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Abstract. Companies should be willing to adopt new technologies and business models to be able to stay competitive 
in the changing world, both regionally and globally. However, the US forest sector industry, including wood furniture 
sector seems to be lagging when it comes to implementing digital technologies. This study proposes a design of  Point 
of  Interest (POI) recommendation system to enhance the marketing practices to promote wood furniture stores. We 
produced a personal recommendation design utilising K-Means+ clustering, a combination between K-Means 
algorithm for spatial data clustering and Davies-Bouldin Index (DBI) methods to determine the optimal K value. 
This design can assist mobile users who are potential customers to find wood furniture store locations based on other 
users’ preferences.  
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1. Introduction 
 
Through digitalisation and more advanced 
Information Technology (IT), business has 
undergone dramatic changes. Nowadays, 
physical markets and stores are perceived to 
be no longer necessary (Arano and Spong 
2012), taking the business competition to 
another level, entering a new era of e-business 
and e-commerce. Companies that control the 
interface between the provider of the goods 
or services and the consumers are believed to 
be in a dominant position (Goodwin 2015). 
For example, e-commerce platforms such as 
Amazon, eBay, and Alibaba that were unheard 
of two decades ago, have emerged as key 
players in modern economy. 
 
There is a lot of pressure for companies to go 
online and do e-commerce as the old ways of 
doing business may rapidly become obsolete 
(Zander et al. 2015). Companies should be 

prepared for the emerging changes and willing 
to adopt new technologies and business 
models to be able to stay competitive in a 
changing world, both regionally and globally. 
The world has entered “Digital Darwinism” 
phenomenon where technology and society 
evolve faster than an organisation can 
naturally adapt, setting a new generation of 
“adapt or die” business (Solis 2014). A senior 
consultant specialised in digital 
transformation predicts that “by 2025 about 
40% of Fortune-500 companies are likely to 
vanish due to megatrends like digitalisation” 
(Zzauer 2017). 
 
The manufacturing industry is heading 
towards a digitalised and interconnected 
industrial production or “Industry 4.0”. This 
transformation will impact the ecological 
dimension such as resource efficiency and 
renewable energy and will disrupt business 
models (Beier et al. 2017). However, although 
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digitalisation has become a buzzword in 
modern business and even is claimed as the 
core of the next industrial revolution, many 
manufacturing companies struggle to 
understand its real potential (Parviainen et al. 
2017). Therefore, more research is needed 
regarding the impact of digitalisation in 
business development and business models 
that integrate products, business processes, 
sales channels, and value chains (Matt, Hess 
and Benlian 2015). 
 
In general, the U.S. forest sector seems to be 
lagging when it comes to implementing digital 
technologies (Vlosky and Westbrook 2002; 
Vlosky, Westbrook and Poku 2002). This 
leads to a big question of maintaining business 
sustainability considering the importance of 
the forest sector in the U.S. economy. The 
industry accounts for approximately four per 
cent of the total U.S. manufacturing GDP and 
manufactures over $200 billion in products 
(AF&PA 2018). By employing approximately 
950,000 workers with a payroll of 
approximately $50 billion, the industry is 
among the top 10 manufacturing sector 
employers in 45 states (AF&PA 2018). 
 
Recently, there is a forest sector study 
investigating Geographical Information 
Systems (GIS), a growing technology that is 
mostly used in biomass mapping and logistics 
domains, in the application of a company’s 4P 
marketing mix: product, place, price, and 
promotion (Quesada-Pineda, Brenes-Bastos 
and Smith 2017). Although there is a 
considerable potential to use GIS in the 
marketing applications, it would require some 
level of creativity by the interested 
stakeholders. This study’s finding of the slow 
adoption of digital system in the forest sector 
industry is similar with a Finnish study about 
the use of IT in marketing of the forest sector 
companies, even though the two studies focus 
on different technology advancement and 
have twenty years gap of time. The Finnish 
study finds that IT can be used as a 
competitive advantage in order to emphasise 
customer relationships and service (Toivonen 
1999).  
 

However, IT planning has not been integrated 
into the marketing strategy and has not been 
used to its full potential (Toivonen 1999). 
Both studies showing that, despite a fast-
growing digital technology in a rapidly 
changing world, the forest sector industry is 
still in the slow pace of digital adoption, 
specifically in the marketing system. 
 
In this study, we propose an application of 
digital technology to boost the marketing of 
forest sector. The application is called Point 
of Interest (POI) recommendation system 
that is based on recent developments in 
mobile device technology that enables 
geographical data application for social 
networks. This location-based social network 
has been used to endorse items according to 
different user preferences, as has been applied 
by giant tech companies such as Amazon, 
Google, and Netflix. Specifically, we utilise 
wood furniture store as POI because of data 
accessibility and feasibility. We chose wood 
furniture because the industry is considered as 
a low-technology, resource- and labour-
intensive sector facing globalisation (Larasatie 
2018). Therefore, there is a need to boost the 
industry ability to adapt with competitive 
digital era.  
 
The objective of this study is to investigate the 
application of Point of Interest (POI) 
recommendation system to assist potential 
customers in finding wood furniture store 
locations based on other users’ preferences 
history. We aim to produce a design of a wood 
furniture store recommendation system based 
on POI. This paper is organized as follows. 
First, we provide a contextual background 
discussing existing digitalisation and IT 
research in the forest sector, and a theoretical 
background discussing POI recommendation 
system, K-Means + clustering, collaborative 
filtering, and contextual information. This is 
followed by a description of the study design. 
Findings are then discussed from academic 
and practical perspectives. Finally, 
conclusions and future research are offered. 
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2. Literature Review 
 
2.1. Related research in the forest sector 
There has been considerable research 
investigating digitalisation and the use of IT in 
the forest sector (Table 1). Looking at the 
research methods, most studies utilised mail 
and phone survey to both primary and 
secondary forest sector industry with 

subsequent analyses ranged from simple 
descriptive statistics to multivariate statistical 
analyses. Those studies revealed that there is a 
lack of using advanced digital technologies in 
the forest sector business. Apart from pulp 
and paper companies, the North American 
forest sector companies have been slow in 
integrating IT into their business (Hewitt, 
Sowlati and Paradi 2011). 
 

 
Table 1. 
Digitalisation and IT Research in The Forest Sector (from the most recent year) 
 

AUTHORS TITLE BUSINESS 
CONTEXT 

RESEARCH OBJECTIVES 

Gazal, 
Montague and 
Wiedenbeck 
2019 

Factors Affecting 
Social Media Adoption 
Among Wood 
Products Consumers 

Social media 
adoption 

To investigate the factors affecting 
social media adoption among wood 
products consumers in the U.S. 
within the B2C marketing context  

Montague, 
Gazal and 
Wiedenbeck 
2019 

Social Media Use in the 
Wood Products 
Industry: Impact on the 
Consumer Purchasing 
Process 

The use of 
social media 

To provide an overview of consumer 
use of social media when making 
wood product purchasing decisions 

Makkonen 2018 Stakeholder 
Perspectives on the 
Business Potential of 
Digitalization in the 
Wood Products 
Industry 

Business 
potential of 
digitalisation 

To understand how wood products 
industry could utilize digitalisation to 
apply customer-oriented business 
strategies, and what development will 
be needed to achieve this goal 

Gazal et al. 2016 Forest Products 
Industry in a Digital 
Age: Factors Affecting 
Social Media Adoption 

Social media 
adoption 

To examine the factors affecting 
social media adoption among the US 
forest products companies 

Montague et al. 
2016 

Forest Products 
Industry in a Digital 
Age: A Look at e-
Commerce and Social 
Media 

The use of e-
commerce 
and social 
media 

(1) to identify the type(s) of e-
commerce and social media tools 
forest products companies use, (2) to 
identify and describe the reasons a 
company chooses to use or not use 
social media as a marketing tool, (3) 
to identify and describe perceptions 
held about social media as a 
marketing tool 
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Table 1. (continued) 
Digitalisation and IT Research in The Forest Sector (from the most recent year) 
 

AUTHORS TITLE BUSINESS 
CONTEXT 

RESEARCH OBJECTIVES 

Trang et al. 2016 Towards an 
Importance–
performance Analysis 
of Factors Affecting E-
Business Diffusion in 
the Wood Industry 

e-business 
adoption 

To investigate factors of e-business 
adoption to derive recommendations 
for improving e-business diffusion in 
the wood industry 

Zander et al. 
2015 

Integrating Industry 
Characteristics in Inter-
Organizational IS 
Adoption Models: A 
Mixed Method 
Approach 

Inter-
organizational 
system 
adoption in 
the industry  

To explain how industry 
characteristics can contribute to the 
explanation of inter-organizational 
system low adoption phenomenon 

Hewitt, Sowlati 
and Paradi 2013 

Analysis of Available 
Software Products in 
the North American 
Cabinet Industry 

Software 
product 
functionalities 
in the 
industry 

To evaluate the functionalities of 
software products currently available 
in the North American cabinet 
industry 

Hewitt, Sowlati 
and Paradi 2012 

Evaluation of Strategic 
Software Investments 
for the Canadian 
Cabinet Industry 

Software 
contribution 
in the 
industry 

To determine the types of software 
that could contribute the most to the 
future competitiveness of the 
Canadian cabinet industry using 
industry and IT expert input into an 
Analytic Network Process model 

Hewitt, Sowlati 
and Paradi 2011 

Information 
Technology Adoption 
in US and Canadian 
Forest Products 
Industries 

IT adoption 
in the 
industry 

To review key studies on IT 
adoption in US and Canadian forest 
products industries, summarizes their 
common findings, gives insights on 
these commonalities, and 
recommends future areas of 
research. 

Montague 2011 Social Network Media 
in the Forest Products 
Industry: A Look at a 
New Way of Marketing 

The use of 
social media 

To collect preliminary data on social 
media use in the hardwood forest 
products industry and determine 
manufacturers’ attitudes towards 
social media networking 

Martin 2009 Opportunities for an 
Online GIS-Based 
Wood Supply 
Management System 

Online GIS 
for 
optimizing 
supply chain 
management 
system 

To develop the concept of using an 
Internet-based, Geographic 
Information System (GIS)-
supported, optimized wood supply 
chain management system to 
overcome some of the current 
inefficiency problems 
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Table 1. (continued) 
Digitalisation and IT Research in The Forest Sector (from the most recent year) 
 

AUTHORS TITLE BUSINESS 
CONTEXT 

RESEARCH OBJECTIVES 

Vlosky and 
Smith 2003 

eBusiness in the US 
Hardwood Lumber 
Industry 

e-business 
adoption and 
use 

To examine e-business adoption and 
use in the U.S. hardwood lumber 
industry 

Vlosky and 
Youn 2002 

A Cross-National 
Study of Internet 
Adoption in the Forest 
Products Industry in 
the United States and 
South Korea 

The use of 
Internet for 
e-business 

To examine the current and future 
uses of e-business in the industry and 
identify how the forest products 
industry is investing in and 
leveraging e-business 

Vlosky and 
Westbrook 2002 

eBusiness Exchange 
between Homecenter 
Buyers and Wood 
Products Suppliers 

The use of e-
business 

To examine e-business exchanges 
between homecenter retailers and 
wood products suppliers in the 
United States from the homecenter 
perspective 

Vlosky, 
Westbrook and 
Poku 2002 

An Exploratory Study 
of Internet Adoption 
by Primary Wood 
Products 
Manufacturers in the 
Western United States 

The use of 
Internet for 
e-business 

To examine current and potential use 
of internet-based technologies to 
conduct business by solid wood 
products manufacturers in the 
western United States 

Pitis and Vlosky 
2000 

Forest Products 
Exporting and the 
Internet: Current Use 
Figures and 
Implementation Issues 

The use of 
Internet in 
the export 
activities 

To examine internet use by U.S. 
primary wood products exporters 

IT adoption is positively correlated with 
company size (Stennes et al. 2006; Shook et al. 
2002; Dupuy and Vlosky 2000) and export 
sales (Stennes et al. 2006; Pitis and Vlosky 
2000), and is determined by the quality of IT 
staff (Poku 2003) and the degree of value-
added in the products (Kozak 2002). Another 
finding is companies with more marketing 
orientation are found have higher IT adoption 
level than companies that are categorised have 
lower marketing orientation (Poku 2003; 
Hewitt, Sowlati and Paradi 2011). 
 
Despite these significant findings, there are 
very few forest-related studies looking on the 
application of digital technology in forest 
sector marketing. Those few studies including 
a study investigating GIS in application of a 
company’s 4P marketing mix (Quesada-
Pineda, Brenes-Bastos and Smith 2017) and a 

study of the use of IT in marketing of Finnish 
forest industry (Toivonen 1999). 
 
2.2. Point of interest (POI) recommendation system 
POI recommendation system is a subclass of 
information filtering system, seeking to 
predict a “rating" or “preference" that a user 
will possibly assign to items or locations 
(Ricci, Rokach and Shapira 2011). The basic 
computation concepts of this 
recommendation system are user, item, and 
transaction. User is a subject in the POI 
recommendation system, the item is a 
recommended object, and transaction is a 
rating given to the item in the system.  
 
There is a considerable amount of research 
investigating the application of the 
recommendation system on business areas 
such as entertainment, tourism, and clothing 
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(Table 2). Collaborative filtering in 
recommendation system can handle problems 
such as low accuracy, data sparsity, and 
scalability (Isinkaye, Folajimi, and Ojokoh 
2015).  However, despite its advantages, 

collaborative filtering has a weakness. The 
increase of the users over time may lead to an 
increase in the computational complexity of 
the system (Tuan, Hung and Wu 2016).  

 
Table 2. 
Recommendation System Research on Business Areas (from the most recent year) 
 

AUTHORS TITLE BUSINESS 
AREAS 

BUSİNESS 
CONTEXT/ 
OBJECTİVE 

DATA 
ANALYTİC 

TECHNIQUES 
Katarya and 
Verma 2017 

An Effective 
Collaborative 
Movie 
Recommender 
System with 
Cuckoo Search 

Entertainment Movie 
Recommender 
System 

K-means cuckoo 
and 
collaborative 
filtering 

Kesorn, 
Juraphanthong 
and Salaiwarakul 
2017 

Personalized 
Attraction 
Recommendation 
System for 
Tourists Through 
Check-in Data 

Tourism Knowing 
what kind of 
attractions 
tourists are 
interested in 

PTIS framework 
is combination 
beetween 
collaborative 
filtering, content 
based filtering 

Zhang et al. 
2017 

Trip Outfits 
Advisor: 
Location-
Oriented 
Clothing 
Recommendation 

Clothing Trip outfits for 
travel 
destinations 

convolutional 
neural network 
combined with 
the support 
vector machine 
(mCNN-SVM) 

Jiang et al. 2016 Personalized 
Travel Sequence 
Recommendation 
on Multi-Source 
Big Social Media 

Tourism Recommend a 
personalized 
travel sequence 

Recommender 
system 
(collaborative 
filtering) 

Kim, Kim and 
Ryu 2009 

Personalized 
Recommendation 
over a Customer 
Network for 
Ubiquitous 
Shopping 
 

Clothing Ubiquitous 
Shopping 
Recommendatıon 
system 

collaborative-
filtering-based 
recommender 
system 

Chen and Chen 
2005 

A Music 
Recommendation 
System Based on 
Music and User 
Grouping 

Entertainment Making music 
recommendation 
system based on 
music and user 
grouping 

The content-
based, 
collaborative 
filtering 

2.3. K-Means+ Clustering 
In this study, we utilized K-Means+, a 
combination between the K-Means algorithm 

for spatial data clustering and Davies-Bouldin 
Index (DBI) methods to determine the 
optimal K value (the number of clusters). K-
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means is an unsupervised learning algorithm 
that is relatively not complicated but can solve 
the well-known clustering problem such as 
low accuracy, time consumed and scalability 
(Zahra et al. 2015). K-Means has been used to 
solve recommendation system problems in 
some fields such as movies (Katarya and 
Verma 2017), books (Zhang 2016), and music 
(Chen and Chen 2005). However, the K-
Means algorithm has a weakness in which the 
result of clustering has a high dependency on 
the value of defined K (Zahra et al. 2015). 
Therefore, the K-Means algorithm is 
combined with DBI method to determine the 
K value.  
 
The combination between DBI and K-means 
algorithm aims to generate the most optimal 
K value of the dataset, producing more 
optimal clustering results (Sitompul 2018). As 
a cluster validation method, DBI can optimise 
the clustering results of K-means by 
maximising inter-cluster distance and 
minimising intra-cluster distance. The smaller 
the DBI value (non-negative ≥ 0), the better 
cluster results.  
 
2.4. Collaborative filtering 
The most frequently used technique in the 
location-based recommendation system is 
collaborative filtering due to its high accuracy 
and its ability to handle data sparsity (Isinkaye, 
Folijimi, and Ojokoh 2015; Tuan, Hung and 
Wu 2016). Collaborative filtering considers 
the similarity between users to generate 
recommendation on items. The system will 
first look for users who share the same rating 
patterns with the active user. Then, the ratings 
from those like-minded users will be used to 
calculate a prediction for the other active 
users. 
 
2.5. Contextual information 
Contextual information (e.g. location, time, or 
social network activities) is beneficial to build 
a personalised recommendation system since 
the relevant contextual information will 
improve the accuracy of consumer preference 
prediction (Odić et al. 2013; Adomavicius et 
al. 2011). Contextual information can be 
acquired automatically by the system (e.g. 

location, season (Fall/ Spring/ Winter/ 
Summer), and daytime (morning/ afternoon/ 
night)) or optionally added by the users (e.g. 
budget and feeling (sad/happy)) (Achmad et 
al. 2017). 
 
 
3. Methodological 
 
Step 1. Applying K-Means+ Clustering 
K-Means+ is applied by combining the K-
Means algorithm and DBI method. K-Means 
algorithm is an unsupervised algorithm that is 
grouping the data based on central point 
(centroid) of the cluster that is the closest to 
the data. K-Means is used to avoid unlabeled 
data (i.e. data without defined categories or 
groups). The goal of this algorithm is to find 
groups in the data, with several groups 
represented by K variable. Each centroid 
defines one of the clusters, and each data 
point is assigned to its nearest centroid 
iteratively based on the Euclidean distance 
squared. Data points are clustered based on 
the feature similarities.  

The Euclidean distance is defined by 
equation #1 (Maulik and Bandyopadhyay 
2012):  

  
Where  is the Euclidean distance 
between  and , ci is the number of data 
points in ith cluster, and c is the number of 
cluster centres (centroid).  
The next centroid is calculated by 
equation #2 (Jahiruzzaman and Hossain 
2015): 

 
Where ci is the number of data points in 
ith cluster. Iteration is conducted in a 
clustering process to the specific 
threshold that was previously determined. 

 
DBI is an internal evaluation method that 
measures a cluster based on cohesion value 
and separation value (Davies and Bouldin 
1979). In the grouping process, cohesion is 
defined as the sum of data closeness/ 
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proximity with centroid from following 
cluster (inter-cluster), while the separation is 
based on the distance between the centroid 
and its cluster (intra-cluster). 

DBI is calculated by equation #3 (Davies 
and Bouldin 1979): 

 
 
Where K is the number of clusters, and 

. The lowest 
DBI value, (non-negative ≥ 0), s the 

cluster obtained from the given value of K 
(Sundar, Chitradevi and Geetharamani 
2012). 

 
Step 2. Location (POI) Based Collaborative 
Filtering 
There are three recommendation system steps 
(Figure 1). First, the similarity between a user 
and another user is calculated. Cosine 
similarity is used because it is more 
appropriate in calculating binary data 
(Elavarasi and Akilandeswari 2014). 

 

Data

Model BuildingSimilarity Calculation Generation Prediction

TopN Recommendation

. 
 
Figure 1.  

Recommendation System Steps 

 
Cosine similarity is calculated by equation 
#4 (Elavarasi and Akilandeswari 2014): 

 
With n(A) is the number of items selected 
by user A, n(B) is the number of items 
selected by user B, and n(A∩B) is the 
number of items selected by both A and 
B users. 

 
Second step is model building, derived from 
the similarity calculation of the entire users 
who participate as models in the resting 
process. During the process, system seeks the 
similarities among active users taken from the 
models that have been created. Once the 
similarity of active users is found, it proceeds 
to generating prediction to build a 
recommendation system. 
 
Location recommendations to active users are 
done in the third step, generation prediction. 

In the user-based collaborative filtering, the 
nearest neighbours of an active user are 
selected based on similarity to the user. There 
are two steps in building recommendations 
for active users:  

(1) Find the N nearest neighbour with the 
most exceptional similarity value and  

(2) Calculate the predicted value of items 
selected by the nearest users but has 
never been selected by the active 
users, with equation #5 (Aggarwal 
2016): 

𝑃𝑟𝑒𝑑(𝑎, 𝑝) = 𝑠𝑖𝑚(𝑎, 𝑢) ×  𝑟
∈

 

 
 
4. Findings and Discussion 
 
Since this study is exploratory by nature, we 
utilized literature reviews such as purchase 
intention variables (e.g. Yaacob and Baroto 
2019) to determine the taxonomy of 
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contextual information. For the wood 
furniture store recommendation system, we 
used store rating, product price, location 
(spatial information), and wood products as 
contextual information of the 
recommendation system (Figure 2). In the 

future, we will survey to determine the 
contextual information. Then, we will test the 
independence between the contextual 
information on the users' ratings for items. 
This method is expected to increase the 
effectiveness of the system. 

 

Wood Furniture Store

Store Rating

Product 
Price

Location

Wood 
Products

Cheap

Expensive

Latitude

Longitude

Id_location

Type

Wood 
species  

Figure 2.  
Contextual Information of Wood Furniture Store Recommendation System Based on POI 
 
Contextual information of rating (R) consists 
of a scale of 1-5 in which 5 is the highest 
rating. Rating represents the value of item 
recommendation by users. The higher the 
rating, the more recommended the items. 
Contextual information of location (L) is 
broadly divided into the user location (buyer) 
and wood furniture store location based on 
geographical, address, place, or coverage 
(Aggarwal 2016; Hu et al. 2014). This 
contextual information can be used to 
recommend the wood furniture store and 
suggest the location of the nearest 
destinations.  
 

The wood furniture store recommendation 
system based on POI (Figure 3) starts to work 
when users or potential customers input 
furniture specification that they are looking 
for, such as product type (e.g. tables/chairs) 
and wood species (e.g. Pine/Oak). The system 
will do data processing and then, clustering 
the data based on K values determined by 
DBI method. The clustering will result in 
grouping the users based on locations with 
user similarity levels. In this stage, 
collaborative filtering techniques are used to 
filter the clustering results to be only top five 
recommended wood furniture stores. 
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Dataset K-Means+ 
Clustering

Location

User-item 
matrix

Step-1 : User location filtering

Location 
candidateLocation Sorting

Step-2: prediction generation using 
location-based collaborative filtering

To
pN

 R
ek

om
en

da
tio

n

POI Recommendation System Building

User

Pre-
processing

User similarity 

Furniture 
specification

POI of wood furniture storesRating

Figure 3.  
Research Design of Wood Furniture Store Recommendation System Based on POI 
 
Based on our design, the POI 
recommendation system can be applied to 
enhance the marketing practices in forest 
sector industry. Mobile users that are also 
potential customers will have a new 
experience of wood furniture shopping. With 
up to date marketing applications, wood 
furniture industry is expected to be able to 
maintain their business sustainability. 
 
 
5. Conclusion 
 
Wood furniture store recommendation based 
on POI is a digital innovation that can be 
implemented to answer the challenges of  
increasing number of  mobile users. Our 
design can be an alternative for improving the 
mobile business model in the mobile 
marketing environment. 
 
For the next step, we will do a survey for 
analysing our contextual information design. 
We will also collect data from real-world 
mobile users and conduct an empirical 

experiment to validate the usefulness of  our 
design. The real-world data will be pre-
processed to eliminate noise before being 
clustered. Then, we will apply our study 
design to evaluate the recommendation 
system. The process to build the wood 
furniture store recommendation system based 
on POI will consist of  these sequence steps: 
clustering and optimisation process, 
recommendation process utilising 
collaborative filtering and method analysis 
and evaluation. 
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