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Abstract 

Clustering is one of the most widely used pattern recognition technologies for data 

analytics. Density-based clustering is a category of clustering methods which can find 

arbitrary shaped clusters. A well-known density-based clustering algorithm is Density-

Based Spatial Clustering of Applications with Noise (DBSCAN). DBSCAN has three 

drawbacks: firstly, the parameters for DBSCAN are hard to set; secondly, the number 

of clusters cannot be controlled by the users; and thirdly, DBSCAN cannot directly be 

used as a classifier. 

With addressing the drawbacks of DBSCAN, a novel framework, Evolutionary and 

Swarm Algorithm optimised Density-based Clustering and Classification (ESA-DCC), 

is proposed. Evolutionary and Swarm Algorithm (ESA), has been applied in various 

different research fields regarding optimisation problems, including data analytics. 

Numerous categories of ESAs have been proposed, such as, Genetic Algorithms (GAs), 

Particle Swarm Optimization (PSO), Differential Evaluation (DE) and Artificial Bee 

Colony (ABC).  

In this thesis, ESA is used to search the best parameters of density-based clustering and 

classification in the ESA-DCC framework to address the first drawback of DBSCAN. 

As method to offset the second drawback, four types of fitness functions are defined to 

enable users to set the number of clusters as input. A supervised fitness function is 

defined to use the ESA-DCC as a classifier to address the third drawback. Four ESA-

DCC methods, GA-DCC, PSO-DCC, DE-DCC and ABC-DCC, are developed. The 

performance of the ESA-DCC methods is compared with K-means and DBSCAN using 

ten datasets. The experimental results indicate that the proposed ESA-DCC methods 

can find the optimised parameters in both supervised and unsupervised contexts. The 

proposed methods are applied in a product recommender system and image 

segmentation cases.  
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Chapter 1 Introduction 

Data analytic has attracted significant attention in the information industry and society, 

due to the huge amounts of data and the increasing need for turning such data into useful 

information and knowledge [Han, Pei, and Kamber, 2011]. Clustering Analysis is a 

widely used pattern recognition technology in the field of data analytic. Clustering 

methods can be categorized into Partional-based methods, Hierarchical-based methods, 

Density-based methods, Grid-based methods, Model-based methods and so on. 

Density-based clustering was proposed to deal with spatial datasets such as satellite 

images, facial images and medical images [Ester et al., 1996]. The best-known density-

based clustering algorithm is the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) [Ester et al., 1996]. DBSCAN uses two parameters, the radius of 

hyper-spheres (!) and the minimum number of points in each hyper-sphere (minpts). 

The main advantage of DBSCAN is its ability to find arbitrary shaped clusters through 

detecting the high-density hyper-spheres and merging the close hyper-spheres into 

clusters. In contrast, the centroid-based clustering method cannot be used to find 

arbitrary shaped clusters in spatial datasets. Conversely, Hierarchical-based clustering 

can be applied to spatial datasets, although, the clustering results are sensitive to noise.  

However, DBSCAN has some limitations. Firstly, the parameters for DBSCAN are 

hard to set, the two parameters, radius (!) and the minimum number of points (minpts), 

are often set by manual testing. Although, some parameter-tuning methods require one 

pre-defined parameter to calculate another parameter, for instance, the k-distance plot 

method requires a pre-defined minpts to find the corresponding suitable !. Secondly, 

the known number of clusters cannot be used in the clustering process. For some 

clustering methods, the number of clusters is known beforehand which can be used to 

aid the clustering process. For example, the number of clusters is the only input 

parameter for K-means. Similarly, the known number of clusters can be used to decide 
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how to cut the tree structure produced by hierarchical clustering method. However, the 

number of clusters cannot be controlled by the users in DBSCAN. Thirdly, DBSCAN 

cannot be directly applied for classification purposes. 

The central motivation for this research is the intuition that Evolutionary and Swarm 

Algorithms (ESAs) [Fogel, 2006] could be used as a parameter-tuning tool for 

DBSCAN. Evolutionary Computing (EC) and Swarm Intelligence (SI) can generally 

be described as Evolutionary and Swarm Algorithms (ESAs). Numerous categories of 

ESAs have been proposed, these include: Genetic Algorithms (GAs) [Golberg,1989], 

Particle Swarm Optimization (PSO) [Kennedy, 1995], Differential Evaluation (DE) 

[Storn & Price, 1997], Artificial Bee Colony (ABC) [Karaboga, 2005], etc. GA and DE 

are two typical types of evolutionary algorithms. PSO and ABC are two examples of 

ESA methods. The development of ESAs was inspired by the idea of natural selection 

and observations of animal behaviour. For example, GA is inspired by the mechanism 

of natural selection; the operators in GA algorithms and evolutionary strategies are the 

motivators behind DE; the social conduct of groups of animals, such as flocks of birds, 

schools of fish and herds of mammals, stimulated the development of PSO; and 

similarly, ABC is inspired by the behaviour of bees when searching for food sources 

The main advantage of ESA is the highly robust search performance of such algorithms. 

In this thesis, ESA methods are applied as parameter tuning tools to offset the first 

drawback of DBSCAN. ESAs have been applied as the optimisation methods for 

various clustering methods. Various ESA optimal clustering methods have been 

reviewed in Section 2 of this work.  

Based on the above observations, a novel framework, Evolutionary and Swarm 

Algorithms Optimised Density-based Clustering and Classification (ESA-DCC), is 

proposed directed at optimising the performance of density-based clustering by finding 

the best parameter settings through a search of the entire parameter space using ESAs. 

In this framework, two types of fitness functions are designed on the basis of the current 



� 	��

clustering validation indices; and penalty functions are designed to minimise the 

number of noises and to control the number of clusters. In this thesis, four types of 

ESAs (GA, PSO, DE and ABC) are adopted in the ESA-DCC framework. The Four 

ESA-DCC methods are evaluated by both experimental cases and real-world problems.  

The main contributions of this work are the proposal of the structure of applying ESA 

to tune the parameters for density-based clustering methods and the proposal of fitness 

functions for the ESA optimised density-based clustering methods framework. With 

the structure and these fitness functions, any ESA could be applied to optimise a 

density-based clustering method. The ESA-DCC framework could be extended by 

adopting original and revised ESAs as well as density-based clustering methods. The 

proposed fitness functions are reasonable combinations of available components: the 

clustering index, the penalty function to minimize the number of noises and the function 

to control the number of clusters. The various functions of the different choices of 

components and clustering indices are be flexibly applied to clustering problems on a 

case-by-case basis.  

The proposed ESA-DCC methods can be applied to find the arbitrary shaped clusters 

in spatial datasets. For the datasets which are not well understood, the proposed ESA-

DCC method can be applied to search for possible clustering patterns by testing with 

different number of clusters. For the datasets with a known number of clusters, the 

proposed ESA-DCC method can find a set of parameters to produce the optimum 

clustering results.  

Some limitations of the proposed ESA-DCC framework are evident. Firstly, the 

computational complexity of the proposed ESA optimised DBSCAN framework (ESA-

DCC) is limited by the complexity of the DBSCAN method. The computational 

complexity of a standard DBSCAN method is as high as Ο #log # . Since ESA-DCC 

adopts the standard DBSCAN, and the DBSCAN runs multiple times to reach the 

optimal solution in ESA-DCC, the complexity of ESA-DCC is higher than that of 
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DBSCAN. Secondly, the clustering indices applied in the fitness functions may not be 

suitable for non-centroid clusters since the indices were proposed for measuring the 

goodness of centroid-based clusters. A proposal for a clustering index for density-based 

clustering results will be explored in the future work of this research. Thirdly, the 

weights for the components of a fitness function need to be further investigated.  

Six academic papers presenting the reseach work in this thesis have been accomplished 

and listed below.  

(1) Guan, C., & Yuen, K. K. F., Towards a hybrid approach of primitive cognitive 

network process and agglomerative hierarchical clustering for music 

recommendation. In Heterogeneous Networking for Quality, Reliability, Security 

and Robustness (QSHINE), 2015 11th International Conference on (pp. 206-209), 

IEEE, 2015. 

(2) Guan, C., Yuen, K. K. F., & Coenen, F., Towards an intuitionistic fuzzy 

agglomerative hierarchical clustering algorithm for music recommendation in 

folksonomy. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International 

Conference on (pp. 2039-2042), IEEE, 2015 

(3) Guan, C., Yuen, K. K. F., & Chen, Q. (2017, June). Towards a Hybrid Approach 

of K-Means and Density-Based Spatial Clustering of Applications with Noise for 

Image Segmentation. In Internet of Things (iThings) and IEEE Green Computing 

and Communications (GreenCom) and IEEE Cyber, Physical and Social 

Computing (CPSCom) and IEEE Smart Data (SmartData), 2017 IEEE 

International Conference on (pp. 396-399). IEEE.  

(4) Guan, C., & Yuen, K. K. F., The Cognitive Pairwise Rating Agglomerative 

Hierarchical Clustering for A Recommender System: An Application of Laptop 

Recommendation. Submitted to journal. 
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(5) Guan, C., Yuen, K. K. F., & Coenen, F., Particle Swarm Optimized Density-Based 

Clustering and Classification: Supervised and Unsupervised Learning Approaches. 

Submitted to journal. 

(6) Guan, C., Yuen, K. K. F., & Yue, Y., Towards A Personalized Item 

Recommendation Approach in Social Tagging Systems Using Intuitionistic Fuzzy 

DBSCAN. Submitted to conference. 

This thesis consists of 6 chapters and organized as below. 

l Chapter 1 is the introduction, describing the context of the thesis and briefly 

introducing the background and motivation of the proposed framework. 

l Chapter 2 is the literature review of the research area. This chapter reviews the 

details of clustering analysis and Evolutionary and Swarm Algorithms (ESAs). 

Three major types of clustering technologies and the corresponding representative 

algorithms are examined. Four mainstream ESAs, GA, PSO, DE and ABC, which 

will be used along this work are studied in this chapter. A number of representative 

hybrid methods of Clustering and ESA are also reviewed and summarized. The 

motivation of this work is proposed in this chapter by comparing and discussing 

the current methods. 

l Chapter 3 proposes the framework of ESA optimised density-based clustering 

methods. The four ESA methods that are reviewed in Chapter 2 are applied in the 

framework. The design and implementation of the proposed ESA optimised 

density-based clustering methods are described in detail. 

l Chapter 4 presents the experimental design and results for the proposed methods. 

The propositioned methods are evaluated by 10 datasets and compared with K-

means and DBSCAN. By analyzing the experimental results, the strengths and 

limitations of the methods are highlighted. 
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l Chapter 5 presents two types of applications for the proposed methods for a 

number of real world problems. The suggested methods are demonstrated for the 

applications of recommender systems and image segmentation. Furthermore, the 

proposed method integrated with Cognitive Pairwise Rating (CPR), an ideal 

alternative of AHP, is applied to the personalized recommender system.  

l Chapter 6 concludes the thesis and summarizes the future research works. 
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Chapter 2 Literature Review  

The literature review covers three main sections: a review of clustering algorithms, an 

study of Evolutionary and Swarm Algorithms (ESAs), and a appraisal of current hybrid 

methods of clustering and ESAs. 

2.1 Clustering Analysis 

Clustering is an example of unsupervised learning in the machine learning field. The 

process of clustering can be described as grouping a set of objects into clusters with 

respect to the dissimilarities between them. The data objects in one cluster are similar 

to each other and dissimilar from the objects in other clusters. Cluster analysis has many 

functions in numerous data analytic applications, such as market analysis, pattern 

recognition and image processing. Clustering methods can generally be categorized  

into several classifications, such as Partional-based methods, Hierarchical-based 

methods, Density-based methods, Model-based methods and etc. The three mainstream 

categories of clustering methods are reviewed in Sections 2.1.1-2.1.3. Some of the basic 

conceptions and terminologies for clustering methods are reviewed according to the 

descriptions in [Han et al., 2011]. 

 

• Data Matrix 

A dataset to be clustered can be represented as a data matrix. Each row of the matrix 

represents an object with its attributes. The structure of a n-by-p data matrix which 

contains #×( objects is shown in the form below. 

 

2

66664

x11 ... x1f ... x1p

... ... ... ... ...

xi1 ... xif ... xip

... ... ... ... ...

xn1 ... xnf ... xnp

3

77775
(2.1)
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• Different Types of Attributes  

The attributes of each object vary depending on the meaning of the attribute value. The 

typical attribute types for measuring an variable are introduced as below.  

Interval-Scaled Attributes are continuous measurements of a roughly linear scale, 

such as weight, height, weather temperature, latitude and longitude. 

Binary Attributes have only two possible values, 0 or 1. The values indicate that the 

variable is absent (represented by 0) or present (represented by 1). It can be regarded 

as an “Yes or No” answer to a question for each individual. For example, for the 

attribute “marital status”, 0 means single and 1 means married. The meaning of 0 or 1 

can also be pre-defined, such as for the attribute “gender”, 0 can be defined as female 

whilst 1 would be male and vice versa.   

Categorical Attributes can be regarded as the generalizations of binary variables 

which can take on more than two states, such as color, brand, shape and so on.  

Ordinal Attributes are a number of values which can be ordered in a meaningful 

sequence. One of the most famous example of ordinal variables is the three kinds of 

medals given out for a sporting competition: gold, silver and bronze. 

• Dissimilarity Matrix 

The proximities for all pairs of n objects can be represented by an n-by-n table shown 

as below, where d(i, j) is the measured by the dissimilarity between objects i and j. 

 

2

666664

0
d(2, 1) 0
d(3, 1) d(3, 2) 0

...
...

...
d(n, 1) d(n, 2) · · · · · · 0

3

777775
(2.2)
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As a wildly used distance measure, Euclidean distance is suitable for measuring the 

dissimilarities between objects with multiple attributes. The computation of Euclidean 

distance is defined as below. 

 

Note that this type of distance measure can only be applied to the interval-scaled 

attributes. The other types of attributes can be transferred into interval-scaled attributes 

in a preprocessing stage, before using the Euclidean Distance. In this research, the data 

preprocessing steps are mainly conducted by PCNP [Yuen, 2009; 2012; 2014(1); 2014(2)] 

to deal with the difference types of attributes. The preprocessing steps are introduced 

in Section 5.1.2 with real-world cases. 

Arbitrary Shaped Clusters 

Some datasets include arbitrary shaped clusters, which means that the clusters are not 

centroid based, for instance, a dataset transferred from a digital facial image. Figure 2.1 

presents two examples of a dataset consisting of arbitrary shaped clusters. Since most 

of the partitional based clustering methods are centroid based, such as K-means and K-

centroid, the other types of clustering methods are applied to process this particular 

kind of dataset, such as hierarchical and density-based clustering methods. 

 

Figure 2.1 Two Datasets with Arbitrary Shaped Clusters 

d(i, j) =
q
(xi1 � xj1)2 + (xi2 � xj2)2 + · · ·+ (xin � xjn)2 (2.3)
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• Noisy Data \ Noise 

In this work, the term noise (noisy data) refers to an object which is not assigned to any 

cluster. The detection of noise is a topic in clustering analysis. Some clustering methods, 

such as K-means, do not directly deal with noise, as a consequence, the noise in the 

ground truth partitions may lead to poor clustering results in the pattern of results when 

using such a method.  

 

2.1.1 Partitioning Clustering 

A partitioning clustering algorithm can organize a data set D of n objects into k clusters, 

where k ≤ n. The clusters are formed to optimise an objective partitioning criterion, for 

example, to minimize a dissimilarity value based on distance to ensure the objects 

within a cluster are similar, whilst the objects of different clusters are dissimilar. The 

most widely used and classical partitioning clustering method is K-means. 

K-means  

The K-means algorithm [MacQueen, 1967; Jain, 2009] takes a parameter, k, as input, 

and assigns n objects into k clusters resulting in the similarity of the objects within each 

cluster being high but the similarity between the objects in different clusters being low. 

Typically, the aim of the K-means process is to minimize the total mean-square 

quantization error (MSE) until the criterion function converges. The function to 

compute MSE is defined as below.  

 

where E is the sum of the square error for all objects in the data set; p is the point in 

space representing a given object; and mi is the mean of cluster Ci (both p and mi are 

multi-dimensional). The mean value of the objects in a cluster is regarded as the 

E =
kX

i=1

X

p2Ci

|p�mi| (2.4)
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cluster’s centroid. The criterion is the sum of the squared distance from the object to its 

cluster center. The pseudo code of classical K-means [MacQueen, 1967] is provided in 

Algorithm 2.1 as below. 

Algorithm 2.1: K-means 
Input: k: the number of clusters, D: a data set containing n objects.  

Output: A set of k clusters.  

1. Arbitrarily choose k objects from D as the initial cluster centers;  

2. Assign each object to the cluster to which the object is the most similar, based 
on the mean value of the objects in the cluster;  

3. Update the cluster means, i.e., calculate the mean value of the objects for each 
cluster;  

4. Repeat steps 2-3 until no change. 

 

2.1.2 Hierarchical Clustering 

The hierarchical clustering method works by building a tree structure of the objects in 

a dataset. There are two major methods for Hierarchical clustering 

methods:agglomerative and divisive. For agglomerative methods, tree structures are 

built from the bottom up, and for divisive ones, the trees are built from the top down.  

• Agglomerative hierarchical clustering starts by regarding each object as an 

atomic cluster and then merges these atomic clusters into larger clusters. This step 

is repeated until all of the objects are in a single cluster or until a certain 

termination condition is satisfied. The majority of hierarchical clustering methods 

belong to this category, they differ only in the computational style of the inter-

cluster similarity. The details of typical AHC are introduced in this section. 

• Divisive hierarchical clustering does the reverse of agglomerative hierarchical 

clustering by starting with putting all objects in one cluster, and then dividing the 
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cluster into increasingly smaller clusters, until each cluster only contains one 

object, or until a certain termination conditions is satisfied. There are less 

hierarchical clustering algorithms which follow this strategy. 

Agglomerative Hierarchical Clustering  

The original Agglomerative Hierarchical Clustering (AHC) [Ward, 1963] was proposed 

more than half a century ago. In AHC, the pairs of closest clusters are iteratively merged 

into larger clusters until all of the objects are in a single cluster or a termination 

condition is satisfied [Han et al, 2011]. The three main steps of hierarchical clustering 

methods are summarized below with reference to [Murtagh, 1983]. 

i. Initialization: each object is initialized as an atomic cluster. The dissimilarities 

between atomic clusters can be computed in different ways, this was introduced in 

Section 2.1.1. 

ii. Merging: the two closest clusters, Ci and Cj,are combined to form a larger cluster. 

The four mainstream measurements for choosing the closest pair of clusters for 

inter-cluster similarity are shown below, where p is an object, mi is the centroid of 

clusters Ci, and ni is the number of objects in cluster Ci 

• Minimun\Single-linkage:�  

�  

• Maximun\Complete-linkage: 

 

• Centroid-linkage: 

 

• Average-linkage 

 

This step should be repeated until all objects are in one cluster. 

dmin(Ci, Cj) = min
p2Ci,p02Cj

|p� p0| (2.5)

d
max

(C
i

, C
j

) = max

p2Ci,p
02Cj

|p� p0| (2.6)

dmean(Ci, Cj) = |mi �mj | (2.7)

davg(Ci, Cj) =
1

ninj

X

p2Ci

X

p02Cj

|p� p0| (2.8)
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iii. Clusters generation: a dendrogram is used to illustrate the arrangement of the 

merged clusters. The objects are divided into different clustering patterns by 

cutting the branches at an appropriate height, which is represented by the 

dissimilarity between clusters. For example, the dendrogram shown in Figure 2.2 

can be cut by Line A and then three clusters are generated. Similarly, the dataset 

can be divided into five clusters if the dendrogram is cut by Line B. 

 

 

Figure 2.2: An Example of Clustering by Dendrogram. 

 

2.1.3 Density-based Clustering 

Density-based clustering methods can be used to discover clusters with arbitrary shape. 

The dense regions of objects in the data space are recognized as clusters, and the regions 

of low density are marked as noisy points (or noises). Thus, the DBSCAN grows 

clusters according to a density-based connectivity analysis. A number of hybrid and 

enhanced density-based clustering methods have been developed, for example: l-

DBSCAN [Viswanath & Pinkesh, 2006], ST-DBSCAN [Birant & Kut, 2007], Rough-

DBSCAN [Viswanath & Babu, 2009], P-DBSCAN [Kisilevich, Mansmann & Keim, 

2010], MR-DBSCAN [He, Tan, Luo, Mao, Ma, Feng & Fan, 2011], PDS-DBSCAN 

[Patwary, Palsetia, Agrawal, Liao, Manne & Choudhary, 2012], Revised DBSCAN 
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[Tran, Drab & Daszykowski, 2013] and G-DBSCAN [Andrade, Ramos, Madeira, 

Sachetto, Ferreira & Rocha, 2013]. The details of DBSCAN are reviewed in this section. 

  

DBSCAN 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was 

originally proposed in 1996 [Ester et al., 1996]. DBSCAN can easily find the arbitrary 

shape of clusters by detecting the high-density hyper-spheres and merging the close 

hyper-spheres into clusters. As already noted, DBSCAN uses two critical parameters, 

the radius of hyper-spheres (ϵ) and the minimum number of points in each hyper-sphere 

(Minpts), the clustering results of DBSCAN are sensitive to the values of these two 

parameters. The pseudo code for the DBSCAN algorithm is given in Algorithm 2.2.  

Algorithm 2.2: DBSCAN 
Input: Dataset S, Radius of each hyper-sphere �ϵ���the minimum number of points in 
the hyper-sphere, MinPts.  
Output: Pattern Result, (PR). 

1. Initialize cid = 0;
2. For each individual in dataset, i.e. s∈S,  

If s is not marked as “seen”, then Mark s as “seen” and find Nϵ(s; S),  

If card(Nϵ(s; S)) < MinPts, then (PR)sid(s) =0;  

else cid = cid + 1, (PR)sid(s) =cid;

For s’∈Nϵ(s; S) and s’ is not marked as “seen”,  
Mark s’ as “seen”;
Find Nϵ(s’; S);
If card(Nϵ(s; S))≥MinPts, then  

(PR)sid(s’) = cid;  

else continue next point  
3. Return (PR).  

 

The clustering Pattern Result (PR) is a list [c1,c2,...,cn] where each element ci is a cluster 

identifier (identifier 0 indicates the noise cluster), n is the number of records in the input 
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dataset S, and the indexes indicate individual record numbers for each record s in S. A 

mark seen is used to distinguish between the records which have been processed and 

those which still need to be processed. ,-(s; S) is a function that returns the subset of 

records in S, that are present in a particular cluster (hyper-sphere) of radius ., that s in 

S belongs to card(,-(s; S)) returns the cardinality of the set ,-(s; S); whilst sid(s) 

returns the index in PR of s in S. The drawbacks of DBSCAN are discussed in Section 

2.4 as a part of the research limitations.  

2.2 Evolutional and Swarm Algorithms  

2.2.1 Introduction  

Evolutionary and Swarm Algorithms (ESAs) are some Computational Intelligence (CI) 

methods were inspired by the evolution of species and the behaviors of animals in 

swarms. This work covers four typical and widely used ESAs, Particle Swarm 

Optimization (PSO) [Kennedy, 1995], Artificial Bee Colony (ABC) [Karaboga, 2005], 

Genetic Algorithms (GAs) [Golberg,1989] and Differential Evaluation (DE) [Storn & 

Price, 1997]. The common use of each ESA is to be applied in an optimisation problem 

which find a set of parameter values that minimize or maximize a function in a pre-

defined search space. 

GA is the mainstream algorithm of evolutionary algorithms. The initial conception that 

the evolution could be applied in the process of optimisation has been proposed since 

the 1960s [Holland, 1962]. The theory of GA has been further developed by the team 

led by John Holland in the following decades [Holland, 1975; Holland, Holyoak, 

Nisbett, & Thagard, 1986]. The applications of GAs were further investigated during 

the 1980s [Goldberg, 1989; Grefenstette, 1985, 1987; Goldberg & Holland, 1988]. In 

this work, the canonical genetic algorithm is applied to develop the initial approaches 

and compare with other methods.  
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PSO was inspired by the swarming behavior that was displayed by a flock of birds, a 

school of fish, or even human social behavior being influenced by other individuals 

[Kennedy, 1995]. The developments, applications and resources of PSO before the year 

2001 were summarised in [Shi, 2011]. The PSO methods developed for solving 

constrained optimisation problems were summarized in [Parsopoulos & Vrahatis, 2002]. 

Some PSO variant algorithms were proposed since the initial PSO was suggested. A 

standard of PSO was defined in 2007 [Bratton & Kennedy, 2007] to compare and 

summarize three types of PSO including original PSO, Constricted GBest and 

Constricted LBest. The variants were implemented and summarized in a famous R 

package hydroPSO [Zambrano-Bigiarini & Rojas, 2013; Zambrano-Bigiarini, Clerc & 

Rojas, 2013]. The different PSO algorithms presented in hydroPSO are Standard PSO 

2011 (spso2011) [Clerc, 2012], Standard PSO 2007 (spso2007) [Clerc, 2012], Fully 

Informed Particle Swarm (fips) [Mendes, 2004], Weighted Fully Informed Particle 

Swarm (wfips) [Mendes, 2004], Improved PSO (IPSO) [Zhao, 2006] and Canonical 

PSO [Clerc, 2009]. In this work, Canonical PSO and SPSO 2011 are applied in the 

proposed framework. An application of this package including a detailed illustration 

was presented in 2013 [Zambrano-Bigiarini & Rojas, 2013]. The two reviews of PSO 

presented in [Banks, Vincent & Anyakoha, 2007, 2008] covers the development, 

hybridization and application of PSO. [García-Gonzalo & Fernández-Martínez, 2012] 

is a recent summary of PSO methods in 2012.  

As an evolution strategy, the DE algorithm was introduced by Storn and Price in the 

1990s [Storn & Price, 1997; 1995]. DE is particularly compatible to find the global 

optimum of a real-valued function of real-valued parameters and does not require that 

the function to be either continuous or differentiable. In the roughly fifteen years since 

its invention, DE has been successfully applied in a wide variety of fields, from 

computational physics to operations research [Price, Storn & Lampine, 2006]. A recent 

review of DE was presented in [Das, Mullick & Suganthan, 2016]. 
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ABC were firstly defined in 2005 by Karaboga [Karaboga, 2005]. The computational 

processes and application areas of ABC were further extended in 2007 [Karaboga & 

Basturk, 2007]. The performance of ABC was compared to other EC methods such as 

DE, PSO and GA in [Karaboga & Basturk, 2008]. The optimisation results of the five 

functions demostrate that ABC algorithm performed better than the aforementioned 

algorithms in [Karaboga & Basturk, 2008]. Due to several insufficiencies in classical 

ABC, some improved ABC algorithms have been proposed. To improve the 

exploitation of classical ABC, the Gbest-guided artificial bee colony (GABC) was 

developed by incorporating the information of the global best (gbest) solution into the 

solution search equation in 2010 [Zhu & Kwong, 2010]. A modified ABC was 

developed for real parameter optimisation [Akay & Karaboga, 2012]. The development 

and application of ABC were reviewed in [Karaboga & Akay, 2009; Karaboga, 

Gorkemli, Ozturk & Karaboga, 2014].  

Some comparative research has been studied to discuss the superiority of one EC 

method over the others. For example, [Eberhart & Shi, 1998] is a comparison between 

GA and PSO in 1998, similarly, [Civicioglu & Besdok, 2013] reviewed and compared 

PSO, DE and ABC in 2011. More reviews are mentioned in Section 2.3.1 and are 

conducted with respect to certain applications of ESA methods, such as optimising the 

performance of clustering analysis. 

2.2.2 Basic Concepts  

The general procedures of ESAs could be summarized as a group of candidate solutions 

moving in a pre-defined space in particular patterns and finally the best solution among 

all the candidate solutions is produced as the optimised solution. The steps of all the 

ESAs consist of two phases: representing the solutions as a swarm or genetics and 

searching for the best member of a swarm or the best chromosome of a gene pool in a 

search space. The common or similar terminologies applied in ESAs are introduced in 
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this section, they include encoding, search space, fitness function, stopping criteria, etc. 

The details of the common terminologies are explained below. 

• Solution Representation 

There are three major ways of representing candidate solutions which are applied in 

ESAs: binary representation, integer representation and real-valued representation. All 

the representation forms can be applied in GA and the real-valued representation can 

be applied to PSO, DE and ABC. 

In GA, each candidate solution can be encoded as a “chromosome” consisting of a 

number of “genes”, in comparison, for the binary representation, each solution is 

denoted as a bit-string. The integer representation is applied in GA, whilst the candidate 

solutions include ordinal parameters or cardinal attributes. Each solution is represented 

by a vector of integers which signify a particular meaning. This occurs when the values 

to be represent as genes come from a continuous rather than a discrete distribution. For 

example, if they represent physical quantities, such as the length, width, height, or 

weight of a component of a design, that can be specified within a tolerance smaller than 

integer values. 

In PSO, each candidate solution is represented as a particle; and all the particles form 

the swarm. In DE, each agent represents one candidate solution. Similarly, food sources 

are the candidate solutions in ABC. 

• Objective Function and Fitness Function 

For an ESA, the problem to be solved is represented as an objective function. A fitness 

function is designed as a particular type of the objective function, to evaluate how well 

the candidate solutions solve the problem. 

For example, GA often requires a fitness function that assigns a score (fitness) to each 

chromosome in the current population. The fitness of a chromosome depends on how 
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well that chromosome solves the problem at hand. Similarly, PSO requires a fitness for 

each particle; ABC needs a fitness for each food source; and DE requires a fitness for 

each agent. 

• Search Space 

All the candidate solutions are randomly generated in the search space, which means a 

pre-defined range of each parameter of solutions. The dimension of the search space is 

the number of parameters in each candidate solution and the minimum and maximum 

values for each dimension should be pre-defined to determine the whole scope of the 

search space. 

• Stopping Criteria or Convergence Tolerance 

According to the summarization presented in [Eiben & James, 2003], the four major 

types of stopping criteria shown below can be applied in all the ESAs.  

1. The maximum allowed CPU time elapses. 

2. The total number of fitness evaluations reaches a given limit. 

3. The fitness improvement remains under a threshold value for a given period of time, 

which means the algorithm’s solution has been converged. 

4. The population diversity drops under a given threshold. 

 

2.2.3 Genetic Algorithm 

Genetic algorithms (GAs) were created by John Holland in the 1960s and were further 

developed by his research group at the University of Michigan in the following decades. 

During the past half century, researchers have studied and developed the concept of 

GAs and broke the boundaries between GAs, evolution strategies, evolutionary 

programming, and other evolutionary approaches. Nowadays, the term “Genetic 

Algorithm” can be used to describe a number of various algorithms which could vary 
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from the original GA method. In this work, the GA method mentioned mainly follows 

the Genetic Algorithms defined by [Mitchell, 1989] and [Eiben & James, 2003]. 

Algorithm 2.3: A Simple GA 
1 Start with a randomly generated population of n chromosomes.  

2 Calculate the fitness of each chromosome in the population.  

3 Repeat the following steps until n offspring have been created:  

3.1 Select a pair of parent chromosomes from the current population. 

3.2 With the crossover probability, cross over the pair at a randomly chosen 
point to generate two offspring. If no crossover takes place, copy the 
parents as the two offspring.  

3.3 Mutate the two offspring at each locus with the mutation probability and 
place the resulting chromosomes in the new population.  

4 Replace the current population with the new population.  

5 Loop step 2-4 until the stop criteria is reached. 

6 Output the best population with highest fitness. 

A simple procedure of GA is presented in Algorithm 2.3 with respect to the context of 

[Mitchell, 1998]. Each iteration (Steps 2-4 in Algorithm 2.3) of this process is called a 

generation and a GA is typically iterated for hundreds of generations. The entire set of 

generations is called a run, at the end of the run, there are often one or more highly fit 

chromosomes in the population. As the algorithm demonstrates, the simplest form of a 

genetic algorithm involves three types of operators: selection, crossover, and mutation. 

• Selection 

Selection is the process to find the individuals with a higher fitness to produce the next 

generation. Typically, parent selection technologies are probabilistic in GAs. The high-

quality individuals have high probabilities to be selected as parent, whilst the low-

quality individuals have a chance to be selected but the chance is very small, such that 

the search cannot be too greedy to get stuck in a local best solution. For example, some 
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widely used selections are roulette-wheel selection (also named as fitness proportionate 

selection), tournament selection, reward-based selection, and etc. In this work, the 

roulette-wheel selection is applied in the proposed GA-based clustering method 

described in Section 3.2. 

• Crossover  

Crossover (or sometimes referred to as recombination) is an operator which merges two 

individuals (which refers to the parents selected by the selection operator) into offspring 

individuals. The principle aim of the crossover is to mate two individuals with different 

but desirable features to produce an offspring that combines both of those features. This 

principle is inspired by produce species that give higher yields or have other desirable 

features in the area of plant and livestock breeders.  

In GAs, the offspring (next generation) are produced by a random recombination which 

is named as a crossover. A crossover is a stochastic operator, which means that the 

choices of what parts of each parent are combined are randomly decided with respect 

to a pre-defined crossover rate. A crossover is also applied probabilistically, which 

means the parents have a small predefined chance not to be performed crossover. The 

offspring of a pair of parents are the same as themselves if no crossover is performed. 

Various crossover methods are proposed with respect to the different genotypes 

(decoding style) of chromosomes. For example, the bit-string chromosomes, single-

point, two-point, and uniform crossover. In this work, the single-point crossover is 

applied in the proposed GA-based clustering method described in Section 3.2. 

• Mutation  

Mutation is a unary variation operator in GAs. A mutation operator is stochastically 

preformed to one bit (genotype) of the offspring generated by the stage of crossover, a 

slightly changed mutant can be generated by the mutation operator. 
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2.2.4 Particle Swarm Optimization 

PSO is a population based stochastic optimisation technique to find the best fitting 

solution. PSO has a number of advantages, such as flexibility, easy computational 

implementation, low computational requirements, low number of parameters, and 

efficiency [Eberhart and Shi, 1998; Shi and Eberhart, 1999; Eberhart and Shi, 2001; 

Poli et al., 2007]. Numerous variants of the original PSO algorithm have been proposed 

to further improve the performance of PSO (see Section 2.2.1 for details). The general 

procedures of PSO are presented as Algorithm 2.4. Two versions, the canonical PSO 

and the Standard PSO proposed in 2011 (SPSO-2011), are reviewed and applied in this 

work (see Section 3.3 for detail). 

Algorithm 2.4: General PSO Procedures 
1 Initialize the velocity and position of each particle. 
2 Loop until the maximum iterations or minimum error criteria is reached. 

2.1 Calculate fitness value 
2.2 If the fitness value is better than the best fitness value (pBest) in history, 

then set current value as the new pBest 
2.3 Choose the particle with the best fitness value of all the particles as the 

gBest 
2.4 Calculate and update the velocity and position of each particle. 

3 Output the best particles. 

2.2.5 Differential Evolution 

Differential Evolution (DE) was originally developed in 1995 by Storn and Price. The 

main procedure of DE is shown in Figure 2.3. Similar to that of GA, DE also has three 

operators, mutation, recombination (also can be named as crossover), and selection, but 

in a different order. 

 

Figure 2.3 The Procedure of DE [Das & Suganthanm, 2011]. 
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The advantages of DE have been summarized in [Storn et al. 1997] and are as follows:  

• ability to handle non-differentiable, nonlinear and multimodal cost functions.  

• parallelizability to cope with computation intensive cost functions. 

• ease of use, since few control variables are required to steer the minimization. 

• good convergence propertie. 

The details about the DE algorithm are presented within the proposed DE-DCC method 

in Section 3.4. 

 

2.2.6 Artificial Bee Colony Algorithm 

ABC is proposed to model the specific intelligent behaviors of honey bee swarms and 

applies to solving combinatorial type problems. In the ABC algorithm, the candidate 

solutions of object functions are the food sources which can be selected or discarded 

by bees. The colony of artificial bees contains three groups of bees: employed bees, 

onlookers and scouts. A bee waiting in the dance area to make a decision to choose a 

food source, is called an onlooker, whereas, a bee going to the food source visited by 

itself previously is termed an employed bee. The bee that searches around randomly is 

called scout. In the ABC algorithm, half of the bees are employed artificial bees and 

the other half are the onlookers. One employee bee is in charge of one food source. In 

other words, the number of employed bees is equal to the number of food sources. The 

employed bee whose food source is exhausted by the employed and onlooker bees 

becomes a scout. The main steps of ABC algorithm (which revises and improves the 

presentation of the paper [Karaboga, 2005]) are given in Algorithm 2.5. 

Algorithm 2.5: ABC Algorithm 
1 Send the scouts onto the initial food sources  
2 Repeat from 2 until requirements are met. 

2.1 Send the employed bees onto the food sources and determine their nectar 
amounts  

2.2 Calculate the probability value of the sources with which they are preferred 
by the onlooker bees 
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2.3 Send the onlooker bees onto the food sources and determine their nectar 
amounts  

2.4 Stop the exploitation process of the sources exhausted by the bees  
2.5 Send the scouts into the search area for discovering new food sources, 

randomly  
2.6 Memorize the best food source found so far  

3 Output Best food source. 

�

2.3 Hybrid Approaches of ESAs and Clustering 

2.3.1 General Review  

ESA algorithms have been widely applied in data mining fields such as clustering 

analysis. The fact that they are easy to be trapped in local best result is one of the main 

problems existing in classical clustering method. The main advantage of ESA is the 

stochastic optimisation, which can overcome the drawback of the search strategy in the 

classical clustering method. To improve the efficiency and accuracy of the classical 

clustering analysis algorithms, the clustering problems could be represented as 

functions to be optimised by ESA technologies. Some reviews have been made in the 

past two decades to summarize the various ESA optimised clustering algorithms.  

A more detailed review of GA-based clustering methods was accomplished by 

presenting the framework of GA clustering methods step by step [Naldi, Carvalho & 

Campell, 2008]. The fitness functions employed in the different GA clustering 

algorithms are summarized and explained in detail. The work presented in [Hruschka, 

Campello & Freitas, 2009] is a survey of GA clustering which is similar to [Naldi et al., 

2008], but more methods were covered. Some more Evolutionary Algorithms (EAs) 

applied in data mining were reviewed in [Freitas, 2008], which summarise the 

applications of EAs in the field of Data Mining including Clustering. The different 

types of fitness evaluations in EAs clustering methods can be roughly summarized into 
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two types: minimize the intra-cluster (within-cluster) distance and maximize the inter-

cluster (between-cluster) distance.  

PSO has been used to support clustering in a number of studies. In [Van der Merwe & 

Engelbrecht, 2003], two PSO methods were proposed: one is to find the centroids of 

clusters and another one is to  use K-means clustering to seed the initial swarm. In 

[Chen & Ye, 2004], PSO was applied to search the cluster centres in the arbitrary data 

set automatically, although, in [Potok & Palathingal, 2005], PSO was coupled with the 

K-means clustering to cluster document collections. In [Niknam & Amiri, 2010], a 

hybrid method, FAPSO-ACO-K, was proposed which combined Fuzzy Adaptive 

Particle Swarm Optimization (FAPSO), Ant Colony Optimization (ACO) and K-means 

so as to find the best cluster partition in the nonlinear partitional clustering problem. In 

[Xu, Xu & Wunsch, 2012], a framework was proposed for Differential Evolution 

Particle Swarm Optimization (DEPSO) based clustering, which combined DE with 

PSO. However, to the best knowledge, no work has been directed at using PSO for the 

purpose of DBSCAN parameter optimisation.  

A review of PSO algorithms applying to clustering problems was presented in [Rana, 

Jasola & Kumar, 2011]. The variants of classical PSO methods applied in clustering 

were covered in this paper, however, the details of algorithms are not included. One of 

the recent reviews of PSO clustering methods was presented in [Alam, Dobbie, Koh, 

Riddle & Rehman, 2014]. In [Alam et al, 2014], PSO clustering methods were 

classified into two types, PSO hybridized for data clustering and PSO as a data 

clustering method. A number of papers presenting PSO clustering algorithms were 

summarized. UCI machine learning datasets [Dua & Karra Taniskidou, 2017] are used 

for testing and validation, the experimental results indicate that almost all PSO 

clustering methods have a higher efficiency and accuracy than classical clustering. 

However, the limitation is that the details of PSO clustering algorithms, such as the 

choice of fitness functions, were not mentioned.  
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A new SI clustering method, MEPSO clustering algorithms, was proposed in [Abraham, 

Das & Roy, 2008]. The procedures and the Fitness Functions adopted in each method 

of the three kinds of SI clustering algorithms mentioned were presented in detail. An 

experiment was presented to compare the performance of Fuzzy C-means (FCM), 

Fuzzy clustering with Variable length Genetic Algorithm (FVGA) and MEPSO-

clustering algorithm. The test results show the superiority of the MEPSO-clustering 

algorithm, both in terms of accuracy and efficiency. The limitation of this review is that 

only two types of SI clustering methods are covered. More ESA optimised clustering 

methods are reviewed in more detail in next section (Section 2.3.2) with the fitness 

functions applied in the hybrid methods. 

In the context of DBSCAN, the clustering approach of interest, with respect to the work 

presented in this paper, is the research that has been directed at applying ESAs to 

optimise the performance of DBSCAN One example is that of [Jiang, Li, Yi, Wang & 

Hu, 2011] where a hybrid partitioning-based DBSCAN method is proposed that uses a 

modified ant clustering algorithm but they did not consider parameter optimisation. 

One example, where the nature of the parameters used in DBSCAN was considered, 

can be found in [Lin, Chang & Lin, 2005], where a Genetic Algorithm with a Density-

Based Approach for Clustering (GADAC) was proposed to determine the nature of the 

parameters used by DBSCAN to provide satisfactory clustering results. GADAC 

determines the range of parameters in the pre-processing step before GA operations; 

the entire parameter space is not considered. The above methods have a number of 

limitations. Firstly, the encoding methods of clustering results are based on numerating 

all items, which are complex to search the optimal solution especially when the data 

size is large. Secondly, the number of identified clusters cannot be controlled.  

2.3.2 Fitness Functions Applied in Current ESA-Clustering Methods 

There are two approaches in applying PSO to clustering problem solving which were 

developed in 2003 [Van der Merwe & Engelbrecht, 2003]. Particle xi is defined as xi = 
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mi1 , ..., mij , ..., miNc , where mij is the jth cluster centroid vector of the ith particle in 

cluster Xij. The fitness function is designed as below.  

�

 

where d(zp,mj) and mj are the centroid of cluster j defined as below; |Cij| is the number 

of data vectors belonging to cluster Cij; Nc is the number of clusters; zp is the pth data 

vector; nj is the number of data vectors in cluster j. 

Two artificial classification problems and four data sets from the UCI depository were 

applied in the experiment to compare the performance of K-means, PSO and the 

proposed hybrid clustering method. The four UCI datasets are Iris, Wine, Breast cancer 

and Automotives.  

The hybrid method of PSO and K-means clustering is presented in [Cui et al., 2005]. 

The fitness function in this hybrid method is designed with respect to the document 

clustering case and termed the Average Distance of Documents to the cluster Centroid 

(ADDC) as in the equation below.  

�  

where mij is the jth document vector of the ith cluster; Oi is the centroid of the ith cluster; 

d(oi,mij) is the distance between mij and Oi; Pi is the number of documents in cluster 

Ci and Nc is the number of clusters. The four document datasets derived from Text 

REtrieval Conference (TREC) collections are used in the experiments to compare the 

performance of K-means and PSO clustering algorithm.  

Je =

PNc

j=1 [
P

8Zp2Cij
d(zp,mj)/|Cij |]

Nc
(2.9)

d(zp,mj) =

vuut
NdX

k=1

(zpk �mjk)2,mj =
1

nj

X

8zp2Cj

zp (2.10)

f =

P
Nc

i=1

Ppi
j=1 d(oi,mij)

pi

N
c

(2.11)



� ���

Intra-cluster distance was used to compute the fitness in HPSO-clustering [Alam, 

Dobbie, Riddle & Naeem, 2010], which is the hybrid method of PSO and AHC. In the 

HPSO-clustering method, each cluster centroid is modelled as a particle of the PSO 

process. The particles are merged following the average attribute values shown as 

below.  

�  

where Xi is the newly formed particle after merging; Xi(nearest) is the particle which 

is more populated; Xi(loser) is the particle which is less populated. Five popular UCI 

datasets, including Iris, Breast Cancer, Wine, Vowel and Glass, are used in the 

comparison of HPSO clustering, PSO clustering and K-means.  

DE, PSO and GA were applied in partitional clustering problems in [Paterlini & Krink, 

2004]. In this hybrid method, the fitness function was defined as below.  

 

[Paterlini & Krink, 2006] presented the further development of [Paterlini et al., 2004].  

An ABC clustering was developed in 2010 [Zhang, Ouyang & Ning, 2010]. The total 

mean-square quantization error (MSE) [Güngör & Ünler, 2007], which can also be 

described as the total within-cluster variance shown below, was applied in this method 

as the fitness function.  

�  

where ||oi −Cl|| is the distance between object oi and center Cl; the distance could be 

computed by Euclidean distance.  

Xi =
Xi(nearest) +Xi(loser)

2
(2.12)

F (X
nxp

,m) =

(
f(X

nxp

, H) if H ⇢ G = {G1, G2, ..., GN(n,g)}
K if H 6⇢ G = {G1, G2, ..., GN(n,g)}

(1)

Perf(O,G) =
NX

i=1

min{||oi � Cl||2|l = 1, ...,K} (2.13)
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Several EC and clustering methods such as GA, tabu search (TS) [Al-Sultan, 1995], 

Simulated Annealing (SA) [Selim & Alsultan, 1991], ACO, K-NM-PSO [Kao et al. 

2008] were used to compare with ABC in three clustering problems (Iris, Thyroid and 

Wine from UCI datasets).  

The famous clustering measurement function, MSE, was also employed in the hybrid 

method of Cooperative ABC (CABC) and K-Means clustering [Zou, Zhu, Chen & Sui, 

2010].  

MSE was also used as the fitness function of the Hybrid Artificial Bee Colony (HABC) 

and was employed in clustering problems [Yan, Zhu, Zou & Wang, 2012]. The HABC 

is a hybrid method of GA and ABC. ABC, PSO, GA, CABC [Yan et al., 2012], 

Cooperative Particle Swarm Optimization (CPSO) [Van den Bergh & Engelbrecht, 

2004] and the K-means algorithm were tested on six real clustering problems selected 

from UCI, such as Iris, Wine, CMC, WBC, Glass and LD.  

ABC was proposed as a clustering approach in 2011 [Karaboga & Ozturk, 2011], the 

clustering problem was stated as the process of minimizing the sum of the squared 

Euclidean distances between each object and the center of the cluster. The fitness 

function to be minimized was designed as below.  

 

where zj, j = 1,...,K is the center of the jth clusters which can be computed as below.  

 

where Nj is the number of objects in the jth cluster, wij is the association weight of object 

xi with the jth cluster; wij is 1 if object i is allocated to cluster j, otherwise wij is 0.  

J(w, z) =
NX

i=1

KX

j=1

wij ||xi � zj ||2 (2.14)

zj =
1

Nj

NX

i=1

wijxi (2.15)
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A hybrid clustering method of Fuzzy adaptive PSO, ACO, and K-means was developed 

in 2010 [Niknam & Amiri, 2010]. The fitness function, (defined as performance 

function Perf(X,C) of this hybrid method, is the total within-cluster variance or the total 

mean-square quantization error shown as below.  

 

where {Xi|i = 1,2,...n} is the set of points to be clustered; {Cl|l = 1,2,...K} is the set of 

clusters  

A number of EC clustering algorithms such as PSO, ACO, GA, Simulated Annealing 

(SA), Tabu search (TS), honey bee mating optimization (HBMO), and several hybrid 

methods such as PSO-SA, ACO-SA, PSO-ACO are tested in [Niknam et al., 2010] to 

compare with the proposed FAPSO-ACO-K clustering method. Four artificial data sets 

and six real-life data sets are used in the experiment. The real-life data sets include Iris, 

Wine, Vowel, Contraceptive Method Choice (CMC), Wisconsin breast cancer and 

Ripley’s glass. The experiment results illustrates that the proposed FAPSO-ACO-C 

method could find a better cluster pattern than the other methods tested in the 

experiment.  

To search the clusters in arbitrary shape, a PSO-Clustering method was developed in 

2004 [Chen & Ye, 2005]. The cluster process obeys the following rules. A point xi is 

assign to cluster Cj where i = 1, 2, ..., N and j = 1,2,...,K if  

 

where zp is the centre of cluster Cj. The fitness function adopted in this clustering 

method is given as below.  

Perf(X,C) =
NX

i=1

Min{||Xi � Cl||2|l = 1, ...,K} (2.16)

||xi � zj || < ||xi � zp||, p = 1, 2, ...,K and j 6= z. (2.17)
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where k is a positive constant, and Jo is a small-valued constant. A hybrid clustering 

method of DE and K-means was developed in 2008 [Das, Abraham & Konar, 2008]. 

The similar hybrid method of PSO and K-means was also implemented for comparison 

with the DE clustering method. In this hybrid method framework, two famous 

clustering validation indices, the DB index and the CS index, were used to build the 

fitness functions in the DE-clustering methods. [Das et al, 2008]. The clustering index-

based fitness functions are shown as below. 

  

where i indicates each partition yielded by the ith chromosome of DE or each particle 

of PSO.  

The criteria Trace within criterion (TRW) and Variance ratio criterion (VRC) are 

applied to the fitness function of the latest hybrid clustering method of DE and K-means 

[Tvrdík & Křivý, 2015]. The functions for computing TRW are shown below.  

 

J =
KX

j=1

NX

i=1

||x
i

� z

j

||2 (2.18)

fitness = k/(J + J

o

) (2.19)

fi =
1

CSi(K) + eps
(2.20)

fi =
1

DBi(K) + eps
(2.21)

TRW = TR(W) (2.22)

W =
kX

l=1

Wl (2.23)

Wl =
nlX

j=1

(z(l)j � z(l))(z(l)j � z(l))T (2.24)

where z(l)j = (
nlX

j=1

zlj)/nl, nl = |Cl| (2.25)
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where  is the vector of attributes for the jth object of the cluster. The functions for 

computing VRC are shown below.  

 
The framework of differential-evolution-particle-swarm-optimization (DEPSO)-based 

clustering was proposed in 2012 [Xu et al., 2012]. This hybrid method was developed 

by combining DE and PSO. Some specific clustering validation indices are applied as 

fitness functions in DEPSO-based clustering frameworks, such as the Calin`ski-

Harabasz (CH) index, the CS index, the Davies-Bouldin (DB) index, the Dunn indices 

(DI), the I index, and the silhouette statistic (SIL) index. Given a set of N data points, 

X = (x1, .., xN ) is assigned to K clusters C = {C1, ...CK } and the set of the centroids 

of all clusters is {mi: i = 1, ..., K\}, the aforementioned indices are defined in Table 2.1.  

z

V RC =
tr(B)/(k � 1)

tr(W)/(n� k)
(2.26)

B =
kX

l=1

nl(z
(l) � z)(z(l) � z)T (2.27)

where z = (
nX

i=1

zi)/n, n =
kX

l=1

nl (2.28)
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2.4 Research Gap 

• Limitations of Partitioning Clustering and Hierarchical Clustering 

Partitioning Clustering methods were designed for centroid-based problems. The 

arbitrary shaped clusters cannot be detected and the complexity of hierarchical 

clustering is higher than most of the clustering methods. Subsequently, the results of 

both hierarchical and partitioning clustering are easily influenced by the noises in a 

dataset. 

 

• Limitations of Density-based Clustering 

DBSCAN and the density-based clustering developed on the basis of DBSCAN have 

three drawbacks. Firstly, it lacks a method to determine the appropriate settings of the 

two parameters. Thus, manual tuning appears to be the only option. Secondly, unlike 

K-means, the number of clusters cannot be controlled by the users since DBSCAN does 

not support the idea of fixing the number of clusters upon start up. Thirdly, DBSCAN 

cannot be used directly as a supervised learning method to perform classification. The 

three drawbacks of DBSCAN are illustrated by a simple problem of clustering a dataset 

of 10 items as shown in Table 2.2. 

Example 2.1 

 

�

Table 2.2: Sample Dataset
Item ID Attribute 1 Attribute 2 Cluster Label

1 -8.055 -2.913 1
2 7.111 3.188 2
3 6.953 -4.693 3
4 -3.627 -7.416 4
5 5.732 3.648 2
6 6.988 -3.216 3
7 -0.041 -9.207 4
8 -1.983 -8.748 4
9 6.827 5.266 2
10 -1.306 -8.633 4



� ��

�

Figure 2.4 Sample Dataset 

Firstly, to demonstrate the parameter setting problem, the two parameters are randomly 

set for four different cases as shown in Table 2.3. The clustering result for each case, 

generated using DBSCAN, is shown in Figure 2.5. Inspection of Figure 2.5 indicates 

that the known clustering shown in Table 2.3 is not found. The results are also presented 

in Table 2.3. The second column of the table gives the clustering pattern result PR, the 

third column gives the parameter settings, the fourth column gives the obtained 

Czekanowski Dice (CD) coefficient and the last column gives the number of clusters. 

Note that with respect to the CD coefficient, the higher the value, the better the 

clustering result in comparison with ground truth clustering.  

Secondly, to demonstrate the problem of the number of clusters, it can be observed that 

the numbers of clusters of the four cases differ and are different from the number of 

ground truth clusters which is four as shown in Table 2.3.  

Thirdly, the cluster labels in Table 2.3 cannot be optionally used in the training to 

perform classification.  

 

Table 2.3: Clustering Results of Sample Dataset

Case PR (✏, MinPts) CD Coef. No. of Clusters

1 0 0 0 0 0 0 0 0 0 0 (9, 7) 0.364 0

2 1 2 3 4 5 6 7 8 9 8 (1, 1) 0.182 9

3 1 2 2 1 2 2 1 1 2 1 (7, 0) 0.667 2

4 0 1 0 2 1 0 2 2 1 2 (6, 3) 0.909 2
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(a) Case 1                    (b) Case 2 

 

(b) Case 3                    (d) Case 4 

Figure 2.5 Four Different Clustering Results of the Sample Dataset 

To overcome the first drawback, this thesis proposes a novel framework ESA-DCC to 

search for the most appropriate parameters for DBSCAN. To overcome the second and 

third issues, this thesis also presents a number of fitness functions, for the use with 

ESA-DCC. The details of the proposed framework and fitness functions are introduced 

in chapter 3. 
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Chapter 3 Evolutionary and Swarm Algorithm 

Optimised Density-based Clustering and 

Classification 

3.1 ESA-DCC Framework 

The framework of Evolutionary and Swarm Algorithm optimised Density-based 

Clustering and Classification (ESA-DCC) is proposed in this chapter. The general 

procedures in the flowchart are presented in Figure 3.1.  

 

�  
 

Figure 3.1 The General Procedure of Evolutionary and Swarm Algorithm optimised Density-

based Clustering and Classification 

Initialization

ESA operators

Fitness evaluation

Terminal 
Condition
Reached?

ESA output

Density-based clustering

Pattern Results

Yes

NO
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• Solution Representation 

Each candidate solution consists of two parameters, i.e. minpts and radius. The two 

parameters are essential for producing the clustering results by DBSCAN.  

 

• Fitness Functions 

The candidate solution is a pair of parameters required by DBSCAN to produce pattern 

results. A pattern result is a vector of integers, whilst one integer is labelled as one 

individual of the dataset with a cluster identifier, one cluster identifier refers to the 

cluster in which the individual belongs to. The fitness functions are designed to measure 

how good the clustering result is. A series of fitness functions are proposed for this 

framework and presented in this section. The fundamental distinction is that if the 

“ground truth” target class values of the records in the dataset are not used in ESA-

DCC we have unsupervised learning (clustering), if they are used we have supervised 

learning (classification). Both Internal and External Indices are used to measure 

clustering results. Class labels (ground truth values) are needed for the calculation of 

the external index, whilst calculations of the internal indices do not require ground truth 

values. The unsupervised fitness function for PSO-DCC, Fusp, is defined as follows:  

 

where fInt is an internal clustering index function, fNK (Eq.15) is the sum of the function 

to control the number of clusters (fK) and the noise minimization function (fNoise).  

Two widely used clustering indices, the Davies-Bouldin (DB) index [Davies & Bouldin, 

1979] and Silhouette (SIL) index [Rousseeuw, 1987], are applied for fInt in this thesis. 

Given a set of N data points S = (s1, ..., sN ) assigned to K clusters C = {C1,...,Ci,...,CK} 

and the centroid of each cluster mi, i = 1,...,K, Ci = {si1,...,s,...,sini} is the ith cluster, where 

ni is the number of the data points in Ci. The DB index is calculated as follows:  

Fusp = fInt + fNK (3.1)
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where ei and ei’ are the measures of scatters within the clusters Ci and Ci’ respectively. 

The silhouette statistic (SIL) index is calculated using: 

 

where: (i) ai
j is the average distance between a data point si

j belonging to a cluster Ci 

and all other data points in Ci, and (ii) bi
j is the minimum average distance between the 

jth data point in the cluster Ci and all the data points in the other clusters {Ch : h ≠ i}. 

The lower the DB index the better the clustering result, whilst the higher the SIL index 

the better the clustering result. By default, the ESA-DCC is used to minimize the 

objective function, therefore fInt is fDB or -fSIL in ESA-DCC.  

fInt cannot be solely used as a fitness function since the best internal indices for ESA-

DCC do not lead to the best pattern results. As shown in Figure 3.2, all the data points 

are clustered in one cluster when either fInt =- fSIL or fInt = fDB is minimized.  

fDB =

1

K

KX

i=1

max

i02{1,...,K},i0 6=i
{ ei + ei0

||mi �m0
i||2

}, ei = (1/ni)

niX

j=1

||sij �mi||2 (3.2)

fSIL =

1

K

K
X

i=1

⇣

1

ni

ni
X

j=1

bij � aij
max (aij , b

i
j)

⌘

,where (3.3)

aij =
1

ni � 1

ni
X

k=1,k 6=j

||sij � sik|| (3.4)

bij = min

h2{1,...,K},h 6=i

n

1

nh

nh
X

k=1

||sij � shk ||
o

(3.5)
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(a) Case 1                          (b) Case 2 

Figure 3.2: Clustering Pattern Results Using ESA-DCC with fInt or fNoise as Fitness Function

 
       (a) Dataset 07                       (b) Dataset 08 

Figure 3.3: Results by ESA-DCC with fK as Fitness Function 

 

To address this problem, fNK is also used. fNK returns the sum of the function for the 

number of clusters (fK) and the noise minimization function (fNoise). fNK is defined as 

follows: 
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fK is used to overcome the drawback of DBSCAN, which is that the number of clusters 

cannot be controlled by users. fK is further used to calculate the ratio of the absolute 

difference between the number of clusters during the ESA-DCC procedure (i.e. 

max(PR)) and the number of clusters determined by user (i.e. K) to K. fK can be 

minimized to 0 when max(PR) = K; therefore, the number of clusters in ESA-DCC can 

be controlled by the users. However, fK cannot be solely used as a fitness function since 

the pattern results shown in Figure 3.3 may be generated by ESA-DCC. fNoise is used 

to compute the percentage of noises in pattern results during ESA-DCC, such that it 

can be used to minimize the number of noises in the pattern results of ESA-DCC. fNoise 

cannot be solely used as a fitness function since all data points are grouped into one 

cluster (Figure 3.2). fNK can be used as a fitness functions for unsupervised ESA-DCC 

(i.e. Fusp = fNK) if no suitable internal index is appropriate for the dataset to be clustered.  

If the ground truth target class values of dataset are used in ESA-DCC, then ESA-DCC 

can be performed as classification which is supervised learning. A supervised fitness 

function for ESA-DCC, Fspd, is defined as follows:  

 

where fExt is the external clustering index function. An external index function measures 

the similarity between two partitions, (Partition 1 and Partition 2). In this case, the set 

of classes represents the set of the clusters in Partition 1, while Partition 2 signifies 

some other pattern results which we want to determine the quality of. In other words, 

the similarity of Partition 2 compared to the “ground truth” of Partition 1 indicates the 

accuracy of Partition 2. When considering a pair of points, α and β, in Partitions 1 

and 2, there are four possibilities:  

f
NK

= f
K

+ f
Noise

, where (3.6)

f
K

=

abs(max(PR)�K)

K
(3.7)

f
Noise

=

card({PR
i

2 PR : PR
i

= 0})
N

(3.8)

F
spd

= f
Ext

(3.9)
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• αα: the two points belong to the same cluster in both partitions.  

• αβ: the two points belong to the same cluster in Partition 1 but not in Partition 2.  

• βα: the two points belong to the same cluster in Partition 2 but not in Partition 1.  

• ββ: the two points do not belong to the same cluster in either partition.  

A widely used external index is the Czekanowski-Dice index [Czekanowski, 1909], 

this was thus adopted in the supervised fitness function for ESA-DCC. The CD index 

is defined as follows:  

 

The higher the CD index the better pattern the result. Given that ESA-DCC is designed 

to minimize the fitness value, by default fExt = fCD was used.  

The computational complexities of the proposed fitness function components and the 

four fitness functions applied in this work are presented in Table 3.1.  

 

A fitness function is chosen on a case-by-case basis. More details regarding the 

choosing of fitness functions is discussed in Section 5. Fusp = fNK is the lowest 

complexity unsupervised function. The time complexities of Fusp = fNK + fInt vary from 

the different internal indices applied in the function.  

fCD =
2↵↵

2↵↵+ ↵� + �↵
(3.10)

Table 3.1: Computational Complexities of Proposed Fitness Functions

Fitness function component / Fitness function Computational Complexity

f
Noise

O(n)
f
K

O(n)
f
DB

O(n), if K ⌧ n
f
SIL

O(n2
)

f
CD

O(n2
)

F
usp

= f
NK

= f
Noise

+ f
K

O(n)
F
usp

= f
NK

+ f
DB

O(n), if K ⌧ n
F
usp

= f
NK

+ f
SIL

O(n2
)

F
spd

= f
CD

O(n2
)
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For computing an external clustering index, it is required to check all of the pairs of 

points in two partitions and it takes Ο #2  time, such that the complexity of any 

supervised fitness function is equal to or higher than Ο #2 . 

• Search Space 

Since each one of the candidate solutions has two parameters, the best solution will be 

searched in a 2-dimension space.  

 

• Stop Criteria or Convergence Tolerance  

Two stop criteria are applied in the proposed method by default. When the total number 

of fitness evaluations reaches a given limit, or while the fitness improvement remains 

under a threshold value for a given period of time, the algorithm will be stopped and 

the optimised solution will be produced. 

3.2 Genetic Algorithm optimised Density-based Clustering and 

Classification 

The proposed Genetic Algorithm optimised Density-based Clustering and 

Classification (GA-DCC) method is based on the idea of applying GA and cluster 

measurement indices to optimise the input parameter settings for the algorithm. The 

procedure of GA-DCC is illustrated in Algorithm 3.1. The details are illustrated as 

follows. 

Algorithm 3.1. GA-DCC 
1 Initialize the population with random candidate solutions; 

2 Evaluate the fitness of each chromosome in the population 

3 Create a new population by repeating following steps until the new population 
is complete. 
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3.1 Selection: Select two parent chromosomes from a population according to 
their fitness. 

3.2 Crossover: With a crossover, probability cross over the parents to form a 
new offspring. If no crossover was performed, offspring is an exact copy 
of parents. 

3.3 Mutation: With a mutation probability mutate new offspring at each 
position in chromosome. 

3.4 Place new offspring in a new population. 

4 Use newly generated population for a further run of algorithm. 

5 If the end condition is satisfied, stop, and return the best solution in current 
population. 

6 Generate the DBSCAN result by best solution. 

 

1 Initialize population with random candidate solutions. 

A population of 10 chromosomes are randomly generated. Each chromosome 

represents a pair of parameters required by DBSCAN, which refers to the Minpts and 

Radius. The pairs of parameters are initially randomly generated in the range of [0, 10]. 

The binary representation is applied in the encoding process of the DBSCAN 

parameters. The two parameters are converted into a binary format and then combined 

into a binary string. For example, given a pair of random numbers with an accuracy to 

three decimal places, (0.94, 0.04), the two values are firstly converted into integers by 

multiplying the first value to 102 as (94, 4). The integers are then converted into the 

binary format as (01011110, 00000100). Finally, a binary string, 0101111000000100, 

is constructed by simply combining the two values.  

2 Evaluate each candidate 

A fitness function is selected from the candidate fitness functions provided in 

Section 3.1 with respect to the real case. After the initial population is generated, 

the fitness of each chromosome will be evaluated by the fitness function.  
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3 Genetic operations in iteration  

3.1 Selection 

Fitness proportionate selection is applied in this method and the selection 

strategy is introduced as Algorithm 3.2. Repeat the selection strategy until 

two difference chromosomes are selected as the parents. 

Algorithm 3.2: Fitness Proportionate Selection 
1. Normalize the fitness of all the chromosomes in the population.  

2. Sorted the chromosomes into descending fitness values as an array 
reorder.fitness. 

3. Compute the accumulated normalized fitness values (accumulated.fitness) 
of each chromosome i as the function below. 

accumulated.fitness[i] = reorder.fitness[i] + Sum(reorder.fitness[1:(i-1)]) 

4. Generate a random value in range of [0,1]. The chromosome for which 
accumulated normalized fitness values exceeds the random value is the 
selected chromosome. 

3.2 Crossover 

For each pair of parent chromosomes, a random value in the range of (0, 1) 

is generated. If the random value is less than the pre-defined crossover rate, 

then the crossover operation will be carried out upon to the corresponding 

chromosome. 

By default, the single point crossover is applied. A single crossover point on 

both parents is selected randomly. All the data beyond that point in either 

parent chromosome is swapped between the two chromosomes. The resulting 

chromosomes are the children. 
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Figures 3.4 Example of Single Point Crossover [Van den Bergh et al., 2004] 

3.3 Mutation 

Flip Bit is the default mutation type applied in the proposed method. For each 

bit of a chromosomes, a random value in the range of (0, 1) is generated. If 

the random value is less than the pre-defined mutation rate, the flip-over 

operation will be executed on this bit of the chromosome. The flip-over 

operation in the method means to change the original bit from 0 to 1and vice 

versa.  

 

Figures 3.5 Example of Flip Bit Mutation [Van den Bergh et al., 2004] 

3.4 Place new offspring generated by step 3.1-3.4 in a new population. 

9.3 Mutation 155

Before Mutation

mutation points

After Mutation

(a) Random Mutate

Before Mutation

mutation points

After Mutation

(b) Inorder Mutate

Figure 9.4 Mutation Operators for Binary Representations

Algorithm 9.6 Uniform/Random Mutation

for j = 1, . . . , nx do
if U(0, 1) ≤ pm then

x
′

ij(t) = ¬x̃ij(t), where ¬ denotes the boolean NOT operator;
end

end

Algorithm 9.7 Inorder Mutation

Select mutation points, ξ1, ξ2 ∼ U(1, . . . , nx);
for j = ξ1, . . . , ξ2 do

if U(0, 1) ≤ pm then
x

′

ij(t) = ¬x̃ij(t);
end

end

9.3.2 Floating-Point Representations

As indicated by Hinterding [366] and Michalewicz [586], better performance is obtained
by using a floating-point representation when decision variables are floating-point val-
ues and by applying appropriate operators to these representations, than to convert
to a binary representation. This resulted in the development of mutation operators
for floating-point representations. One of the first proposals was a uniform mutation,
where [586]

x
′

ij(t) =
{

x̃ij(t) + ∆(t, xmax,j − x̃ij(t)) if a random digit is 0
x̃ij(t) + ∆(t, x̃ij(t) − xmin,j(t)) if a random digit is 1 (9.23)

where ∆(t, x) returns random values from the range [0, x].
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4 Use the newly generated population to replace the last generation of the population 

for a further run of algorithm 

5 Check whether the terminal condition is satisfied. If satisfied, produce the best 

chromosomes from the population as the solution and then move to Step 6; If not 

satisfied, go to step 2 to start next generation. 

6 Decoding the best chromosomes into a pair of parameters. Using the best pair of 

parameters to produce the best pattern results by DBSCAN.  

3.3  Particle Swarm Optimisation optimised Density-based Clustering 

and Classification 

The proposed Particle Swarm Optimised Density-based Clustering and Classification 

(PSO-DCC) method is based on the idea of applying PSO and cluster measurement 

indices to optimise the input parameter settings for the algorithm. The procedures of 

PSO-DCC are illustrated in Algorithm 3.3. The details of steps are demonstrated as 

follows. 

 

Algorithm 3.3: PODCC
Input: A fitness function F , dataset S, the swarm size M

and maximum iteration number T ;
Output: Best Pattern Result BPR;
1. For all particles in the swarm, 8i 2 {1, ...,M}

1.1 Initialise particles’ positions
�!
Xi and velocities

�!
Vi ;

1.2 Initialise personal/previous best
�!
Pi and local best

�!
L ;

2. For all particles in the swarm, 8i 2 {1, ...,M}
2.1 Update particle’s velocity
2.2 Update particle’s position
2.3 Generate the Pattern Results by

(PR)�!
Xi

= DBSCAN(S, xi1, xi2);

(PR)�!
Pi

= DBSCAN(S, pi1, pi2);
(PR)�!

Li
= DBSCAN(S, l1, l2);

2.4 If F ((PR)�!
Xi

) < F ((PR)�!
Pi
), then

Update particle’s best-known position
�!
Pi =

�!
Xi;

2.5 If F ((PR)�!
Pi
) < F ((PR)�!

L
), then

Update the neighbourhood’s best-known position
�!
L =

�!
Pi;

3. Repeat step 2 until maximum iteration number T or the other stop condition is met;
4. Generate the best Pattern Result,

i.e. BPR = (PR)�!
L
= DBSCAN(S, l1, l2).



� ��

A parameter value pair is a particle, which means a possible solution. A group of 

particles are generated in a 2-dimension search space. After the positions (Xi = (xi1, xi2)) 

and velocities (Vi = (vi1, vi2)) of particles, the previous best particles (Pi = (pi1, pi2)) and 

the local best particle (L = (l1, l2)) are initialized, a loop is executed to find the best 

particle of the highest fitness value. The flow chart features a loop, which starts by 

updating Xi and Vi . The updated particles are passed to the DBSCAN function to 

produce a cluster pattern results (PR). In this thesis, a pattern result either means the 

clustering result or the classification result. The fitness values of the PRs are computed 

by chosen fitness functions. Two types of fitness function, unsupervised and supervised, 

are considered in this thesis (the nature of these functions are considered further in 

Section 4). The best particles are updated with respect to the fitness values. To ensure 

that the process terminates, a maximum iteration (T) is specified, consequently, the loop 

will be terminated when T is reached. Finally, L is returned and used in DBSCAN to 

produce the Best Pattern Results (BPR).  

In this work both the Canonical PSO and the Standard Particle Swarm Optimisation 

algorithm, defined in 2011 (SPSO-2011) [Zambrano-Bigiarini et al. 2013], are applied 

in PSO-DCC. SPSO-2011 was used because the adaptive random topology and 

rotational invariance featured in SPSO-2011 has been shown to achieve faster 

convergence to the global optimum than pervious PSO variants. The algorithm of PSO-

DCC shown in Algorithm 3.3 are represented as below in detail. 

In Step 1, the particles are initialized using the following equations. 

  

xi,d = U(mind,maxd) (3.11)

vi,d =
U(mind,maxd)� x

0
i,d

2
(3.12)

pi,d = x

0
i,d (3.13)

li,d = min (f(p0i,d)) (3.14)
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where U(mind, maxd) is a random value in [mind,maxd] where the subscript d 	 {1,2} 

denotes the dimension of the particle.  

In Step 2.1, the velocity is updated using the following function. For Canonical PSO, 

the equation 3.15 is applied, whilst for SPSO-2011, the equations 3.16-19 are used. 

 

 

where x is a random point defined in the hypersphere: Hi(Gi, ||Gi − Xi||). For the ith 

particle, the centre of gravity (Gi) is calculated by three points: the current position (Xi), 

a point slightly beyond the best previous personal position (pi), and a point slightly 

beyond the best previous position in the neighbourhood (li ), as shown below.  

 

where c1 and c2 are the cognitive and social acceleration coefficients respectively. U1 

and U2 are the predefined independent and uniformly distributed random vectors 

respectively within the range [0, 1].  denotes the element-wise vector multiplication. 

ω is a predefined inertia weight. The differences between the two variants of PSO is 

shown in Figure 3.6 as below. 

 
(a)�Canonical PSO                        (b) SPSO-2011 

Figure 3.6 The Geometrical Interpretation of PSOs [Zambrano-Bigiarini et al., 2013] 

�!
Vi = !

�!
Vi + x

0 ��!
Xi (3.15)

�!
Vi =

�!
Vi + c1

�!
U1 ⌦ (

�!
Pi �

�!
Xi) + c2

�!
U2 ⌦ (

�!
L ��!

Xi) (3.16)

�!pi =
�!
Xi + c1

�!
U1 ⌦ (

�!
Pi �

�!
Xi) (3.17)

�!
li =

�!
Xi + c2

�!
U2 ⌦ (

�!
L ��!

Xi) (3.18)

�!
Gi =

�!
Xi +

�!pi +
�!
li

3
(3.19)
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In Step 2.2, the position of the ith particle is updated according to the equation:  

�  

In Step 2.3, by using the particles xi1 and xi2 as ε and MinPts respectively, the items in 

the dataset S can be clustered or classified by DBSCAN. 

In Steps 2.4 and 2.5, the fitness value of the pattern results can be computed using the 

different fitness functions as defined in Section 3.1. After the stop condition is met, the 

best pair of parameters, l1 and l2 can be found as the output in Step 3. Finally, the 

optimised pattern results are returned by passing the parameters, l1 and l2, as ε and 

MinPts to DBSCAN.  

3.4 Differential Evolution optimised Density-based Clustering and 

Classification 

The proposed Differential Evolution optimised Density-based Clustering and 

Classification (DE-DCC) method is founded on the idea of applying DE and cluster 

measurement indices to optimise the input parameter settings for the algorithm. The 

procedures of DE-DCC are illustrated in Algorithm 3.4. 

Algorithm 3.4: DE-DCC. 
1 Initialize all agents with random positions in the predefined search space. 

2 Repeat until a termination criterion is met. For each agent x, 

2.1 Randomly pick three different agents a, b and c which are also distinct 
from agent x. Randomly set R as 1 or 2. Set crossover probability (CR) as 
a random number in range of [0,1]. 

2.2 Compute the potentially new position y=[y1, y2] as follows: 

For each dimension, pick a uniformly distributed number ri in the range of 
(0, 1) 

If ri<CR or i=R then set y=ai+F*(bi-ci), otherwise set yi=xi  

�!
Xi =

�!
Xi +

�!
Vi (3.20)
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2.3 If f(yi)<f(xi) then replace the agent with the improved candidate solution.  

3 Pick the agent from the population that has the highest fitness or lowest cost and 
return it as the best-found candidate solution.  

4 Produce the optimised clustering patterns by applying the best-found candidate 
solution to DBSCAN process. 

 

3.5  Artificial Bee Colony optimised Density-based Clustering and 

Classification 

The proposed Artificial Bee Colony optimised Density-based Clustering and 

Classification (ABC-DCC) method is based on the idea of applying ABC and cluster 

measurement indices to optimise the input parameter settings for the algorithm. The 

procedures of ABC-DCC are illustrated in Algorithm 3.5 and the details of the steps 

are illustrated as follows. 

Algorithm 3.5 ABC-DCC. 
1 Send the scouts onto the initial food sources. 
2 Repeat until requirements are reached.  

2.1 Send the employed bees onto the food sources and determine their nectar 
amounts  

2.2 Calculate the probability value of the sources with which they are 
preferred by the onlooker bees 

2.3 Send the onlooker bees onto the food sources and determine their nectar 
amounts  

2.4 Stop the exploitation process of the sources exhausted by the bees  
2.5 Send the scouts into the search area for discovering new food sources, 

randomly  
2.6 Memorize the best food source found so far  

3 3. Produce the best clustering patterns by the best food source. 
 

 

1 Initialization 

Each food source (foodi) is initialized with respect to a random value generated by 

function randomValue() and the search range of the possible solutions [min, max] 
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is as below. 

foodi = randomValue()* (max - min) + min            (3.21) 

The trials index for all the food sources are initialised as 0. The global best 

parameter will be selected from the initial food sources, with respect to the 

corresponding fitness values calculated by the selected fitness function. The global 

best parameter is initialised as the food source which reaches the best fitness, whilst 

the best fitness value is regarded as the global best value. 

2 Repeat until the pre-defined number of loops is reached. 

2.1 For each the food sources (foodi), randomly select a parameter to change and 

a neighbor source (foodn), and then change the selected parameter of the 

solution of this food source by the function below: 

foodi,1=foodi,1+(foodi,1- foodn,1)*(randomValue()-0.5)*2      (3.22) 

foodi,2=foodi,2+(foodi,2- foodn,2)*(randomValue()-0.5)*2      (3.23) 

where randomValue() is a function to generate random value in certain range. 

The newly produced value should not be out of the search space.  

2.2 The fitness of all the updated food sources are calculated by the fitness 

function. The highest fitness value is saved as the maxfit for calculating the 

probabilities of each food source to be selected by the onlooker bees as the 

function below. 

Probi=(fitnessi/maxfit)*0.9+0.1                (3.24) 

2.3 For all the food sources which the probabilities are higher than a random 

value (which means the food sources chosen by the onlooker bees are 

decided with respect to the probabilities calculated in step 2.2): 

Randomly select a parameter to change and a neighbour source, and then 

change the selected parameter of the solution on this food source by the 

equations 3.21-3.22. The new produced value also should not be out of the 

search space. The fitness of all the updated food sources are calculated by 
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the fitness function. 

2.4 The exploitation process of the sources exhausted by the bees will stop. Once 

a food source is searched for by the onlooker bees, the number of trials for 

this source is added by one. The source, which has been searched for a pre-

defined number of times, will be discarded.   

2.5 Generate new food sources to replace the exhausted food sources judged in 

Step 2.4. The new food source is generated in the way described in Step 1. 

2.6 Memorize the best food source found so far.  

3 Apply the best food source to DBSCAN to produce the best patterns. 

 
�
�
�
� �
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Chapter 4 Experiments 

4.1 Experimental Settings 

• Hardware and Software Settings 

The experimental tests are all run by a MacBook Pro with OS X EI Capitan (Version 

10.11.6) system. The proposed methods are implemented by R language and run in R 

studio (Version 1.0.153). Some R packages are applied in the codes of proposed 

methods, including R.utils [R Core Team, 2016], clusterCrit [Desgraupes, 2016], and 

R.matlab [Bengtsson, 2016] and hydroPSO [Zambrano-Bigiarini & Rojas, 2013; 2014] 

(only used in PSO-DBC applied SPSO-2011). The GA-DBC, PSO-DBC applied 

Canonical PSO, DE-DBC and ABC-DBC are implemented in R language.  

• Datasets 

This section presents the results obtained from a sequence of experiments used to 

evaluate the proposed ESA-DBC framework. For the experiments 10 datasets were 

used. Comparisons were conducted using common clustering and classification 

methods. The nature of the datasets used is presented in Table 4.1. Six of the datasets 

featured challenging known arbitrary shaped clusters (Datasets 1-6): (i) Two spirals, (ii) 

Cluster in cluster, (iii) Corners, (iv) Half-kernel, (v) Crescent & Full Moon and (vi) 

Outlier. The remaining four datasets (Datasets 7-10) were synthetic datasets generated 

using software provided in [Handl &Knowles, 2005]. The ground truth partitions of 

Datasets 1-6 are shown in Figure 4.1, and Datasets 7-10 are shown in Figure 4.2. By 

observing the figures of the datasets, it can be found that the clusters in Datasets 1-6 

have clear boundaries and are evenly distributed. Comparing to the first six datasets, 

the clusters in Datasets 7-10 have fuzzy boundaries and centroid-based shapes; and the 

data points are not evenly distributed. 
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Figure 4.1 Dataset 1-6 

Table 4.1: Description of Datasets

ID Dataset Name No. of Clusters No. of Data Points
1 Two spirals 2 3000
2 Cluster in cluster 2 1024
3 Corners 4 1000
4 Half-kernel 2 1000
5 Crescent & Full Moon 2 1000
6 Outlier 4 600
7 2d-4c-no0 4 1572
8 2d-4c-no2 4 1064
9 2d-10c-no0 10 2972
10 2d-10c-no2 10 3073
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Figure 4.2 Dataset 7-10 

4.2 Evaluations of PSO-DCC 

Four individual sets of experiments were conducted to evaluate the performance of 

PSO-DCC. The first three were designed for evaluating PSO-DCC (SPSO-2011) in the 

context of unsupervised learning, for each experiment one of the unsupervised fitness 

functions presented on Section 4 was used, namely: FNK (Equation 3.6), Fusp with 

Davies Bouldin Index (Equation 3.2) and Fusp with Silhouette Index (Equations 3.3 to 

3.5). For the evaluation the performance of PSO-DCC was compared with both 

DBSCAN and K-means. The fourth set of experiments was designed to evaluate the 

performance of supervised PSO-DCC using the supervised fitness function Fspd with 

the Czekanowski-Dice Index (Equations 3.9 and 3.10). The performance of supervised 

PSO-DCC was compared with Support Vector Machine (SVM) classification [Cortes 

& Vapnik, 1995].  
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4.2.1 Parameter Settings 

For the experiments the following PSO-DCC (SPSO-2011) settings were used: (i) 

swarm size of 40, (ii) maximum values of the two particles 10 and the minimum values 

0, (iii) c1, c2 (the cognitive and social acceleration coefficients) and w (predefined 

inertia weight) to 1.193, 1.193 and 0.721 respectively, and (iv) the maximum number 

of iterations to 50. For DBSCAN, the two parameters were set to random values in the 

range from 0 to 10. For K-means, the values of K were set according to the given 

number of clusters for each dataset. For SVM, the default settings using the e1071 

package [Meyer, Dimitriadou, Hornik, Weingessel & Leisch, 2014] were adopted. For 

each dataset, the number of times that DBSCAN and K-means were run was determined 

on the basis of the convergence point of PSO-DCC. 

Since the dimension of search space is low (only 2-dimension), it will take a short 

amount of time to find an optimised pair of parameters. The number of iterations for 

the proposed framework is suggested to be set as a number less than 50. Given that the 

PSO-DCC swarm size was set to 40, forty applications of PSO-DCC would be 

performed on each iteration of PSO-DCC, therefore the number of times PSO-DCC 

and K-means was run should be the same, namely the product of 40 and the number of 

iterations required for PSO-DCC to reach convergence. For example, Figure 6b shows 

that Dataset 8 reaches convergence at the third iteration when PSO-DCC is applied; 

therefore DBSCAN and K-means were run 120 times so as to give a fair comparison.  
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(a)                                  (b) 

 
(c)                                  (d) 

 

Figure 4.3 Convergence Performance of PSO-DCC (SPSO-2011) 

4.2.2 Convergence 

The convergence performance of PSO-DCC in terms of the number of iterations 

required to reach a stable point is illustrated in Figure 4.3. From the figure it can be 

seen that the solution of PSO-DCC is converged to a stable state after about 30 iterations. 

In some cases, PSO-DCC requires less than 10 iterations to reach convergence. The 

convergence speed of PSO-DCC should be much faster than in the case of the Genetic 
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Algorithm Density-Based Approach for Clustering (GADAC) [Lin et al., 2005] which 

converges at about 100 iterations.  

4.2.3 Experimental Results and Analysis 

To compare the performance of unsupervised PSO-DCC with DBSCAN and K-means, 

in terms of accuracy, for each dataset, the average fitness values of the selected fitness 

function for all the clustering results (fitavg), the fitness value for the best clustering 

results (fitbest) and the Czekanowski-Dice indices for the best clustering results (CD) 

were used. The results are presented in Tables 4.2-4.4.   

 

Table 4.2 presents the results obtained using PSO-DCC applying FNK as fitness function, 

in comparison to the operation of DBSCAN and K-means. For Datasets 1-6, the CD 

values show that PSO-DCC performs better than DBSCAN and K-means. According 

to the clustering results shown in Figure 4.4 and the convergence curve shown in Figure 

4.3(a), PSO-DCC applying FNK can cluster Datasets 1-6 perfectly and in a shorter time. 

The fitness values of all the K-means results are 0 using FNK, as K is known and no 

noise is contained in K-means results. Even though the fitness values of K-means 

results are minimized, the CD values obtained by K-means show that the clustering 

results are not satisfactory with respect to the ground truth partitions. For Datasets 7-

10, the CD results using PSO-DCC applying FNK are not better than K-means, as 

Datasets 7-10 are obviously centroid-based clustering problems. Although the K-means 

approach is specifically directed at centroid-based clustering, the operation of k-means 

Table 4.2: Unsupervised PSO-DCC with FNK versus DBSCAN and K-means

Dataset
PSO-DCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD
1 0.475 0.000 1.000 1.174 0.000 1.000 0.000 0.000 0.501
2 0.400 0.000 1.000 0.475 0.000 1.000 0.000 0.000 0.645
3 0.716 0.000 1.000 1.045 0.000 1.000 0.000 0.000 0.399
4 1.716 0.000 1.000 0.839 0.000 1.000 0.000 0.000 0.500
5 1.719 0.000 1.000 15.877 0.000 1.000 0.000 0.000 0.567
6 2.019 0.000 1.000 9.392 0.000 1.000 0.000 0.000 0.874
7 4.755 0.000 0.744 0.540 0.000 0.744 0.000 0.000 0.973
8 0.840 0.000 0.715 1.714 0.002 0.836 0.000 0.000 0.929
9 3.441 0.000 0.385 2.340 0.000 0.386 0.000 0.000 0.902
10 1.112 0.000 0.597 1.519 0.002 0.782 0.000 0.000 0.937
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is subject to the manner in which the initial cluster centroids are generated, and thus the 

generated cluster results may not be optimal. Examples of the clustering results 

obtained for Datasets 7-10 are given in Figure 4.6.  

 

Figure 4.4 Clustering Pattern Results of Datasets 1-6 of Unsupervised PSO-DCC (FNK) 

�
�

 

Figure 4.5 Clustering Pattern Results of Datasets 1-6 of K-means 
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Figure 4.6 Clustering Results of Datasets 7-10 Produced by Unsupervised PSO-DCC (FNK) 

 

Figure 4.7 Clustering Results of Datasets 7-10 Produced by K-means 

The limitation of FNK is that there always clusters containing only one point in the 

optimized results. The reason is that such clusters can make the fitness to be minimized 

to zero (which is the best value) and the search process will be stop. 
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With respect to the shapes of clusters in datasets, different methods can be used to solve 

these problems. If the clusters are centroid-based, a clustering index can be added to 

the fitness function. In this research two fitness functions applying Davies Bouldin and 

Silhouette Indices are proposed and evaluated later in this section. If the clusters are in 

arbitrary shapes, a constraint for the minimum value of minpts parameters should be 

applied to this case such that the outlier and small clusters whose size is less than the 

constraint can be determined as noises. The values of the minimum minpts should be 

set on a case-by-case basis. The constraint(s) will be further investigated in the future 

research.  

  

Table 4.3 presents the results of PSO-DCC when a fitness function Fusp with the 

Silhouette Index is used. It can be seen that PSO-DCC performs better than DBSCAN 

for all the datasets considered. For Datasets 1-6, the fitbest values using PSO-DCC is 

better than those associated with K-means, but the CD values are still not satisfactory. 

For Datasets 7-10, although the fitbest values of K-means are higher than PSO-DCC, 

the CD values of PSO-DCC are better than the corresponding K-means values for 

Datasets 9-10. 

Table 4.3: Unsupervised PSO-DCC with Silhouette Index versus DBSCAN and
K-means

Dataset
PSO-DCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD
1 5.637 -0.500 0.666 -0.453 -0.500 0.666 -0.431 -0.432 0.501
2 -0.435 -0.500 0.666 -0.377 -0.500 0.666 -0.321 -0.376 0.645
3 -0.105 -0.455 1.000 -0.242 -0.455 1.000 -0.419 -0.455 1.000
4 0.724 -0.500 0.666 2.402 -0.500 0.666 -0.413 -0.413 0.500
5 -0.267 -0.500 0.769 0.606 -0.500 0.769 -0.415 -0.420 0.567
6 0.295 -0.731 1.000 0.982 -0.731 1.000 -0.523 -0.594 0.850
7 0.393 -0.430 0.962 1.465 -0.415 0.742 -0.599 -0.686 0.973
8 -0.070 -0.446 0.836 0.542 -0.446 0.836 -0.494 -0.595 0.929
9 0.127 -0.507 0.926 1.125 -0.499 0.909 -0.564 -0.621 0.896
10 0.209 -0.486 0.974 0.367 -0.480 0.971 -0.577 -0.630 0.833
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Figure 4.8 Pattern Results of Datasets 1-6 Produced by Unsupervised PSO-DCC(SIL)  

 

 

Figure 4.9 Pattern Results of Datasets 7-10 Produced by Unsupervised PSO-DCC(SIL) 
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Table 4.4 presents the results of PSO-DCC applying fitness function Fusp with the 

Davies Bouldin clustering index. By reading the CD values in the table it can be seen 

that the results of PSO-DCC are more accurate than results of DBSCAN for most of 

datasets considered. The results demonstrate that PSO-DCC can still optimize the 

fitness values with respect to the chosen fitness function; however, the presented CD 

values associated with PSO-DCC are not satisfactory for most of datasets. Figures 4.10 

and 4.11 shows the clusters resulting from PSO-DCC with Davies Bouldin as the fitness 

function. Inspection of the figures indicates that the results could be much improved. 

Comparing the results shown in Table 4.3 and 4.4, using the Silhouette index as the 

basis for the fitness function achieves a better performance than using the Davies 

Bouldin Index. The clustering results presented in Figure 4.9 shows that PSO-DCC 

using the Silhouette index based fitness function can address satisfactorily centroid-

based clustering problems. The penalty function guarantees that the number of clusters 

is close to the real K value and the amount of noises is minimized. The Silhouette index 

can make sure the clusters are good enough and are centroid-based. The Silhouette 

value is in the range of [0, 1] which is the same as the penalty function values, whilst 

the range of DB values could be much wider than the range of penalty functions values. 

In consequence, for Silhouette index basis fitness function, both the index and penalty 

function can contribute to the optimization process; and the DB index basis fitness 

function sometimes can only optimise the DB value of clustering results, the effect of 

Table 4.4: Unsupervised PSO-DCC with Davies Bouldin Index versus DBSCAN
and K-means

Dataset
PSO-DCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD
1 1.632 0.500 0.666 0.834 0.500 0.666 0.931 0.930 0.501
2 4e+15 0.500 0.666 3e+15 0.500 0.666 1.281 1.191 0.645
3 12.794 0.744 1.000 1.226 0.744 1.000 0.750 0.691 1.000
4 16.833 0.500 0.666 2.375 0.500 0.666 0.997 0.997 0.500
5 1.659 0.500 0.769 2.618 0.500 0.769 0.985 0.977 0.567
6 1.112 0.295 0.998 0.659 0.359 1.000 0.652 0.281 0.863
7 1.348 0.465 0.744 5.401 0.714 0.744 0.519 0.310 0.973
8 3.917 0.352 0.715 2.342 0.592 0.836 0.668 0.401 0.929
9 3.312 0.534 0.385 2.046 0.534 0.386 0.512 0.231 0.849
10 1.466 0.382 0.597 1.642 0.482 0.597 0.498 0.258 0.787
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penalty function is reduced. As a result, the fitness function applying the Silhouette 

index achieves a better performance than the fitness function applying the DB index. It 

can thus be concluded that the DB index is not appropriate in the case of unsupervised 

PSO-DCC. 

 
Figure 4.10 Clustering Results of Datasets 1-6 Produced by Unsupervised PSO-DCC(DB) 

 

 
Figure 4.11 Clustering Results of Datasets 7-10 Produced by Unsupervised PSO-DCC (DB) 
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As supervised PSO-DCC can be used for classification purposes, to evaluate this its 

operation was compared to SVM in terms of: (i) the average Czekanowski-Dice Index 

of all the predicted pattern results (CDavg) in PSO-DCC, (ii) the Best Parameters (BP), 

(iii) the corresponding CD index values of the best predicted patterns (CDbest) of PSO-

DCC, and (iv) the CD index values of the SVM prediction results (CD). The results are 

presented in Table 4.5. From the Table it can be seen that PSO-DCC performs better 

than SVM for all datasets except for Dataset 8. However, for Dataset 8 the CD value 

produced by PSO-DCC result is very close to the SVM result. By comparing the pattern 

results of Dataset 8 given in Figures 4.14 and 4.15, it can be seen that the boundaries 

of the classes produced by PSO-DCC are clearer than in the case of the SVM results, 

as PSO-DCC inherits the character of DBCSAN which can find the presence of noises 

in the datasets. Such character could be either advantage or limitation subject to 

different situations.  

Table 4.5: Supervised PSO-DCC with Czekanowski-Dice Index versus SVM

Dataset
PSO-DCC SVM

CDavg BP CDbest CD
1 0.694 (0.576, 5) 1.000 0.980
2 0.733 (1.456, 9) 1.000 1.000
3 0.522 (1.566, 6) 1.000 0.976
4 0.752 (2.180, 4) 1.000 1.000
5 0.846 (3.929, 8) 1.000 1.000
6 0.844 (8.098, 1) 1.000 1.000
7 0.678 (1.189, 10) 0.974 0.922
8 0.659 (1.480, 5) 0.965 0.969
9 0.457 (0.913, 6) 0.933 0.677
10 0.615 (0.628, 4) 0.975 0.542
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Figure 4.12 Prediction Results of Datasets 1-6 Produced by Supervised PSO-DCC 

 

 

Figure 4.13 Prediction Results of Datasets 1-6 Produced by SVM 
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Figure 4.14 Prediction Results of Datasets 7-10 Produced by Supervised PSO-DCC 

 
Figure 4.15 Prediction Results of Datasets 7-10 Produced by SVM 

For the datasets which are not well understood, the proposed ESA-DCC method can be 

applied to search for possible clustering patterns by testing with different number of 

clusters. Figures 4.17-4.18 demonstrate that different user-defined K values for PSO-

DCC can lead to different pattern results. Once K is smaller than the ground truth 

number of clusters, 4 in the examples, some small clusters are merged to give bigger 
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clusters, for example, Figures 4.17(a), 4.17(b), 4.18(a), and 4.18(b). Similarly, when K 

is larger than than the ground truth number of clusters, bigger clusters are divided into 

some smaller clusters, for example, Figures 4.17(c), 4.17(d), 4.18(c), and 4.18(d).  

 

(a)                            (b) 

 

(c)                          (d) 

Figure 4.16 PSO-DCC Results of Dataset 7 with Different Numbers of Clusters
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(a)                           (b) 

 

(b)                            (d) 

Figure 4.17 PSO-DCC Results of Dataset 8 with Different Numbers of Clusters  

�

To summarize, PSO-DCC, when using the fitness function FNK,can be applied to 

datasets featuring arbitrary shaped clusters; Classical DBSCAN requires a manual 

generate-and-test process to find the appropriate parameters to produce the correct 

results and K-means cannot find clusters of arbitrary shape at all. PSO-DCC ,when 

using Fusp with the Silhouette Index, can cluster centroid-based datasets; and 

supervised PSO-DCC can deal with all types of labelled datasets. Whilst suitable fitness 
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function is chosen with respect to dataset, PSO-DCC performs better than DBSCAN 

and K-means for unsupervised learning and better than SVM for supervised learning.  

4.3 Evaluations of Four ESA-DCC Methods 

4.3.1 Parameter Settings 

The common parameters are set as below for all the four methods, GA-DCC, PSO-

DCC (Canonical PSO), DE-DCC, and ABC-DCC. 

• Search Space: number of parameters is 2, minimal value is 0 and maximal value 

is 10. 

• Number of iterations:10 iterations are set for all the tests. 

• Stop criteria or Convergence tolerance: the algorithm will stop once the number 

of iterations is reached. 

The detailed settings for each method is defined as Table 4.6 below. 

 
 

4.3.2 Convergence  

The convergence performance of four proposed methods is summarized in Table 4.7 as 

below. The Fusp with the Davies Bouldin clustering index is short named as FDBNK and 

the Fusp with the Silhouette clustering index four fitness functions are short named as 

FSINK for following tables in this chapter.  

 

Table 4.7 shows that the number of iterations before the optimal solution is found by 

each method applying different fitness functions for each dataset. For example, by 

Table 4.6: Parameter Settings for Four ESA-DCC methods
GA-DBC PSO-DBC DE-DBC ABC-DBC

Settings
Population=10 Swarm size=10 Population =10 Colony size=20
Crossover Rate=0.8 w=0.2 Crossover Probability=0.8 No.food=Colony.size/2
Mutation Rate=0.1 c.p=2 Di↵erential.weight=1.2 Trials Limit=10

c.g=2
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reading the first line of Table 4.7, it can be found that 3 iterations are required for PSO-

DCC method to find the best solution when FNK is applied for Dataset 1. The sum of 

each fitness functions is computed to show the difference convergence performance of 

all the method applying difference functions. It can be found that ESA-DCC applying 

FDBNK can converge faster than the other functions.  

For each functions, different methods reach convergence in different speed. For 

example, GA-DCC applying FDBNK can converge faster than the other tests according 

to the average coverage performance. The performance of different methods for the 

same fitness function is compared in the table. GA-DCC is the most efficient method 

among the four proposed methods  according to the sum of all the iterations for each 

method required for all the tests. GA-DCC requires 89 iterations in total whilst PSO-

DCC requires 121 iterations, DE-DCC requires 109 iterations and ABC-DCC requires 

100 iterations. To summarize, the best one of the ESA-DCC methods can get coverage 

in 10 iterations.  

 

 

Figure 4.18 Nomarilized Proceed Time of Four ESA-DCC for 3 Datasets of Different Sizes  
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Table 4.7: Coverage of Four Proposed Methods
Fitness function Dataset GA-DBC PSO-DBC DE-DBC ABC-DBC

FNK

1 1 3 1 1
2 1 1 1 1
3 1 1 1 1
4 1 2 1 1
5 1 1 1 1
6 1 1 1 1
7 5 5 6 1
8 6 7 10 9
9 2 4 9 1
10 6 9 3 9
Avg 2.5 3.4 3.4 2.6
Sum 119

FSINK

1 1 1 1 1
2 1 1 1 1
3 1 3 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 5 8 8
8 10 1 1 1
9 10 7 3 6
10 1 10 7 10
Avg 2.8 3.1 2.5 3.1
Sum 115

FDBNK

1 1 1 1 1
2 1 1 1 1
3 2 1 1 7
4 1 5 1 1
5 1 1 1 1
6 1 1 8 1
7 5 3 4 4
8 1 1 1 1
9 1 1 4 1
10 1 5 3 1
Avg 1.5 2.0 2.5 1.9
Sum 79

FCD

1 1 1 1 3
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 3 9 6 1
8 6 9 4 8
9 5 6 8 10
10 1 6 1 7
Avg 2.1 3.6 2.5 2.4
Sum 106
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Figure 4.19 The Average Convergence Performance of Four ESA-DCC Methods 

�

4.3.3 Experimental Results and Analysis 

The accuracy of four proposed ESA-DCC methods applying different fitness functions 

for 10 datasets is evaluated by the best fitness value and an external index Rand.  

Table 4.8 shows the ESA-DCC algorithms applying the function FNK. The first 6 

datasets can be perfectly clustered by all the four methods. The best fitness value 0 is 

reached for all the 10 datasets by PSO-DCC method, whilst the other three methods 

cannot reach the best fitness values for all datasets in 10 iterations. Overall, the accuracy 

of all the tests of DE-DCC method is higher than the other methods regarding the Rand 

values.  
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Table 4.8: Unsupervised ESA-DCCs with FNK

Dataset
GA-DCC PSO-DCC DE-DCC ABC-DCC

fitbest Rand fitbest Rand fitbest Rand fitbest Rand
1 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
2 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
3 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
4 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
5 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
6 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
7 0.000 0.819 0.000 0.819 0.000 0.819 0.000 0.818
8 0.005 0.892 0.000 0.778 0.000 0.778 0.005 0.892
9 0.023 0.980 0.000 0.607 0.040 0.976 0.000 0.606
10 0.100 0.837 0.000 0.837 0.110 0.974 0.004 0.910
Ave 0.017 0.953 0.000 0.904 0.015 0.955 0.001 0.923
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Figure 4.20 Optimized Fitness Values of 4 ESA-DCCs  

�
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Figure 4.21 Rand Index Values of 4 ESA-DCCs (FNK) Clustering Results 

The experimental results of ESA-DCC applying Fusp with the Silhouette clustering 

index (short for FSINK as mentioned before) are presented in Table 4.9. The results of 

the ESA-DCC applying Fusp with the Davies Bouldin clustering index ( FDBNK ) are 

shown in Table 4.10. According to the average Rand values for each group of 
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experiments, it can be concluded that the accuracy of ESA-DCC methods applying 

FSINK is higher than the methods applying FDBNK. The overall performance of ESA-DCC 

applying Fusp is not satisfactory, especially for the datasets 1, 2, 4 and 5 since the 

internal indices are designed for centroid-based clusters, not arbitrary shaped cluster. 

For datasets 7-10, the accuracies of GA-DCC, DE-DCC and ABC-DCC are tolerable 

when FSINK is applied. The accuracies of all the ESA-DCC methods applying FDBNK is 

not acceptable. To summarize, FSINK is a better fitness function than FDBNK for dealing 

with the datasets consisting of centroid-based clusters. 

�

�

�
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Figure 4.22 Fitness Values of ESA-DCC (FSINK) for Datasets 7-10 and Average 

�

Table 4.9: Unsupervised ESA-DCC with FSINK

Dataset
GA-DCC PSO-DCC DE-DCC ABC-DCC

fitbest Rand fitbest Rand fitbest Rand fitbest Rand
1 -0.500 0.500 -0.500 0.500 -0.500 0.499 -0.500 0.499
2 -0.500 0.500 -0.500 0.500 -0.500 0.499 -0.500 0.499
3 -0.455 1.000 -0.455 1.000 -0.455 1.000 -0.455 1.000
4 -0.500 0.499 -0.500 0.499 -0.500 0.499 -0.500 0.499
5 -0.500 0.625 -0.500 0.625 -0.500 0.625 -0.500 0.625
6 -0.731 1.000 -0.731 1.000 -0.731 1.000 -0.731 1.000
7 -0.413 0.819 -0.413 0.819 -0.427 0.982 -0.414 0.818
8 -0.471 0.892 -0.250 0.280 -0.394 0.891 -0.445 0.892
9 -0.391 0.974 -0.500 0.980 -0.414 0.980 -0.504 0.980
10 -0.375 0.909 -0.402 0.992 -0.195 0.910 -0.439 0.949
Avg -0.484 0.772 -0.471 0.720 -0.462 0.789 -0.499 0.776
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Figure 4.23 Rand Values of ESA-DCC (FSINK) for Datasets 7-10 and Average 

�

�

The experimental results of supervised ESA-DCC methods are presented in Table 4.11 

below. The accuracies of all the methods for all the datasets are satisfactory. The 

differences between the accuracies of the four methods are small. It can be concluded 

that all the supervised ESA-DCC methods implemented by any ESA methods can be 

used in classification problems.  
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Table 4.10: Unsupervised ESA-DBC with FDBNK

Dataset
GA-DCC PSO-DCC DE-DCC ABC-DCC

fitbest Rand fitbest Rand fitbest Rand fitbest Rand
1 0.500 0.500 0.500 0.500 0.500 0.499 0.500 0.499
2 0.500 0.500 0.500 0.500 0.500 0.499 0.500 0.499
3 0.658 1.000 0.744 1.000 0.744 1.000 0.652 0.999
4 0.500 0.499 2.000 0.499 0.500 0.499 0.500 0.499
5 0.500 0.625 0.500 0.625 0.500 0.625 0.500 0.625
6 0.295 1.000 0.359 1.000 0.295 0.998 0.295 0.998
7 0.465 0.819 0.465 0.819 0.465 0.819 0.465 0.819
8 0.750 0.280 0.750 0.280 0.750 0.280 0.750 0.280
9 0.900 0.124 0.900 0.124 0.824 0.904 0.900 0.124
10 0.900 0.121 0.382 0.837 0.482 0.837 0.900 0.121
Avg 0.597 0.547 0.710 0.618 0.556 0.696 0.596 0.546
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The surfaces of two examples of fitness function are shown in Figures 4.24-4.25. Both 

of the fitness functions are non-linear. For the datasets with un-even density, such as 

the Dataset 8 shown in Figure 4.25, the surface of fitness functions could be very rugged 

and ruleless and the range of optimal values could be very small and hard to find the 

best value. GA and DE has the mutation feature which makes it perform better to find 

a good solution from the uneven surface. The movement of the particles in the PSO and 

bees in ABC follows some certain rules. The advantages of PSO and ABC are hard to 

be shown in proposed methods. 

 

Figure 4.24. Surface of Fitness Function FNK for Dataset 3 in Range of [0,10] for Minpts and 

Radius (Left) and in Range of [0,10] for Minpts, [0.4,10] for Radius (Right) 

Table 4.11: Supervised ESA-DBC with FCD

Dataset
GA-DCC PSO-DCC DE-DCC ABC-DCC

fitbest Rand fitbest Rand fitbest Rand fitbest Rand
1 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
2 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
3 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
4 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
5 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
6 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000
7 -0.960 0.980 -0.971 0.985 -0.960 0.980 -0.960 0.979
8 -0.954 0.975 -0.959 0.978 -0.960 0.978 -0.963 0.980
9 -0.932 0.983 -0.932 0.983 -0.909 0.976 -0.932 0.983
10 -0.972 0.993 -0.971 0.993 -0.972 0.993 -0.974 0.994
Avg -0.982 0.993 -0.983 0.994 -0.980 0.993 -0.983 0.994
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Figure 4.25 Surface of Fitness Function FNK for Dataset 8 in Range of [0,10] for Minpts and 

Radius (Left) and in Range of [0,10] for Minpts, [0.7,10] for Radius (Right) 
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Chapter 5 Applications 

5.1 Product Recommender System 

E-commerce reaches the daily lives of people. Consumers face overloaded marketing 

information to select appropriate products. Recommender Systems (RSs) are able to 

retrieve suitable products for consumers with respect to their preferences. A highly 

personalized recommender service could improve consumer loyalty to increase sales 

[Schafer, Konstan & Riedl, 2001].  

Recommender systems can be classified into various categories by using different 

criteria [Peis, Castillo & Delgado-López, 2008]. For example, according to the filtering 

techniques in RSs, four categories can be classified as content-based RSs, collaborative 

filtering RSs, economic factor-based RSs, and hybrid RSs combining content-based 

and collaborative filtering techniques [Peis et al., 2008]. As the aforementioned RSs 

rely on user profiles consisting of their historical ratings to various products [Lika, 

Kolomvatsos & Hadjiefthymiades, 2014], the major limitation of the established RSs 

is the cold start problem, which means lack of information for RSs to learn the profiles 

of new users [Burke, 2002; Balabanović & Shoham, 1997; Lika et al., 2014]. A review 

of approaches solving the cold start problem is presented in [Lika et al., 2014].  

Since the new launches of consumer electronics, such as laptops, smartphones, digital 

cameras, audio equipment and video game consoles, rapidly replace the old models, the 

product recommendations derived by exploring historical user profiles for the old 

model may not be suitable for the latest launch of consumer products. This thesis 

proposes a RS model which does not rely on users’ rating history but an individual 

users’ rating preferences elicited from pairwise ratings to make recommendations.  
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5.1.1 Data Preprocessing Tools 

The process of evaluating user preferences to products could be complicated as some 

products have many attributes. Multi-Criteria Decision Making (MCDM) tools, which 

can evaluate user preferences with respect to multiple attributes for products, have been 

employed in RSs for making recommendations [Jannach, Karakaya & Gedikli, 2012; 

Adomavicius, Manouselis & Kwon, 2011; Adomavicius & YoungOk, 2007; Lakiotaki, 

Matsatsinis & Tsoukia, 2011; Porcel & Herrera-Viedma, 2010]. In this section, 

Cognitive Pairwise Rating (CPR), an MCDM tool, is introduced to evaluate user 

preferences. CPR applies pairwise comparisons instead of direct rating in classical rating 

methods. 

In this chapter, a novel RS model is proposed. This RS relies on user preferences of 

product attributes, but is not related to user rating history. Since the user preferences are 

not learnt from historical data, the proposed RS model does not include the cold start 

problem. User preferences could be elicited by Multi-Criteria Decision Making (MCDM) 

tools to provide personalized recommender services. In pervious works, Analytic 

Hierarchy Process (AHP) has been applied to evaluate user preferences with respect to 

multiple attributes for products [Byun, 2001; Liu & Shih, 2005; Lee & Kozar, 2006; 

Wang & Tseng, 2013: Liu & Shih, 2005]. In this section, an ideal alternative of AHP, 

Cognitive Pairwise Rating (CPR), is employed in the proposed RS model to evaluate 

user preferences. CPR is based on Cognitive Network Process (CNP) [Yuen, 2009; 2012; 

2014(1); 2014(2)], which is an approach rectifying the mathematical representation 

problem of the perception of the paired differences in AHP. 

5.1.2 Cases studies 

• Product Recommendation System 

 



� �
�

 

Figure 5.1 CPR-AHC Framework 

 

The steps of the proposed Cognitive Pairwise Rating Agglomerative Hierarchical 

Clustering (CPR-AHC) approach are illustrated in Figure 5.1. In the first four steps, the 

product attributes are organized as a data schema called attribute tree. With the schema, 

the raw data matrix is obtained from various sources. Cognitive Pairwise Rating (CPR) 

is used to evaluate the attribute weights and nominal attribute values in the raw data 

matrix according to customer preferences. The raw data matrix within preference values 

is normalized. In steps 5 and 6, the normalized data matrix and attribute weights are 

aggregated into a vector of product values. A Top-N list is generated according to the 

product values. In step 7, products are grouped by AHC algorithm according to their 

similarities. Similar products recommendation could be provided according to product 

clusters. 
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Step 1 Attribute Specification  

Product information can be collected from various sources, such as retailers, product 

engineers and customers. A product can be represented by a vector of its attributes 

{ } 1 2( , ... ... )i i nδ δ δ δ δ=  where iδ  denotes the ith attribute. Some attributes can be 

divided into a set of sub-attributes. For example, the attribute iδ  has ni sub-attributes, 

{ }, ,1 ,2 , ,( , ... ... )
ii j i i i j i nδ δ δ δ δ= �  where ,i jδ  is the jth sub-attribute of iδ . Some sub-

attributes can be further divided. For example, ,i jδ  has #3,5 sub-attributes 

{ }
,, , , ,1 , ,2 , , , ,( , ..., ... )
i ji j k i j i j i j k i j nδ δ δ δ δ= where , ,i j kδ  is the kth sub-attribute of ,i jδ . The 

relationships between attributes and their sub-attributes can be organized as an 

attributes tree. An attribute is represented by a node whilst its sub-attributes are 

represented by its children. An example of laptop attribute tree is shown in Figure 5.2. 

 

Step 2 Data Preparation 

The attributes with no sub-attributes are leaf nodes of the attribute tree. A leaf attribute, 

denoted by L, is a measureable attribute obtained from various sources mentioned 

above. A product dataset of m products and l leaf attributes is organized as an m×l raw 

data matrix, { }(1,..., ), (1,..., )D d m lαβ α β= ∀ ∈ ∀ ∈ . An example of collecting product 

information as data matrix is presented in Step 2 of Example 5.1. The raw product data 

matrix D cannot be directly used in the clustering process since it may contain nominal 

label values. Using CPR, the nominal values can be represented by numerical values 

using the method presented in Step 3. 

 

Step 3 Preferences Elicitation 

User preferences could be collected in various ways. The preferences for different 

attributes and nominal scales could be measured by Cognitive Pairwise Rating. An 

example of CPR interface is shown as Figure. A1 in the Appendix. 
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Table 5.1: Measurement Scale Schema for CPR 

Label (ℵ ) Notation Paired Interval Scale ( X ) 
Equally 0 0 
Slightly 1 8κ  
Moderately 2 2 8κ

 Fairly 3 3 8κ
 Highly 4 4 8κ
 Strongly 5 5 8κ
 Significantly 6 6 8κ
 Outstandingly 7 7 8κ
 Absolutely 8 κ

 
  

A measurement scale schema ( , )Xℵ  is used for the paired comparisons as shown in 

Table 5.1. ℵ  is the space of linguistic labels of the paired interval scales such as 

{Equally, Slightly, Moderately, Fairly, Highly, Strongly, Significantly, Outstandingly, 

Absolutely}. The numerical representation of paired interval scales X  is the form 

below. 

{ },..., 1,0,1,..., , 0q
q

X x q
κ τ τ κ
τ

⎧ ⎫= = ∀ ∈ − − >⎨ ⎬
⎩ ⎭

             (5.1) 

Normal utility κ  is the subjective perception of the difference between pairs and 

( )max Xκ =  by default. τ  is the number of linguistic scale. 2 1τ +  is the number 

of scales in ( ), Xℵ . 

A Pairwise Opposite Matrices (POMs) of the form below is used to evaluate user 

preferences by pairwise comparison in paired interval scales. 

     
1 2 1 12 1

2 1 2 21 2

1 2 1 2

0 0
0 0

[ ] [ ]

0 0

n n

n n
ij ij

n n n n

v v v v b b
v v v v b b

B b b B

v v v v b b

− −
− −

= = ≅ = =

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

      (5.2)

 
where B is a POM, i and j are local indices. iv  is the priority value of the ith object, 

and ij i jb v v⎡ ⎤≅ −⎣ ⎦  is the approximate comparison value between the ith and jth objects. 

ijb  is the rating score obtained from the survey. For instance, 12 2b =  means that a 
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consumer thinks that the first object is moderately more important than the second 

object.  

Accordance Index (AI) of the form below is used to evaluate the validity of POM. If 

AI=0, then B is perfectly accordant. If 0 < AI ≤ 0.1, then B is satisfactory. If AI > 0.1, 

then B is unsatisfactory, and the corresponding survey should be re-assessed again. 

 

2

2
1 1 1

1 1n n n
ip pj ij

i j p

b b b
AI

n n κ= = =

+ −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∑ ∑

                      (5.3) 

Row Average plus the normal Utility (RAU) of the form below is used to calculate the 

priorities of objects. 

 
( ) { }

1

1, : , 1,...,
n

i j ij
j

RAU B v v b i n
n

κ κ
=

⎡ ⎤⎛ ⎞
= = + ∀ ∈⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑           (5.4) 

The vector of normalized RAU values W  is shown in the form below. 

 
{ }

{ }1,...,
: , 1,..., ,i
i i i

i n

vW w w i n which v n
n

κ
κ ∈

⎧ ⎫= = ∀ ∈ =⎨ ⎬
⎩ ⎭

∑
        (5.5) 

The normalized RAU values can be used to represent various things including attribute 

weights, preference values for scales, priorities of options, and item utilities. 

Step 4 Data Normalization  

The raw data matrix is rescaled or normalized in this step. Two normalization methods 

are introduced for the criteria whether the higher or lower value is preferred. If the 

higher value reflects the higher preference, Dividing Maximal Function maxΔ  is 

applied to rescale a vector of raw attribute values, i.e. 1, , ,{ ,.. ., }T
mD d d dβ β α β β= , which 

means a column vector of the raw data matrix. If the lower value is preferred, Minimal 

Dividing Function minΔ  is used for the normalization. Normalized data matrix, 

{ }(1,..., ), (1,..., )D x m lαβ α β′ = ∀ ∈ ∀ ∈ , is produced for following steps. 

( ) ( )max , (1,..., ), (1,..., )
max T

d
x d m l

D
αβ

αβ αβ
β

α β= Δ = ∀ ∈ ∀ ∈    (5.6) 
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( ) ( )
min

min
, (1,..., ), (1,..., )

TD
x d m l

d
β

αβ αβ
αβ

α β=Δ = ∀ ∈ ∀ ∈     (5.7) 

Step 5 Data Fusion 

The product values { }( ) : (1,..., )mαρ α∀ ∈  are aggregated from the sub-ordinate 

attributes in the weighted attribute tree, where ( )α  indicates the product index. The 

weights of iδ , ,i jδ  and , ,i j kδ  are denoted as ri, ri,j and ri,j,k respectively. The values of 

leaf attributes could be obtained from normalized data matrix D′ . The attribute value 

is the weighted summation of its low-level attributes by the Eqs.5.8-5.10.  

,
( ) ( )
, , , , ,

1
, (1,..., ), (1,..., ), (1,..., )

i jn

i j i j k i j k i
k
r i n j n mα αδ δ α

=

= ⋅ ∀ ∈ ∀ ∈ ∀ ∈∑
   (5.8)   

( ) ( )
, ,

1
,  (1,..., ), (1,..., )

in

i i j i j
j
r i n mα αδ δ α

=

= ⋅ ∀ ∈ ∀ ∈∑
               (5.9) 

( ) ( )

1
, (1,..., )

n

i i
i
r mα αρ δ α

=

= ⋅ ∀ ∈∑                           (5.10) 

 

Step 6 Top-N List Generation 

A Top-N products list includes the products of the N highest values. The Top-N list is 

recommended in descending order. Algorithm 5.1 shows the calculation details. The 

Top-N list with different users may be different since product values are calculated with 

respect to their preference inputs. 

Algorithm 5.1: Top-N List 

Procedure Top-N ({ }( )αρ ,N) 

For i=1 to N,  

 M =Max({ }( )αρ ) 

TopN[i]= M 

{ } { }( ) ( )Mα αρ ρ= , where / is a complement operator. 

Return TopN 

 



� ���

Step 7 Products Clustering 

The products are clustered by proposed ESA-DCC method taking the product values as 

input.  

Example 5.1: Application to Laptop Recommender System 

Laptops are constituted of many attributes. When consumers search for a laptop, they 

search for a set of suitable attributes matching their requirements. To demonstrate the 

validity and applicability of proposed CPR-AHC approach, a laptop recommender 

system for a user is presented in this section. The laptops dataset from the market 

information can be collected from various sources such as websites of online retail 

shops, magazines and manufacturers. A small size of the dataset used in this section 

was manually collected in 2015. 

 

Step 1 Attribute Specification 

The websites for selling, introducing or comparing laptops provide a tremendous 

amount of laptop information. A set of distinct attributes to select an ideal laptop are 

presented in a tree structure in Figure 5.2. Some consumers may be unacquainted with 

some attributes, such as wireless type and video output. Some attributes may not be 

important to the users, such as the number of USB ports, DVD/CD burner, and speakers. 

These attributes are not considered in the recommender system.  
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Figure 5.2 Attribute Tree for Laptops 

�

The first level of the attributes tree of laptops constitutes CPU ( 1δ ), Operation System 

( 2δ ), Storage ( 3δ ), Brand ( 4δ ), Display ( 5δ ), Portable ( 6δ ) and Price ( 7δ ). Five of them 

have sub-attributes, such as the storage including Hard Drive and Random-Access 

Memory (RAM). These sub-attributes are represented in the second level of the 

attribute tree, including {RAM ( 3,1δ ), Hard Drive ( 3,2δ )}, {USA ( 4,1δ ), Asia ( 4,2δ )}, 

{Screen ( 5,1δ ), Graphics Card ( 5,2δ )}, and {Weight ( 7,1δ ), Battery (
7,2δ )}.Some sub-

attributes can be further divided. Hard Drive, for example, can be divided into Solid 

State Drive (SSD) and Size. Level three consists of the sub-attributes including {SSD 

( 3,2,1δ ), Size (67,2,2)} and {Size (
5,1,1δ ), Resolution ( 5,1,2δ )}. 

 

Step 2 Data Preparation  

According to the attribute tree, a laptop can be represented by a vector of 13 leaf 

attributes. The raw data matrix D of 27 laptops are complied and presented in Table A2 

in Appendix. Some leaf attribute values are numerical values whilst some nominal 

attribute values are labels and need to be further converted into numerical values. The 
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calculation methods to quantify leaf attributes are summarized in Table 5.2. The 

attributes CPU and Graphics Card are measured by the test scores of 3DMark06 

[Benchmarks, 2016]. The SSD attribute has three kinds of values: SSD means that the 

hard disk in a laptop is SSD, No SSD means that the laptop does not have an SSD and 

Hybrid means that part of the hard disks is SSD. The three values of SSD attribute are 

respectively rated as 2, 0 and 1. The numerical values of screen resolution attribute is 

measured by the product of width pixel and height pixel. The nominal values will be 

converted to numerical values by CPR in Step 3. 

 

Step 3 User Preferences Elicitation 

The user preferences data can directly be collected by the CPR surveys. An example of 

a CPR survey questionnaire to measure user preferences is shown in Figure A1 in the 

Appendix. The measurement scale schema is defined as Table 5.1. κ  is set to 8. 

According to Eq.2, the POM obtained from the survey results in Figure A1 is shown in 

Table 5.3. AI is computed by Eq.5.3 and is less than 0.1, which is within an acceptable 

range. Weights of laptop attributes are computed by Eqs.5.4 and 5.5, where the 

computational steps are presented in Table 3. The POMs, AI and weights of other sub-

attributes are shown in Table 5.4. The weights are summarized in the attribute tree 

exhibited in Figure 5.2. The nominal scales of Operating System ( 2L ), Asia Brand ( 6L ) 

and USA Brand ( 7L ) are measured by CPR and shown in Table 5.5. The preference 

values of the attributes are the prioritization results of POMs. 

 

Table 5.2: Schema of Leaf Attributes of Laptops 

Measurable 

attribute 
Leaf attribute Measurement scale 

Quantification 

method 

Normalization 

method 

1L  CPU 1δ  Nominal: CPU model 3DMark06 Score maxΔ  

2L  OS 2δ  

Nominal: Linux 

OS X 

Windows 7 

Windows 8 

CPR maxΔ  
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3L  RAM
3,1δ  GB GB maxΔ  

4L  
SSD  

Nominal: SSD 

Hybrid 

No SSD 

SSD: 2 

Hybrid:1 

No SSD: 0 
maxΔ  

5L  
Hard Drive 

Size  
GB GB maxΔ  

6L  
Brand (USA)

4,1δ  

Nominal: Alienware 

Apple 

Dell 

Microsoft 

CPR maxΔ  

7L  
Brand (Asia)

4,2δ  

Nominal: Acer 

ASUS 

HP 

Lenovo 

Sansung 

CPR maxΔ  

8L  
Screen Size

5,1,1δ  Inch Inch maxΔ  

9L  
Screen 
Resolution

5,1,2δ  
DPI 

Width pixel by 
Height pixel maxΔ  

10L  
Graphics Card

5,2δ  
Nominal: Graphics Card 

model 

3DMark06 

Scores maxΔ  

11L  Weight
6,1δ  Kg Kg minΔ  

12L  Battery
6,2δ  Hour Hour maxΔ  

13L  Price 7δ  RMB Thousand RMB minΔ  

 

Table 5.3: Comparison Matrices For Laptop 1st Level Attributes of User A 

  1δ  2δ  3δ  4δ  5δ  6δ  7δ  
     

1δ  0 1 -1 7 -1 1 3 10 1.429  9.429  0.168 

2δ  -1 0 -3 5 -2 0 2 1 0.143  8.143  0.145 

3δ  1 3 0 7 0 3 5 19 2.714  10.714  0.191 

4δ  -7 -5 -7 0 -7 -5 -3 -34 -4.857  3.143  0.056 

5δ  1 2 0 7 0 2 4 16 2.286  10.286  0.184 

6δ  -1 0 -3 5 -2 0 2 1 0.143  8.143  0.145 

7δ  -3 -2 -5 3 -4 -2 0 -13 -1.857  6.143  0.110 

AI=0.051 

 

δ 3,2,1

δ 3,2,2

B0 bij
j=1

7

∑ 1

7
bij

j=1

7

∑ vi =
1

7
bij + 8

j=1

7

∑ ri = wi =
vi
7 ⋅ 8
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Table 5.4: Comparison Matrices of User A for Laptop Sub-attributes 

 

3,1δ  3,2δ  
   

3,2,1δ  3,2,2δ  
   4,1δ  4,2δ  

  

3,1δ  0 0 0.5 3,2,1δ  0 -6 0.313 4,1δ  0 -2 0.437 

3,2δ  0 0 0.5 3,2,2δ  6 0 0.687 4,2δ  2 0 0.563 

AI=0 AI=0 AI=0 

 5,1δ  5,2δ  
   5,1,1δ  5,1,2δ  

   6,1δ  6,2δ  
  

5,1δ  0 -4 0.375 5,1,1δ  0 -2 0.437 6,1δ  0 0 0.5 

5,2δ  4 0 0.625 5,1,2δ  2 0 0.563 6,2δ  0 0 0.5 
AI=0 AI=0 AI=0 

 

Table 5.5: Comparison Matrices of User A for Nominal Attribute of 2L , 6L  and 7L  

 

Linux OS X Windows 7 Windows 8  Preference Value 

Linux 0 -2 -3 0  0.211 

OS X 2 0 -1 2  0.273 
Windows 7 3 1 0 3  0.305 

Windows 8 0 -2 -3 0  0.211 

AI=0 

 

Alienware Apple Dell Microsoft HP Preference Value 

Alienware 0 1 3 4 4 0.260 

Apple -1 0 2 3 3 0.235 

Dell -3 -2 0 1 2 0.190 

Microsoft -4 -3 -1 0 0 0.160 

HP -4 -3 -2 0 0 0.155 

AI=0.043 

 

Acer ASUS Lenovo Sansung  Preference Value 

Acer 0 -1 -3 2  0.234 

ASUS 1 0 -2 3  0.266 

Lenovo 3 2 0 4  0.320 

Sansung -2 -3 -4 0  0.180 

AI=0.042 

 

Step 4 Data Normalization 

The chosen normalization method for each leaf attribute is presented in Table 5.2. For 

example, the higher performance score of CPU ( 1L ) should be more preferable, and 

therefore maxΔ  (shown in Eq. 5.6) is chosen to normalize the vector of CPU. The lower 

B3
r3,i B3,2 r3,2,i B4

r4,i

B5 r5,i B5,1 r5,1,i B6 r6,i

B2

B6

B7
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price ( 13L ) should be more preferable, and therefore minΔ (shown in Eq. 7) is chosen to 

normalize price attribute. The results of normalized data D′ are shown in Table A3 in 

appendix. For example, the calculation details for normalizing the attribute values of 

CPU and Price for the laptop ID1 are shown below. 

 (5.11) 

 (5.12) 

Step 5 Data Fusion 

According to the weights presented in Tables 5.3-5.4 and the normalized data matrix 

D′  presented in Table A3 in appendix, for each laptop, the attribute values of second 

level are computed by Eq.8. For example, the computation of  is shown as below.  

 (5.13) 

Similarly, the value of  is computed as 0.556. The attribute values of first level are 

computed by Eq.9. the computation of  is shown as below.  

 (5.14) 

Similarly, the values of ,  and  are computed as 0.563, 0.327 and 0.550 

respectively. The product values of laptop are aggregated by Eq.10. For example, the 

product value of the laptop ID1 is calculated as below. The product values of all the 

x1,1 = Δmax (d1,1 ) =
d1,1

max(D1

T )
=
3367

7060
= 0.477

x1,13 = Δmin (d1,13 ) =
min(D13

T )
d1,13

=
2
7
= 0.285

δ 3,2
(1)

δ 3,2

(1) = r3,2 ,k ⋅δ 3,2 ,k

(1) =
k=1

2

∑ (r3,2 ,1 ⋅δ 3,2 ,1

(1) ) + (r3,2 ,2 ⋅δ 3,2 ,2

(1) )

     = (0.313 ⋅ x1,4 ) + (0.687 ⋅ x1,5 ) = (0.313 ⋅1.000) + (0.687 ⋅ 0.169)

     = 0.429

δ 5,1
(1)

δ 3
(1)

δ 3

(1) = r3, j ⋅δ 3, j

(1) =
j=1

2

∑ (r3,1 ⋅δ 3,1

(1) ) + (r3,2 ⋅δ 3,2

(1) ) = (r3,1 ⋅ x1,5 ) + (r3,2 ⋅δ 3,2

(1) )

     = (0.500 ⋅ 0.250) + (0.500 ⋅ 0.429) = 0.340

δ 4
(1) δ 5

(1) δ 6
(1)
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laptops are presented in Table 6. 

 (5.14) 

Table 5.6: Laptop Product Values for User A 

ID ( ) Laptop Model Product Value ( ) 

1 Lenovo Yoga3 14-IFI 0.448 

2 Lenovo Y430p AT-ISE 0.553 

3 Lenovo ThinkPad E540 20C60019CD 0.465 

4 Dell XPS 11 (XPS11D-1508T) 0.403 

5 Dell Inspiron 15 (INS15UD-1748S) 0.447 

6 Dell Inspiron 15 7000 (Ins15BD-1748) 0.459 

7 MacBook 256GB 0.507 

8 MacBook Pro 15’ 0.660 

9 MacBook Air (MJVE2CH/A) 0.478 
10 ASUS A550JK4200 0.476 

11 ASUS GFX71JY4710 0.662 

12 ASUS U305FA5Y71 (8GB/256GB) 0.475 

13 Acer VN7-591G-56BD 0.427 

14 Acer E1-470G-33212G50Dnkk 0.419 

15 Acer VN7-791G-78KL 0.603 

16 HP Envy 15-k222tx 0.431 

17 HP ProBook 440 G2 (J7W06PA) 0.535 

18 HP Pavilion 11-h112tu x2 (G0A07PA) 0.380 

19 Sansung 910S3G-K04 0.378 

20 Sansung 930X2K-K01 0.431 

21 Sansung 900X3K-K01 0.488 
22 Surface Pro 3(i3/64GB) 0.445 

23 Surface Pro 3 (i7/512GB/Profession) 0.493 

24 Surface 3 (4GB/128GB) 0.457 

25 Alienware 15 (ALW15ED-1718) 0.643 

26 Alienware 13 (ALW13ED-2708) 0.462 

27 Alienware 17 (ALW17ED-2728)  0.676 

 

 

ρ (1) = ri ⋅δ i

(1)

i=1

7

∑
     = (r1 ⋅δ 1

(1) ) + (r2 ⋅δ 2

(1) ) + (r3 ⋅δ 3

(1) ) + (r4 ⋅δ 4

(1) ) + (r5 ⋅δ 5

(1) ) + (r6 ⋅δ 6

(1) ) + (r7 ⋅δ 7

(1) )

     = (r1 ⋅ x1,1) + (r2 ⋅ x1,2 ) + (r3 ⋅δ 3

(1) ) + (r4 ⋅δ 4

(1) ) + (r5 ⋅δ 5

(1) ) + (r6 ⋅δ 6

(1) ) + (r7 ⋅ x1,1)

     = 0.448

α ρ (α )
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Step 6 Top-N List Generation 

By using the product values, a Top-N list recommendation is generated by Algorithm 

1. With respect to the user preference inputs for the attribute data, a Top-10 list for 

laptops, {27, 11, 8, 25, 15, 2, 17, 7, 23, 21}, is shown in Table 5.7. Therefore, the system 

will generate the recommended web links and product information for the laptops to 

customers in descending order after the users simply submit the CPR survey as search 

queries.  

 

Table 5.7. The Top-10 Laptops for User A 

Rank ID ( ) Laptop Model Product Value ( ) 

1 27 Alienware 17 (ALW17ED-2728) 0.676 

2 11 ASUS GFX71JY4710 0.662 

3 8 MacBook Pro 15’ 0.660 

4 25 Alienware 15 (ALW15ED-1718) 0.643  

5 15 Acer VN7-791G-78KL 0.603  

6 2 Lenovo Y430p AT-ISE 0.553  

7 17 HP ProBook 440 G2 (J7W06PA) 0.535  

8 7 MacBook 256GB 0.507  

9 23 Surface Pro 3 (i7/512GB/Profession) 0.493  

10 21 Sansung 900X3K-K01 0.488  

 

Step 7 Products Clustering 

The clustering results produced by ESA-DCC applied FNK are shown in Table 5.8 below. 

Table 5.8. Clustering Results of Laptops 

K Parameter pair Pattern Results Best fitness 

values 

3 0.030, 0.040 1 1 1 1 1 1 1 2 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 0 

5 0.021, 0.100 1 2 1 1 1 1 1 3 1 1 3 1 1 1 4 1 2 5 5 1 1 1 1 1 3 1 3 0 

7 0.016, 0.066 1 2 1 1 1 1 1 3 1 1 3 1 1 1 4 1 5 6 6 1 1 1 1 1 7 1 3 0 

9 0.014, 0.008 1 2 1 3 1 1 1 4 1 1 4 1 1 1 5 1 6 7 7 1 1 1 1 1 8 1 4 0.111 

 

α ρ (α )
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For example, if the user wants to divide the laptops into 5 groups, the pattern results in 

the second line of Table 5.8 will be produced as the result of ESA-DCC. The laptops 

are divided into five clusters: {1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 20, 21, 22, 23, 

24, 26}, {2, 17}, {8, 11}, {15}, and {18, 19}. Once the user chooses any laptop which 

belong to a cluster, the system will recommend the other laptops in this cluster. For 

example, once the user takes a look on the webpage of laptop 8, the system will 

recommend laptop 11 to him/her. 

5.2 Image Segmentation 

Image segmentation is an important topic in the field of computer vision. The 

representation of images can be simplified by segmenting a digital image into multiple 

regions for further analysis [Felzenszwalb & Huttenlocher, 2004]. The pixels of an 

image can be clustered as regions with respect to their color similarities and spatial 

relationships [Felzenszwalb et al., 2004; Jain & Flynn, 1996; Chuang, Tzeng, Chen, Wu 

& Chen, 2006].  

Density-based clustering methods can be applied for image segmentation due to their 

ability to discover arbitrary shaped clusters [Celebi, Aslandogan & Bergstresser, 2005; 

Shen, Hao, Liang, Liu, Wang & Shao, 2016; Ye, Gao & Zeng, 2003]. DBSCAN is the 

widely used density-based clustering method. The main disadvantage of the proposed 

ESADCC method is the high time-complexity. As the size of an image dataset is 

normally very large, it is hard to be directly processed by ESADCC.  

K-means [Macqueen, 1967] has been applied for image segmentation [Felzenszwalb et 

al., 2004; Jain et al., 1996;] by clustering the pixels with respect to their color similarities. 

As K-means was designed for centroid-based cases, it can not be used to detect the 

arbitrary shaped regions in an image. 

A hybrid approach, Kmeans-ESADCC is proposed by combining K-means and 

ESADCC for image segmentation. For image preprocessing, the color and spatial 
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information for all the pixels are represented in a 2-D data matrix. K-means algorithm 

is then adopted to cluster the pixels into a number of small clusters whilst the centroid 

of each cluster is to group the data points with similar aggregated features values. The 

cluster centroids produced by K-means are further clustered by ESADCC. The image 

segmentation results are finally provided by fusing the results of K-means and ESADCC. 

To demonstrate the usability of the proposed method, four images selected from 

Berkeley Segmentation Dataset and Benchmark (BSDB) [Martin, Fowlkes, Tal, & 

Malik, 2007] were used in the experiment.  

5.2.1 Data Preprocessing 

• Matrix Combinations 

An RGB color image can be represented as a 3-D raw dataset by using the image reading 

functions such as readJPEG() provided by an R package called jpeg [Urbanek, 2014]. 

The 3-D raw dataset is a color matrix consisting of three additive primary color (Red, 

Green and Blue) values of each pixel. In the preprocessing stage, the raw 3-D image 

dataset is reconstructed as a 2-D data matrix by combining the primary color and spatial 

information. The ith pixel is represented by the vector (Xi, Yi, Ri, Gi, Bi) where Xi, Yi are 

the spatial values computed by Eqs. (5.20-5.21) and (Ri, Gi, Bi) is the color vector from 

the raw image dataset.  

 1 \
i

i x
X

x
+

=                             (5.20) 

                             (5.21) 

where x and y are the numbers of pixels in the x and y axes of the image respectively; 

the notation, \,  is integer division. 

• K-means 

The general procedure of K-means for grouping the pixels into clusters are presented in 

Algorithm 5.2. The MacQueen K-means [MacQueen, 1967] has been applied in the 

Yi =
imod y
y
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proposed Kmeans-ESADCC approach. A number of cluster centroids are randomly 

initialized and then every point is assigned to the nearest centroid. The mean value of 

data points assigned to a new cluster is computed. The loop should be executed until the 

centroids of clusters converge. The similarities of pixels are computed as Euclidean 

distance by Eq. (5.22).  

(5.22) 

Algorithm 5.2: K-means for Image Dataset 
Input: Image data matrix D, the number of clusters K; 

Output: a set of clusters C and clusters centroids P; 

1. Randomly choose K pixels from D as the initial cluster centroid s;  

2. Assign each pixel to the closest cluster on the basis the similarities between the 
pixels computed by Eq. (5.22); 

3. Update each cluster centroid as the mean value of the pixels in the cluster; 

4. Repeat steps 2 and 3 until the centroids stop changing; 

 

5.2.2 Case Studies 

Four images shown in Figure 5.3 are selected from Berkeley Segmentation Dataset and 

Benchmark (BSDB) [Martin et al, 2007] to evaluate the usability of proposed Kmeans-

ESADCC for image segmentation. The proposed method is implemented by R language 

with packages stats [Team & Worldwide, 2012] and fpc [Hennig, 2014]. The processing 

details and results of the four images are presented as follows. 

 

Figure 5.3 Orginal Images. 

Step 1 Image Dataset Preprocessing 

di ′i = (Xi − X ′i )
2
+ (Yi − Y ′i )

2
+ (Ri − R ′i )

2
+ (Gi − G ′i )

2
+ (Bi − B ′i )

2

     (a) Image 3063                (b) Image 3069                 (c) Image 12003                (d) Image 135069 
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Each image has 481 pixels in x-axis and 321 pixels in y-axis, and thus it has 154401 

pixels in total. The raw image datasets have 2-dimension space matrix and each element 

for the matrix is the 3-dimension color values (R, G, B). For the example of Image 3063, 

the color values of the first pixel are 0.3451, 0.4627 and 0.6667 in the raw image dataset. 

In the 2-D data matrix, the first two attributes values are computed as 

(1\481+1)/481=0.0021 and (1mod321)/321=0.0.0031. The attribute values of the first 4 

pixels in Image 3063 are shown in Table 5.9. 

Table 5.9 A Sample of Preprocessed Image 3063 Data Matrix 

Pixel ID Xi Yi Ri Gi Bi 

1 0.0021 0.0031 0.3451 0.4627 0.6667 

2 0.0021 0.0063 0.3686 0.4784 0.6745 

3 0.0021 0.0093 0.4039 0.4980 0.6862 

4 0.0021 0.0125 0.4392 0.5216 0.6902 

 

Step 2 Pixel Clustering by K-means 

The parameter settings of four sets of experiments are shown in Table II. For each image, 

two tests are performed by setting K as 50 and 100 respectively and the results are shown 

in Figures 2-3. By inspection of the segmentation results in Figures 2-3, K-means cannot 

solely detect the arbitrary shapes in the images, whilst the same color at the same area 

in a image is forced to be divided into small centroid-based clusters due to the Xi and Yi 

values. The next step by DBSCAN is to solve this problem. 

Step 3 Centroid Clustering by ESA-DCC 

The parameters of DBSCAN are set in the procedure of ESA-DCC parameter. In these 

cases, each set of centroids produced cluster patterns S of two parts and few centroids 

are detected as noise by ESA-DCC.  

Step 4 Clustering Results Fusion 
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The image segmentation results of Kmeans-ESADCC by fusing the clustering results 

produced are visualized in Figures 5.4-5.5. Each image has been divided into two parts, 

the object and the background. 

�

Figure 5.4: Segmentation Results of Kmeans-DBSCAN by Setting K as 50, DBSCAN Parameter 

Pairs as: (a) (0.40, 2); (b) (0.35, 3); (c) (0.31, 2); (d) (0.33, 3) 

�

Figure 5.5: Segmentation Results of Kmeans-DBSCAN by Setting K as 100, DBSCAN Parameter 

Pairs as: (a) (0.25, 3); (b) (0.35, 5); (c) (0.31, 4); (d) (0.33, 5) 
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    (a) Image 3063                    (b) Image 3069                   (c) Image 12003                   (d) Image 135069 

     (a) Image 3063                   (b) Image 3069                     (c) Image 12003                 (d) Image 135069 
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Chapter 6 Conclusions 

6.1 Summary  

Evolutionary and Swarm Algorithms (ESAs) can be used to optimize clustering 

methods. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is 

an exemplar of density-based clustering which can easily find the arbitrary shapes of 

clusters by detecting the high-density hyper-spheres and merging the close hyper- 

spheres into clusters. The main research objective of this work is to use ESA methods 

to optimize DBSCAN.  

The review section of this work includes the details of three main categories of 

clustering methods, partitioning, hierarchical and density-based clustering, four 

mainstream ESAs, Genetic Algorithm, Particle Swarm Optimization, Differential 

Evolution and Artificial Bee Colony Algorithm. A number of ESA optimized clustering 

methods and the fitness functions applied in the methods are summarized in the review 

part. 

A novel framework, Evolutionary and Swarm Algorithms Optimized Density-based 

Clustering and Classification (ESA-DCC), is proposed to overcome the drawbacks of 

classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN). 

Firstly, the two critical parameters for DBSCAN are difficult to set. To address this 

drawback, Evolutionary and Swarm Algorithms (ESA) are proposed to search the entire 

parameter space for DBSCAN. Secondly, when using DBSCAN the number of desired 

clusters cannot be pre-specified by the user. The second drawback is addressed by using 

the proposed fitness functions that take the number of desired clusters into account. 

Thirdly, DBSCAN cannot be used in a supervised learning context where the labelled 

training data can be used to drive the clustering process. This issue is addressed by a 

proposed fitness function which operates with the labelled training data, so that ESA-
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DCC can also perform in a supervised learning context. Four ESA-DCC methods 

including GA-DCC, PSO-DCC, DE-DCC and ABC-DCC are implemented and 

evaluated in this thesis. 

The first part of experiment is the evaluation of PSO-DCC using 10 datasets; 

comparisons are undertaken so as to analyze the operation of the proposed four fitness 

functions, FNK, FSINK, FDBNK, and FCD, and to analyze the operation of PSO-DCC in 

comparisons to DBSCAN, K-means and SVM. The experimental results indicate that 

FNK is suitable for clustering datasets featured arbitrary shaped clusters and any shaped 

datasets with clear boundaries. PSO-DCC applying FSINK can be used to deal with the 

general centroid-based clustering problems whilst FDBNK has no advantage in each type 

of clustering problems. By comparing the usage of DB and SIL indices in the proposed 

fitness function, it can be concluded that the clustering index in range of [0,1] is suitable 

to be used in the fitness function for unsupervised ESA-DCC method. As a supervised 

method, PSO-DCC applying FCD overperforms SVM for most of the 10 datasets. For 

the datasets which are not well understood, the proposed ESA-DCC method can be 

applied to search  possible clustering patterns by testing with different numbers of 

clusters. 

The second part experiment is to compare the performance of four ESA-DCC methods: 

GA-DCC, PSO-DCC, DE-DCC and ABC-DCC. The ESA-DCCs are tested using the 

ten datasets and proposed four fitness functions. The experiment results showed that 

GA-DCC is the most efficient one among the four methods, whilst the convergence of 

PSO-DCC is the slowest. The accuracy of DE-DCC is the highest among all the 

unsupervised ESA-DCC methods, whilst the accuracies of all the four supervised ESA-

DCC methods are similar.  

The four proposed fitness functions are non-linear. For the datasets with un-even 

density, the surface of fitness functions could be very rugged and ruleless. GA and DE 

have the mutation feature which performs better to find a good enough solution from 
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the uneven surface. The features of PSO and ABC are more suitable for optimizing 

linear functions; therefore, the advantages of PSO and ABC are hard to be shown in 

proposed methods. 

Some limitations of the proposed ESA-DCC framework are evident. Firstly, the 

computational complexity of ESA-DCC is limited by the complexity of the DBSCAN 

method which is as high as Ο #log # . Since ESA-DCC adopts the standard DBSCAN, 

and the DBSCAN runs multiple times to reach the optimal solution in ESA-DCC, the 

complexity of ESA-DCC is higher than DBSCAN. Secondly, the clustering indices 

applied in the fitness functions may not be suitable for arbritrary shaped clusters since 

the indices were proposed for measuring the goodness of centroid-based clusters. 

Thirdly, the weights for the components of a fitness function could be further 

investigated.  

In the application chapter, the proposed methods were applied in two real world cases, 

a laptop recommender system and a group of image segmentation cases. The future 

works regarding to limitations of ESA-DCC and its applications are discussed in next 

subsection. 

6.2 Future Works 

The future work mainly consists of two parts: enhancing the performance of ESA-DCC 

methods and expanding the application of proposed ESA-DCC framework.  

To enhance the performance of proposed methods, the algorithm of proposed 

framework should be improved. Firstly, a fast fall mechanism should be introduced in 

the algorithm. Once the clustering pattern results are detected as poor results, the 

current loop should stop to save time. For example, if too many noises have alreadly 

been detected, the clustering process should be terminated and start the next iteration. 

Secondly, since the experiment results of ESA-DCC methods may widely vary with the 

selected fitness function using different clustering indices, more clustering indices will 
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be tested in the proposed framework for comparisons. Thirdly, as mentiond in Section 

4.2.3, the constraint to the minimum value of minpt parameter should be proposed to 

avoid possible unsatisfied clustering results. Fourly, a clustering index for density-

based clustering methods will be proposed for the fitness function of ESA-DCC. The 

evaluation of revised proposed method should include the comparson between ESA-

DCC and other existing schemes.  

Since the advantage of DBSCAN is to find the arbitrary shaped clusters, the application 

area of ESA-DCC will be extended to high-dimension spatial dataset processing cases, 

such as face recognition and medical image segmentation. 
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Appendix 

 
Figure A1. Interface for Comparison Pairwise Rating of Laptop Attributes 
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Table A1: Computational Details of AI for Nominal Attribute of 7L  

      
(1,1) 0 (0,0,0,0) (0,0,0,0) (0,0,0,0) 0 

(1,2) -1 (-1,-1, -

1, -1) 

(0,0,0,0) (0,0,0,0) 0 

(1,3) -3 (-3,-3,-
3,-2) 

(0,0,0,1) (0,0,0, 0.016) 0.0625 

(1,4) 2 (2,2,1,2) (0,0,-1,0) (0,0,0.016,0) 0.0625 

(2,1) 1 (1,1,1,1) (0,0,0,0) (0,0,0,0) 0 

(2,2) 0 (0,0,0,0) (0,0,0,0) (0,0,0,0) 0 

(2,3) -2 (-2,-2,-

2,-1) 

(0,0,0,1) (0,0,0,0.016) 0.0625 

(2,4) 3 (3,3,2,3) (0,0,-1,0) (0,0,0.016,0) 0.0625 

(3,1) 3 (3,3,3,2) (0,0,0,-1) (0,0,0, 0.016) 0.0625 

(3,2) 2 (2,2,1,1) (0,0,-1,-1) (0,0, 0.016,0.016) 0.088 

(3,3) 0 (0,0,0,0) (0,0,0,0) (0,0,0,0) 0 

(3,4) 4 (5,5,4,4,

) 

(1,1,0,0) (0.016,0.016,0,0) 0.088 

(4,1) -2 (-2,-2,-

1,-2) 

(0,0,1,0) (0,0,0.016,0) 0.0625 

(4,2) -3 (-3,-3,-

2,-3) 

(0,0,1,0) (0,0,0.016,0) 0.0625 

(4,3) -4 (-5,-5,-

4,-4) 

(-1,-1,0,0) (0.016,0.016,0,0) 0.088 

(4,4) 0 (0,0,0,0) (0,0,0,0) (0,0,0,0) 0 

 

 

(i, j) bij Bi + Bj

T Bi + Bj

T − bij
1
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Bi + Bj

T − bij( )⎛
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⎞
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2
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⎝

⎞
⎠

2⎛
⎝⎜

⎞
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AI =
1

n2
dij

j=1

n

∑
i=1

n

∑ =
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16
= 0.042
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Table A2: Raw Matrix D of 27 Laptops 

ID Laptop Model  1L  2L  3L  4L  5L  6L  7L  8L  9L  10L  11L  12L  13L  
1 Lenovo Yoga3 14-IFI 3367 Win8 4 1 256 0 Lenovo 14 2073600 2385 1.6 6 7 

2 Lenovo Y430p AT-ISE 6830 Win8 8 0 1000 0 Lenovo 14 1049088 4385 2.5 5 6 

3 Lenovo ThinkPad E540 20C60019CD 3882 Linux 4 0 1000 0 Lenovo 15.6 1049088 1848 2.44 6 4 

4 Dell XPS 11 (XPS11D-1508T) 2039 Win8 4 1 256 Dell 0 11.6 3686400 638 1.13 6 8 

5 Dell Inspiron 15 (INS15UD-1748S) 3807 Win8 8 0 1000 Dell 0 15.6 1049088 1705 2.3 4 5 

6 Dell Inspiron 15 7000 (Ins15BD-1748) 3807 Win8 8 0 1000 Dell 0 15.6 1049088 1857 2.11 7 7 

7 MacBook 256GB 2589 OS 8 1 256 Apple 0 12 3317760 658 0.92 9 9 

8 MacBook Pro 15’ 6990 OS 16 1 512 Apple 0 15.4 5184000 2543 2.02 9 17 

9 MacBook Air (MJVE2CH/A) 3393 OS 4 1 128 Apple 0 13.3 1296000 1333 1.35 9 7 

10 ASUS A550JK4200 4361 Win8 4 0 1000 0 ASUS 15.6 2073600 4385 2.35 4 5 

11 ASUS GFX71JY4710 6980 Win8 16 0.5 1256 0 ASUS 17.3 2073600 12632 4.8 3 19 

12 ASUS U305FA5Y71 (8GB/256GB) 2503 Win8 8 4 256 0 ASUS 13.3 2073600 658 1.2 10 6 

13 Acer VN7-591G-56BD 3367 Win8 4 0 500 0 Acer 15.6 2073600 4385 2.4 4 5 

14 Acer E1-470G-33212G50Dnkk 2229 Linux 2 0 500 0 Acer 14 1049088 1213 2.1 4 2 

15 Acer VN7-791G-78KL 7060 Win8 8 0.5 1064 0 Acer 17.3 2073600 9840 3 3 8 

16 HP Envy 15-k222tx 3367 Win8 4 0 1000 HP 0 15.6 1049088 4385 2.34 4 5 

17 HP ProBook 440 G2 (J7W06PA) 3420 Win7 8 0 1500 HP 0 14 1440000 1784 1.83 9 6 

18 HP Pavilion 11-h112tu x2 (G0A07PA) 2071 Win8 4 1 128 HP 0 11.6 1049088 638 1.49 6 5 

19 Sansung 910S3G-K04 1375 Win8 4 1 128 0 Sansung 13.3 1049088 638 1.44 5 4 

20 Sansung 930X2K-K01 2492 Win8 4 1 128 0 Sansung 12.2 4096000 658 0.95 7 8 

21 Sansung 900X3K-K01 3807 Win8 8 1 256 0 Sansung 13.3 5760000 968 1.07 6 10 

22 Surface Pro 3(i3/64GB) 1675 Win8 4 1 64 Microsoft 0 12 3110400 638 0.8 9 4 

23 Surface Pro 3 (i7/512GB/Profession) 3249 Win8 8 1 512 Microsoft 0 12 3110400 1033 0.8 9 12 

24 Surface 3 (4GB/128GB) 2320 Win8 4 1 128 Microsoft 0 10.8 2457600 638 0.887 10 4 

25 Alienware 15 (ALW15ED-1718) 6980 Win8 16 0.5 1128 Alienware 0 15.6 2073600 9809 3.207 4 15 

26 Alienware 13 (ALW13ED-2708) 3807 Win8 8 1 384 Alienware 0 13.3 2073600 5249 2.058 3 13 

27 Alienware 17 (ALW17ED-2728) 7060 Win8 16 0.5 1512 Alienware 0 17.3 2073600 12632 3.78 3 21 
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Table A3: Normalized data matrix D′  of 27 Laptops for User A 

ID 1L  2L  3L  4L  5L  6L  7L  8L  9L  10L  11L  12L  13L  
1 0.477  0.692  0.250  1.000  0.169  0.000  1.000  0.809  0.360  0.189  0.500  0.600  0.286  

2 0.967  0.692  0.500  0.000  0.661  0.000  1.000  0.809  0.182  0.347  0.320  0.500  0.333  

3 0.550  0.692  0.250  0.000  0.661  0.000  1.000  0.902  0.182  0.146  0.328  0.600  0.500  

4 0.289  0.692  0.250  1.000  0.169  0.672  0.000  0.671  0.640  0.051  0.708  0.600  0.250  

5 0.539  0.692  0.500  0.000  0.661  0.672  0.000  0.902  0.182  0.135  0.348  0.400  0.400  

6 0.539  0.692  0.500  0.000  0.661  0.672  0.000  0.902  0.182  0.147  0.379  0.700  0.286  

7 0.367  0.897  0.500  1.000  0.169  0.983  0.000  0.694  0.576  0.052  0.870  0.900  0.222  

8 0.990  0.897  1.000  1.000  0.339  0.983  0.000  0.890  0.900  0.201  0.396  0.900  0.118  
9 0.481  0.897  0.250  1.000  0.085  0.983  0.000  0.769  0.225  0.106  0.593  0.900  0.286  

10 0.618  0.692  0.250  0.000  0.661  0.000  0.829  0.902  0.360  0.347  0.340  0.400  0.400  

11 0.989  0.692  1.000  0.500  0.831  0.000  0.829  1.000  0.360  1.000  0.167  0.300  0.105  

12 0.355  0.692  0.500  1.000  0.169  0.000  0.829  0.769  0.360  0.052  0.667  1.000  0.333  

13 0.477  0.692  0.250  0.000  0.331  0.000  0.732  0.902  0.360  0.347  0.333  0.400  0.400  

14 0.316  0.692  0.125  0.000  0.331  0.000  0.732  0.809  0.182  0.096  0.381  0.400  1.000  

15 1.000  0.692  0.500  0.500  0.704  0.000  0.732  1.000  0.360  0.779  0.267  0.300  0.250  

16 0.477  0.692  0.250  0.000  0.661  0.466  0.000  0.902  0.182  0.347  0.342  0.400  0.400  

17 0.484  1.000  0.500  0.000  0.992  0.466  0.000  0.809  0.250  0.141  0.437  0.900  0.333  

18 0.293  0.692  0.250  1.000  0.085  0.466  0.000  0.671  0.182  0.051  0.537  0.600  0.400  

19 0.195  0.692  0.250  1.000  0.085  0.000  0.561  0.769  0.182  0.051  0.556  0.500  0.500  

20 0.353  0.692  0.250  1.000  0.085  0.000  0.561  0.705  0.711  0.052  0.842  0.700  0.250  
21 0.539  0.692  0.500  1.000  0.169  0.000  0.561  0.769  1.000  0.077  0.748  0.600  0.200  

22 0.237  0.692  0.250  1.000  0.042  0.328  0.000  0.694  0.540  0.051  1.000  0.900  0.500  

23 0.460  0.692  0.500  1.000  0.339  0.328  0.000  0.694  0.540  0.082  1.000  0.900  0.167  

24 0.329  0.692  0.250  1.000  0.085  0.328  0.000  0.624  0.427  0.051  0.902  1.000  0.500  

25 0.989  0.692  1.000  0.500  0.746  1.000  0.000  0.902  0.360  0.777  0.249  0.400  0.133  

26 0.539  0.692  0.500  1.000  0.254  1.000  0.000  0.769  0.360  0.416  0.389  0.300  0.154  

27 1.000  0.692  1.000  0.500  1.000  1.000  0.000  1.000  0.360  1.000  0.212  0.300  0.095  



� ��
�

Bibliography 

A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms for data clustering,” 
in Soft computing for knowledge discovery and data mining. Springer, pp. 279–313, 
2008. 

A. A. Freitas, “A review of evolutionary algorithms for data mining,” in Soft 
Computing for Knowledge Discovery and Data Mining. Springer, pp. 79–111, 2008.  

A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. part 
i: �background and development,” Natural Computing, vol. 6, no. 4, pp. 467–484, 2007. 

A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization. part 
ii: hybridisation, combinatorial, multi- criteria and constrained optimization, and 
indicative applications,” Natural Computing, vol. 7, no. 1, pp. 109–124, 2008.  

A. E. Eiben, and E. S. James, Introduction to evolutionary computing, Heidelberg: 
springer, vol. 53, 2003. 

A. K. Jain, R. C. Dubes, “Algorithms for clustering data,” Prentice-Hall, Inc., 1988. 

A. K. Jain and P. J. Flynn, “Image segmentation using clustering”. IEEE Press, 1996. 

A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Lett, 2009.  

A. Shepitsen, J. Gemmell, B. Mobasher and R. Burke, “Personalized recommendation 
in social tagging systems using hierarchical clustering,” Proceedings of the 2008 ACM 
conference on Recommender systems, ACM, pp: 259-266, 2008. 

B. Akay and D. Karaboga, “A modified artificial bee colony algorithm for real-
parameter optimization,” Information Sciences, vol. 192, pp. 120–142, 2012. �  

Benchmarks, http://www.futuremark.com/benchmarks/legacy, Accessed March 2016. 

B. Desgraupes, clusterCrit: Clustering Indices. R package version 1.2.7. URL: 
https://CRAN.R-project.org/package=clusterCrit, 2016. 

B. Lika, K. Kolomvatsos and S. Hadjiefthymiades, “Facing the cold start problem in 
recommender systems,” Expert Systems with Applications, vol. 41, no. 4, pp. 2065-
2073, 2014. 

B. Zhao, “An Improved Particle Swarm Optimization Algorithm for Global Numerical 
Optimization,” in International Conference on Computational Science. Springer, pp. 
657–664, 2006. �  



� ����

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, 
pp.273–297, 1995. 

C. Hennig, “fpc: Flexible procedures for clustering,” R package version 2-1, 2014. 

C. Porcel, and E. Herrera-Viedma, “Dealing with incomplete information in a fuzzy 
linguistic recommender system to disseminate information in university digital 
libraries,” Knowledge-Based Systems, vol. 23, no.1, pp. 32-39, 2010. 

C.-Y. Chen and F. Ye, “Particle swarm optimization algorithm and its application to 
clustering analysis,” in Networking, Sensing and Control, 2004 IEEE International 
Conference on, vol. 2. IEEE, pp. 789–794, 2004. �  

C.-Y. Lin, C.-C. Chang, and C.-C. Lin, “A new density-based scheme for clustering 
based on genetic algorithm,” Fundamenta Informaticae, vol. 68, no. 4, pp. 315–331, 
2005. � 

C. Zhang, D. Ouyang, and J. Ning, “An artificial bee colony approach for clustering,” 
Expert Systems with Applications, vol. 37, no. 7, pp. 4761–4767, 2010. ��

D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,” 
Data & Knowledge Engineering, vol. 60, no. 1, pp. 208–221, 2007. �  

D. B. Fogel, Evolutionary computation: toward a new philosophy of machine 
intelligence. John Wiley & Sons, vol. 1, 2006. �  

D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in 
2007 IEEE swarm intelligence symposium. IEEE, pp. 120–127, 2007.  

D. Dua and E. Karra Taniskidou, UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of 
Information and Computer Science, 2017. 

D. E. Goldberg, “Genetic algorithms and rule learning in dynamic system control,” 
Grefenstette, vol. 876, pp. 8–15, 1985. �  

D. E. Golberg, “Genetic algorithms in search, optimization, and machine learning,” 
Addion wesley, vol. 1989, p. 102, 1989. �  

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Machine 
learning, vol. 3(2), pp. 95-99, 1988. 

D. H. Byun, “The AHP approach for selecting an automobile purchase model,” 
Information & Management, vol. 38, no. 5, pp. 289-297, 2001. 



� ����

D. Jannach, Z. Karakaya, and F. Gedikli Accuracy, “Improvements for Multi-criteria 
Recommender Systems,” Proceedings of the 13th ACM Conference on Electronic 
Commerce, ACM, pp. 674-689, 2012. 

D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” 
Technical report-tr06, Erciyes university, engineering faculty, computer engineering 
department, Tech. Rep., 2005. �  

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” 
Applied mathematics and computation, vol. 214, no. 1, pp. 108–132, 2009. � 

D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical 
function optimization: artificial bee colony (ABC) algorithm,” Journal of global 
optimization, vol. 39, no. 3, pp. 459–471, 2007. � 

D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) 
algorithm,” Applied soft computing, vol. 8, no. 1, pp. 687–697, 2008. � 

D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey: 
artificial bee colony (ABC) algorithm and applications,” Artificial Intelligence Review, 
vol. 42, no. 1, pp. 21–57, 2014. � 

D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial bee colony (abc) 
algorithm,” Applied soft computing, vol. 11, no. 1, pp. 652–657, 2011. �  

D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE transactions on 
pattern analysis and machine intelligence, no. 2, pp. 224–227, 1979. �  

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, “e1071: Misc 
functions of the department of statistics (e1071), tu wien. r package version 1.6-3,” 
Retrieved from, 2014. �  

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “The berkeley segmentation dataset and 
benchmark,” University of California, Berkeley, http://www. cs. berkeley. 
edu/projects/vision/grouping/segbench, 2007. 

D. R. Liu, and Y. Y. Shih, “Integrating AHP and data mining for product 
recommendation based on customer lifetime value,” Information & Management, vol. 
42, no. 3, pp. 387-400, 2005.  

D. R. Liu and Y. Y. Shih, “Hybrid approaches to product recommendation based on 
customer lifetime value and purchase preferences,” Journal of Systems and Software, 
vol.77, no. 2, pp. 181-191, 2005. 

D. Van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm 
optimization,” in Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, 
vol. 1. IEEE, pp. 215–220, 2003. �  



� ����

E. Portmann, “A fuzzy grassroots ontology for improving social semantic web search,” 
Proceedings of 6th international summer school on aggregation operators, Benevento, 
2011. 

E. Peis, J. M. M. del Castillo, and J. A. Delgado-López, “Semantic Recommender 
Systems. Analysis Of The State Of The Topic.” Hipertext. net 6, vol. 1-5, 2008. 

E. R. Hruschka, R. J. Campello, A. A. Freitas et al., “A survey of evolutionary 
algorithms for clustering,” IEEE Transactions on Systems, Man, and Cybernetics, Part 
C (Applications and Reviews), vol. 39, no. 2, pp. 133–155, 2009. �  

F. Murtagh, “A survey of recent advances in hierarchical clustering algorithms,” The 
Computer� Journal, vol. 26, no. 4, pp. 354-359, 1983. �  

F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm 
opti- mization,” IEEE transactions on evolutionary computation, vol. 8, no. 3, pp. 225–
239, 2004. � 

G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L. Rocha, “G-dbscan: 
A GPU accelerated algorithm for density-based clustering,” Procedia Computer 
Science, vol. 18, pp. 369–378, 2013. �  

G. Adomavicius, N. Manouselis, Y. O. Kwon, “Multi-criteria recommender systems,” 
Recommender systems handbook, Springer US, pp. 769-803, 2011. 

G. Adomavicius, and K. YoungOk, “New Recommendation Techniques for 
Multicriteria Rating Systems,” Intelligent Systems, IEEE, vol. 22, no. 3, pp. 48-55, 
2007.  

García-Gonzalo, E., and J. L. Fernández-Martínez, “A brief historical review of particle 
swarm optimization (pso),” Journal of Bioinformatics and Intelligent Control, vol. 1, 
no. 1, pp. 3–16, 2012. �  

G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm for numerical 
function optimization,” Applied Mathematics and Computation, vol. 217, no. 7, pp. 
3166–3173, 2010. �  

H. Bengtsson, R.matlab: Read and Write MAT Files and Call MATLAB from Within 
R. R package version 3.6.1. URL: https://CRAN.R-project.org/package=R.matlab, 
2016. 

H. Jiang, J. Li, S. Yi, X. Wang, and X. Hu, “A new hybrid method based on partitioning-
based dbscan and ant clustering,” Expert Systems with Applications, vol. 38, no. 8, pp. 
9373–9381, 2011. �  

J. B. Schafer, J.A. Konstan, and J. Riedl, “E-commerce recommendation applications”, 
in Applications of Data Mining to Electronic Commerce. Springer. pp. 115-153, 2001. 



� ����

J. Czekanowski, Zur differentialdiagnose der Neandertalgruppe. Friedr. Vieweg & 
Sohn, 1909. 

J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011. 
J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine learning. 
Springer, 1995, pp. 760–766. �  

J. Handl and J. Knowles, “Improvements to the scalability of multi-objective clustering,” 
in � 2005 IEEE Congress on Evolutionary Computation, IEEE, vol. 3., pp. 2372–2379, 
2005. 

J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Journal of the 
American statistical association, vol. 58, no. 301, pp. 236-244, 1963. �  

J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the 
Association for Computing Machinery, 3, 297-314, 1962.  

J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor, MI: University 
of Michigan Press, 1975.  

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: Processes of 
inference, learning, and discovery. Cambridge, MA: MIT Press, 1986.  

J. J. Grefenstette, Proceedings of the First International Conference on Genetic 
Algorithms and Their Applications. Pittsburgh, PA: Lawrence Erlbaum, 1985.  

J. J. Grefenstette, “Genetic Algorithms and Their Applications: Proceedings of the 
Second International Conference on Genetic Algorithms,” Cambridge, MA: Lawrence 
Erlbaum, 1987.  

J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang and L. Shao, “Real-Time Superpixel 
Segmentation by DBSCAN Clustering Algorithm.,” IEEE Transactions on Image 
Processing, vol. 25(12), pp. 5933-5942, 2016. 

J. Tvrdík and I. Křivý, “Hybrid differential evolution algorithm for optimal clustering,” 
Applied Soft Computing, vol. 35, pp. 502–512, 2015.  

J. MacQueen, “Some methods for classification and analysis of multivariate 
observations,” Proceedings of the fifth Berkeley symposium on mathematical statistics 
and probability. vol. 1(14), pp. 281-297, 1967. 

K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization method for 
constrained optimization problems,” Intelligent Technologies–Theory and Application: 
New Trends in Intelligent Technologies, vol. 76, no. 1, pp. 214–220, 2002. ��



� ����

K. K. F. Yuen, “Cognitive network process with fuzzy soft computing technique for 
collective decision aiding,” The Hong Kong Polytechnic University, vol. Ph.D. thesis, 
2009. 

K. K. F. Yuen, “Pairwise opposite matrix and its cognitive prioritization operators: 
Comparisons with pairwise reciprocal matrix and analytic prioritization operators,” 
Journal of the Operational Research Society, vol. 63, no. 3, pp. 322-338, 2012. 

K. K. F. Yuen(1), “The Primitive Cognitive Network Process in healthcare and medical 
decision making: Comparisons with the Analytic Hierarchy Process,” Applied Soft 
Computing, vol. 14, Part A, no. 0, pp. 109-119, 2014.  

K. K. F. Yuen(2), “Fuzzy Cognitive Network Process: Comparisons With Fuzzy 
Analytic Hierarchy Process in New Product Development Strategy,” Fuzzy Systems, 
IEEE Transactions on, vol. 22, no. 3, pp. 597-610, 2014. 

K. Lakiotaki, N. F. Matsatsinis, and A. Tsoukia, “Multicriteria User Modeling in 
Recommender Systems,” Intelligent Systems, IEEE, vol. 26, no. 2, pp. 64-76, 2011. 

K. Price, R.M. Storn, and J.A. Lampinen, Differential evolution: a practical approach 
to global optimization. Springer Science & Business Media, 2006 

K. S. Al-Sultan, “A tabu search approach to the clustering problem,” Pattern 
Recognition, vol. 28, no. 9, pp. 1443–1451, 1995.  

K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu and T. J. Chen, “Fuzzy c-means clustering 
with spatial information for image segmentation,” computerized medical imaging and 
graphics, vol. 30(1), pp. 9-15, 2006.�  

L. Specia and E. Motta, “Integrating folksonomies with the semantic web. The semantic 
web: research and applications,” Springer Berlin Heidelberg, pp. 624-639, 2007. 

M. Balabanović, and Y. Shoham, “Fab: content-based, collaborative recommendation,” 
Communications of the ACM,. vol. 40, no. 3, pp. 66-72, 1997. 

M. Clerc, “Standard particle swarm optimisation,” 2012. �  

M. Clerc, “A method to improve standard PSO,” 2009. �  

M. C. Naldi, A. C. de Carvalho, R. J. G. B. Campell et al., “Genetic clustering for data 
mining,” in Soft computing for knowledge discovery and data mining. Springer, pp. 
113–132, 2008. � 

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of 
cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B 
(Cybernetics), vol. 26, no. 1, pp. 29–41, 1996. �  



� ����

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for 
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34, pp. 
226–231, 1996. 

M. E. Celebi, Y. A. Aslandogan and P. R. Bergstresser, “Mining biomedical images 
with density-based clustering,” In Information Technology: Coding and Computing 
International Conference on IEEE, vol. 1, pp. 163-168, 2005. 

M. Mitchell, An introduction to genetic algorithms[M]. MIT press, 1998. 

M. M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, 
“A new scalable parallel dbscan algorithm using the disjoint-set data structure,” 
Proceedings of the International Conference on High Performance Computing, 
Networking, Storage and Analysis. IEEE Computer Society Press, p. 62, 2012. 

M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, “Standard particle swarm optimisation 
2011 at cec-2013: A baseline for future PSO improvements,” in 2013 IEEE Congress 
on Evolutionary Computation. IEEE, pp. 2337–2344, 2013. � 

M. Zambrano-Bigiarini and R. Rojas, “A model-independent particle swarm 
optimization software for model calibration,” Environmental Modelling & Software, 
vol. 43, pp. 5–25, 2013. � 

M. Zambrano-Bigiarini and R. Rojas, “hydropso: Particle swarm optimisation, with 
focus on environmental models,” URL http://www. rforge. net/hydroPSO, http://cran. 
r-project. org/web/packages/hydroPSO. R package version 0.3-3, 2013. 

P. Civicioglu and E. Besdok, “A conceptual comparison of the cuckoo-search, particle 
swarm optimization, differential evolution and artificial bee colony algorithms,” 
Artificial Intelligence Review, vol. 39, no. 4, pp. 315–346, 2013. �  

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” 
International journal of computer vision, vol.59(2), pp. 167-181, 2004. 

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of 
cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–
65, 1987. �  

P. Viswanath and V. S. Babu, “Rough-dbscan: A fast hybrid density based clustering 
method for large data sets,” Pattern Recognition Letters, vol. 30, no. 16, pp. 1477–1488, 
2009. �  

P. Viswanath and R. Pinkesh, “l-dbscan: A fast hybrid density based clustering method,” 
in 18th International Conference on Pattern Recognition (ICPR’06), IEEE, vol. 1, pp. 
912–915, 2006. �  



� ����

Q. Ye, W. Gao and W. Zeng, “Color image segmentation using density-based 
clustering,” In Multimedia and Expo, 2003. ICME'03. Proceedings. 2003 International 
Conference on IEEE, vol. 2, pp. II-401, 2003. 

R. Burke, “Hybrid Recommender Systems: Survey and Experiments,” User Modeling 
and User-Adapted Interaction, vol. 12, no. 4, pp. 331-370, 2002. 

R. Core Team and C. Worldwide, “The R stats package. R Foundation for Statistical 
Computing,” Vienna, Austria: Available from: http://www. R-project.org, 2002. 

R Core Team, R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL:https://www.R-project.org/, 2016 

 

R. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm 
optimization,” in International Conference on Evolutionary Programming. Springer, pp. 
611–616, 1998. �  

R. Eberhart, and Y. Shi, “Particle swarm optimization: developments, applications and 

resources,” in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, 

pp. 81–86, 2001.  

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm 

Intelligence, vol. 1(1), pp. 33–57, 2007. 

R. Storn and K. Price, “Differential evolution-a simple and efficient adaptive scheme 
for global optimization over continuous spaces,” Journal of global optimization, vol. 
11, no. 4, pp. 341–359, 1997. ��

R. Mendes, “Population topologies and their influence in particle swarm performance,” 
Ph.D. dissertation, Citeseer, 2004. ��

R. Xu, J. Xu, and D. C. Wunsch, “A comparison study of validity indices on swarm-
intelligence- based clustering,” IEEE Transactions on Systems, Man, and Cybernetics, 
Part B (Cybernet- ics), vol. 42, no. 4, pp. 1243–1256, 2012. � 

S. Alam, G. Dobbie, P. Riddle, and M. A. Naeem, “Particle swarm optimization based 
hier- archical agglomerative clustering,” in Web Intelligence and Intelligent Agent 
Technology (WI- IAT), 2010 IEEE/WIC/ACM International Conference on, vol. 2. 
IEEE, pp. 64–68, 2010. ��



� ����

S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, “Research on particle 
swarm optimization based clustering: a systematic review of literature and techniques,” 
Swarm and Evolutionary Computation, vol. 17, pp. 1–13, 2014. � 

S. Das, A. Abraham, and A. Konar, “Automatic clustering using an improved 
differential evolution algorithm,” IEEE Transactions on systems, man, and cybernetics 
Part A: Systems and Humans, vol. 38, no. 1, pp. 218–237, 2008. ��

S. Das, P. N. Suganthan, “Differential evolution: A survey of the state-of-the-art,”. 
IEEE transactions on evolutionary computation, vol. 15(1), pp. 4-31, 2011. 

S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution–
an updated survey,” Swarm and Evolutionary Computation, vol. 27, pp. 1–30, 2016.  

S. Kisilevich, F. Mansmann, and D. Keim, “P-dbscan: a density based clustering 
algorithm for exploration and analysis of attractive areas using collections of geo-
tagged photos,” in Proceedings of the 1st international conference and exhibition on 
computing for geospatial research & application. ACM, p. 38, 2010. �  

S. Niwa and S. Honiden, “Web page recommender system based on folksonomy mining 
for ITNG'06 submissions,” Information Technology: New Generations, 2006. ITNG 
2006. Third International Conference on. IEEE, pp. 388-393, 2006. 

S. Paterlini and T. Krink, “High performance clustering with differential evolution,” in 
Evolu- tionary Computation, 2004. CEC2004. Congress on, vol. 2. IEEE, 2004. �  

S. Rana, S. Jasola, and R. Kumar, “A review on particle swarm optimization algorithms 
and their applications to data clustering,” Artificial Intelligence Review, vol. 35, no. 3, 
pp. 211–222, 2011. �   

S. Urbanek, “jpeg: Read and write JPEG images,” R package version 0.1–8, 2014. 

S. Z. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering 
problem,” Pattern recognition, vol. 24, no. 10, pp. 1003–1008, 1991. � 

T. N. Tran, K. Drab, and M. Daszykowski, “Revised dbscan algorithm to cluster data 
with dense adjacent clusters,” Chemometrics and Intelligent Laboratory Systems, vol. 
120, pp. 92– 96, 2013. �  

T. Niknam and B. Amiri, “An efficient hybrid approach based on PSO, ACO and k-
means for cluster analysis,” Applied Soft Computing, vol. 10, no. 1, pp. 183–197, 2010. 

T. V. Wal, Folksonomy coinage and definition, 2007. 

W. Zou, Y. Zhu, H. Chen, and X. Sui, “A clustering approach using cooperative 
artificial bee colony algorithm,” Discrete Dynamics in Nature and Society, vol. 2010, 
2010. � 



� ��	�

X. Cui, T. E. Potok, and P. Palathingal, “Document clustering using particle swarm 
opti- mization,” in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 
2005. IEEE, pp. 185–191, 2005. � 

X. Yan, Y. Zhu, W. Zou, and L. Wang, “A new approach for data clustering using 
hybrid artificial bee colony algorithm,” Neurocomputing, vol. 97, pp. 241–250, 2012.  

X. Cui, T. E. Potok, and P. Palathingal, “Document clustering using particle swarm 
opti- mization,” in Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 
2005. IEEE, pp. 185–191, 2005. � 

Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, “Mr-dbscan: an efficient 
parallel density-based clustering algorithm using mapreduce,” in Parallel and 
Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on. IEEE, 
pp. 473–480, 2011. �  

Y. Lee, and K. A.Kozar, “Investigating the effect of website quality on e-business 
success: An analytic hierarchy process (AHP) approach,” Decision support systems, 
vol.42. no.3, pp. 1383-1401, 2006. 

Y.-T. Kao, E. Zahara, and I.-W. Kao, “A hybridized approach to data clustering,” 
Expert Systems with Applications, vol. 34, no. 3, pp. 1754–1762, 2008. �  

Y. Shi, “Particle swarm optimization: developments, applications and resources,” in 
evolutionary computation, 2001. Proceedings of the 2001 Congress on, vol. 1. IEEE, 
pp. 81–86, 2001. �  

Y. Shi, and R. Eberhart, “Empirical study of particle swarm optimization,” in 
Proceedings of the 1999 Congress on Evolutionary Computation- CEC99 (Cat. No. 
99TH8406), p. 1945, 1999. 

Y. Wang and M. M. Tseng, “Customized products recommendation based on 
probabilistic relevance model,” Journal of Intelligent Manufacturing, vol.24, no.5, pp. 
951-960, 2013. 

Z. Güngör, A. Ünler, “K-harmonic means data clustering with simulated annealing 
heuristic,” Applied mathematics and computation, vol. 184, no. 2, pp. 199–209, 2007.  

 

 
�


