91,704 research outputs found

    Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

    Get PDF
    Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems with first order dynamics, sensor delay and a bounded time-varying parameter in the nonlinear part. The paper suggests a novel scheme for this estimation problem that guarantees exponential convergence to an interval that depends on the sensitivity of the system. The system is allowed to be nonlinear parameterized and time dependent, which are characteristics of the industrial problem we study. The approach requires the input nonlinearity to be a sector nonlinearity in the time-varying parameter. Salient features of the approach include simplicity of design and implementation. The efficacy of the adaptive observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel

    Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    Get PDF
    BACKGROUND: We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. RESULTS: We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. CONCLUSION: Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems

    Modeling and Estimation of Biological Plants

    Get PDF
    Estimating the state of a dynamic system is an essential task for achieving important objectives such as process monitoring, identification, and control. Unlike linear systems, no systematic method exists for the design of observers for nonlinear systems. Although many researchers have devoted their attention to these issues for more than 30 years, there are still many open questions. We envisage that estimation plays a crucial role in biology because of the possibility of creating new avenues for biological studies and for the development of diagnostic, management, and treatment tools. To this end, this thesis aims to address two types of nonlinear estimation techniques, namely, the high-gain observer and the moving-horizon estimator with application to three different biological plants. After recalling basic definitions of stability and observability of dynamical systems and giving a bird's-eye survey of the available state estimation techniques, we are interested in the high-gain observers. These observers may be used when the system dynamics can be expressed in specific a coordinate under the so-called observability canonical form with the possibility to assign the rate of convergence arbitrarily by acting on a single parameter called the high-gain parameter. Despite the evident benefits of this class of observers, their use in real applications is questionable due to some drawbacks: numerical problems, the peaking phenomenon, and high sensitivity to measurement noise. The first part of the thesis aims to enrich the theory of high-gain observers with novel techniques to overcome or attenuate these challenging performance issues that arise when implementing such observers. The validity and applicability of our proposed techniques have been shown firstly on a simple one-gene regulatory network, and secondly on an SI epidemic model. The second part of the thesis studies the problem of state estimation using the moving horizon approach. The main advantage of MHE is that information about the system can be explicitly considered in the form of constraints and hence improve the estimates. In this work, we focus on estimation for nonlinear plants that can be rewritten in the form of quasi-linear parameter-varying systems with bounded unknown parameters. Moving-horizon estimators are proposed to estimate the state of such systems according to two different formulations, i.e., "optimistic" and "pessimistic". In the former case, we perform estimation by minimizing the least-squares moving-horizon cost with respect to both state variables and parameters simultaneously. In the latter, we minimize such a cost with respect to the state variables after picking up the maximum of the parameters. Under suitable assumptions, the stability of the estimation error given by the exponential boundedness is proved in both scenarios. Finally, the validity of our obtained results has been demonstrated through three different examples from biological and biomedical fields, namely, an example of one gene regulatory network, a two-stage SI epidemic model, and Amnioserosa cell's mechanical behavior during Dorsal closure

    Health Monitoring of Nonlinear Systems with Application to Gas Turbine Engines

    Get PDF
    Health monitoring and prognosis of nonlinear systems is mainly concerned with system health tracking and its evolution prediction to future time horizons. Estimation and prediction schemes constitute as principal components of any health monitoring framework. In this thesis, the main focus is on development of novel health monitoring techniques for nonlinear dynamical systems by utilizing model-based and hybrid prognosis and health monitoring approaches. First, given the fact that particle filters (PF) are known as a powerful tool for performing state and parameter estimation of nonlinear dynamical systems, a novel dual estimation methodology is developed for both time-varying parameters and states of a nonlinear stochastic system based on the prediction error (PE) concept and the particle filtering scheme. Estimation of system parameters along with the states generate an updated model that can be used for a long-term prediction problem. Next, an improved particle filtering-based methodology is developed to address the prediction step within the developed health monitoring framework. In this method, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizons. Particles are then propagated to future time instants according to a resampling algorithm in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models (DLM) for development of an observation forecasting scheme. A novel hybrid architecture is then proposed to develop prognosis and health monitoring methodologies for nonlinear systems by integration of model-based and computationally intelligent-based techniques. Our proposed hybrid health monitoring methodology is constructed based on a framework that is not dependent on the structure of the neural network model utilized in the implementation of the observation forecasting scheme. Moreover, changing the neural network model structure in this framework does not significantly affect the prediction accuracy of the entire health prediction algorithm. Finally, a method for formulation of health monitoring problems of dynamical systems through a two-time scale decomposition is introduced. For this methodology the system dynamical equations as well as the affected damage model, are investigated in the two-time scale system health estimation and prediction steps. A two-time scale filtering approach is developed based on the ensemble Kalman filtering (EnKF) methodology by taking advantage of the model reduction concept. The performance of the proposed two-time scale ensemble Kalman filters is shown to be more accurate and less computationally intensive as compared to the well-known particle filtering approach for this class of nonlinear systems. All of our developed methods have been applied for health monitoring and prognosis of a gas turbine engine when it is affected by various degradation damages. Extensive comparative studies are also conducted to validate and demonstrate the advantages and capabilities of our proposed frameworks and methodologies

    Linear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response functions

    Get PDF
    The Volterra series approach has been widely used for the analysis of nonlinear systems. Based on the Volterra series, a novel concept named Nonlinear Output Frequency Response Functions (NOFRFs) was proposed by the authors. This concept can be considered as an alternative extension of the classical frequency response function for linear systems to the nonlinear case. In this study, based on the NOFRFs, a novel algorithm is developed to estimate the linear stiffness and damping parameters of multi-degree-of-freedom (MDOF) nonlinear systems. The validity of this NOFRF based parameter estimation algorithm is demonstrated by numerical studies

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation
    corecore