 

those roads to refuel but also because petrol stations are placed at locations with already high traffic. 

4.5.2. Buses 
 

Measurements for this vehicle type also incorporate coaches (Department for Transport, 2014), which 

may cause uncertainty in relation to the estimated coefficient since buses are used for commuting 

within urban areas, while coaches are used for intercity travels. 

 
42 The positive coefficient in cluster 5 (see Table D-3), is probably explained by the fact that there is only one 
traffic counter indicated as toll road, hence we can question this coefficient’s reliability. 
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Among the significant variables, the sign of estimated coefficients confirms expectations with few 

exceptions. Bus stops correlate to bus volumes across all road classes and clusters where the variable 

is selected. Distance to urban areas has negative coefficient across all clusters, confirming that more 

buses are expected in urban rather than rural areas (Carli et al., 2015). On the contrary, distance to 

major urban areas is statistically significant for ‘A’ roads only in clusters 1 and 4 and it does not reflect 

the expected outcome, possibly due to the fact that coaches are also incorporated in this vehicle type.  

Similarly, distances to urban area centres indicate an increase in bus volumes for ‘A’, ‘B’ and ‘C’ roads. 

For ‘A’ roads, the coefficient is positive probably due to the fact that more than half of the counters 

are placed on trunk roads and ring roads where buses are less likely to drive through. For ‘B’ and ‘C’ 

road classes the coefficients can be explained by the fact that points in the clusters where the variable 

is significant are located within urban areas, but the majority is located around city centres (e.g., 

suburbs). However, for ‘A’ roads, distance to major urban area centres indicates that bus volumes 

reduce the further away from city centres, although signs are opposite for clusters 4 and 5 in ‘B’ roads. 

This is an expected outcome, since most of buses drive through ‘A’ roads and one would expect major 

city centres to be better served by these vehicles, while for ‘B’ roads again the coefficients could 

possibly be affected by coaches. 

Similar to the case of cars, population, workplace population and related densities are associated with 

increased bus volumes across ‘A’, ‘B’ and ‘C’ roads and most clusters indicating that bus routes are 

placed and used in heavily populated urban areas, where public transport has a significant effect 

(Bento et al., 2005; Friedman et al., 1994). The few negative coefficients normally observed in cluster 

5 indicate reliance on private vehicles in rural areas. These variables are not statistically significant in 

the case of ‘U’ roads – usually small roads in residential areas – where less buses are likely to drive 

through. 

The negative coefficients for income for ‘B’, ‘C’ and ‘U’ roads indicate that higher income results into 

lower bus use, since households with higher incomes are more likely to own private vehicles (Cervero 
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and Kockelman, 1997; Papagiannakis et al., 2018; Silva et al., 2012) and an increased number of private 

vehicles is related to lower bus traffic, since transport needs are met by cars (Aditjandra et al., 2012; 

Diao and Ferreira, 2014). These results confirm expectations and are correlated with coefficients 

related to private vehicles, such as the registered vehicles (i.e., “Car_van” – Table D-1), parking 

facilities and vehicle related infrastructure variables, more clearly indicated in the case of ‘A’ roads. 

Here, in areas with parking availability and places where vehicle related infrastructure is evident – e.g., 

vehicle repairs workshops and garages – bus volumes are lower.  

Again, as with cars, several variables are correlated with bus volumes on specific road classes and 

clusters. For ‘A’ roads, the positive coefficients for primary and trunk roads in cluster 1 are expected, 

although the coefficient for primary urban roads is negative for cluster 5, most likely because cluster 

5 predominantly consists of rural roads. Moreover, the occurrence of factories, reduces bus traffic in 

‘A’ roads as expected, since these facilities are usually located in industrial areas where people usually 

commute to by private vehicles. Train accessibility in ‘B’ roads, takes positive sign in cluster 2 (mainly 

urban areas), due to buses connecting to train stations (Hong et al., 2016; Kang et al., 2019; Seriani 

and Fernández, 2015), while it has a negative sign in cluster 3 (rural and smaller urban areas) where 

coaches and trains might be substitute (Webb et al., 2016). For ‘U’ roads, the high coefficient (36%) 

for “Superstores” is explained by the fact that 29 out of the 31 counters in this group have at least one 

superstore in the vicinity, while 26 of them are in urban and/or major urban areas, with the majority 

being near the respective centres. Therefore, it is likely to have buses servicing these facilities and it 

can be safely assumed that the coefficient is reasonable. Overall it can be concluded that bus volumes 

are negatively correlated with variables related to high car volumes, as it is also confirmed by 

numerous other studies (e.g., Aditjandra et al., 2012; Bento et al., 2005; Cervero, 1994; Stead, 2001). 

4.5.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs) 
 

In the case of LGVs and HGVs, the most significant effect is related to the occurrence of warehouses 

and factories, indicating an increase in AADT for both vehicle types across all roads and almost all 
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clusters. This is a logical outcome since these vehicles access these facilities to deliver or pick up goods 

(Nugmanova et al., 2019). For ‘B’ roads, the coefficients are remarkably high for the warehouse 

variable, particularly in cluster 4, with most points being located in rural and suburban areas where 

HGVs are more likely to drive (Chhorn et al., 2018a). 

The set of distance variables is correlated LGV and HGV volumes across all road classes. For ‘A’ roads, 

the higher the distance from urban and major urban areas, the lower the level of traffic; a reflection 

that higher economic activity – usually observed in large urban areas – drives demand for LGVs and 

HGVs. On the contrary, high coefficients for HGVs in ‘B’ roads, indicate that large vehicles are difficult 

to operate within dense urban environments on secondary roads, therefore are usually observed far 

from urban areas, an expected outcome. For smaller road classes (i.e., ‘C’ and ‘U’) in high volume 

clusters (i.e., clusters 1, 2 and 3) the signs are similar to ‘B’ roads. However, the negative coefficients 

observed in low volume rural clusters 4 and 5 particularly for HGVs, indicate that operation of these 

vehicles is related with urban areas of higher economic activity. 

Distance to urban and major urban centres coefficients for ‘A’ roads, indicate that these vehicles 

operate far from city centres, with convenient access required particularly by HGVs, but also due to 

restrictions usually applied, leading to extensive use of ring or peripheral roads (Tzouras and Lázaro, 

2018). ‘B’ and ‘C’ roads exhibit similar patterns, with negative coefficients for HGVs indicating reduced 

traffic volumes close to urban centres due to operating restrictions (Browne et al., 2010), although 

the number of LGVs increases slightly due to the fact that these vehicles are used for goods 

transportation in inner city roads (Chhorn et al., 2018b). For ‘U’ roads the high positive coefficient 

(32%) for distance to urban centres for HGVs in cluster 1 is explained by the fact that the majority of 

counters are located within urban/major urban areas. Similarly, the negative coefficient of -10% for 

distance to major urban centres in cluster 1, is possibly affected by the number of points within the 

Greater London area, where specific permits are needed for HGVs to drive there (Transport for 
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London, 2019). In both cases, it can also be observed that the number of HGVs is affected by the 

location of warehouses and factories, which are usually placed far from urban areas and their centres. 

The conclusions drawn for the distance variables are also conveyed by socioeconomic variables such 

as the number of households, population and workplace population densities, which have negative 

coefficients across all road classes and most clusters. The pattern is slightly different for ‘U’ roads, 

where areas with high population densities exhibit lower GV traffic, while workplace population and 

density both positive impacting traffic volumes – probably indicating industrial areas where these 

vehicles are likely to operate. Overall, it can be concluded that HGVs are unlikely to drive through 

lower class roads (i.e., ‘C’ and ‘U’) or extensively residential or urban areas, since the roads are smaller, 

and transportation is more convenient with smaller vehicles. This can also be confirmed by the Road 

Category variable coefficients in ‘B’ roads, where lower traffic volume is observed in urban areas as 

opposed to rural, and also by the coefficients in ‘A’ roads, where traffic is lower in primary urban roads, 

although trunk roads, carry higher volume of GVs both within urban and rural areas.  

Finally, a few variables are statistically significant in ‘A’ roads only. For example, the presence of ports 

is correlated with higher HGVs traffic volumes and lower LGVs volumes across clusters apart from 

cluster 3. In this cluster, only a few ports can be found in the vicinity of the counters and the variable 

is not statistically significant. Transportation of goods to ports usually occurs at a large scale, more 

suited to HGVs, therefore explaining the different coefficients of ports on HGVs and LGVs. One would 

also expect to see a large number of LGVs and HGVs in ring roads and trunk roads as expressed by the 

positive coefficients on these variables and the variable indicating access to motorways (i.e., 

“Junction” – Table D-1). Specifically, HGVs use ring roads to access facilities before transportation 

switches to smaller vehicles in inner city roads (Chhorn et al., 2018b). 

4.5.4. Two wheeled vehicles 
 

Traffic volumes for these vehicles is mostly associated with socioeconomic characteristics. It can be 

observed that higher income is correlated with higher two-wheeled vehicle volumes (Department for 
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Transport, 2016b) possibly due to the fact that in the UK, motorcycles are a means of pleasure rather 

than transport as opposed to other European countries (Delhaye and Marot, 2015).  

Similarly, socioeconomic characteristics such as the number of households, population and workplace 

population densities, are associated with higher numbers of two-wheeled vehicles. This is also 

confirmed by findings in RAND, (2004) and Wong (2013), indicating that these vehicles are 

concentrated in dense urban areas. The latter is also confirmed by the set of distance variables, 

particularly in the case of ‘A’ roads. The coefficients indicate that the further apart from urban and 

major urban areas the fewer motorbikes are on the streets, while the further apart from city centres 

(but within urban areas) the more of these vehicles will be. It is worth noting that population density 

is related to increased motorcycle use as discussed above, yet this is not necessarily true for 

population totals. Two-wheeled vehicles are likely to be seen in urban areas with higher population 

and population density, but densities may vary across different parts of urban areas, particularly in 

major cities.  

Although two-wheeled vehicles allow for cheaper and more efficient transport in dense urban areas 

(Law et al., 2015), the Department for Transport (2016) shows that motorcycle owners are likely to 

own at least one car, which explains the fact that lower two-wheeled traffic levels are correlated with 

large numbers of registered cars. This is also indicated by the negative sign for bus stops in ‘B’ and ‘C’ 

roads. 

For ‘A’ roads, the positive coefficient for toll roads in cluster 3 can be explained by the fact that 

counters in this cluster are mainly withing urban areas including London, where all points within 

London’s congestion charge zone (covering Central London) are indicated as toll roads. As two-

wheeled vehicles are common in dense urban areas, this outcome indicates higher volumes in Central 

London, an outcome facilitated by the fact that motorbikes are exempt from charges (Prud’homme 

and Bocarejo, 2005). For cluster 4 the result is considered unreliable, due to the fact that only two 
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points are marked as toll roads. These indicate river crossings where more traffic than other counters 

in the group is expected. 

4.6. Chapter summary 
 

In this chapter, the full set of variables created in chapter 3 has been examined, to understand their 

relation with traffic volumes of five different vehicle types in England and Wales. The analysis of traffic 

volumes has been undertaken for four different road classes where traffic counters have been 

subdivided into five groups (i.e., clusters) based on specific land use, socioeconomic, public transport, 

and roadway characteristics in the vicinity of each counter. The results produced by Lasso reveal 

patterns for specific explanatory variables across vehicle types and road classes. In some cases, 

heterogeneous results across estimated models have been reconciled by looking at the characteristics 

of the counters and areas in each model. 

This chapter has to a great extent fulfilled the first aim of this thesis - to identify the degree of influence 

specific factors have on traffic volume variations across the road network. Certainly, the outputs of 

the modelling conducted in this chapter can be perplexing, since many different road classes, vehicle 

types, clusters and numerous variables are examined and discussed. This process can result into some 

of the variables producing unexpected or challenging to explain coefficients. However, considering the 

complexity of transport systems, this is considered to be a contribution to the field of road transport 

studies, since the effect of diverse characteristics on road transport has been captured. Moreover, as 

the transport literature is constantly enriched one would expect an even larger number of factors 

being considered and novel ideas to investigate their effects using statistical – and potentially other 

types of – models. Nevertheless, the outputs from the model applied in this chapter can be used to 

inform policy making in road transport and interrelated fields, such as urban and regional planning, 

economics and of course the road transport contribution in GHG and air pollution emissions; the latter 

being examined in the following chapter. 
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5. Emissions modelling 
 

5.1. Chapter overview 
 

In chapter 2 it has been discussed that GHG and air pollutants from the road transport sector can be 

estimated with the utilisation of emission models. These models use activity (i.e., traffic) data related 

to speed or distance travelled coupled with emission factors – that attempt to relate the activity with 

the quantity of the pollutant. Activity data are normally inferred from transport models, while the 

emission factors are usually extracted from related databases. 

In this chapter, the contribution of road transport in CO2 and specific air pollutant (PM2.5, NOx, CO) 

emissions for England and Wales is investigated, intending to address the second aim of the thesis – 

to assess the quantity of CO2 and three air pollutants (PM, NOx, and CO) originating from road 

transport and identify potential emissions abatement through technological developments of road 

vehicles and policies development. To meet the aim, a methodological approach is presented, where 

emissions are estimated for the current (i.e., base) year on a street segment level for all roads – major 

and minor – in the study area. Emissions are also estimated for 2035 considering the base year 

estimations and projected trends in road transport. Trends in road transport are considered both in 

terms of traffic volumes as well as vehicle technological developments (e.g., electric vehicles), using 

governmental resources (e.g., Department for Transport, 2018b). By doing so the identification of 

potential abatement – or rise – in emissions originating from road transport can be achieved and 

hence insights on the future contribution of road transport to air pollution and CO2 can be provided. 

The estimations are compared with the outputs from other modelling approaches, to assess the 

methodological approach and also draw conclusions on the performance of different models to 

estimate emissions43. Furthermore, in a separate case study, air pollutant emissions in the Greater 

 
43 It should be noted that emissions from vehicles are mainly generated from tailpipes, although other 
parts of the vehicle also contribute, such as tyre and brake wear (Jeong et al., 2019). This chapter 
focuses exclusively on emissions generated from vehicles’ exhausts. 
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London area44 are estimated, to assess the effects of recently introduced policies to mitigate air 

pollution from road transport as well as the potential effects of policies to be introduced in the near 

future. Specifically, air pollutant emissions in Greater London are estimated to assess the effects of 

ULEZ and also to identify potential emissions abatement from the ULEZ extension45. 

The aim of this chapter is attained by implementing a two-step methodological approach based on 

classification and regression models, where emissions are estimated for all road classes and all 

available vehicle types. Considering the outputs from the model are produced at detailed local levels, 

it is considered that the model can be used to identify both hot spots of air pollution exposure and 

GHG emissions, as well as to estimate total (i.e., aggregated) emissions. 

The chapter is presented in six sections. Section 5.2 presents the datasets used and the corresponding 

sources while Section 5.3 presents the methodology to estimate emissions at a granular level, applied 

to both case studies. Firstly, the selected emission modelling approach is justified and then the 

methodological steps followed to estimate emissions and associated projections are presented. 

Section 5.4 presents the outcomes from the modelling process and in section 5.5 the results are 

discussed. Finally, section 5.6 summarises the chapter. 

5.2. Data 
 

To estimate emissions for England and Wales, four different datasets are utilized. Firstly, for activity 

data the dataset presented in chapter 3 is used, and – instead of total AADT – the five different vehicle 

types (i.e., Cars and Taxis, Buses, Light Good Vehicles (LGVs), Heavy Good Vehicles (HGVs) and Two-

wheeled vehicles) are considered as also discussed in chapter 4. In addition to the four road types (i.e., 

‘A’, ‘B’, ‘C’ and ‘U’) examined in the previous chapters, and to account for all roads within the study 

 
44 Emissions for Greater London are estimated for the air pollutants only, since Clean Air Zones focus on the 
reduction of air pollutants rather than GHGs (Bernard et al., 2020). 
45 At the time of writing ULEZ extension is planned to come into effect in October 2021. 
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area traffic count points for motorways46 from DfT are also extracted, where again AADT values for 

the same five vehicle categories are provided. Secondly, the vehicle fleet composition for England and 

Wales from NAEI is extracted, where the vehicle types are further segregated. Specifically, cars and 

LGVs/vans are classified by fuel type (i.e., indicating whether a vehicle uses petrol, diesel or being 

electric), while HGVs are subdivided to rigid and artic vehicles as is also shown in Figure 5-1. 

Figure 5-1: Vehicle fleet composition in England and Wales 

 

Moreover, emission factors for the air pollutants (PM2.5, NOx, CO) are also extracted from NAEI, while 

CO2 emission factors are extracted from the Department for Business, Energy and Industrial Strategy 

(BEIS) as shown in Table 5-1. Finally, traffic projections (in Vehicle Miles Travelled – VMT) are extracted 

from two scenarios developed by DfT with the National Transport Model (NTM)47: (i) the “Reference”48 

scenario – as the standard baseline scenario and (ii) the “High GDP, Low Fuel”49 scenario, where its 

 
46 As a reminder, motorways have been excluded from chapters 3 and 4, because traffic on these roads is not 
directly affected from its surrounding characteristics (Eom et al., 2006; Zhao and Chung, 2001). 
47 The NTM is a FSM simulation-based model, taking into account population growth, economic factors, and 
demand for goods and freight among others (Department for Transport, 2018d), as it has also been discussed in 
chapter 2 – sections 2.4 and 2.8. 
48 Assumes updated central forecasts for Gross Domestic Product (GDP), BEIS Central Forecasts for fuel, Central 
projection for Population and 25% of car and LGV mileage powered by zero emission technologies by 2050 
(Department for Transport, 2018d). 
49 Assumes High GDP Growth and Low Fuel Cost Projection (Department for Transport, 2018d). 
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previous years’ traffic projections are more accurate compared to other scenarios. Notice that DfT 

provides travelled distance in miles, while distance values used for emission estimation and model 

comparison later in the chapter are all in kilometres (i.e., Vehicle Kilometres Travelled – VKT). Where 

values are given in miles, the unit has been converted considering that 1 mile = 1.6 kilometres. 

Table 5-1: Emission factors (g/km) by vehicle type and road location 

Vehicle Type Road location NOx PM2.5 CO CO2 

Car - petrol 

Urban 0.074 0.001 0.393 

0.18717 Rural 0.061 0.001 0.439 

Motorway 0.058 0.001 0.622 

Car - diesel 

Urban 0.582 0.009 0.071 

0.16308 Rural 0.473 0.007 0.032 

Motorway 0.539 0.006 0.030 

Taxi 

Urban 0.582 0.009 0.071 

0.20638 Rural 0.473 0.007 0.032 

Motorway 0.539 0.006 0.030 

LGV - petrol 

Urban 0.068 0.001 0.999 

0.19748 Rural 0.068 0.002 0.736 

Motorway 0.076 0.003 1.495 

LGV - diesel 

Urban 0.915 0.009 0.078 

0.18129 Rural 1.017 0.011 0.077 

Motorway 1.362 0.011 0.074 

HGV - rigid 

Urban 1.712 0.018 0.483 

0.75418 Rural 0.999 0.016 0.367 

Motorway 0.780 0.014 0.337 

HGV - artic 

Urban 1.140 0.014 0.437 

0.63295 Rural 0.492 0.010 0.298 

Motorway 0.410 0.009 0.278 

Bus 

Urban 2.954 0.029 0.890 

0.26760 Rural 1.167 0.017 0.421 

Motorway 1.121 0.018 0.447 

Two-wheeled 

Urban 0.081 0.007 1.761 

0.09826 Rural 0.104 0.006 1.851 

Motorway 0.145 0.006 2.298 

 

 The datasets for these two scenarios provide information about growth and/or decline in VMT (Table 

5-250) and associated emissions (NOx, PM, and CO2), for three different road classes51 distributed across 

ten regions in England and Wales52. However, it should be mentioned that the selected scenarios do 

not reflect the current transport policy aiming to reduce the emissions from road transport as also 

 
50 All PSVs are considered to be buses. 
51 Scenarios distinguish roads classes into Motorways, ‘A’ roads and minor roads. Minor roads include ‘B’, ‘C’ and 
‘U’ road classes. 
52 These include the nine English regions (i.e., South West, South East, Greater London, West Midlands, East 
Midlands, East of England, North East, North West and Yorkshire and the Humber) and Wales as shown in Table 
5-2. 
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discussed in section 1.1. Scenarios as such, have not been produced by DfT to date, probably due to 

the fact that the emission reduction targets have been recently updated. The selected scenarios are 

essentially based on the standard road transport growth projections and the associated characteristics 

considered, such as GDP and population growth, indicating a business-as-usual case.  

Table 5-2: VKT growth/decline for each scenario by vehicle type and region 

Region Cars53 LGVs HGVs PSVs5050 

 Scenario1 Scenario2 Scenario1 Scenario2 Scenario1 Scenario2 Scenario1 Scenario2 

East Midlands 22.6% 26.4% 31.3% 52.1% 0.4% 2.7% -10.0% 

Eastern England 21.6% 24.8% 29.4% 49.8% 8.4% 10.7% -10.0% 

London 24.0% 26.3% 35.0% 55.9% 0.3% 0.0% 1.8% 

North East 19.0% 21.7% 31.7% 52.4% -0.9% 0.8% -11.1% 

North West 22.2% 25.7% 29.3% 49.6% 0.3% 2.3% -11.4% 

South East 22.3% 25.8% 31.2% 52.0% 9.1% 11.8% -10.0% 

South West 23.9% 27.8% 28.3% 48.6% -0.8% 0.2% -10.0% 

West Midlands 21.5% 24.9% 33.5% 54.5% 1.5% 3.3% -11.2% 

Yorks & Humber 21.5% 25.0% 31.0% 51.7% 1.4% 3.2% -11.5% 

Wales 21.7% 25.0% 30.2% 50.8% 0.2% 2.8% -10.0% 

All Regions 22.2% 25.6% 30.8% 51.5% 5.0% 4.9% -8.9% 

 

 Scenario 1 Scenario 2 

All vehicles 22.20% 28.10% 

 

For the London-ULEZ case study, six different datasets are utilized. Four datasets are similar to England 

and Wales – activity (i.e., traffic information), vehicle fleet composition and two different emission 

factor datasets. For activity data, the dataset presented in chapter 3 is again used, enriched with the 

traffic counts for motorways from DfT. For vehicle fleet composition, a different, more detailed 

dataset is again extracted from NAEI where the fleet for the current ULEZ as well as the inner and 

outer London zones is further split based on Euro standards for each of the five vehicle types (i.e., 

cars, LGVs, HGVS, buses and two-wheeled) as shown in Figure 5-2 to Figure 5-4. 

 
53 Note that this category also includes taxis. 
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Figure 5-2: Fleet composition in Inner London 

 

 

Figure 5-3: Fleet composition in Outer London 
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Figure 5-4: Fleet composition in London ULEZ zone 

 

For the emission factors related to the three air pollutants (PM2.5, NOx, CO), two datasets have been 

used. The emission factors from the first dataset are the same as those used for England and Wales 

and extracted from NAEI (Table 5-1). The second dataset consists of detailed emission factors for the 

Euro standards for each vehicle (Table 5-3) so as to correspond to the more detailed vehicle 

composition.  

Table 5-3: Emission factors (g/km) by Euro vehicle type 

Car type Pollutant Car type Pollutant 

 NOx PM2.5 CO  NOx PM2.5 CO 

Cars - petrol HGVs (Artic & Rigid) 

Euro 1 0.97 0.14 2.72 Euro 1 6.56 0.486 4.5 
Euro 2 0.5 0.01 2.2 Euro 2 5.15 0.246 2.75 

Euro 3 0.15 0.01 1.82 Euro 3 3.18 0.138 1.28 

Euro 4 0.08 0.01 1 Euro 4 2.75 0.025 1.13 

Euro 5 0.06 0.005 0.62 Euro 5 1.81 0.019 0.086 

Euro 6 0.06 0.0045 0.62 Euro 6 0.35 0.009 0.086 

Cars - diesel Buses 

Euro 1 0.97 0.14 2.72 Euro 1 8 0.486 4.32 
Euro 2 0.7 0.09 1 Euro 2 7 0.2 2.75 

Euro 3 0.56 0.05 0.092 Euro 3 3.5 0.075 2.25 

Euro 4 0.25 0.025 0.089 Euro 4 2.75 0.0408 1.86 

Euro 5 0.18 0.005 0.049 Euro 5 2 0.025 0.1865 

Euro 6 0.08 0.0045 0.04 Euro 6 0.43 0.01 0.1865 
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LGVs - petrol Two-wheeled 

Euro 1 0.563 0.0023 4.93 Euro 1 0.38 0.047625 6.05 
Euro 2 0.23 0.0023 3.73 Euro 2 0.35 0.033 5 

Euro 3 0.18 0.0011 3.89 Euro 3 0.15 0.029 1.3 

Euro 4 0.096 0.0011 2.01 Euro 4 0.11 0.08 1.07 

Euro 5 0.072 0.0014 1.69 Euro 5 0.06 0.0045 1 

Euro 6 0.064 0.0012 1.3 Euro 6 - - - 

LGVs - diesel 

Euro 1 1.22 0.19 4.93 
Euro 2 1.22 0.14 1.25 

Euro 3 1.03 0.07 0.79 

Euro 4 0.831 0.04 0.375 

Euro 5 0.64 0.005 0.075 

Euro 6 0.248 0.005 0.075 

 

Finally, instead of the traffic projections – used for England and Wales – the latest traffic data from 

DfT, where traffic (in VKT) for Greater London is provided for each of the five vehicle types for each 

year are utilized. Throughout the Greater London case study, the boundaries of ULEZ (introduced in 

2019) and ULEZ extension (to be introduced in 2021)54 are extracted from the London Datastore55 as 

shown in Figure 5-5. 

Figure 5-5: Inner, Outer, ULEZ (left) and ULEZ extension (right) zones in Greater London 

 

 
54 For clarity, ULEZ and ULEZ extension are henceforth referred as ULEZ2019 and ULEZ2021 respectively. 
55 The London Datastore is created and maintained by Greater London Authority (GLA) and provides free data 
and statistics about London.  
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5.3. Methodology 
 

The methodology to estimate emissions comprises of two major stages. Firstly, in subsection 5.3.1, 

the major modelling approaches presented in section 2.7 are revised and the major issues and 

challenges for these approaches are discussed, to conclude on the most suitable approach for this 

research and justify the model selection. Then, in subsection 5.3.2, a detailed description of each step 

followed to estimate emissions for both case studies (i.e., England & Wales and Greater London) is 

provided. 

5.3.1. Modelling approach 
 

To estimate GHG and air pollutant emissions, one of the identified approaches discussed in section 

2.7 has to be applied. However, from section 2.7 it can be concluded that traffic situation and 

instantaneous emissions models cannot be utilised. Traffic situation models require detailed statistics 

for speed and determination of each traffic situation for each road link (Baškovic and Knez, 2013) 

making these models unsuitable for extended application (Elkafoury et al., 2013). Also instantaneous 

models are very rare (Boulter et al., 2007) due to precision issues that have been identified when 

measuring emissions, which are normally related to the vehicles’ operating conditions while taking 

the measurements (Ajtay and Weilenmann, 2004), as it is also discussed in section 2.6. In addition, the 

need to include traffic simulation models, requiring a wide range of data which are difficult to obtain, 

calibrate and process (Zhou et al., 2015), limits the use of instantaneous models. On the contrary, data 

required as inputs for average speed models is usually available and the models are comprehensive in 

terms of number of pollutants that can be modelled, vehicle types as well as influencing factors (Smit 

et al., 2009). However, they do not take into account different driving behaviours and operational 

modes (Sturm et al., 1998) usually resulting into different emissions and fuel consumption factors for 

the same speed (Elkafoury et al., 2013). Therefore, considering data availability emissions are 

estimated following the methodologies applied by Sookun et al., (2014) and Fu et al., (2017) among 

others, presented in subsection 2.7.4. That is, to estimate emissions for all street segments in the 
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study area, traffic volumes – i.e., AADT – at locations where counts have not been measured are firstly 

estimated. Then VKT is calculated and finally, emission factors on the estimated VKT are applied. For 

England and Wales projections, the VKT growth and/or decline on the estimated traffic values is 

applied and then emissions are estimated by again applying the same emission factors on the updated 

VKT. A similar – although slightly different – approach is applied for Greater London. 

5.3.2. Emissions estimation 
 

As described, to estimate emissions three steps are undertaken. Firstly, the model presented in 

chapter 3 to estimate AADT at locations where traffic counters are not available is used. Secondly, VKT 

for these locations is calculated using the estimated AADT values. For both steps, data processing is 

conducted in GIS. Finally, emissions are estimated utilizing both estimated and measured traffic 

counts – and VKT – and the corresponding emission factors. 

5.3.2.1. AADT estimation at unmeasured locations 

To estimate traffic counts at unmeasured locations, “artificial” traffic counters at unmeasured street 

segments are created, by placing a point in the middle of each unmeasured segment using GIS. 

Specifically, the traffic count points are firstly matched with the spatial road dataset described in 

section 3.2 and the unmatched segments are considered to be unmeasured. Slip roads and 

roundabouts are considered as individual street segments. For each new point, the same methodology 

presented in section 3.3 is followed and service areas of different sizes are created, to consider the 

land use, socioeconomic, roadway and public transport characteristics, based on service areas 

selected for each road class. For example, for count points on ‘A’ roads only service areas of 500, 800 

and 1600 metres are considered as shown in Table 5-4. The process results into traffic counters with 

the same ID occurring multiple times in the dataset, with variable values different for each service 

area. 
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Table 5-4: Service area by cluster for each road class 

Road Class                                               
     Cluster

 1 2 3 4 5 

 Service Area Size (m) 

A 800 1600 500 500 500 

B 800 1000 800 800 2000 

C 500 800 1000 800 2000 

U 3200 800 1000 1000 2000 

 

Then, each new point is allocated to the cluster with the most similar characteristics, and the most 

suitable service area for each point is identified, based on the classification process and associated 

problems discussed below. As the dataset created in chapter 3 incorporates values for AADT – i.e., the 

value to be estimated – the dataset is firstly randomly split – 80% for training and 20% for testing – 

and the dependent variable (i.e., AADT) is excluded. Then, the training set is used to train three 

different classification algorithms (i.e., Random Forest (RF), Gradient Boosting Machine (GBM), and K-

nearest Neighbour) and the classification accuracy is evaluated by utilizing the testing set using a 

confusion matrix56. The process is repeated for each road class individually. Among the three 

algorithms, GBM provided the highest classification accuracy in both case studies (Table E-1 and Table 

E-2 in the Appendix) and it is therefore selected to classify the new points. Finally, to account for points 

with repeated IDs a GBM probabilistic classification (Friedman, 2001) is applied for all new points and 

service areas, so as to identify the probability of each point – and respective service area – belonging 

to each of the clusters. For example, for ‘A’ roads if a service area of 800 metres is selected for a point, 

then it should be assigned to cluster 1, but if a service area of 500 metres is selected, the point can 

belong to any of clusters 3, 4 or 5 as shown in Table 5-4. Therefore, a probabilistic approach will allow 

identifying the cluster where each point should be classified at. 

GBM is essentially an ensemble of “weak” prediction models – usually decision trees – aimed to 

improve accuracy by minimising the average value of the loss function 𝐿(𝑦𝑖 , 𝐹(𝑥)) on the training set 

 
56 For the case of London, the data points are firstly clipped to the London spatial boundaries, to select 

the points falling within the Greater London area. Then the same methodology is applied.  
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(Brown and Mues, 2012), for a number of 𝑀 iterations (Rawi et al., 2017), where 𝑦𝑖  is the observed 

value and 𝐹(𝑥) is the corresponding function. The probability of a point belonging to a class is given 

by: 

ℙ(𝑦|𝑥) =  
𝑒log(𝑜𝑑𝑑𝑠)

1 +  𝑒log(𝑜𝑑𝑑𝑠)
(15) 

where log(𝑜𝑑𝑑𝑠) represents the odds of a point belonging to a class. 

The algorithm, starts with a constant function:  

𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝛾)

𝑛

𝑖=1

(16) 

where 𝛾 is the value for log(odds). 

For each iteration (i.e., 𝑚 = 1 𝑡𝑜 𝑀), pseudo-residuals (i.e., the difference between the observed and 

predicted values) are computed for each data instance 𝑖: 

𝑟𝑖
𝑚 = − [

𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹(𝑚−1)(𝑥)

, ∀𝑖= 1,2, … , 𝑛 (17) 

and a weak learner ℎ𝑚(𝑥) is fitted to the residual values. Moreover, the parameter 𝛾𝑚 is calculated: 

𝛾𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝐹(𝑚−1)(𝑥𝑖) + 𝛾ℎ𝑚(𝑥))

𝑛

𝑖=1

 (18) 

and the model is updated as 𝐹𝑚(𝑥) =  𝐹(𝑚−1)(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) where ℎ𝑚 is the weak learner for 

iteration m and 𝛾𝑚 is the corresponding value extracted from equation 18. Finally, the algorithm 

concludes into the final 𝐹𝑀(𝑥) output after 𝑀 iterations. 

After the new points are classified, to estimate AADT for each vehicle type, the Random Forest (RF) 

regression within each cluster is applied, using the existing points to train the algorithm and all the 

available independent variables57. RF is applied for regression as the algorithm with the highest 

 
57 Note, that clusters are now composed by the original points (i.e., traffic counters) as formed in chapter 3, as 
well as the new “artificial” counters created in this chapter to estimate emissions. 



139 
 

estimation accuracy for this model and dataset, based on the results from chapter 3. As it has been 

shown in Table 3-3, RF results into identical MAPE with SVR, while it has lower RMSE. Thus, it is 

considered the best performing algorithm that can provide more accurate estimations. Again, RF is a 

collection of decision trees based on bootstrapping and bootstrap aggregation (Breiman, 2001, 1996) 

and the regression is performed as: 

𝑓𝑟𝑓
𝐵̂ =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

(19) 

where: 𝐵 is the number of trees and 𝑇𝑏(𝑥) is the 𝑏𝑡ℎ tree grown from 𝑏 bootstrapped data. 

5.3.2.2. Vehicle Kilometres Travelled (VKT) and emission calculation 

To calculate VKT the work of Kim et al., (2016) is followed and the AADT values are multiplied with the 

length of each street segment for all vehicle types. 

𝑉𝐾𝑇𝑖𝑗 = 𝐴𝐴𝐷𝑇𝑖𝑗 ∗  𝑙𝑒𝑛𝑔𝑡ℎ𝑗 (20) 

where 𝑖 and 𝑗 represent vehicle type and traffic counter location respectively. For the new points, the 

length of each link is extracted from GIS. 

To estimate GHG and air pollutant emissions, for the base year, the observed (i.e., known) and the 

estimated traffic count points are firstly merged. Then, the points are grouped based on their location 

as shown in Figure 5-1 – i.e., on motorways, urban/rural areas or in central, inner, and outer London 

– to account for the different vehicle fleet composition in these areas. Similarly, for the Greater 

London case study the points lying in Central, Inner and Outer London zones as shown in Figure 5-558 

are distinguished. Then the vehicle fleet composition data extracted from NAEI are utilized and the 

proportion of vehicle types in each of these regions/zones is calculated. For example, in English urban 

 
58 Notice, that at this stage emissions are calculated for the pre-ULEZ base year (i.e., 2015). Consequently, the 
fleet composition data used for London are those presented in Figure 5-1 and not those shown in Figure 5-2 to 
Figure 5-4. Confusion may occur since ULEZ boundaries as shown in Figure 5-5 are essentially identical to those 
defining Central London. 
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areas, petrol cars account for 58% of the total fleet of cars. Hence, the corresponding VKT for petrol 

cars in these areas is set to be the total car VKT multiplied by 0.58. Finally, to estimate emissions for 

each vehicle, the estimated VKT is utilized and multiplied with the corresponding emission factor as 

follows59: 

𝐸𝑖𝑓 =  𝐴𝑖𝑓𝐹𝑖𝑓 (21) 

where: 𝐸 is the emissions expressed, 𝐴 is the activity (i.e., VKT), 𝐹 is the pollutant emission factor (in 

grams per km travelled), 𝑖 indicates vehicle type and 𝑓 indicates fuel type. 

5.3.3. Scenario analysis and Ultra Low Emission Zone (ULEZ) – Emission projections 
 

To estimate emission projections for the two scenarios in England and Wales, the VKT growth/decline 

from Table 5-2 for each vehicle type and region is firstly applied to the estimated VKT values for all 

points: 

𝑉𝐾𝑇𝑖,𝑟
′ =  𝑉𝐾𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑖,𝑟 ∗ 𝑉𝐾𝑇𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑟 (22) 

where 𝑖 is the vehicle type and 𝑟 is the region. For example, the projected VKT for cars the in East 

Midlands region is the estimated VKT times 1.226 for scenario 1 and the estimated VKT times 1.264 

for scenario 2 (see Table 5-2). Then for each vehicle type 𝑖, the projected vehicle fleet composition is 

used to estimate VKT for each fuel type as described in 5.3.2.2. Finally, emissions are estimated using 

equation 21. 

In the case of London, emission estimation for the ULEZ2019 case is conducted in three steps. Firstly, 

for ULEZ2019 the DfT road traffic data are used to identify the change (i.e., growth/decline) in traffic 

compared to the base year for each vehicle type. Changes in traffic are shown in Table E-3 in the 

Appendix. Then, the change is applied on the estimated VKT as follows: 

 
59 Emission factor for electric vehicles is considered to be zero. 
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𝑉𝐾𝑇𝑈𝐿𝐸𝑍2019𝑖
=  𝑉𝐾𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑖

∗  (
𝑉𝐾𝑇2019𝑖

𝑉𝐾𝑇2015𝑖

) (23) 

where again 𝑖 represents the vehicle type. 

Secondly, the points are grouped based on their location as shown in Figure 5-5 – i.e., Inner/Outer 

London and ULEZ – and again the vehicle fleet composition data is utilized to calculate the proportion 

of vehicle type in each zone, based on Euro standards as shown in Figure 5-2 to Figure 5-4. Finally, 

emissions are then estimated using the Euro standard emission factors Table 5-3 and the new VKT 

values in equation 21. 

For ULEZ2021 emissions estimation two assumptions are made. Firstly, it is assumed that traffic levels 

remain the same as in 201960, indicating that VKT is identical to 2019 levels. Secondly, it is assumed 

that the fleet within the extended ULEZ zone (i.e., ULEZ2021) is identical to the one within the current 

ULEZ (i.e., ULEZ2019), due to lack of further figures (i.e., data) that would inform an alternative 

decision. This means that the change in the total fleet composition within Greater London occurs only 

on a spatial context – the ULEZ zone extension – as shown in Figure 5-5. Then, the traffic count points 

based on their location61 (Figure 5-5) are grouped to apply the fleet composition proportions on the 

VKT. Emissions are again calculated using equation 21 and the corresponding emission factors for Euro 

standards. 

5.4. Results 
 

In this section the estimated AADT, VKT, CO2 and air pollutant emissions are presented for both case 

studies. Firstly, focus is placed on base year estimations and then on the scenarios and ULEZ 

projections. Results for base year estimations and projections are presented separately. 

 
60 This is done due to the fact that in 2020 traffic has been significantly decreased across Britain compared to 
2019 (Department for Transport, 2020c), probably due to COVID-19 restrictions. Hence, it is assumed that in 
2021, due to the relaxing of these restrictions, traffic levels will return – at least to a certain extent – to 2019 
levels. 
61 From Figure 5-5 one can clearly notice that ULEZ extension (i.e., ULEZ2021) covers all central London and the 
majority of Inner London as well. 
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5.4.1. Base year AADT and emission estimations 
 

5.4.1.1. England and Wales 

In Figure 5-6 the estimated AADT for all street segments in England and Wales is presented, where 

roads with significantly higher traffic volumes can be distinguished. These are usually motorways and 

‘A’ roads. Secondary (i.e., minor) roads in urban areas also appear to carry heavy traffic loads, while 

secondary roads in rural areas have lower AADT values. 

Figure 5-6: AADT by street segment in England and Wales 
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The aggregated VKT estimations for all vehicle types and road classes in England and Wales are 

presented in Table 5-5. One can observe that streets are mainly dominated by cars. Interesting also 

appears the high volume of HGVs in Motorways as opposed to other road classes. On the contrary, 

estimated bus traffic volumes is lowest in motorways. LGVs also appear to be significantly present 

across all road types composing 14% of the total distance travelled by all vehicles. Two-wheeled 

vehicles have a small share – although larger than buses – and mainly operate in lower class (i.e., 

minor) roads. 

Table 5-5: Aggregate VKT proportions by Vehicle Type and Road Class in England and Wales 

Vehicle Type Road Class 

 Motorways A B C U All roads 

Cars 73.39% 78.43% 81.09% 82.24% 79.72% 78.24% 

Buses62 0.30% 0.83% 1.94% 1.42% 1.46% 0.96% 

LGVs 14.62% 14.72% 13.35% 13.21% 12.41% 14.16% 

HGVs 11.35% 5.14% 2.35% 2.14% 1.63% 5.52% 

Two-wheeled 0.34% 0.87% 1.28% 1.00% 4.78% 1.13% 

Total 22.08% 45.40% 10.31% 14.21% 8.00% 100% 

Total average and annual63 estimated emissions for each vehicle type are presented in Table 5-6. Again, 

it is observed that highest emissions levels are originating from cars. Moreover, CO2 emissions are 

similar for LGVs and HGVs although the number of HGVs and associated VKT is much lower compared 

to LGVs.  

Table 5-6: Daily average and total annual emissions by vehicle type (thousand tonnes) in England and Wales 

Vehicle Type NOx PM2.5 CO CO2 

Cars 345.58 8.49 582.77 170,460 

Buses6262 48.79 0.56 16.21 4,866 

LGVs 219.35 3.05 70.71 43,969 

HGVs 96.58 1.32 33.30 52,025 

Two-wheeled 2.17 0.12 77.70 1,572 

Total – Average Daily 712.47 13.54 780.69 272,892 

Total – Annual 260,051.55 4,942.1 284,951.85 99,606,710 

 
62 Note that this vehicle type includes buses and coaches (Department for Transport, 2014). 
63 Annual emissions are estimated by multiplying Average Daily Emissions by 365. 
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In Figure 5-7 the estimated emissions are shown as heat maps for all air pollutants and CO2, where 

similar patterns can be observed due to the fact that emissions are driven by the same factors – i.e., 

the number and type of vehicles and the corresponding length of the streets. In fact, at first sight, one 

can consider the maps being identical, although this is imprecise. The figures do reveal similar 

patterns, but at a closer look the differences can be observed specifically when focusing on less 

populated areas, such as small urban centres. Similarities in the figures occur firstly due to the same 

driving factors, but also due to the visualisation techniques used to create the figures. For visualisation 

and computational processing purposes emissions are mapped based on a 1km x 1km grid that has 

been created within a GIS environment. 

Considering that more vehicles and more streets can be found in urban areas the associated emissions 

in these areas are also expected to be higher. This is clearly seen in Figure 5-7 where higher pollution 

levels can be observed in and around urban and major urban areas and conurbations, such as London, 

Birmingham, West Yorkshire as well as the Manchester – Liverpool conurbation, also complying with 

the traffic volume estimation shown in Figure 5-6. 

On the contrary less populated areas, where less vehicles operate exhibit lower emissions. In 

particular significantly lower levels of pollution can be observed in rural and mountainous regions – 

such as the Cambrian mountains in Wales – and national parks (e.g., the Lake District in the North 

West and Northumberland national park in the North East of England), reflecting the lower levels of 

traffic as well as the lack of roads in these areas as again shown in Figure 5-6. 
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Figure 5-7: NOx (top left), PM2.5 (top right), CO (bottom left) and CO2 (bottom right) emissions distribution in England and 
Wales 
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5.4.1.2. Greater London 

In Figure 5-8 the estimated AADT for all street segments in the Greater London area are presented, 

where again roads with significantly higher traffic volumes can be distinguished. Similar to the whole 

of England and Wales, these are usually ‘A’ roads and parts of motorways, although there is just a 

short length of motorway roads within Greater London. Roads around Heathrow airport, river 

crossings and major arteries also appear to carry heavy traffic loads, while secondary roads and streets 

in residential areas have lower AADT values. 

Figure 5-8: AADT by street segment in Greater London 

 

The aggregated VKT estimations for all vehicle types and road classes are presented in Table 5-7. Again, 

one can observe that street traffic is mainly dominated by cars, although there is a low number of 

registered cars as opposed to other areas in the country (Figure 3-4). High volume of HGVs is observed 

in Motorways as opposed to other road classes, while LGVs comprise 13% of the total distance 

travelled. Bus and two-wheeled vehicles’ volumes are similar at approximately 2% each, where one 
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can also observe that the figures for these two vehicle types are nearly double compared to the figures 

for England and Wales (Table 5-5). 

Table 5-7: Aggregate VKT proportions by Vehicle Type and Road Class in Greater London 

Vehicle Type Road Class 

 Motorways A B C U All roads 

Cars 72.79% 77.37% 76.46% 81.65% 80.60% 78.62% 

Buses62 0.43% 2.46% 5.06% 2.19% 1.63% 2.28% 

LGVs 15.91% 13.70% 13.11% 12.07% 12.98% 13.29% 

HGVs 10.18% 3.78% 2.10% 2.84% 2.29% 3.61% 

Two-wheeled 0.69% 2.69% 3.26% 1.26% 2.49% 2.21% 

Total 6.76% 44.60% 6.4% 24.32% 17.91% 100% 

 

Total average and annual estimated emissions for each vehicle type are presented in Table 5-8. Again, 

it is observed that highest emissions levels are originating from cars. Moreover, CO2 emissions are 

similar for LGVs and HGVs although the number of HGVs and associated VKT is much lower compared 

to LGVs. 

Table 5-8: Daily average and total annual emissions by vehicle type (tonnes) in Greater London 

Vehicle Type NOx PM2.5 CO CO2 

Cars 23.93 0.38 24.62 14,810 

Buses62 9.50 0.10 2.70 0,181 

LGVs 13.77 0.18 1.88 3,446 

HGVs 7.66 0.09 2.35 3,038 

Two-wheeled 0.28 0.02 8.74 0,250 

Total – Average Daily 55.14 0.77 40.30 21,725 

Total – Annual 20,126.10 281.05 14,709.50 7,929,625 

 

In Figure 5-9 emissions for the estimated pollutants and CO2 are shown with London boroughs overlaid 

with heat maps for each pollutant and CO2. Higher pollution can be observed in central and inner 

London as opposed to boroughs located far from the city centre. South London boroughs have lower-

level emissions compared to the north part of the city, reflecting the lower levels of traffic shown in 

Figure 5-8. 
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Figure 5-9: Air Pollutants and CO2 estimation heat maps in Greater London 

 
(5-9a) NOx emissions in Greater London   (5-9b) PM2.5 in Greater London 

 
(5-9c) CO emissions in Greater London    (5-9d) CO2 emissions in Greater London 

Similar patterns are observed in Figure 5-10 where emissions for each borough are mapped by the 

length of streets within the borough, indicating kilograms of pollutant per kilometre of street length 

(kg/km). One can observe that some boroughs in the north part of the city have higher values of 

emissions, particularly in the case of NOx and PM2.5. 

Interestingly, one can identify the impacts of large open spaces such as Richmond Park indicated by 

green patches on the maps as well as the – negative – impacts of town centres and busy streets, 

indicated by smaller red patches around the city centre (Figure 5-11). 
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Figure 5-10: Air Pollutants and CO2 emissions in kilograms per street kilometre (kg/km) for London boroughs 

 
    (5-10a) NOx by road length in Greater London boroughs         (5-10b) PM2.5 by road length in Greater London boroughs 

 
   (5-10c) CO2 by road length in Greater London boroughs         (5-10d) CO by road length in Greater London boroughs 

Figure 5-11: Open spaces and town centre’s impact on CO2 emissions in Greater London 
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5.4.2. Scenarios and ULEZ emission estimations 
 

5.4.2.1. England and Wales 

In Table 5-9 the estimated emissions from the two selected scenarios are summarised. One can 

observe that for both scenarios there is a decrease in all air pollutants and CO2 emissions compared 

to the base year. In particular, significant reductions for all air pollutant emissions can be observed for 

both scenarios, with NOx emissions reduced by 62% in the case of the “reference” scenario (i.e., 

scenario 1) and by 54% for the “High GDP, Low Fuel” scenario (i.e., scenario 2). PM2.5 is reduced by 

80% for both scenarios and CO emissions are reduced by 47% in the case of scenario 1 and by 44% in 

scenario 2 respectively. CO2 emissions are also reduced based on the estimations for both scenarios, 

although reductions are lower compared to the air pollutants. Specifically, CO2 is reduced by 15% for 

scenario 1 and by 12% for scenario 2. 

Table 5-9: Projected emission estimations (thousand tonnes) for England and Wales 

Pollutant Base year Scenario 1 
Scenario 1 – 

Reductions (%) 
Scenario 2 

Scenario 2 – 
Reductions (%) 

NOx 260.05 98.43 62.15% 118.55 54.41% 

PM2.5 4.90 0.94 80.82% 0.98 80.00% 

CO 284.95 149.77 47.44% 158.79 44.27% 

CO2 99,606.71 84,917.64 14.75% 88,040.45 11.61% 

 

In Table 5-10 to Table 5-13 estimated emissions for each air pollutant and CO2, by vehicle type are 

shown. In the case of NOx (Table 5-10), emission reduction for cars is approximately 68 thousand 

tonnes for both scenarios, while emissions from LGVs are also significantly reduced by 51 and 32 

thousand tonnes for each scenario respectively. However, the relative reductions appear to be higher 

for buses and HGVs, where NOx emissions from buses are reduced by 86% for both scenarios. HGV 

emissions are also reduced significantly by 76% and 74% for scenario 1 and scenario 2 respectively. 
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Table 5-10: NOx emission projections (thousand tonnes) by vehicle type in England and Wales 

Vehicle Type Base Year Scenario 1 
Scenario 1 – 

Reductions (%) 
Scenario 2 

Scenario 2 – 
Reductions (%) 

Cars 126.14 57.53 54.40% 58.11 53.93% 

Buses62 17.81 2.56 85.63% 2.56 85.63% 

LGVs 80.06 29.35 63.34% 48.09 39.93% 

HGVs 35.25 8.56 75.72% 9.1 74.18% 

Two-wheeled 0.79 0.44 44.30% 0.69 12.66% 

Total 260.05 98.43 62.15% 118.55 54.41% 

 

In the case of PM2.5, cars account for the largest proportion of total PM2.5 emissions. In Table 5-11 it 

can be observed that emissions from cars are reduced by 2.4 thousand tonnes in both scenarios, 

contributing more than 50% on the overall emission reductions. Again, high relative reductions can be 

observed for HGVs at 87.5% as well as LGVs where PM2.5 emissions are significantly reduced by 89% 

for scenario 1 and 86% at scenario 2. 

Table 5-11: PM2.5 emission projections (thousand tonnes) by vehicle type in England and Wales 

Vehicle Type Base Year Scenario 1 
Scenario 1 – 

Reductions (%) 
Scenario 2 

Scenario 2 – 
Reductions (%) 

Cars 3.10 0.66 78.71% 0.67 78.39% 

Buses62 0.20 0.10 50.00% 0.10 50.00% 

LGVs 1.11 0.12 89.19% 0.15 86.49% 

HGVs 0.48 0.06 87.50% 0.06 87.50% 

Two-wheeled 0.004 0.002 50.00% 0.003 25.00% 

Total 4.90 0.94 80.82% 0.98 80.00% 

 

In Table 5-12 CO emissions for the base year and the reductions for each scenario are shown. Car 

emissions are reduced by approximately 90 thousand tonnes for both scenarios, while significant 

reductions are observed in the case of LGVs by 16.75 thousand tonnes (65%) for scenario 1 and 15.28 

tonnes (59%) for scenario 2. Interestingly, very large reductions in CO emissions can be seen for two-

wheeled vehicles, where in scenario 1 emissions are reduced by 89% – approximately 25 thousand 

tonnes – and by 68% (19 thousand tonnes) in scenario 2. LGVs’ emissions are also reduced 
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significantly, although emissions from HGVs are only slightly reduced as opposed to other pollutants 

and vehicle types. 

Table 5-12: CO emission projections (thousand tonnes) by vehicle type in England and Wales 

Vehicle Type Base Year Scenario 1 
Scenario 1 – 

Reductions (%) 
Scenario 2 

Scenario 2 – 
Reductions (%) 

Cars 212.71 121.59 43.84% 122.91 42.22% 

Buses62 5.92 4.12 30.41% 4.12 30.41% 

LGVs 25.81 9.06 64.90% 10.53 59.20% 

HGVs 12.16 11.86 2.47% 12.11 0.41% 

Two-wheeled 28.36 3.14 88.93% 9.11 67.88% 

Total 284.95 149.77 47.44% 158.79 44.27% 

 

CO2 emissions computations in Table 5-13 show that significant gains can be achieved in both 

scenarios for cars. In particular, emissions are reduced by approximately 21% in both cases, saving 

about 13,000 thousand tonnes of annual CO2 production by private cars and taxis. CO2 abatement is 

also high for buses and two-wheeled vehicles. In the case of LGVs and HGVs that contribute about 

35% to the total emissions – in base year – smaller gains are observed, where for scenario 2 a small 

increase in annual emissions is also estimated. 

Table 5-13: CO2 emission projections (thousand tonnes) by vehicle type in England and Wales 

Vehicle Type Base Year Scenario 1 
Scenario 1 – 

Reductions (%) 
Scenario 2 

Scenario 2 – 
Reductions (%) 

Cars 62,218.13 48,994.97 21.25% 49,409.26 20.59% 

Buses62 1,776.35 1,542.28 13.17% 1,542.28 13.17% 

LGVs 16,048.87 15,380.15 4.17% 16,485.93 +2.72% 

HGVs 18,989.29 18,810.28 0.94% 20,147.43 +6.10% 

Two-wheeled 574.06 239.95 58.20% 455.55 20.64% 

Total 99,606.71 84,917.64 14.75% 88,040.45 11.61% 

 

5.4.2.2. Greater London 

In Table 5-14 to Table 5-16 the computed air pollutant emissions resulting from ULEZ2019 and 

ULEZ2021 are shown by vehicle type. Similar to the abatements observed for England and Wales the 



153 
 

largest emission reductions are related to cars, since these vehicles have the largest share on the 

streets in London (Table 5-7). NOx emissions for cars (Table 5-14) are estimated to be reduced by 14.95 

tonnes on a daily basis, saving approximately 5,500 tonnes annually with the current ULEZ, while the 

zone extension is estimated to save approximately 200 tonnes additionally per year. One can also 

observe the significant reductions for buses by 83%, equal to 7.9 tonnes of NOx daily – 2,884 annually 

– and 74% abatement in the case of HGVs, reducing emissions by 2,000 tonnes per year, in the case 

of ULEZ2019. An extension of the zone will result into total savings of nearly 3,000 tonnes annually for 

buses and 2,120 for HGVs, compared to the base year. Two-wheeled vehicles contribute only slightly 

to emissions savings, by approximately 4% resulting in 3.65 tonnes less NOx emissions from this vehicle 

type per year, in the case of ULEZ2021. However, an increase in emissions from LGVs is observed in 

both cases, although an expansion of the zone will result into a decrease in NOx emissions from LGVs 

by 22%. Nevertheless, the total emission reduction from all vehicle types is remarkable for both cases 

at 31% for ULEZ2019 and 43% for ULEZ2021 compared to the base year, which can be translated to 

6,200 and 8,600 less tonnes of NOx per year respectively. 

Table 5-14: NOx emission projections (tonnes) by vehicle type in Greater London 

Vehicle Type Base Year ULEZ2019 
ULEZ2019 

change (%)  
ULEZ2021 

ULEZ2021 
change (%) 

2019 – 2021 
change (%) 

Cars 23.93 8.98 -62.47% 8.45 -64.69% -5.90% 

Buses62 9.50 1.60 -83.16% 1.33 -86.00% -16.88% 

LGVs 13.77 25.27 +83.51% 19.66 +42.77% -22.20% 

HGVs 7.66 2.03 -73.50% 1.85 -75.85% -8.87% 

Two-wheeled 0.28 0.28 0.00% 0.27 -3.57% -3.57% 

Total – Average Daily 55.14 38.16 -30.79% 31.56 -42.77% -17.30% 

Total – Annual 20,126.10 13,928.40 -30.79% 11,519.40 -42.77% -17.30% 

 

Similar to the NOx emissions, the impact of ULEZ and the extension is evident on PM2.5, although to a 

lesser extent, as it can be seen in Table 5-15. Specifically, in the case of ULEZ2019 emissions are 

reduced for all vehicle types, except of cars that contribute the most due to the large number of these 

vehicles on the streets. The estimations show that even with the current ULEZ regulations, PM2.5 
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emissions increase compared to the base year. An extension of the zone is estimated to reduce the 

emissions only by 1%. Although emissions from cars are still projected to rise compared to the base 

year, the ULEZ extension is estimated to reduce PM2.5 from cars by 23% (approximately 60 tonnes 

annually) compared to the current conditions. Total emission reductions during the expansion are 

estimated to reduce emission by 1,300 tonnes per year compared to the base year. 

Table 5-15: PM2.5 emission projections (tonnes) by vehicle type in Greater London 

Vehicle Type Base Year ULEZ2019 
ULEZ2019 

change (%) 
ULEZ2021 

ULEZ2021 
change (%) 

2019 – 2021 
change (%) 

Cars 0.38 0.71 +86.84% 0.55 +44.74% -22.54% 

Buses62 0.10 0.03 -70.00% 0.02 -80.00% -33.33% 

LGVs 0.18 0.16 -11.11% 0.14 -22.22% -12.50% 

HGVs 0.09 0.04 -55.56% 0.04 -55.56% 0.00% 

Two-wheeled 0.02 0.018 -10.00% 0.017 -15.00% -5.56% 

Total – Average Daily 0.77 0.95 +23.38% 0.76 -1.30% -20.00% 

Total – Annual 281.05 346.75 +23.38% 277.40 -1.30% -20.00% 

 

Again, as with the other pollutants, CO emissions are significantly reduced in both cases compared to 

the base year. From Table 5-16 one can observe that total emissions are reduced by 45%, equivalent 

to 6,600 tonnes per year in the case of ULEZ2019, while the extension of the zone is expected to 

reduce CO by 12% and an additional 1,000 tonnes annually. Cars contribute the most in emission 

reductions by 9.78 tonnes daily, resulting to a total abatement of 3,500 tonnes annually – essentially 

more than 50% of the total abatement. The estimated savings from cars for ULEZ2021 are 2.52 tonnes 

daily compared to the current ULEZ estimations, resulting into a reduction of more than 900 tonnes 

per year and over 90% of the total reductions. Significant reductions are also observed for LGVs by 

48% and two-wheeled vehicles by 70% considering ULEZ2019, contributing to emission savings by 330 

tonnes and 2,250 tonnes of CO on an annual basis respectively. An extension of the zone is estimated 

to reduce CO emissions from LGVs by further 5%, although further emission reduction from two-

wheeled vehicles is minimal. Finally, emissions from buses and HGVs are also reduced, although to a 
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lesser extent, resulting into 120 and 157 tonnes per year respectively for ULEZ2019 and additional 

savings of approximately 18 tonnes combined in the case of a zone extension. 

Table 5-16: CO emission projections (tonnes) by vehicle type in Greater London 

Vehicle Type Base Year ULEZ2019 
ULEZ2019 

change (%) 
ULEZ2021 

ULEZ2021 
change (%) 

2019 – 2021 
change (%) 

Cars 24.62 14.84 -39.72% 12.32 -49.96% -16.98% 

Buses62 2.70 1.98 -26.67% 1.97 -27.04% -0.51% 

LGVs 1.88 0.97 -48.40% 0.92 -51.06% -5.15% 

HGVs 2.35 1.84 -21.70% 1.80 -23.40% -2.17% 

Two-wheeled 8.74 2.56 -70.71% 2.54 -70.94% -0.78% 

Total – Average Daily 40.30 22.19 -44.94% 19.55 -51.49% -11.90% 

Total – Annual 14,709.50 8,099.35 -44.94% 7,135.75 -51.49% -11.90% 

 

5.5. Discussion 
 

This chapter focused on tailpipe emission estimation of NOx, PM2.5, CO and CO2 originating from road 

transport in England and Wales and separately for the Greater London area. Moreover, emissions have 

been projected for 2035 for England and Wales, considering two scenarios developed by DfT and 

potential emission abatement for the three air pollutants has been estimated considering the current 

ULEZ and potential ULEZ extension in the Greater London area. All estimations have been conducted 

for five road classes and five different vehicle types used by DfT in the UK, by combining data from 

numerous sources and applying classification and regression modelling. In this section, the results are 

discussed. Moreover, an attempt to assess the findings, using base year and projected estimations 

from other models used by DfT and NAEI has been conducted. 

In the case of England and Wales, the higher levels of pollution are concentrated around urban and in 

particular major urban areas as expected and has also been confirmed by similar studies in other areas 

(e.g. Alotaibi et al., 2019; Schmitz et al., 2018). This can be explained by the fact that higher traffic 

volumes are usually observed in these areas (Caselli et al., 2010; Rahman et al., 2021) as it can also be 

seen by the AADT estimations in Figure 5-6 and also discussed in chapter 4. 
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Base year estimations from the modelling approach presented in this chapter are also comparable 

with the published DfT64 data as shown in Table 5-17. One can observe that VKT estimations from my 

model are very similar to the DfT modelling approach using the NTM. Emission estimations are also 

similar although, deviations are slightly larger. 

Table 5-17: Base year estimations comparison for England and Wales (in thousand tonnes) 

 VKT65 NOx PM2.5 CO CO2 

DfT 457.80 273.27 5.50 266.00 96,167.00 

Author’s Method 452.97 259.26 4.90 256.59 99,032.65 

Deviation (%) 1.06% 5.13% 10.99% 3.54% 2.98% 

 

Similarly, the VKT, air pollutants and CO2 estimations are again comparable with the DfT scenario 

outputs, where similar patterns can be observed (Table 5-18 and Table 5-19). In particular, VKT 

estimations are almost identical with the figures provided by DfT, while NOx and CO2 exhibit low 

deviations. Again, PM2.5 appears to be the most challenging pollutant to be modelled. 

Table 5-18: Scenario 1 estimations comparison for England and Wales (in thousand tonnes) 

 VKT65 NOx PM2.5 CO CO2 

DfT 559.40 103.70 0.72 N/A 77,148.00 

Author’s Method 564.00 97.99 0.94 146.63 84,677.69 

Deviation (%) 0.82% 5.51% 30.5% N/A 9.76% 

 

Table 5-19: Scenario 2 estimations comparison for England and Wales (in thousand tonnes) 

 VKT65 NOx PM2.5 CO CO2 

DfT 586.30 110.50 0.76 N/A 81,084.00 

Author’s Method 584.39 117.86 0.98 149.68 87,584.90 

Deviation (%) 0.33% 6.66% 28.95% N/A 8.02% 

 

 
64 The Department for Transport (DfT) excludes two-wheeled vehicles from the estimations. Hence, the 
estimations from my method shown in Table 5-17, also exclude these vehicles, so as a reliable comparison can 
take place. 
65 In billion Vehicle Kilometres Travelled (VKT). 
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The low deviations in VKT values can be straightforwardly explained. Considering that the base year 

estimations are comparable, and traffic growth factors from the selected scenarios are applied on the 

base year estimations, one would expect small deviations at the projected figures. However, the – 

larger – deviations on the estimated emissions can be attributed to several factors. Firstly, linear 

assumptions about the use of vehicles have been considered. For example, it is assumed that all 

different vehicle types – as presented in the vehicle fleet composition in Figure 5-1 – are used with 

the same frequency, while – for instance – petrol cars may be operational for longer time frames as 

opposed to electric vehicles. Secondly, the emission projections provided by DfT are estimated using 

a combination of speed flow and speed emission curves (Department for Transport, 2018d) derived 

from NTM, which is a simulation model. Although a simulation approach would be expected to better 

capture behavioural aspects of road transport (Munigety and Mathew, 2016), and hence associated 

emissions, the modelling approach used by DfT is based on average curves (Department for Transport, 

2018d) and consequently detailed – local – figures may be questionable. 

In terms of specific pollutants, it is worth commenting on the high contribution of HGVs on CO2. 

Specifically, it has been seen that the distance travelled by HGVs is only one third compared to LGVs 

(Table 5-5), although HGVs contribute more to CO2 emissions (Table 5-6 and Table 5-13). This outcome 

agrees with findings from similar studies (e.g., Aditjandra et al., 2016; Jacyna-Gołda et al., 2017) and 

can be attributed to the high emission factors for these vehicles, placing them in the top rank of CO2 

emissions by km driven among the five vehicle types. However, this does not apply to CO emissions, 

where HGVs have lower contribution as opposed to other vehicles (Table 5-6), also explaining the low 

reduction in CO emissions in the case of scenarios (Table 5-12). 

Emissions from all vehicles are also overall higher for scenario 2 compared to scenario 1, reflecting the 

higher increase in traffic for scenario 2 as it is shown in Table 5-2. This also reflects the projections for 

LGVs and HGVs, where in the case of scenario 2 it is estimated that CO2 emissions from these two 

vehicle types will be higher compared to the base year. One should notice that for scenario 2, VKT for 
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LGVs is expected to grow by 50% and for HGVs by 4.9% (Table 5-2). Although VKT growth for HGVs is 

slightly higher in scenario 1 (5%), the projected CO2 emissions are lower. This can be attributed to the 

different levels of traffic across regions. For example, regions with higher traffic may be given higher 

traffic growth values and therefore affecting the total VKT – and associated emissions – for HGVs, 

which can also be inferred by the aggregated VKT, and emission figures shown in Table 5-18 and Table 

5-19. 

In the case of Greater London, the results show higher levels of pollution in the city centre as expected, 

as it can also be confirmed by similar studies in other urban areas (e.g., Fu et al., 2017; Munir et al., 

2020). For London in particular, the results concur with the ones presented in Fecht et al., (2016) 

where PM2.5 distribution is studied and higher levels of pollution are concentrated in central and inner 

London, as well as major road arteries. Estimated emissions from the method presented in this 

chapter, are also comparable in most cases – again with the exception of PM2.5 – with estimations 

from the London Atmospheric Emissions Inventory (LAEI) forming fraction of the NAEI for London 

(LAEI, 2013). The aggregated emission estimations are provided in Table 5-20. The large deviation in 

estimations observed for PM2.5 can be attributed to the methodology and factors taken into 

consideration when estimating emissions by LAEI. In the case of PM2.5 emissions from breaks and tyres 

are also considered on top of the exhaust emissions. 

Table 5-20: Estimation comparison for Greater London- tonnes/year 

 NOx PM2.5 CO CO2 

LAEI 23,852.5 1,253.4 N/A 6,651,511 

Authors’ Method 20,126.10 281.05 14,709.50 7,929,625 

 

Unfortunately, at the time of writing the thesis, the impacts of ULEZ and the corresponding ULEZ 

extension have not been investigated from an environmental perspective so far, probably due to the 

fact that results from ongoing studies are not yet publicly available due to the recent implementation 

of the scheme. Consequently, the estimates cannot be directly assessed or compared with other 
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similar studies. However, some, preliminary results presented in reports suggest that ULEZ has 

reduced NOx emissions by 30% (Laurent, 2021; Osei et al., 2021), while there is also the argument that 

NOx and PM2.5 emissions have dropped by 31% and 15% respectively (Bernard et al., 2020) within the 

current ULEZ boundaries – covering central London. Assuming reliability of these reports, the 

computation for NOx estimations presented in Table 5-14 conform with these findings, showing a 30% 

reduction for this pollutant, while my computation for PM2.5 indicates an increase, again showing the 

challenges in estimating PM2.5 emissions. Another noteworthy feature in Table 5-14 is the increase in 

NOx emissions from LGVs for ULEZ2019 that can be attributed to the 26% traffic increase compared 

to base year (Table E-3), indicating that current policy implementations are inadequate to reduce the 

air pollution impact from these vehicles. 

Significant VKT growth by 29% can also be noticed for two-wheeled vehicles (Table E-3), that are well 

known to contribute substantially to CO emissions (Iodice and Senatore, 2015), where in some cases 

it has been found that they emit three times more CO compared to conventional cars (Vasic and 

Weilenmann, 2006). This is also reflected in the high levels of CO produced by these vehicles as shown 

in Table 5-16, where two-wheeled vehicles account for over 10% in all cases in London. However, the 

implementation of clean air policies such as ULEZ has the potential to significantly reduce CO 

emissions both for two-wheeled and other vehicle types, as shown in my results presented in Table 

5-12 and Table 5-16. 

Nevertheless, it is interesting to comment on the overall modelling results and deviations on the 

emission estimations, observed on the base year and projections for both case studies. Deviations in 

estimations from statistical approaches compared to standard emissions models are subject to various 

factors also reported in similar studies in Greater London and the UK as well as other countries, while 

significant deviations in estimations can be observed among different emission models. For example 

Fontaras et al., (2014) compared COPERT and HBEFA to identify deviations in the estimations and that 

both over-predicted PM emissions, with HBEFA results deviating more from actual measurements. In 



160 
 

the case of NAEI which is widely used in the UK estimations have been usually found to deviate from 

other modelling approaches. For example, Vaughan et al., (2016) indicate that NAEI tends to 

overestimate NOx emissions, although it seems to underestimate Volatile Organic Compounds (Valach 

et al., 2015) – the latter pollutant not examined in this study. On the contrary Chatterton et al., (2015) 

compare NOx, PM10 and CO2 estimation with NAEI to find strong correlations, although in this study 

annual distance travelled is used and there is no differentiation between vehicle types. 

However, over and under estimations cannot be solely attributed to each modelling approach per se, 

but can be related to limitations in methodology and available data (Borge et al., 2012). In the 

approach presented in this thesis, the modelling limitations should also be considered, such as the 

classification and regression outcomes, the length of roads within the study area and the study area 

per se. First, from Table E-1 and Table E-2 it can be observed that classification accuracy is significantly 

higher for ‘A’ roads, as opposed to other road classes, although accuracy for ‘U’ roads is relatively high 

for both case studies as well – 71% for England and Wales, and 70% for London. Thus, an uncertainty 

in the classification of points and consequently in the estimation of AADT and VKT can result into 

biased emission estimations. However, from Table 5-5 and Table 5-7 one can see that VKT on ‘A’ roads 

and Motorways account for over 50% of total VKT. Including ‘U’ roads, the percentage increases to 

75% for England and Wales, and to 68% for London indicating that for most modelled street segments, 

emissions are accurately estimated. Moreover, taking into account classification accuracy for ‘A’ roads 

as well as the fact that there is a large sample to train the algorithm for this road class and that AADT 

on Motorways is directly counted – and not estimated with a model – it can also be concluded that 

the results for these two road types are more reliable as opposed to other road classes. 

Second, the deviations observed in the projected emissions can also be attributed to the linear 

assumptions made – and applied – to the model, which are related to vehicle fleet composition. This 

assumption implies that equal use of all vehicles is considered, while – for instance – petrol cars could 

travel more compared to electric vehicles, thus producing more emissions. The later also suggests that 
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a simulation model, could potentially capture this behaviour and provide more accurate outcomes, 

although this would have not been possible due to data requirements and high computation costs, 

particularly in the case of England and Wales. Moreover, linear assumptions have been made in the 

case of emission factors, indicating that even improved fuel technologies would still emit pollutants 

at the same level. This can specifically be argued in the scenario emission estimations for England and 

Wales, where fuel types (e.g., petrol, diesel, electric) rather than Euro standards have been used as 

opposed to the estimations for Greater London, due to lack of data. Consequently, the same emission 

factors are used for all vehicles of the same fuel type, rather than improved – and to some extent 

lower – emission factors that are normally applied for Euro standard vehicle technologies, explaining 

the fact that the presented model usually results into higher emissions compared to DfT outputs.  

Finally, in the case of London, roads have been spatially clipped so as not to extend further than the 

Greater London boroughs and associated boundaries. That is, initial street segment lengths could be 

longer affecting estimation of VKT and related emissions. This can significantly affect estimations for 

Motorways and attached Outer London boroughs, where one can observe that even though these 

road types usually carry heavy traffic, VKT accounts for a smaller fraction of total distance travelled in 

London (Table 5-7), due to the short length of motorways within the study area. Finally, occurrence of 

satellite cities66 and roads attached to but outside Greater London can significantly affect emissions 

on the edges of the study area, an effect that cannot be captured when the focus is placed on this 

case study. 

5.6. Chapter summary 
 

This chapter has focused on the estimation of tailpipe emissions from road transport vehicles using 

classification and regression modelling, facilitated by, and addressing the limitations of the transport 

volume modelling presented in chapter 3. Emissions have been estimated at a disaggregated level, for 

 
66 Satellite cities are smaller settlements around larger cities, separated from the metropolitan core by belts of 
rural territories (Bontje, 2019; Sorensen, 2001).  
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each road class and vehicle type, for the base year, while projections have been made for two case 

studies, considering technological development of vehicles, projected traffic for all regions in the study 

area as well as current and future policies. 

This chapter has fulfilled the second aim of the thesis – to assess the quantity of CO2 and three air 

pollutants (PM, NOx, and CO) originating from road transport and identify potential emissions 

abatement through technological developments of road vehicles and policies development. 

Specifically, the findings that have been validated for both the base year and projections (in the case 

of England and Wales) indicate that the disaggregated nature of the presented approach can provide 

detailed results at granular level, and consequently sound inferences related to road usage and 

associated emissions can be drawn at different geographic scales. The revealed patterns on the 

contribution of specific vehicles on emissions by road class can be particularly useful for urban and 

environmental planners and can facilitate in the design, implementation, and assessment of relevant 

policies. 

With this chapter the analysis of this thesis is complete. Certainly, considering the amount of data 

derived from multiple sources, the employment of various models and the attempt to complete 

numerous tasks throughout the modelling process, this study, like any other of this extent, exhibits 

limitations and has the potential to be improved, enriched, and extended. The following chapter draws 

the conclusions of the thesis and also attempts to address these issues by discussing its limitations 

and potentials for future research. 
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6. Conclusions 
 

6.1. Thesis summary 
 

The introduction in chapter 1 and literature review in chapter 2 demonstrated the need to mitigate 

CO2 and air pollutant emissions and highlighted the contribution of road transport in these figures. 

Moreover, the significant challenges and literature gaps in road transport modelling, the estimation 

of associated emissions and the identification of factors affecting traffic have been presented. 

Difficulties in the identification of factors and emission estimation occur due to the complexity of road 

transport systems that become challenging to capture in transport models. This issue is usually 

reflected in the frequent lack of data in transport models as well as the occurrence of multiple 

emission modelling approaches. 

In chapter 3, a comprehensive – spatial – dataset of drivers of traffic flows has been created, 

attempting to capture the maximum number of traffic determinants, by extracting and combining 

information from different sources, and a hybrid (i.e., clustering-regression) method to estimate AADT 

has been presented. The presented model revealed groups (i.e., clusters), where traffic patterns have 

been uncovered, allowing for further analysis to be conducted. Moreover, the modelling outcomes 

have shown high level of accuracy based on usual evaluation metrics. The dataset and model outputs 

from this chapter formed the foundation of the analysis to meet the aims of the thesis. 

Chapter 4 provides the response to the first aim of the thesis – to identify the degree of influence 

specific factors have on traffic volumes. Thorough analysis of the drivers of traffic volumes has been 

conducted with the application of the Lasso regression and variable selection method, facilitated by 

the utilization of the full dataset and the modelling outputs from chapter 3. The analysis that has been 

conducted by road class on five different vehicle types, revealed that the effects of specific factors on 

traffic vary depending on vehicle type and road class, although some factors appear to significantly 
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affect traffic volumes in all roads and vehicle types, such as the carriageway type and the set of 

variables indicating distances to urban areas.  

Finally, tailpipe emissions from road transport have been estimated in chapter 5 as a response to the 

second aim of the thesis – to assess the quantity of CO2 and three air pollutants (PM, NOx, and CO) 

originating from road transport and identify potential emissions abatement through technological 

developments of road vehicles and policies development. It should be clarified that the analysis is 

conducted by making use of two business-as-usual scenarios from DfT, therefore not necessarily 

representing the current – or future – policy plans and implementation. The analysis has been 

conducted by applying a hybrid classification-regression model, based on the dataset and outputs 

extracted from chapter 3. Focus has been placed on base year emission estimations for England and 

Wales and separately for Greater London, with the two different case studies further examined for 

two different purposes. Firstly, emissions have been projected for England and Wales to identify 

potential abatement, given trends in traffic growth and vehicles’ technological development. 

Secondly, emission estimations have been conducted for Greater London to assess current policies 

and future policy implementations. The modelling approach has been evaluated against models used 

by DfT, while the results show that significant emission reductions can be achieved with the 

introduction of new vehicle technologies and the implementation of clean air/low emission policies. 

6.2. Concluding discussion 
 

Severe impacts on ecosystems, human health and the economy caused by the high levels of CO2 and 

air pollutant emissions has led the UK to take measures towards mitigating the effects. The 

contribution of road transport in these emissions is of high significance, since it has been found to 

hold a significant portion of the total GHG emissions in the UK – approximately 20% (Office for National 

Statistics, 2019) – and contributing up to 80% of total transport pollutant emissions (Department for 

Transport, 2018a), thus forming a barrier for the UK to meet its targets. 
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To date several studies have attempted to estimate emissions from road transport facilitated by the 

application of transport models, that are essential tools to provide traffic information to emission 

models. Emission modelling is key to quantify emissions from road transport and assess the potential 

effects of introduced and future policies. However, transport and emission modelling approaches to 

date exhibit several limitations. It has been observed that traffic estimations are usually restricted 

within city boundaries, with the exclusion of minor roads also being evident in the majority of traffic 

estimation studies. As a result, traffic in roads of minor importance is estimated based on average 

regional flows, and emissions are usually estimated on regional aggregated levels, implying 

incomplete and questionable estimations, where insights about the impacts of road transport on local 

levels cannot be drawn. Moreover, it has been seen that different modelling approaches can provide 

significant deviations in emission estimations values for the same areas (Fontaras et al., 2014), where 

in some cases the models tend to overestimate or underestimate emissions (e.g., Valach et al., 2015; 

Vaughan et al., 2016). In addition, several vital characteristics that are thought to affect traffic volume 

are usually not taken into account in transport models, probably also affecting the low estimation 

accuracies achieved in traffic estimation studies. The latter, also affects the accuracy of emission 

estimation, while the exclusion of traffic determinants does not allow the creation of links between 

the occurrence of these characteristics and the emissions originating from road transport. 

Considering the gaps above, this thesis aimed to contribute to the transport literature, by addressing 

the identified limitations. Specifically, the thesis aimed to identify the influence of several 

characteristics on traffic volume, as well as to assess the quantity of CO2, PM, NOx, and CO originating 

from road transport and identify potential emissions abatement through policy developments given 

the latest data available. This is done by proposing and applying an alternative methodology 

implemented in three stages, based on the investigation of novel statistical methods where traffic 

volumes and the corresponding emissions have been estimated, and the relation of several 

characteristics on traffic volume have been identified. In this section the major steps undertaken to 



166 
 

meet the aims of the thesis and the corresponding outcomes as discussed in sections 3.5, 4.5 and 5.5 

are concluded. 

6.2.1. Traffic volume modelling 
 

From the AADT modelling results presented in section 3.4, it can be seen that the formation of clusters 

has significantly contributed to the high estimation accuracy. Preliminary analysis on cluster formation 

has revealed that there are several variables taking a distinct set of values in each group and road 

type. Moreover, the analysis has shown that the RMSEs produced by the models67 are similar to the 

AADT standard deviation (SD) values within each cluster. This implies that the model replicates the 

dispersion of the dependent variable (Meyer, 2012) and consequently, it is safe to assume that lower 

errors would be difficult to achieve. 

Moreover, the analysis of the transport modelling results (sections 3.4 and 3.5) shows that ‘A’ roads 

in cluster 1 have strong similarities with motorways – which have not been modelled – in terms of 

traffic volumes (Table C-3). With regards to this point, road classes can be confused specifically when 

data from various sources such as DfT and OS are combined. For example, major roads based on the 

one source may be classified as minor according to the other, introducing complexity and uncertainty 

in the modelling process. Consequently, roads should – or could – be classified based on the traffic 

and not ownership68 as it has also been pointed out by Xia et al. (1999) who faced similar issues. 

6.2.2. Drivers of AADT 
 

In chapter 4, a comprehensive set of variables created at an earlier stage has been examined, to 

address one of the two aims of the thesis – to understand the impact these factors have on traffic 

 
67 The RMSEs discussed here mainly refer to the two ML algorithms (i.e., SVR and RF). RMSEs produced by OLS 
do not apply to this statement, since they have been found to be higher in most cases, as shown in Table 3-3. 
68 Ownership refers to the corresponding authority that is responsible for road improvement and maintenance 
and assigning road classifications. National agencies such as Highways England and local highway authorities 
normally comply with government guidance on road classification and therefore, discrepancies in the 
classification between these two sources should be minimal, if any. However, other sources, such as the OS used 
in this thesis may exhibit different classifications for the same roads, a matter that is normally identified due to 
data update issues.  
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volumes. The analysis has been undertaken for five different vehicle types and four different road 

classes in England and Wales, where traffic counters have been subdivided into five groups based on 

specific land use, socioeconomic, public transport and roadway characteristics in the vicinity of each 

counter as modelled in chapter 3. The results produced by Lasso reveal patterns for specific 

explanatory variables across vehicle types and road classes. In some cases, heterogeneous results 

across estimated models have been reconciled by looking at the characteristics of the counters and 

areas in each model. In this section, the outcomes are summarised as presented and discussed in 

sections 4.4 and 4.5 and potential conclusions and ways to improve the understanding on traffic 

volumes are discussed. 

Overall, it can be concluded that variables related to roadway characteristics, such as the road nature 

and road category are almost always present indicating strong predictors of traffic volumes. Similarly, 

specific socioeconomic variables are associated with traffic volumes in numerous ways. Income is 

associated with the increased use of private vehicles which indicates decreased use of buses. 

Population and workplace population densities – associated with the distinction between urban and 

rural environments – also relates with the traffic volumes of all vehicle types in a different manner. 

An interesting finding is that population density is positively correlated with high bus volumes, 

although these patterns are more significant for higher class roads (e.g., ‘A’ or ‘B’). Buses normally 

drive through major arteries where bus lanes are more likely to occur to facilitate traffic flow along 

important routes, normally linking important places. The distinction between urban and rural 

environments and the respective relation with traffic volumes is also clear from other associated 

characteristics. Variables such as public transport presence and accessibility and the set of distances 

to urban/major urban areas are associated with all vehicle types although cars, buses and two-

wheeled vehicles are more associated with factors related to densely populated urban centres, while 

LGVs and HGVs are more likely to be present at industrialised areas close to urban centres and their 

outskirts.  
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However, specific variables related to specific vehicle types only can also be distinguished. For 

example, it has been observed that warehouses and factories are always positively correlated with 

LGVs and HGVs, registered vehicles mainly associate with bus and two-wheeled vehicle volumes, while 

train accessibility is related with car volumes. Similar conclusions can be drawn when investigating the 

association of specific variables with traffic volumes on different road types. In particular, it has been 

noticed that some variables are associated with traffic volumes on ‘A’ roads only, due to the different 

nature of these roads and use by the vehicles. For example, ring roads correlate with traffic volumes 

only on ‘A’ roads, although the coefficient signs vary significantly when investigating different vehicle 

types. 

The latter also leads to the consideration of the number of data points within each road class and 

subgroup. For ‘A’ roads the 14670 points represent 99% of the total road links for this road class in the 

study area, while the proportions for the other road classes are 13.1% for ‘B’ roads, 0.7% for ‘C’ roads 

and 0.15% for ‘U’ roads respectively. Moreover, counts for ‘C’ and ‘U’ roads are undertaken manually, 

and the number of counted vehicles is low and therefore traffic volume modelling and resulting 

coefficients is challenging and potentially less reliable. This can also be confirmed by the coefficients 

extracted in the case of ‘U’ roads where no specific patterns have been revealed. Furthermore, ‘U’ 

roads are often located in entrances to industrial areas or within private properties (e.g., warehouse 

courtyards) and can introduce bias to the models. Hence, it can be safely assumed that results for ‘A’ 

roads are more reliable. 

Finally, one has to consider the spatial dataset used to distinguish between urban and rural areas and 

calculate the respective distances. The dataset considers all build up areas as urban (Bibby & Brindley, 

2014), indicating that large cities are classified together with villages and small towns, where 

significant differences in land use, population, public transport and other indicators occur. Even in the 

case of the six major urban areas there are considerable differences among them. Specifically, larger 
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cities such as London, Manchester or Birmingham, where industrial areas can be surrounded by 

residential neighbourhoods can add complexity to the analysis. 

6.2.3. Emissions 
 

Spatial distribution of AADT, VKT and associated emissions is of high importance for research in urban, 

transport as well as health and environmental planning. The methodology presented in chapter 5 can 

provide a significant improvement in estimating emissions since all street segments of the study area 

are modelled, therefore delivering a better understanding of the spatial distribution of pollution levels 

in these areas. Considering that the emission modelling results are comparable with the models used 

by DfT, both at city (i.e., London) and national (i.e., England and Wales) levels as well as on base and 

projected years, indicates that this approach can provide valid but also more detailed and granular 

results, since it can be used for both micro (e.g., street level) and macro (e.g., countries or states) 

analysis as opposed to aggregated models. However, it is important to highlight that this method 

estimates and presents the spatial distribution of average daily emissions and not concentration of 

pollutants. Therefore, it can be argued that the modelling presented introduces an alternative 

method, which due to its ability to model emissions in multiple levels of granularity can be useful for 

policy makers and planners. 

Comparing and validating the presented approach with other – established – models implies that 

these approaches are trustworthy and can provide accurate estimations. This is contradicted by the 

fact that, as it has been discussed, estimations among different approaches can vary significantly and 

as a result the reliability of every model can be questionable. If accurate validation can only be 

conducted when ground truth values are known, a complete monitoring of emissions across the full 

study area, which is in practice infeasible, would be required. Hence, uncertainty in the projections of 

any model should be expected, normally increasing with the length of the projection and the 

disaggregation of the model (Department for Transport, 2018d). 
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Nonetheless, the modelling and its outputs presented in this thesis provide considerable insights on 

the current and potential future contribution of road transport on emissions, although it should be 

noted that the projected results for England and Wales cannot be utilized to assess the UK’s path 

towards meeting its emission mitigation targets. Firstly, the targets set by the government apply to 

the whole of the UK, while the thesis has only focused on England and Wales. Secondly, the targets to 

reduce emissions are overall set for all contributing sectors such as manufacturing and construction, 

electricity generation and agriculture (Climate Change Committee, 2020a), while the thesis has 

focused on road transport emissions. In addition to the latter, the CCC’s latest report (Climate Change 

Committee, 2020b) that focuses on transport emissions explore road transport as a section of surface 

transport (also including rail and active transport). In the report, several options to reduce emissions 

are generally discussed, although clear targets for this sector are not indicated, and therefore there 

can be no modelling to capture these effects. For example, a ban on new petrol and diesel cars sales 

by 2030-2035 is considered as an option, and a shift to alternative lower-carbon transport modes, 

such as walking, cycling or public transport, is assumed to occur by 2035 (Climate Change Committee, 

2020b), although further details and data are not provided. 

The presented model is a useful tool to assess emissions and potential gains from road transport given 

the current knowledge and available data. Moreover, due to its varied nature (i.e., both aggregated 

and disaggregated), policy implementation processes can be facilitated both at national as well as at 

more targeted local levels. For example, although the overall UK’s mitigation targets cannot be 

assessed by the model’s output, it can be concluded that CO2 emissions from road transport have the 

potential to be reduced by 21% considering scenario 1 and by 18% considering scenario 2 in 2035 

compared to 1990 levels in the study area, as shown in Table 6-1. Considering that England and Wales 

comprise approximately 88% of the UK’s road transport CO2 emissions (Department for Transport, 

2020), respective inferences can be drawn and related policies can be designed and implemented. 
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Table 6-1: CO2 (million tonnes) emission change in England and Wales from 1990 to 2035 

Year Scenario 1 Scenario 2 

 Author’s method DfT Author’s method DfT 

1990 107.13 107.13 

2035 84.68 77.15 87.58 81.08 

Change (%) -20.96% -27.98% -18.25% -24.31% 

 

On the other hand, in the case of localized policies such as ULEZ and its extension, several reports 

contain contradicting and frequently abstract statements. For example, it has been argued that the 

extension of the zone would have benefits both in terms of air pollution reductions and the economy 

(Laybourn-Langton and Quilter-Pinner, 2016), while on the other hand it has been argued that it would 

only result into minimal reductions in harmful emissions (Jacobs, 2014). Certainly, none of the above 

can yet be ratified. From a research perspective, one can only expect for the policies to be enforced 

and data to become available. However, as opposed to the England and Wales study, ULEZ and ULEZ 

extension are easier and straightforward to assess, considering the assumptions made. Introduction 

of new technology vehicles with lower emission factors across a specific spatial extent (e.g., ULEZ) and 

assuming equal use of these vehicles as implemented in the model, is anticipated to reduce emissions 

and consequently, the spatial extension of the area is also expected to have additional effects.  

This thesis has highlighted both the complexity and importance of road transport, as well as its 

interdependence with numerous sectors, such as urban planning and the economy. Considering the 

international increase in many measures of people and goods movement (National Academy of 

Sciences, 2010), it is vital to retain, expand and modernize road transport capacity through 

technological developments and policy implementation. This will allow not only to meet the 

constantly increasing demand for transportation and achieve social and economic growth, but also to 

counterbalance the associated damaging environmental effects at national and international levels. 

However, technological development and its consideration and integration within relevant policies, 

indicates that extended research and significant investment on infrastructure – such as electric 

vehicles’ charging points – has to occur, which is not the focus of this thesis. The thesis has presented 
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a method to produce disaggregated estimates of traffic volumes and associated emissions, and 

provided insights on how these estimates could be used to evaluate the impacts of related policies. 

Thus, the method presented can be used to inform further decisions. 

6.3. Limitations and uncertainties 
 

The modelling processes that have been followed to meet the aims of the thesis have resulted into 

sensible and comparable results with similar studies. Still, as every other process, the methodology 

exhibits some limitations and uncertainties that need to be addressed. 

Firstly, combining the datasets to fit the purposes of the thesis can introduce uncertainty in the model 

and analysis. It has been seen that during the transport and emission modelling process, datasets from 

various sources have been used. Specifically, in the case of road transport modelling, data have been 

extracted from nine different sources to create over forty variables. The different datasets can be 

created using different methods, some datasets may have important missing information, while some 

others are collected during different time periods. For example, there are several ports and airports 

of different size, function and importance in England and Wales, and one cannot be certain if all the 

facilities were included in the ports and airports datasets. Another important and common example 

is related to the collection of socioeconomic data in relation to traffic. While AADT base year data 

correspond to 2015, the socioeconomic data related to population and corresponding densities 

extracted from ONS is based on the 2011 census. Hence, one would expect the socioeconomic 

characteristics to have changed – probably slightly – within the course of 4 years, something that it 

would be expected to magnify when doing the projections. Similarly, one would expect the land use 

information from VOA to change every year, specifically considering the type and number of facilities 

included in this dataset. 

Secondly, the transport model presented in chapter 3 focused on the estimation of total traffic 

volumes without taking into consideration the different vehicle types, although the analysis of traffic 

determinants (chapter 4) and emissions estimation (chapter 5) has been conducted on a vehicle-type 
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level. This can result into some uncertainty in the computation of emissions in chapter 5 and can 

partially also explain the deviations reported in Table 5-18, Table 5-19 and Table 5-20. This also implies 

that a recalibration of the model for each vehicle type would allow to better inform the analysis of 

traffic determinants conducted in chapter 4 – the latter also explaining the fact that some – although 

very few – of the coefficients were not precisely clarified. 

Thirdly, it should be mentioned that the thesis estimated only tailpipe (i.e., exhaust) emissions from 

vehicles and did not consider emissions produced by other parts of the vehicles, specific activities or 

other factors that would affect the produced emissions. For example, tyre wear produced by friction, 

drivers’ behaviour and weather conditions all affect the amount of emissions produced by the 

vehicles. However, emissions from tyres are minimal and cannot be modelled by the methodology 

presented in this thesis. In addition, behavioural issues can only be modelled with simulation models 

– found to be unsuitable for the purposes of this research. Moreover, weather conditions that can 

also affect behaviour and overall emission production incorporates temporal trends, that on the one 

hand are again out of the scope of my thesis, but on the other it can be assumed that the AADT values 

can capture temporal traffic deviations at an aggregated level. 

Finally, it is worth commenting on the estimated emission projections. In chapter 5, data gaps 

extracted from official published policies and governmental gateways were reported, that in turn have 

been reflected in the model outputs. For example, the latest official reports refer to options to reduce 

emissions, such as active travel (e.g., walking and cycling), although there are no available data on the 

amount of walking or cycling that is projected to replace motorised transportation. This led to the 

linear assumptions related to the use of each vehicle type that had to take place as discussed in section 

5.5, which have probably affected the projected emission estimations. For instance, the projected 

distance travelled (i.e., VKT) has been estimated based only on the expected traffic growth (Table 5-2), 

without considering any potential shift from motorised transport to active travel. This is also related 

to uncertainties that can occur when combining different datasets as discussed above, since the 
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projected traffic values are extracted from DfT, while the latest report on mitigating transport 

emissions comes from CCC, also published in different dates. Moreover, the assumptions made are 

likely to have affected the use of electric vehicles the most. Taking into account that substantial 

infrastructure needs to be integrated for the use of these vehicles and that behavioural issues – such 

as people’s interest to purchase electric vehicles – have to be considered, it is safe to assume that the 

projected number of electric vehicles that have been integrated into the model may be unreliable. 

6.4. Future research 
 

Based on the outcomes of the thesis further research may be conducted to address the limitations 

discussed in section 6.3 as well as to enrich and improve the findings and the methodology presented. 

For example, the collection of additional data and incorporation of explanatory variables has the 

potential to improve performance of ML algorithms (Domingos, 2012; Junqué de Fortuny et al., 2013) 

and thus can be explored in future studies if computational processing allows it. 

Moreover, in the case of transport modelling, several different approaches and methods can be 

applied to investigate potential improvement of the model outputs. For example, implementation of 

other clustering and validation techniques – e.g., automated weighting clustering algorithms proposed 

in other studies (e.g. Chen and Wang, 2013; Huang et al., 2005) and k-fold cross validation (Koul et al., 

2018) – could reveal different patterns of traffic flows and corresponding driving factors as well as 

potentially provide more accurate error measurement. 

Furthermore, in the case of identifying the impact of several factors on traffic volumes, one has to 

consider the spatial dataset used to distinguish between urban and rural areas and calculate the 

respective distances. The dataset considers all build up areas as urban (Bibby & Brindley, 2014), 

indicating that large cities are classified together with villages and small towns, something which 

would be helpful to differentiate in future studies. Even in the case of the six major urban areas there 

are considerable differences among them. Specifically, cities such as London or Manchester, where 
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industrial areas can be surrounded by residential neighbourhoods, can add complexity to the analysis 

and should be examined individually. Hence, it can be identified that further sampling and acquisition 

of more reliable data can potentially lead to an improved model and understanding of traffic volumes. 

Moreover, similar regularisation methods such as ridge regression (Hoerl and Kennard, 1970) and 

elastic net (Zou and Hastie, 2005) can be applied to compare – and potentially combine – the results 

and conclude with more meaningful outcomes. In addition, the application of interpretable machine 

learning can be explored, where the ‘black-box’ nature of the algorithms can be unfolded so as to the 

behaviour and output of the algorithms can be explained (Doshi-Velez and Kim, 2017).  

In terms of emission modelling, again methodological aspects can be explored. Firstly, although three 

classification algorithms have been tested, other probabilistic classification models can be trialled to 

explore the potential to achieve higher classification accuracy and emission estimation if possible. The 

model can also be applied to other areas where clean air zones have been introduced (e.g., 

Birmingham) to assess the impact of these policies, while it would also be interesting to assess the 

findings of this thesis for ULEZ and ULEZ extension when official data will become available. 

Finally, considering data availability and computational capacity a spatio-temporal modelling 

approach for a detailed and comprehensive assessment of AADT and changes in AADT across space 

and time should be considered in future studies. 
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Appendix 
 

A. Supplementary material for chapter 1 
 

Perhaps reflecting the several disciplines investigating transport, terminology is sometimes used with 

contradicting meanings. In fact, a great deal of confusion is related to the terms ‘traffic volume’ and 

‘traffic flow’, sometimes used interchangeably. With regard to the former, I follow Zhao & Park (2004), 

so that traffic volume is defined as “the number of vehicles that pass a point on a highway for a given 

lane or a given direction of a highway and during a specified time interval”. With regard to the latter, 

I follow Hoogendoorn & Knoop (2012), so that traffic flow is defined as the average number of vehicles 

passing a cross section in one unit of time, essentially traffic volume (𝑛) as defined above divided by 

the length of the observation period (𝑇) so that traffic flow 𝑞 can be represented as 𝑞 =  
𝑛

𝑇
. The 

confusion between traffic volume and traffic flow implies that Annual Average Daily Traffic (AADT), 

one of the main variables used in my study, is sometimes used to measure traffic flows, e.g. Leduc 

(2008) and Pang et al. (2016), while other authors, e.g. Roess et al. (2011) and Sharma et al. (2001), 

use AADTs to measure traffic volumes. In fact, Leduc (2008) mention that the term traffic volume may 

be used to frame analysis of AADT, particularly in the US. For the sake of clarity, I will use AADT as a 

measure of traffic volume, my choice reflecting the formalisation of AADT below which is taken from 

Leduc (2008): 

𝐴𝐴𝐷𝑇𝑖 =  ∑
𝑇𝐶𝑖,𝑗

24

365

365

𝑗=1

(24) 

where 𝑇𝐶𝑙,𝑗
24 is the 24-hour traffic count on road link 𝑖 at day 𝑗. Similarly, speed is defined by 

Hoogendoorn & Knoop (2012), as: 

𝑢 =
𝑞

𝑘
(25) 

where 𝑞 is flow and 𝑘 is density with density defined as the number of vehicles per distance unit: 
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𝑘 =  
𝑚

𝑋
=  

𝑚

∑ 𝑠𝑖
𝑚
𝑖=1

=  
1

𝑠̅
(26) 

where 𝑋 is the length of the street segment and 𝑚 is the number of vehicles. 
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B. Supplementary material for chapter 2 
 

Table B-1: Road categories used in the calculation of expansion factors 

Category Description 

01 Motorways in holiday areas 

02 Motorways in other rural areas with an estimated AADF of up to 59,999 

03 Motorways in other rural areas with an estimated AADF of 60,000 or more 

04 Motorways in part rural and part urban areas and conurbations 

05 Motorways in mostly urban areas and Greater London 

06 Rural ‘A’ roads in holiday and very rural areas with an estimated AADT of up to 4,999 

07 Rural ‘A’ roads in holiday and very rural areas with an estimated AADT of between 5,000 and 7,999 

08 Rural ‘A’ roads in holiday and very rural areas with an estimated AADT of 8,000 or more 

09 Rural ‘A’ roads in all other areas with an estimated AADT of up to 13,999 

10 Rural ‘A’ roads in all other areas with an estimated AADT of 14,000 or more 

11 Urban ‘A’ roads in holiday areas 

12 Urban ‘A’ roads in all other areas except Greater London with an estimated AADT of up to 19,999 

13 Urban ‘A’ roads in all other areas except Greater London with an estimated AADT of 20,000 or more 

14 Urban ‘A’ roads in Outer London 

15 Urban ‘A’ roads in Inner London 

16 Urban ‘A’ roads in Central London 

50 Minor rural roads in holiday areas with an estimated AADT of up to 399 

51 Minor rural roads in holiday areas with an estimated AADT of 400 or more 

52 Minor rural roads in all other areas with an estimated AADT of up to 2,499 

53 Minor rural roads in all other areas with an estimated AADT of 2,500 or more 

54 Minor urban roads in all areas except Greater London 

55 Minor urban roads in Greater London 
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C. Supplementary material for chapter 3 
 

Table C-1: Outline of used datasets 

Dataset Source Description Spatial Date 

1. Traffic count points 
Department for Transport 

(DfT) 
Geocoded count points in England 

and Wales 
N 2015 

2. Integrated Transport 
Network (ITN) 

Ordnance Survey (OS) 
road network in Great Britain (GB) – 

roads and road junctions 
Y 2015 

3. Urban Paths (ITNUP) Ordnance Survey (OS) 
man-made footpaths, subways, 

steps, footbridges, and cycle paths in 
Britain’s urban areas 

Y 2015 

4. Lower Super Output 
Areas (LSOAs) 

Ordnance Survey (OS) 
Designated areas for England and 

Wales with minimum 1000 
population 

Y 2011 

5. Socioeconomic 
Characteristics 

Office for National Statistics 
(ONS) 

population, population density, 
workplace population, workplace 

density, number of households and 
median income at each LSOA 

 

N 2011 

6. Number of registered 
vehicles 

Office for Low Emission 
Vehicles (OLEV) 

Number of registered cars and vans 
for each LSOA 

N 2011 

7. Urban Area polygons Ordnance Survey (OS) Urban Areas boundaries Y 2016 

8. Bus stops and stations 
National Public Transport 
Access Nodes (NaPTAN) 

database 

Geolocated bus stops and stations in 
Britain 

N 2016 

9. Train and light train 
stations 

National Public Transport 
Access Nodes (NaPTAN) 

database 

Geolocated train and light rail 
stations in Britain 

N 2016 

10. Ports British Port Association 
Geolocated passenger and 

commercial ports 
N 2015 

11. Airports Civil Aviation Authority Geolocated passenger airports N 2015 

12. Charging points 
Office for Low Emission 

Vehicles (OLEV) 
Geolocated charging points for 

electric vehicles 
N 2016 

13. Non-domestic 
properties 

Valuation Office Agency 
(VOA) 

Geotagged and classified properties 
in England and Wales 

N 2017 
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Table C-2: VOA re-classified land-use categories 

CLASS ELEMENTS 

Research, Education and Training Schools, Colleges, Libraries, Universities, Language and Music Schools, etc. 

Factories, Workshops, and Industrial 
Activity 

Energy Production Facilities, Factories, Workshops, Mines, Oil Fields, Recycling Plants, 
Shipyards, Scrap Yards 

Healthcare Hospitals, GPs, Surgeries, Clinics 

Leisure 
Public Houses, Bars, Nightclubs, Restaurants, Art Galleries, Cinemas and Theatres, 
Coffee shops 

Office and Business Space Offices, Banks, Business Units 

Public Services, Infrastructure and Buildings Post Offices, Community Centres, Police and Fire Stations, Prisons, Courts 

Shops, Stalls, Kiosks and Markets Shops, Kiosks, Showrooms, Stores 

Super/Hyper Stores Superstores, Malls 

Sport Stadia, Sport Centres, Golf Courses, Tennis Centres, Football Grounds 

Vacation Sites, Accommodation and 
Facilities 

Campsites, Caravan Sites, Hotels, Guest Houses, Holiday Units, Hostels, Motels, Beach 
Houses 

Petrol Stations Petrol Stations 

Vehicle Infrastructure Vehicle Repair Workshop, Garages, Car Wash 

Warehouse and Storage Warehouses, Depots, Storage Depots, Land Used for Storage 

Parking Space Car/Vehicle Park Sites and Park Spaces, Motorcycle Bays 

Animal Husbandry, Farming and Agriculture Aviaries, Farms, Animal Shelters, Stud Farms 

Marine Infrastructure Mooring Sites, Quays, Wharfs, Lifeboat Stations, Marine Control Centres 

Under (re)construction Properties and Premises Undergoing (re)Construction 

 
Table C-3: Traffic values by road class and cluster 

Road Class Cluster Number of points Traffic Sum Traffic per point Share 

A Roads 

1 – red 521 39,224,718 75,287.37 14.2% 

2 – yellow 2,170 76,883,890 35,430.36 27.8% 

3 – blue 1,672 25,533,749 15,271.38 9.2% 

4 – white 5,627 92,841,986 16,499.38 33.6% 

5 – green 4,680 41,880,043 8,948.73 15.2% 

Total 14,670 276,364,386 Share of traffic in sample 95.5% 

B roads 

1 – red 86 1,613,758 18,764.63 22.6% 

2 – yellow 216 2,516,417 11,650.08 35.2% 

3 – blue 194 1,429,658 7,369.37 20.0% 

4 – white 252 1,090,089 4,325.75 15.2% 

5 – green 284 501,520 1,765.92 7.0% 

Total 1,032 7,151,442 Share of traffic in sample 2.5% 

C roads 

1 – red 59 886,950 15,033.05 24.7% 

2 – yellow 207 1,561,951 7,545.66 43.5% 

3 – blue 147 660,926 4,496.10 18.4% 

4 – white 218 192,124 881.30 5.3% 

5 – green 427 290,185 679.59 8.1% 

Total 1,058 3,592,136 Share of traffic in sample 1.2% 
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Road Class Cluster Number of points Traffic Sum Traffic per point Share 

U Roads 

1 – red 31 269,195 8,683.71 12.3% 

2 – yellow 187 594,486 3,179.07 27.2% 

3 – blue 557 739,595 1,327.82 33.9% 

4 – white 1,070 509,433 476.11 23.3% 

5 – green 196 69,499 354.59 3.2% 

Total 2,041 2,182,208 Share of traffic in sample 0.8% 

ALL ROADS Overall Total 18,801 289,290,172 Share of all road traffic 100% 

 

Table C-4: Total Traffic Share by road class 

Road Class 
Traffic Volume – Vehicle Miles 

Travelled (VMT) in billions 
Share 

A 144.9 57% 
B 22.9 9% 

C 52.5 20% 

U 35 14% 

Total 255.3 100% 

 

Figure C-1: "Elbow" method indicating K=5 
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- Choice of weights 

The choice of weights has an impact on clustering formation and therefore on the performance of a 

given methodology. In the literature, clustering applications are normally used as exploratory analyses 

(e.g. Baumgartner et al., 2000; Bolton and Krzanowski, 2003; Hébrail et al., 2010), with the purpose to 

separate the data into “similar” groups of objects (Larose, 2005). Considering this exploratory process 

and the concept of similarity, my choice of using weights is based on the pioneering work of Hastie et 

al., (2009), stating that “Variables that are more relevant in separating the groups should be assigned 

a higher influence in defining object dissimilarity”. In addition, Friedman and Meulman (2004) state 

that optional weights can be assigned to certain variables to raise their importance when those 

variables are considered a priori more critical in cluster formation than others. During my experiments, 

I have tested a number of weight combinations so as to identify clusters with similar values of traffic. 

I eventually noticed that results improved when the clustering process was dominated by the 

dependent variable which is not entirely surprising as the values of the dependent variable are those 

over which MAPEs are computed. As an example, setting three different weights for the dependent 

variable (weights of 2, 5 and 10), returned higher errors for weights 2 and 5 as compared to the 

application of weight 10. A sample of runs for weights 2 and 5 can be seen in Table C-5 and Table C-6 

respectively, where the errors are higher compared with weight 10. 

 

Table C-5: MAPE for AADT weight = 2 

Dependent variable weight: 2 

A3200 Cluster Regression Random Forest SVR 

1 44.6% 44.5% 43.93% 

2 37.4% 35.9% 46.8% 

3 70.3% 60.8% 70.1% 

4 54.9% 49.7% 129.7% 

5 43.3% 39.7% 49.8% 

A2000 1 68.9% 59.5% 69.2% 

2 44.85% 46.1% 61.3% 

3 62.4% 61.3% 100% 

4 39.4% 37.1% 48.5% 

5 45.2% 41.4% 48.8% 
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A1600 1 51.7% 42.9% 55.3% 

2 53.7% 55.5% 130.4% 

3 58.6% 55.2% 88.1% 

4 39.6% 37.2% 44.5% 

5 65.1% 55.8% 64.1% 

A1000 1 50.2% 48.4% 56% 

2 41.3% 38.9% 48.7% 

3 66.6% 66.5% 130.1% 

4 64.2% 58.7% 90.8% 

5 76.1% 95% 82.8% 

A800 1 58.8% 57.1% 120.1% 

2 40.3% 37.6% 45.2% 

3 57.2% 42.2% 65.8% 

4 49.8% 42.8% 48.5% 

5 64.7% 61.1% 91.3% 

A500 1 39.7% 37.8% 48.5% 

2 67.5% 63.9% 96.4% 

3 58.6% 52.7% 59.6% 

4 61.5% 61.8% 74.8% 

5 64.8% 61.9% 118.3% 

 

 

Table C-6: MAPE for AADT weight = 5 

Dependent variable weight: 5 

A3200 Cluster Regression Random Forest SVR 

1 41.9% 38.6% 39% 

2 13% 11.6% 11% 

3 45.3% 38.5% 36% 

4 30.1% 27.1% 28.8% 

5 45% 42.6% 43.2% 

A2000 1 58.2% 53.2% 52.8% 

2 10.7% 9.3% 9.1% 

3 32% 28.9% 30.7% 

4 40.9% 39.2% 39.4% 

5 69.5% 67.1% 68.5% 

A1600 1 40.7% 37.7% 37.5% 

2 29% 27.7% 28.4% 

3 13.1% 12.4% 11.8% 

4 51.7% 46% 47.2% 

5 73.9% 63.8% 63.1% 

A1000 1 13% 12.4% 12.1% 

2 46.8% 44.4% 44.5% 

3 61% 55.7% 55.3% 

4 43.2% 41.7% 40.4% 

5 30.5% 30.1% 30.1% 
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A800 1 55.8% 46.1% 44.8% 

2 51.6% 47.9% 48.1% 

3 30.1% 29.6% 29.7% 

4 11.8% 12.3% 11.3% 

5 37.2% 35.8% 35.5% 

A500 1 5.9% 5.8% 5.6% 

2 46.8% 43.6% 44.4% 

3 23.5% 23% 23.2% 

4 7.8% 7.3% 7.5% 

5 81.4% 43.1% 43.4% 

It might be that even higher weights for the dependent variable would deliver lower errors although 

it has not been tested. This relationship between the weights and the returned MAPEs is in my mind 

an experimental process and of course it is unlikely that the weights are “the best” as they are by no 

means optimised. I think this needs to be rightly pointed out, as it implies that there might be more 

gains from my approach in terms of predictive accuracy something which is explored in the following 

chapters. 
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D. Supplementary material for chapter 4 
 

Table D-1: Independent Variables 

Group Variable Abbreviation Description Type Unit 

Roadway 
Characteristics 

1. Urban/Rural 
Urb_Rur 

Whether a count point is located at urban or rural 
environment 

Categorical 
N/A – dummy (0-1), where 0 is rural and 

1 is urban 

2. Distance to Urban Area 
Dist_Urb 

Distance of count point to the edge of the nearest edge of 
spatial polygon indicating urban area 

Numerical Meters 

3. Distance to Major Urban 

Area69 
Dist_M_Urb 

Distance of count point to the edge of the nearest edge of 
spatial polygon indicating Major urban area69 

Numerical Meters 

4. Distance to Urban Area 
Centroid Dist_Urb_C 

Distance of count point to the geometrical centroid of the 
nearest spatial polygon indicating urban area – indicating 
urban (city/town/village) centre 

Numerical Meters 

5. Distance to Major Urban 
Area69 Centroid Dist_M_U_C 

Distance of count point to the geometrical centroid of the 
nearest spatial polygon indicating major urban area69 – 
indicating major urban (city) centre 

Numerical Meters 

6. Toll Road 
Toll Whether a count point is located on a road with tolls Categorical 

N/A – dummy (0-1), where 0 indicates 
free road and 1 a toll road 

7. Ring Road 
Ring_Road Whether the count point is located on a ring road Categorical 

N/A – dummy (0-1), where 0 is a regular 
road and 1 is a ring road 

8. Road Nature 
Nature 

Whether the count point is located on a single or dual 
carriageway, slip road or roundabout 

Categorical 
N/A – categorical with multiple 

categories, depending on road class 

9. Road Category 
RCat 

Whether the point is located on a primary or trunk road 
(mainly for higher class roads) in an urban or rural area 

Categorical 
N/A – categorical with multiple – usually 

4 – categories. 

10. Junction Accessibility 
Junction 

Whether the point is located on a road with access to 
motorway within the specified service area 

Categorical 
N/A – dummy (0-1), where 0 indicates 

no access and 1 indicates access to 
motorway 

Public 
Transport 

11. Bus Stops Bus_stops Number of bus stops within the specified service area Numerical count 

12. Bus Stations Bus_stat Number of bus stations within the specified service area Numerical Count 

13. Train Accessibility 
Perc_SA 

Indicating train station accessibility within the LSOA70 where 

the count point is located. 
Numerical Decimal 

 
69 These are the six largest urban agglomerations in England and Wales defined by Pointer, (2005). The urban agglomerations are: Greater London, West Midlands 
(Birmingham, Wolverhampton, Coventry), Greater Manchester, West Yorkshire (Leeds and Bradford), Tyneside (Newcastle and Sunderland) and Liverpool Urban Areas. 
70 As a remined, the Lower Super Output Areas (LSOAs) are approximately 35,000 areas designed by the Office for National Statistics (ONS) for England and Wales, with 
population minimum of 1000. 
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Group Variable Abbreviation Description Type Unit 

Socioeconomic 14. Population Population Total population of a count point’s intersecting LSOAs70 Numerical Count 

15. Population Density 
pd 

Average population density of a count point’s adjacent 
LSOAs70 

Numerical Decimal (people per hectare) 

16. Workplace Population 
workpop 

Total number of registered employed people of a count 
point’s adjacent LSOAs70 

Numerical Count 

17. Workplace Population 
Density 

work_dens 
Average of registered employers’ density around a count 
points’ adjacent LSOAs70 

Numerical Decimal (people per hectare) 

18. Workplace plus Population 
Density 

w_n_p_d 
Average workplace plus population density of a count point’s 
adjacent LSOAs70 

Numerical Decimal (people per hectare) 

19. Income Income Average median income of a count point’s adjacent LSOAs70 Numerical British Pound Sterling (in thousands) 

20. Households 
Household 

Total number of households of a count point’s adjacent 
LSOAs70 

Numerical Count 

21. Registered Vehicles 
car_van 

Total number of registered cars and vans of a count point’s 
adjacent LSOAs70 

Numerical Count 

Land Use 22. Charging Points Charge_p Number of charging points within each service area Numerical Counts 

23. Ports 
Port 

Whether there is a port within the specified service area 
around the count point 

Categorical 
N/A – dummy (0-1), where 0 indicates 

no port and 1 indicates port occurrence 

24. Airports 
Airport 

Whether there is an airport within the specified service area 
around the count point 

Categorical 
N/A – dummy (0-1), where 0 indicates 

no airport and 1 indicates airport 
occurrence 

25. Research, Education and 
Training Research 

Total number of Schools, Colleges, Libraries, Universities, 
Language and Music Schools, etc. within the specified service 
area 

Numerical Count 

26. Factories, Workshops, and 
Industrial Activity 

Factories 
Total number of Energy Production Facilities, Factories, 
Workshops, Mines, Oil Fields, Recycling Plants, Shipyards, 
Scrap Yards within the specified service area 

Numerical Count 

27. Healthcare Healthcare 
Number of Hospitals, GPs, Surgeries, Clinics within the 
specified service area 

Numerical Count 

28. Leisure Leisure 
Number of Public Houses, Bars, Nightclubs, Restaurants, Art 
Galleries, Cinemas and Theatres, Coffee shops within the 
specified service area 

Numerical Count 

29. Office and Business Space Office 
Number of Offices, Banks, Business Units within the specified 
service area 

Numerical Count 

30. Public Services, 
Infrastructure and 
Buildings 

Public 
Number of Post Offices, Community Centres, Police and Fire 
Stations, Prisons, Courts within the specified service area 

Numerical Count 

31. Shops, Stalls, Kiosks and 
Markets 

Shops 
Number of Shops, Kiosks, Showrooms, Stores within the 
specified service area 

Numerical Count 

32. Super/Hyper Stores Superstore 
Number of Superstores, Malls within the specified service 
area 

Numerical Count 
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Group Variable Abbreviation Description Type Unit 

33. Sport Sport 
Number of Stadia, Sport Centres, Golf Courses, Tennis 
Centres, Football Grounds within the specified service area 

Numerical Count 

34. Vacation Sites, 
Accommodation and 
Facilities 

Vacation 
Number of Campsites, Caravan Sites, Hotels, Guest Houses, 
Holiday Units, Hostels, Motels, Beach Houses within the 
specified service area 

Numerical Count 

35. Petrol Stations Petrol Number of Petrol Stations within the specified service area Numerical Count 

36. Vehicle Infrastructure Vehicle 
Number of Vehicle Repair Workshop, Garages, Car Wash 
within the specified service area 

Numerical Count 

37. Warehouse and Storage Warehouses 
Number of Warehouses, Depots, Storage Depots, Land Used 
for Storage within the specified service area 

Numerical Count 

38. Parking Space parking 
Number of Car/Vehicle Park Sites and Park Spaces, 
Motorcycle Bays within the specified service area 

Numerical Count 

39. Animal Husbandry, 
Farming and Agriculture 

Animals 
Number of Aviaries, Farms, Animal Shelters, Stud Farms 
within the specified service area 

Numerical Count 

40. Marine Infrastructure Marine 
Number of Mooring Sites, Quays, Wharfs, Lifeboat Stations, 
Marine Control Centres within the specified service area 

Numerical Count 

41. Under (re)construction Under_cons 
Number of Properties and Premises Undergoing 
(re)Construction within the specified service area 

Numerical Count 

 

Table D-2: Base Categories for Categorical Variables 

Categorical Variable Abbreviation Base Category 

  
Road Class 

A B C U 

Road Nature Nature Single Carriageway 

Road Category RCat Primary Rural (PR) B Rural (BR) C Rural (CR) U Rural (UR) 

Presence of Motorway Junction Junction Junction = 0 – No Junction is present 

Toll Road Toll Toll = 0 – No tolls on this road 

Presence of Port Port Port = 0 – No Ports are present 

Presence of Airport Airport Airport = 0 – No airports are present 

Ring Road Ring_Road Ring_Road = 0 – The road is not a ring road 



Table D-3: 'A' Roads coefficients for Cars, Buses and Two-wheeled vehicles 

Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.00337 0.00152 0.00103 0.00045 0.00003 0.00195 0.00362 0.00944 0.00045 0.00233 0.00402 0.00091 0.0005 0.00004 0.00093 

Variables    

(Intercept) 56153.08 27532.37 10051.43 16634.74 6260.01 206.9 154.2 443.0 140.5 46.5 619.2 254.4 223.7 152.4 62.0 

Animals -1.0% -0.3% -0.8% 0.2% 0.8% 0.1% . -1.6% 0.7% -0.2% 0.4% 2.3% -1.0% 1.6% 0.7% 

Bus_stat -1.3% 0.6% 0.1% -0.1% -2.3% -4.5% 0.7% 2.2% 3.8% -0.2% -2.3% -0.7% -2.1% -1.6% -3.3% 

Charge_p 0.3% . 3.3% 0.9% 1.4% 6.6% 1.9% -1.9% 3.5% 2.8% -0.1% 0.0% -2.2% -1.0% 1.3% 

Factories -1.1% . 2.2% -1.2% -2.0% -3.2% -13.9% -5.3% -2.3% -3.7% -4.0% . -0.8% -2.7% 0.5% 

Healthcare . -1.0% -0.5% 0.4% 0.6% 3.9% 2.9% -2.1% 4.3% 0.6% 0.9% 0.8% -2.1% -1.5% -2.2% 

Leisure . 2.3% -1.6% -4.4% -4.2% -9.5% . 0.3% -6.2% . . 1.5% -0.8% -0.6% -4.5% 

Marine 0.0% -0.1% -2.5% -0.8% -1.8% . -0.1% -4.3% -2.0% -3.0% -0.1% -1.1% -4.0% -0.4% 0.2% 

Offices . -0.6% . -0.9% -1.0% . 0.4% -8.2% -7.1% . 12.2% 0.0% 12.3% -4.2% -1.6% 

Parking . . -4.0% 1.0% 0.0% -9.3% -4.4% -10.3% 0.3% 1.0% -3.5% -5.2% -13.4% 1.5% . 

Petrol . 0.8% 5.2% 2.0% 1.7% 4.4% 5.7% 4.6% 3.2% 3.4% . 2.2% 5.4% 5.7% 3.4% 

Public . -0.7% 1.6% -0.5% -3.6% -3.4% 7.7% 7.4% 0.3% -0.4% 1.4% 3.5% 6.9% -1.1% -2.1% 

Research . . 0.6% . 1.9% -7.0% . -0.3% 4.5% 2.3% . -3.4% -0.3% 1.2% 2.3% 

Shops . . -12.0% -0.7% 1.9% . . 12.0% 9.7% -4.6% 1.1% -2.2% -19.7% 0.0% 5.1% 

Sport 0.5% -0.6% 2.9% 0.9% 0.4% 4.8% 2.0% 2.3% 1.5% 0.9% 3.4% 3.7% 5.2% 2.2% 0.8% 

Superstore . -0.2% 1.3% 1.4% 0.3% -0.6% 5.3% . -1.0% -0.8% . . 6.8% 1.2% -0.6% 

Under_cons . . 3.6% 0.2% 3.1% -1.4% . -2.1% 0.4% . -5.9% . 2.3% 0.3% 2.5% 

Vacation -0.9% . 0.3% -0.7% 1.3% 10.5% 1.3% -0.2% 2.0% 4.2% . 0.4% -4.3% 2.0% 1.7% 

Vehicle . . 1.8% 0.5% 1.0% 13.9% -3.9% -10.2% 1.5% -2.1% . -8.3% -4.3% -1.6% 0.3% 

Warehouses . -2.0% -0.3% 1.6% -0.4% -3.2% -1.2% . -2.1% . 0.2% 1.7% 7.4% 3.2% -3.2% 

Bus_stops -2.0% . -2.8% -2.7% 5.6% 8.0% 11.0% 29.5% 22.5% 32.9% -6.7% -3.2% -8.6% -2.7% 6.8% 

Population . . 16.9% . 8.7% 46.1% 60.1% 16.1% 19.3% 22.2% . -16.2% 11.6% -6.3% 3.9% 

Income 0.2% 2.2% 4.8% 3.5% 12.7% 11.6% 2.4% 10.8% 7.5% . 22.1% 18.9% 81.8% 19.7% 11.1% 
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Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.00337 0.00152 0.00103 0.00045 0.00003 0.00195 0.00362 0.00944 0.00045 0.00233 0.00402 0.00091 0.0005 0.00004 0.00093 

Variables    

Households . . -16.3% -0.3% 7.2% -11.8% . . 7.1% . . 23.6% 18.3% 14.8% 3.8% 

Perc_Sa -1.0% -0.3% 5.9% 0.3% -2.3% 1.4% . 13.5% 0.7% -3.2% 5.6% 8.4% 13.5% 1.0% -3.6% 

car_van -0.1% . 12.4% -0.4% -10.2% -15.3% -17.0% -2.0% -20.8% -16.5% -6.0% -0.5% -20.5% -9.4% -6.4% 

workpop . . 4.9% 1.8% 3.7% . . 10.3% 2.4% 4.4% 1.4% . 10.7% 4.5% 4.3% 

work_dens -0.4% . 4.2% . -3.4% 5.2% 0.3% . 0.2% -1.0% . . 5.0% -0.7% -1.8% 

w_n_p_d . 5.1% 0.8% 2.6% 2.9% 10.1% . . 1.5% . 4.6% 15.7% 7.3% 3.9% . 

pd 3.6% . . 1.0% 2.6% 5.2% -2.1% 17.7% 0.5% . 37.5% 17.1% 33.7% 4.4% 3.5% 

Dist_Urb -1.5% -0.7% 0.8% . -12.9% 0.1% . -1.0% 0.0% -11.8% -6.1% -4.7% -1.2% -3.1% -6.1% 

Dist_M_Urb -2.8% -1.4% 1.8% 0.0% -42.5% 44.0% 32.0% . 30.0% . -28.9% -17.4% 6.5% -20.5% -45.4% 

Dist_Urb_C 6.8% . 2.8% 1.7% 3.4% 3.9% 10.8% 9.9% 9.0% -0.9% 35.2% 14.3% 22.6% 13.0% 1.7% 

Dist_M_U_C . . -2.2% 0.4% 66.8% -24.6% -18.9% -5.7% -19.4% 5.0% 42.5% 38.2% -2.2% 48.5% 83.8% 

RCatPU . -1.7% . -17.6% -30.4% 65.0% 11.3%  . -20.0% 20.7% -7.2%  -28.5% -34.9% 

RCatTR . 4.4% . -7.6% 10.1% 9.5% .  -13.2% 5.0% -10.1% -12.1%  -22.6% 1.2% 

RCatTU 3.5% 9.0% . -7.7% 12.0% 19.0% . . 2.0% . -9.6% 6.6% . -19.2% . 

Toll1 . . -26.7% . 33.4% . . . . . . . 94.8% 119.8% . 

Urb_Rur1 . . . -14.4% -25.5% 6.5% . . -4.3% -33.2% . -2.3% . -20.4% -22.1% 

Port1 . . -48.7% . -35.7% . . . 0.5% . . . -72.5% . . 

Junction1 . . . . 29.6% -2.9% . . . 11.0% -9.6% -2.7% 30.8% -5.1% 11.3% 

Ring_Road1 2.6% 4.1% 19.5% 14.5% 2.5% -11.8% -15.7% -21.7% -29.7% . -11.4% 2.6% 13.0% 0.2% . 

Nature: Dual 
Carriageway 

. . 39.1% 16.9% 48.9% 32.2% . 16.1% 6.2% 27.8% . . 32.4% 21.6% 24.8% 

Nature: 
Roundabout 

. . 0.0% . -0.9% . . . 38.5% . . . -31.5% 30.8% . 

Nature: Slip 
Road 

. -7.2% . -11.5% -52.1% 30.9% 21.1% . -19.6% -58.4% 8.0% . -16.7% -4.3% -57.6% 
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Table D-4: 'A' Roads coefficients for LGVs and HGVs 

Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.001300 0.000759 0.003736 0.000261 0.000442 0.003262 0.001162 0.004827 0.001312 0.000047 

Variables   

(Intercept) 10040.5 4561.5 1658.2 2763.1 1222.3 3237.4 1242.0 292.4 570.8 275.1 

Animals -0.3% 0.1% -1.6% 0.6% 0.8% -0.5% -2.8% -1.8% -0.7% -0.7% 

Bus_stat -1.9% -1.3% -0.3% -1.0% -2.2% -0.8% -2.0% -1.7% -1.1% 0.5% 

Charge_p 0.8% 0.4% 2.7% 1.0% 0.7% 0.2% -2.0% . -0.4% 0.9% 

Factories -2.1% 1.4% 4.2% 0.9% 0.5% -5.1% -0.9% 1.6% 0.0% 2.8% 

Healthcare -0.5% . -1.0% -0.3% -0.3% . 0.2% . -0.3% -1.2% 

Leisure 1.9% 0.7% . -1.8% -3.2% . 0.6% 0.9% 0.4% -3.6% 

Marine -1.3% -0.6% -2.9% 0.0% -2.3% -3.8% 1.0% -4.9% . -0.6% 

Offices 2.4% -0.3% . 0.0% -2.6% 4.5% 5.9% . -0.2% -1.8% 

Parking . -3.5% -5.4% 0.4% 0.5% 0.0% -8.4% -8.2% 0.4% 1.7% 

Petrol -1.1% 1.3% 4.8% 1.7% 1.6% . 1.9% 5.7% 2.9% 2.6% 

Public -0.8% -1.9% -0.5% -0.9% -3.0% 1.0% -4.1% 0.8% -2.4% -4.4% 

Research 0.0% . 0.2% -0.8% 1.2% . 2.3% -1.3% -2.0% -0.8% 

Shops . -3.2% -12.3% -2.7% 3.6% 5.7% -16.3% -13.7% -4.4% 2.7% 

Sport . 0.0% 1.4% 0.2% -0.2% -5.0% -2.7% 3.5% . -1.2% 

Superstore -1.3% -2.1% -0.4% 0.0% -0.7% -2.5% -1.4% -0.1% . -2.2% 

Under_cons 0.2% 3.1% 2.8% . 3.3% 0.2% 7.3% 1.9% -1.1% 2.2% 

Vacation -3.9% -0.3% -1.6% -0.4% -0.9% -3.5% -2.9% -3.6% -0.7% -6.0% 

Vehicle -0.6% -0.2% 0.4% 1.0% 1.5% -2.2% -0.1% -0.2% 0.3% 0.7% 

Warehouses 0.7% 4.1% 3.1% 2.4% 1.1% 4.6% 14.0% 10.3% 5.7% 4.9% 

Bus_stops -6.1% -4.0% -1.6% -3.0% 2.6% -17.0% -9.7% -1.1% -9.0% -10.4% 

Population . -7.0% 2.4% 0.2% 9.6% . . 12.1% . 5.1% 

Income 1.2% 2.0% 4.6% 0.2% 6.8% -4.9% 5.6% 18.0% -4.0% -3.9% 
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Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.001300 0.000759 0.003736 0.000261 0.000442 0.003262 0.001162 0.004827 0.001312 0.000047 

Variables   

Households 3.8% 13.7% 0.0% 2.6% 0.8% 1.4% 19.4% . -3.6% -19.4% 

Perc_Sa 0.9% . 6.1% 0.1% -2.2% . -2.3% 8.9% -1.3% -4.9% 

car_van -3.8% -4.6% 3.5% -3.0% -5.5% -0.8% -18.4% -7.0% -0.7% 17.3% 

workpop -1.4% . 4.6% 1.2% 1.7% 8.9% 21.1% 9.6% 6.8% 10.4% 

work_dens -2.9% 3.7% . -0.1% -0.5% -12.5% -11.0% . . . 

w_n_p_d . . . -1.8% -0.3% . . 0.8% -7.3% -1.4% 

pd 8.0% . 4.9% -0.7% . 16.0% . 6.0% -2.7% -1.4% 

Dist_Urb -2.2% -1.1% 0.1% 0.3% -10.4% 5.7% 2.1% -0.9% 2.8% -6.0% 

Dist_M_Urb -20.1% -0.1% . -5.6% -46.9% -26.7% . 3.0% -3.6% -53.1% 

Dist_Urb_C 12.9% 1.9% 0.2% 2.2% 2.2% 14.1% 3.6% 11.2% 2.8% -2.2% 

Dist_M_U_C 19.3% . -1.0% 8.7% 85.9% 23.7% -6.6% -5.2% . 94.7% 

RCatPU -1.0% -1.1% . -18.9% -27.0% -14.2% -20.4% . -37.5% -31.2% 

RCatTR 9.3% 22.2% . 2.9% 14.4% 57.7% 111.8% . 55.4% 67.7% 

RCatTU 12.2% 23.9% . -1.8% 11.0% 35.3% 59.4% . 7.0% 37.8% 

Toll1 . . . . . . . . . 96.0% 

Urb_Rur1 -0.5% . . -15.3% -21.6% -6.8% . . -19.0% -19.9% 

Port1 . . . -4.1% -3.1% . 10.3% . . 55.6% 

Junction1 -0.3% 2.3% . 6.7% 27.0% . 1.4% . 10.6% 49.9% 

Ring_Road1 7.8% 6.4% 20.6% 16.8% . 36.9% 10.3% 32.1% 22.2% 6.0% 

Nature: Dual Carriageway . . 32.5% 18.1% 43.6% . . 40.4% 30.8% 76.0% 

Nature: Slip Road 8.9% -8.1% . -15.8% -51.9% . -20.2% . . -59.4% 

Nature: Roundabout . . . . . . . . . -14.7% 
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Table D-5: 'B' Roads Coefficients for Cars, Buses and Two-wheeled vehicles 

Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.01133 0.01075 0.0037 0.01728 0.05504 0.0795 0.03645 0.13435 0.02457 0.11736 0.04305 0.01842 0.02467 0.02508 0.0405 

Variables    

(Intercept) 15542.6 9677.0 6296.4 3465.8 1224.3 163.0 114.5 35.3 20.2 6.7 143.6 84.9 56.5 33.9 14.0 

Animals . . 1.2% . . -8.4% . . -2.9% . -2.1% . . -4.8% 3.3% 

Bus_statio 0.6% . 0.0% . . . 0.6% . . . . 1.0% . -1.6% 8.4% 

Charge_p . -0.1% -1.3% . -0.1% . 12.3% . -13.7% -1.0% . . . . . 

Factories . . . . . . . . -2.7% . -9.6% . 7.9% 12.2% . 

Healthcare 1.8% . . . . . 12.1% . . . . -2.6% . . . 

Leisure . -1.1% . . . 12.7% . . . . . . . . . 

Marine  . . . . . 1.1% . 3.0% . . 3.3% . 4.0% . 

Office . . . . . . 3.0% -1.9% . . . . . . . 

Parking . . . . -2.2% -0.2% . -13.1% . . 0.9% -6.9% . . . 

Petrol 0.1% 0.9% . . . 7.3% . . -7.0% . . -2.8% . . -0.5% 

Public . -0.2% -0.3% . . . . . . . -1.3% 0.9% . -1.3% . 

Research -1.7% . -0.2% -0.4% . . . . 5.6% . . . . 12.1% . 

Shops . . -1.4% . . . 3.3% . . . -2.4% . 0.1% . . 

Sport 0.7% . 2.0% . . 7.6% 3.0% . . . 3.5% . . . . 

Superstore -0.4% . . . . 7.8% -6.8% . -4.3% . -1.0% 0.6% . -1.5% . 

Under_cons . . 0.0% . . . . . . . . . . . . 

Vacation 0.3% . . . . . . . 4.1% . . . -1.6% . . 

Vehicle -1.2% . . . . . . . -2.6% . . . . -10.2% . 

Warehouses . . . . . . -0.8% . -4.3% . . . . . 2.4% 

Bus_stops 0.2% -1.2% . . . 22.1% . 24.0% 23.0% . -4.4% -13.4% -14.0% . . 

Population . . . . . . 8.7% . 16.0% . . . . . . 

Income 2.0% . -1.1% . 7.7% . -5.7% -15.9% -17.8% -2.8% 20.5% 11.3% 2.9% 6.8% 25.1% 
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Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.01133 0.01075 0.0037 0.01728 0.05504 0.0795 0.03645 0.13435 0.02457 0.11736 0.04305 0.01842 0.02467 0.02508 0.0405 

Variables    

Households -1.5% . . . . . . . . . . . . . . 

Perc_Sa . . -3.1% -1.6% . . 8.8% . -20.0% . . 5.5% . 3.7% . 

car_van . . . . . 1.9% . . . . . -2.8% -14.0% -2.5% . 

workpop 4.9% . . . . . . . . -0.3% . . . 3.3% . 

work_dens . . . -6.6% . . . . . . . . . 5.5% . 

w_n_p_d . . . . . . . . . . . 37.9% 16.5% . . 

pd . . -1.2% . . . 29.3% 2.4% . . 11.8% 11.4% 12.2% . . 

Dist_Urb -2.0% . -2.2% . . -3.2% . -2.6% -13.3% -6.4% . 2.6% . 12.3% . 

Dist_M_Urb -1.0% . . . . . . . . . . 1.8% 2.0% . . 

Dist_Urb_C -3.4% . 0.6% . . 32.8% 11.7% . . . . 0.1% . . 4.5% 

Dist_M_U_C . . . . . -0.9% . . 9.7% 3.5% 14.3% 14.9% . 1.7% . 

RCatBU . . -1.6% . . . . . . . . . -2.9% . . 

Toll1  . . . . . . . . . . . . . . 

Urb_Rur1 . . -6.8% . . . . . . . . . . . . 

Port1      . . . . . . . . . . 

Junction1 . . . . . . . . . . . . . . . 

Nature: Dual 
Carriageway 

. . . . . . . . . . . . . . . 
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Table D-6: 'B' Roads coefficients for LGVs and HGVs 

Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.024127 0.021667 0.016022 0.010409 0.027577 0.116876 0.010734 0.023223 0.026079 0.061834 

Variables   

(Intercept) 2181.1 1352.4 941.3 579.9 239.1 252.0 191.1 129.0 75.4 39.3 

Animals 0.4% . . -0.1% 1.8% . 8.2% -2.2% . . 

Bus_statio . . 0.3% -3.1% . . . . -3.7% . 

Charge_p . -1.5% . . . . . . . . 

Factories . 3.7% 3.3% 2.0% . . 4.5% 3.1% 1.4% . 

Healthcare . -0.5% . . . . . 5.8% . . 

Leisure . . . . . . -0.9% . . . 

Marine . . . 0.1% . . -1.0% -2.0% . . 

Office . . . . . . . . . . 

Parking 1.2% . . . -5.1% . . . . . 

Petrol . . . . . . -2.9% -7.1% . . 

Public . . . -2.7% . . 4.3% . -1.3% . 

Research -4.1% . . . . . -1.4% . 1.9% . 

Shops . . . . . . -5.3% . 9.1% . 

Sport . . . . . . 0.1% -0.8% . . 

Superstore . . -2.8% . -5.6% . -6.6% -0.6% . -0.2% 

Under_cons . . . . . . 2.3% . . . 

Vacation -1.0% . . . . . -1.0% . . . 

Vehicle . . . . . . . . . . 

Warehouses 3.2% 2.0% 1.4% 6.6% 1.7% . 15.4% 10.5% 22.2% . 

Bus_stops . -2.0% -0.9% -1.4% . . -9.6% . -20.1% -13.5% 

Population . . . . . . 3.1% . . . 

Income . . 0.7% 1.2% 6.2% . . . . 5.5% 
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Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.024127 0.021667 0.016022 0.010409 0.027577 0.116876 0.010734 0.023223 0.026079 0.061834 

Variables   

Households . . . . . -0.8% 1.8% -14.7% . . 

Perc_Sa . . . . . . 0.7% . . . 

car_van . -0.5% -2.6% . . -6.2% . -0.5% -4.1% . 

workpop . 0.5% . . . . 10.4% . . . 

work_dens . . . . . . . . . . 

w_n_p_d . . . . . . . . . . 

pd . . -2.4% . . . . -4.7% . . 

Dist_Urb . . . 3.3% . . 7.7% 5.1% 24.1% . 

Dist_M_Urb . . . . . . . . 2.7% . 

Dist_Urb_C -1.6% . -3.1% -3.6% . . -3.6% -1.8% -13.4% . 

Dist_M_U_C . 3.4% 0.6% 7.7% 2.0% . . -3.3% . . 

RCatBU . . -6.1% . . . -25.9% -20.9% . . 

Toll1 . . . . . . . . . . 

Urb_Rur1 . . . . . . . . . . 

Port1 . . . . . . . . . . 

Junction1 . . . . . . 39.6% . . . 

Nature: Dual Carriageway . . . . . . . . . . 
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Table D-7: 'C' Roads coefficients for Cars, Buses and Two-wheeled vehicles 

Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.01287 0.00499 0.01306 0.04309 0.09038 0.17908 0.03766 0.08565 0.09927 0.04089 0.05294 0.01428 0.03763 0.17618 0.08544 

Variables    

(Intercept) 12086.8 6252.4 3767.7 480.0 308.3 109.6 53.5 26.5 2.8 1.8 100.2 54.0 31.6 3.8 3.7 

Animals . . . 7.9% . . . -7.3% . . 0.6% . . . . 

Bus_statio 2.5% . . . . . . 12.0%   . . . . . 

Charge_p -1.2% 2.7% 0.9% . . . -12.4% 1.9% 5.1% . . . . . . 

Factories -2.6% . -0.2% 8.0% . . . . . . . -0.5% . . . 

Healthcare . 1.2% . . 0.6% . 9.7% . 16.1% . . . . . . 

Leisure . -0.7% . . . . . 11.5% . . . . . . . 

Marine .  . . . . . . . . . . . . . 

Office . -2.1% -6.7% . . . 0.1% 2.3% . . . 7.9% . . . 

Parking 4.7% . 0.1% . . 5.2% . -19.6% 4.7% . . -3.5% . . . 

Petrol -4.7% 0.9% . 0.6% . . 5.6% . . . . . . . . 

Public . -6.6% . . . 2.3% -9.4% 11.8% . -0.5% -2.5% 4.2% . . -0.9% 

Research . 3.2% . 4.5% . . 7.3% . 5.3% . 1.0% 0.0% . . . 

Shops -1.9% . . . . . . . . . . -17.4% . . . 

Sport . 1.5% . 9.3% . . . . . . . 2.5% -1.5% . . 

Superstore . 0.4% -1.4% . . . -1.1% -1.7% . . . . . . . 

Under_cons . . . . . . 1.7% . . . . . 2.4% . . 

Vacation . 2.3% . . . . . 5.6% . 0.2% 2.9% 2.7% . . 0.8% 

Vehicle . 2.3% . 4.9% . . -10.8% -21.9% -12.8% 3.0% -3.6% . . . . 

Warehouses -1.9% 0.3% . 0.9% . . . . . . . 5.2% . . . 

Bus_stops -0.2% . . . . 6.7% 32.0% 36.9% 2.3% . . -3.2% -15.7% . . 

Population . . -2.9% 12.3% 21.5% . . . . 8.5% . . . . 1.5% 

Income 0.5% 1.0% . 12.8% . . -3.2% . . . . 9.6% 4.6% . . 
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Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.01287 0.00499 0.01306 0.04309 0.09038 0.17908 0.03766 0.08565 0.09927 0.04089 0.05294 0.01428 0.03763 0.17618 0.08544 

Variables    

Households . . . . 8.7% . -28.1% . . -1.9% . 5.9% . . . 

Perc_Sa 0.6% . -0.2% . . . . . 9.9% . . 18.7% . . . 

car_van . 0.9% . 1.8% . . . -4.3% . . . -8.7% . . . 

workpop 2.6% . . . . . . . -0.2% -9.8% . . . . . 

work_dens . . . . . . . . . . . . . . . 

w_n_p_d . . -0.5% . . . 2.4% . . -0.8% . 13.7% 29.3% . . 

pd -1.9% . . . . 6.9% 39.2% . 8.4% -7.1% 1.7% 7.5% 20.3% . . 

Dist_Urb -2.8% -1.7% . -23.6% . . -9.3% -22.4% -7.0% . 10.1% 6.1% 3.7% . . 

Dist_M_Urb . . . -9.6% . . . . . -7.3% 6.7% . . . . 

Dist_Urb_C -0.6% -1.6% . . -13.2% 13.4% 22.6% . -13.1% . . 5.7% . . -5.9% 

Dist_M_U_C . . . . . . 23.4% . . . . 18.1% 8.2% . . 

RCatCU . . . . . . . . . . . . . . . 

Urb_Rur1 . . . . . . . . . . . . . . . 

Junction1 . . . . . . . . . . . . . . . 

Nature: Dual 
Carriageway 

19.3% 1.8% . .  . 67.0% . . . . 22.2% . . . 
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Table D-8: 'C' Roads coefficients for LGVs and HGVs 

Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.037421 0.034117 0.017805 0.034064 0.071351 0.269453 0.054199 0.096501 0.102070 0.091427 

Variables   

(Intercept) 1610.4 815.4 489.2 92.4 64.9 167.8 73.8 36.7 9.2 8.7 

Animals . . 3.2% 4.5% . . . . . . 

Bus_statio . . -5.6% .  . -1.3% . .  

Charge_p -0.1% . -1.4% . . . . . . . 

Factories 1.6% . 1.7% 12.6% . . . 14.9% 4.0% . 

Healthcare . . . . 5.3% . . . . . 

Leisure . . . . . . . . -0.7% . 

Marine . . 0.9% . . . . 1.7% . . 

Office . . . . . . . . . . 

Parking . . . . . . . . . . 

Petrol . . . . . . . . 0.4% . 

Public . . . . . . . . . . 

Research . . -0.5% . . . . . . . 

Shops -4.2% . -3.4% . . . . . . . 

Sport . . . 9.3% . . . . . . 

Superstore . . . -2.0% . . . . . . 

Under_cons . . . . . . . . . . 

Vacation . . 0.3% . . . . . . . 

Vehicle . . . 2.4% . . . . . . 

Warehouses 9.6% 6.3% 4.1% 4.1% 1.4% . 25.8% 4.8% 9.1% . 

Bus_stops . . . . . . . . . . 

Population . . . 5.5% 12.2% . . . . . 

Income -1.5% . . 6.4% . . . . . . 
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Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.037421 0.034117 0.017805 0.034064 0.071351 0.269453 0.054199 0.096501 0.102070 0.091427 

Variables   

Households . . . . 8.0% . . . . . 

Perc_Sa . 0.4% -0.9% . . . 7.9% . . . 

car_van -4.3% . -0.8% 3.5% . . -17.5% -7.2% . . 

workpop 1.8% . . . . 2.7% 1.9% . 13.2% . 

work_dens . . . -3.2% . . . . -6.9% . 

w_n_p_d . . . . . . . . -14.8% . 

pd . . . . . . . . . . 

Dist_Urb . . 3.6% -10.9% . . . 2.3% . -6.6% 

Dist_M_Urb 3.5% . . -7.9% . . -1.8% . . . 

Dist_Urb_C . . -0.8% -5.0% -5.9% . 0.1% . . . 

Dist_M_U_C . . 1.8% . . . . . . . 

RCatCU . . . . . . . . . . 

Urb_Rur1 . . . . . . . . . . 

Junction1 . . . . . . . . . . 

Nature: Dual Carriageway . . .   . . .   
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Table D-9: 'U' Roads coefficients for Cars, Buses and Two-wheeled vehicles 

Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.04174 0.03112 0.01683 0.01728 0.01602 0.26058 0.09733 0.04008 0.02086 0.06023 0.31563 0.06228 0.01317 0.02585 0.09611 

Variables    

(Intercept) 6939.1 2606.5 1029.9 326.2 129.4 81.1 9.8 3.3 1.5 1.2 59.5 15.6 6.9 2.3 2.0 

Animals 2.6% . . 1.1% 11.5% . -10.6% . . . . . 1.9% . . 

Bus_statio -8.6% . -3.0% .  . . -4.9% . . . . . . . 

Charge_p . . . -7.0% 7.2% . . . -0.3% . . . 2.0% -4.2% 1.3% 

Factories . . -5.7% . . 0.4% -22.2% . . . . . -7.4% . . 

Healthcare . . . . -1.6% . . -9.1% -1.1% . . . -8.0% . . 

Leisure . . . . 0.5% . 3.4% . . . . . 0.7% -0.2% . 

Marine -3.0% -3.3% 0.0% . . . 3.2% . . . . 1.1% 6.7% . . 

Office . . -0.2% -0.3% 21.9% . . . . . 1.5% . . . 1.1% 

Parking . . . . -5.9% . 0.9% . . . . . -5.9% -0.7% . 

Petrol . . -1.8% 1.7% 1.0% . . -2.8% . . . -2.9% -9.6% . . 

Public . . . . 6.3% . . -0.6% -0.8% . . . 4.2% . . 

Research . . . . 8.1% . . . . . . . 0.4% . . 

Shops . . . -0.4% -6.2% . . -1.7% -3.4% . . . -1.9% . . 

Sport . . -0.8% 0.3% -3.0% . 24.7% . -1.0% . . 5.6% . . . 

Superstore . . -1.6% 0.4%  36.1% . . -2.3% . . . -2.8% -1.0% . 

Under_cons . . -1.0% . 3.3% . . . -0.3% . . . -8.7% . . 

Vacation . . 1.2% -1.5% 0.4% . -5.6% . -0.2% . . . 4.0% -0.5% . 

Vehicle . . . -4.5% 6.6% . . -15.7% -1.5% . . . -3.1% -2.3% . 

Warehouses 7.0% . -0.7% . . 70.2% -14.2% -9.3% . . . . . 1.4% . 

Bus_stops . . . . 33.3% . 86.4% 9.6% 1.6% . . . -4.5% -1.0% 12.7% 

Population . . . . -35.9% . -13.9% . . . . . -24.3% . . 

Income . . . 3.8% . . -9.7% -4.8% -6.0% . . . 11.4% . . 
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Vehicle Type Cars Buses Two-wheeled 

Group 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

optimal 
lambda 

0.04174 0.03112 0.01683 0.01728 0.01602 0.26058 0.09733 0.04008 0.02086 0.06023 0.31563 0.06228 0.01317 0.02585 0.09611 

Variables    

Households . 1.7% -1.4% . . . . -0.4% -7.2% . . 10.1% 65.6% . . 

Perc_Sa . . -12.0% -0.8% 13.4% . . -2.8% -2.3% . . 19.4% . -5.2% . 

car_van . 0.1% . 4.1% 65.6% . . -22.3% -2.6% . . . -7.3% . . 

workpop . . . 2.0% 0.3% . . . . . 14.1% . . 0.8% . 

work_dens . . . . . . . . . . . . 26.1% . 7.3% 

w_n_p_d . . . . 26.3% . . . . . . . . . 1.5% 

pd . . -10.3% -5.7% 12.5% . . . . . . . . 3.6% . 

Dist_Urb . . . -0.4% -16.2% . -4.4% -3.1% . . . 2.3% -3.6% 0.4% . 

Dist_M_Urb -5.3% . . . -0.9% . . 1.6% . . . . . . . 

Dist_Urb_C 0.5% . . -3.0% 4.0% -9.4% -19.7% . 0.0% . . . 15.6% 1.6% . 

Dist_M_U_C . -0.2% . . . . . . . . . 2.9% 15.0% 10.2% 1.6% 

RCatUU . . . . 46.1%           

Urb_Rur1 . . . . .           

Airport1 .  .  .           

Port1 . . . . .           

Junction1 . . . . .           

Nature: Dual 
Carriageway 

. . . . . . . . . .      
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Table D-10: 'U' Roads coefficients for LGVs and HGVs 

Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.152836 0.044376 0.006068 0.024257 0.082841 0.058570 0.075876 0.040810 0.019935 0.236722 

Variables   

(Intercept) 823.3 323.7 133.9 43.7 27.1 152.2 21.0 7.1 2.4 3.0 

Animals . . . 1.4% . 6.8% . -2.4% 0.5% . 

Bus_statio . . -5.1% .  . . . .  

Charge_p . . -1.9% -4.2% . . . . -2.3% . 

Factories . . -4.9% 1.8% . . . . 11.6% . 

Healthcare . . -2.6% . . . . . . . 

Leisure . . 0.4% . . . . . . . 

Marine . . . . . -14.2% 1.5% . . . 

Office . . . . 10.3% . . . . . 

Parking . . -5.7% . . . . . 3.9% . 

Petrol . . -1.8% 2.0% . . . . . . 

Public . . 4.2% . 1.0% . . . -5.3% . 

Research . . 0.5% . 0.6% . . . -0.5% . 

Shops . 0.0% . -1.5% . . . . -1.0% . 

Sport . . 0.1% . . . . . . . 

Superstore . . -0.8% .  . . . -3.8%  

Under_cons . . . . . . . . . . 

Vacation . . 3.1% -0.8% . . . . -0.8% . 

Vehicle . . . -0.1% 7.9% 43.8% 2.4% 0.0% -4.3% . 

Warehouses . 11.1% 10.4% 0.8% 3.8% 6.7% 35.4% 17.7% 5.7% . 

Bus_stops . -0.3% -0.3% . 14.0% . -14.2% -8.6% -0.1% . 

Population . . -26.2% . . . . -0.5% . . 

Income . . -2.2% . . 44.8% . . 0.8% . 
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Vehicle Type LGVs HGVs 

Group 1 2 3 4 5 1 2 3 4 5 

optimal lambda 0.152836 0.044376 0.006068 0.024257 0.082841 0.058570 0.075876 0.040810 0.019935 0.236722 

Variables   

Households . . 13.7% . . . . . -5.7% . 

Perc_Sa . . -5.2% -0.5% 2.1% . . . . . 

car_van . . . . . -30.2% -16.6% -22.3% . . 

workpop . . . . 3.1% . 15.2% . 7.0% . 

work_dens . . 6.9% . . . . 5.3% . . 

w_n_p_d . . . . 14.3% . . . . . 

pd . . . -5.4% . . -2.2% . -5.1% . 

Dist_Urb . . 2.0% . -8.4% 6.8% 10.7% 4.1% 0.4% . 

Dist_M_Urb . . 1.8% . . . . . . . 

Dist_Urb_C . . . -3.7% . 31.8% -0.2% . -0.7% . 

Dist_M_U_C . . 4.0% 2.5% . -9.9% . 6.8% 0.2% . 

RCatUR . . . . . . . . . . 

RCatUU . . . . . -58.6% . . . . 

Urb_Rur1 . . . . . . . . . . 

Airport1 . . . . . . . . . . 

Port1 . . . . . . . . . . 

Junction1 . . . . . . . . . . 

Nature: Dual Carriageway . . . . . . . . . . 
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Table E-1: Classification accuracy for England and Wales 

Algorithm Road Class 

 A B C U 

RF 85.56% 63.16% 71.96% 70.32% 

GBM 89.58% 66.51% 74.30% 71.29% 

KNN 84.50% 45.45% 71.50% 60.10% 

 

Table E-2: Classification accuracy for Greater London 

Algorithm Road Class 

 A B C U 

RF 92.05% 50.00% 60.00% 67.57% 

GBM 93.18% 50.00% 66.67% 70.27% 

KNN 89.77% 37.50% 33.33% 64.86% 

 

Table E-3: Traffic change in Greater London (in billion VKT) 

Vehicle Type VKT 2015 (bVKT) VKT 2019 (bVKT) Change (%) 

Cars/Taxis 25.6 28.1 +9.77% 

LGVs 4.7 5.9 +25.53% 

HGVs 1.1 1.0 -9.09% 

Two-wheeled 0.7 0.9 +28.57% 

Buses 0.6 0.5 -16.67% 

 

 

 

 

 


	List of Publications
	List of Abbreviations
	List of Tables
	List of Figures
	1. Introduction
	1.1. Background
	1.2. Road Transport: Significance, complexity, and the impact on air quality
	1.3. Literature gap and motivation
	1.4. Aims and objectives
	1.5. Thesis structure

	2. Transport and emission concepts
	2.1. Chapter overview
	2.2. Traffic data collection
	2.2.1. Manual Traffic Counts
	2.2.2. Automatic Traffic Counters (ATCs)
	2.2.3. Annual Average Daily Traffic (AADT) extrapolation

	2.3. Drivers of road traffic
	2.3.1. Roadway attributes
	2.3.2. Socioeconomic characteristics
	2.3.3. Land use
	2.3.4. Public transport
	2.3.5. Parking availability

	2.4. Road transport modelling approaches and applications
	2.4.1. Four Step Model (FSM)
	2.4.2. Activity Based Model (ABM)
	2.4.3. Direct Demand Model (DDM)

	2.5. Annual Average Daily Traffic (AADT) estimation models
	2.5.1. Linear regression models
	2.5.2. Spatial statistical models
	2.5.3. Machine Learning and Data Mining models

	2.6. Emission factors
	2.6.1. Emission measurement methods
	2.6.2. Emission factor development

	2.7. Emission modelling approaches and applications
	2.7.1. Traffic situation models
	2.7.2. Instantaneous emission models
	2.7.3. Average speed emission models
	2.7.4. Other models

	2.8. Transport scenarios
	2.9. Chapter summary

	3. Road transport modelling
	3.1. Chapter overview
	3.2. Data
	3.3. Methodology
	3.3.1. Modelling approach
	3.3.2. AADT modelling

	3.4. Results
	3.5. Discussion
	3.6. Chapter summary

	4. Determinants of road traffic volume
	4.1. Chapter overview
	4.2. Data
	4.3. Methodology
	4.4. Results
	4.4.1. ‘A’ roads
	4.4.2. ‘B’ roads
	4.4.3. ‘C’ roads
	4.4.4. ‘U’ roads

	4.5. Discussion
	4.5.1. Cars
	4.5.2. Buses
	4.5.3. Light Good Vehicles (LGVs) and Heavy Good Vehicles (HGVs)
	4.5.4. Two wheeled vehicles

	4.6. Chapter summary

	5. Emissions modelling
	5.1. Chapter overview
	5.2. Data
	5.3. Methodology
	5.3.1. Modelling approach
	5.3.2. Emissions estimation
	5.3.3. Scenario analysis and Ultra Low Emission Zone (ULEZ) – Emission projections

	5.4. Results
	5.4.1. Base year AADT and emission estimations
	5.4.2. Scenarios and ULEZ emission estimations

	5.5. Discussion
	5.6. Chapter summary

	6. Conclusions
	6.1. Thesis summary
	6.2. Concluding discussion
	6.2.1. Traffic volume modelling
	6.2.2. Drivers of AADT
	6.2.3. Emissions

	6.3. Limitations and uncertainties
	6.4. Future research

	References
	Appendix
	A. Supplementary material for chapter 1
	B. Supplementary material for chapter 2
	C. Supplementary material for chapter 3
	D. Supplementary material for chapter 4
	E. Supplementary material for chapter 5

