115 research outputs found

    Novel centroid selection approaches for KMeans-clustering based recommender systems

    Get PDF
    Recommender systems have the ability to filter unseen information for predicting whether a particular user would prefer a given item when making a choice. Over the years, this process has been dependent on robust applications of data mining and machine learning techniques, which are known to have scalability issues when being applied for recommender systems. In this paper, we propose a k-means clustering-based recommendation algorithm, which addresses the scalability issues associated with traditional recommender systems. An issue with traditional k-means clustering algorithms is that they choose the initial k centroid randomly, which leads to inaccurate recommendations and increased cost for offline training of clusters. The work in this paper highlights how centroid selection in k-means based recommender systems can improve performance as well as being cost saving. The proposed centroid selection method has the ability to exploit underlying data correlation structures, which has been proven to exhibit superior accuracy and performance in comparison to the traditional centroid selection strategies, which choose centroids randomly. The proposed approach has been validated with an extensive set of experiments based on five different datasets (from movies, books, and music domain). These experiments prove that the proposed approach provides a better quality cluster and converges quicker than existing approaches, which in turn improves accuracy of the recommendation provided

    Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+ Clustering and User-Based Collaborative Filtering

    Get PDF
    Recommendation system always involves huge volumes of data, therefore it causes the scalability issues that do not only increase the processing time but also reduce the accuracy. In addition, the type of data used also greatly affects the result of the recommendations. In the recommendation system, there are two common types of data namely implicit (binary) rating and explicit (scalar) rating. Binary rating produces lower accuracy when it is not handled with the properly. Thus, optimized K-Means+ clustering and user-based collaborative filtering are proposed in this research. The K-Means clustering is optimized by selecting the K value using the Davies-Bouldin Index (DBI) method. The experimental result shows that the optimization of the K values produces better clustering than Elbow Method. The K-Means+ and User-Based Collaborative Filtering (UBCF) produce precision of 8.6% and f-measure of 7.2%, respectively. The proposed method was compared to DBSCAN algorithm with UBCF, and had better accuracy of 1% increase in precision value. This result proves that K-Means+ with UBCF can handle implicit feedback datasets and improve precision

    Performance of Multi-Clustering Recommender System after Selection of Clusters based on V-Measures

    Get PDF
    Identification of neighbourhood based on multi-clusters has been successfully applied to recommender systems, increasing recommendation accuracy and eliminating divergence related to a difference in clustering schemes. The algorithm M-CCF was developed for this purpose that was described in author\u27s previous papers. However, the solution do not equally take advantage on all the partitionings. Selection of clusters to forward to recommender system\u27s input, without deterioration in recommendation accuracy, can simplify its structure. The article describes a solution of a cluster selection based on entropy measure between clustering schemes, eliminating ones, which are redundant. The results reported in this paper confirmed its positive impact on the M-CCF system\u27s overall recommendation performance (measured by RMSE and Coverage)

    E-Learner Recommendation Model Based on Level of Learning Outcomes Achievement

    Get PDF
    Students in any learning environment differ in their level of knowledge, achieved learning outcomes, learning style, preferences, misunderstand and attempts in solving and addressing problems when their expectations are not met. When a student searches the web as an attempt to solve a problem, he suffers from the large number of resources which are, in most cases, not related to his “needs”, or may be related but complex and advance. The result of his search might make him more confused, scattered, depressed and finally result in wasting his time which – in some cases -may have negative effects on his achievements. From here comes the need for an intelligent learning system that can guide studentsbased on their needs. This research attempts to design and build an educational recommender system for a web-based learning environment in order to generate meaningful recommendations of the most interested and relevant learning materials that suit students’ needs based on their profiles1 . This can be achieved by accessing students’ history, exploring their learning navigation patterns and making use of similar students’ experiences and their success stories. The study proposed a design for a hybrid recommender system architecture which consists of two recommendation approaches: the content and collaborative filtering. The study concentrates on the collaborative recommender engine which will recommend learning materials based on students’ level of knowledge, looking at active students' profiles, and achievements in both learning outcomes and learning outcomes levels making use of similar students’ success stories and reflecting their good experience on active student who are in the same level of knowledge. The design of the collaborative recommender engine includes the “learning” module from which the engine learns past students’ access pattern and the “advising” module from which the engine reflects the experience of similar success stories on active students. The content base recommender engine with its suggested stages is considered as future work, the research used the k-mean cluster algorithm to find out similar students where five distance function are used: Euclidean, Correlation. Jaccard,cosine and Manhattan. The cosine function shows to be the most accurate distance function with the minimum SSE but the highest processing time that doesn’t differ a lot when compared the rest functions. The best number of clusters for the selected dataset was determined using three methods Elbow, Gap-statistic and average Silhouette approach where the best number of cluster shows to be three. The research used the two result rating matrices of similar good and good students with Learnings material in order to calculate learning material weights and rank them based on highest weights which results in a final recommendation list

    A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups

    Get PDF
    In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, colleagues, etc. Our proposal deals with large numbers of automatically detected groups. Marketing and electronic commerce are typical targets of large homogenous groups. Large groups present a major difficulty in terms of automatically achieving homogeneity, equilibrated size and accurate recommendations. We provide a method that combines diverse machine learning algorithms in an original way: homogeneous groups are detected by means of a clustering based on hidden factors instead of ratings. Predictions are made using a virtual user model, and virtual users are obtained by performing a hidden factors aggregation. Additionally, this paper selects the most appropriate dimensionality reduction for the explained RS aim. We conduct a set of experiments to catch the maximum cumulative deviation of the ratings information. Results show an improvement on recommendations made to large homogeneous groups. It is also shown the desirability of designing specific methods and algorithms to deal with automatically detected groups

    Evolutionary and Swarm Algorithm Optimized Density- Based Clustering and Classification for Data Analytics

    Get PDF
    Clustering is one of the most widely used pattern recognition technologies for data analytics. Density-based clustering is a category of clustering methods which can find arbitrary shaped clusters. A well-known density-based clustering algorithm is Density- Based Spatial Clustering of Applications with Noise (DBSCAN). DBSCAN has three drawbacks: firstly, the parameters for DBSCAN are hard to set; secondly, the number of clusters cannot be controlled by the users; and thirdly, DBSCAN cannot directly be used as a classifier. With addressing the drawbacks of DBSCAN, a novel framework, Evolutionary and Swarm Algorithm optimised Density-based Clustering and Classification (ESA-DCC), is proposed. Evolutionary and Swarm Algorithm (ESA), has been applied in various different research fields regarding optimisation problems, including data analytics. Numerous categories of ESAs have been proposed, such as, Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Differential Evaluation (DE) and Artificial Bee Colony (ABC). In this thesis, ESA is used to search the best parameters of density-based clustering and classification in the ESA-DCC framework to address the first drawback of DBSCAN. As method to offset the second drawback, four types of fitness functions are defined to enable users to set the number of clusters as input. A supervised fitness function is defined to use the ESA-DCC as a classifier to address the third drawback. Four ESA- DCC methods, GA-DCC, PSO-DCC, DE-DCC and ABC-DCC, are developed. The performance of the ESA-DCC methods is compared with K-means and DBSCAN using ten datasets. The experimental results indicate that the proposed ESA-DCC methods can find the optimised parameters in both supervised and unsupervised contexts. The proposed methods are applied in a product recommender system and image segmentation cases

    From Fingerprint to Footprint: Using Point of Interest (POI) Recommendation System in Marketing Applications

    Get PDF
    Abstract. Companies should be willing to adopt new technologies and business models to be able to stay competitive in the changing world, both regionally and globally. However, the US forest sector industry, including wood furniture sector seems to be lagging when it comes to implementing digital technologies. This study proposes a design of Point of Interest (POI) recommendation system to enhance the marketing practices to promote wood furniture stores. We produced a personal recommendation design utilising K-Means+ clustering, a combination between K-Means algorithm for spatial data clustering and Davies-Bouldin Index (DBI) methods to determine the optimal K value. This design can assist mobile users who are potential customers to find wood furniture store locations based on other users’ preferences. Keywords:  Digitalisation; location-based social networks; user-based collaborative filtering; K-Means+ clustering; DBI metho

    Product Recommendations in E-commerce Systems using Content-based Clustering and Collaborative Filtering

    Get PDF
    In this report we take a new approach to product recommendation. We investigate the the possibility of using a hybrid recommender consisting of contentbased clustering and connections between clusters using collaborative filtering to make good product recommendations. The algorithm is tested on real product and purchase data from two different companies - a big online book store and a smaller online clothing store. It is evaluated both for functionality as a backfiller to other algorithms and as a strong individual algorithm. The evaluation mainly looks at the number of purchases as metric but also uses accuracy and recall as evaluation metrics. The algorithm shows some promise for using it as an individual algorithm

    Positive unlab ele d learning for building recommender systems in a parliamentary setting

    Get PDF
    Our goal is to learn about the political interests and preferences of Members of Parliament (MPs) by mining their parliamentary activity in order to develop a recommendation/filtering system to determine how relevant documents should be distributed among MPs. We propose the use of positive unlabeled learning to tackle this problem since we only have information about relevant documents (the interventions of each MP in debates) but not about irrelevant documents and so it is not possible to use standard binary classifiers which have been trained with positive and negative examples. Additionally, we have also developed a new positive unlabeled learning algorithm that compares favorably with: (a) a baseline approach which assumes that every intervention by any other MP is irrelevant; (b) another well-known positive unlabeled learning method; and (c) an approach based on information retrieval methods that matches documents and legislators’ representations. The experiments have been conducted with data from the regional Spanish Andalusian Parliament.This work has been funded by the Spanish “Ministerio de Economía y Competitividad” under projects TIN2013-42741-P and TIN2016-77902-C3-2-P, and the European Regional Development Fund (ERDF-FEDER)

    Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

    Get PDF
    Massive Open Online Courses (MOOCs) have gained in popularity over the last few years. The space of online learning resources has been increasing exponentially and has created a problem of information overload. To overcome this problem, recommender systems that can recommend learning resources to users according to their interests have been proposed. MOOCs contain a huge amount of data with the quantity of data increasing as new learners register. Traditional recommendation techniques suffer from scalability, sparsity and cold start problems resulting in poor quality recommendations. Furthermore, they cannot accommodate the incremental update of the model with the arrival of new data making them unsuitable for MOOCs dynamic environment. From this line of research, we propose a novel online recommender system, namely NoR-MOOCs, that is accurate, scales well with the data and moreover overcomes previously recorded problems with recommender systems. Through extensive experiments conducted over the COCO data-set, we have shown empirically that NoR-MOOCs significantly outperforms traditional KMeans and Collaborative Filtering algorithms in terms of predictive and classification accuracy metrics
    corecore