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Abstract: The Volterra series approach has been widely used for the analysis of 
nonlinear systems. Based on the Volterra series, a novel concept named Nonlinear Output 
Frequency Response Functions (NOFRFs) was proposed by the authors. This concept can 
be considered as an alternative extension of the classical frequency response function for 
linear systems to the nonlinear case. In this study, based on the NOFRFs, a novel 
algorithm is developed to estimate the linear stiffness and damping parameters of multi-
degree-of-freedom (MDOF) nonlinear systems. The validity of this NOFRF based 
parameter estimation algorithm is demonstrated by numerical studies.  

Nomenclature 
x(t), u(t) the output and input of the nonlinear system 

( )X jω , )( ωjU  the spectrum of the system output and input 
),...,( n1nh ττ  the nth order Volterra kernel 
),...,( 1 nn jjH ωω  the nth order GFRF 
)( ωjGn  the nth order NOFRF 
nΩ  the frequency components of the nth order output of the system 

subjected to harmonic inputs 
Ω  the frequency components of the output of the system 
)( ωjG H

n  the nth order NOFRF of the system subjected to harmonic inputs 
M, K, C the system mass, damping and stiffness matrices 
mi, ki, ci the ith mass, damping and stiffness parameter  

)(ΔLSS , )(Δ&LDS  the restoring forces of the nonlinear spring and damper 
ri, wi (i=1,…,P) the nonlinearity related parameters  

NonF  the nonlinear force  
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)(txi , )( ωjX i  the displacement and the output frequency response of the ith mass 
),...,( 1),( jjih ττ  the jth order Volterra kernel associated to the ith mass 
)(),( ωjG li  the lth order NOFRF associated to the ith mass 
)(1, ωλ jii

n
+  the ratio between the nth NOFRFs of the ith and (i+1)th masses 

W the vector of the unknown parameters to be estimated 
)(),1( ωjZL−Γ  the term introduced by the nonlinear force NonF  for the Zth order 

NOFRF. 

1 Introduction 

Various methods have been developed to estimate the stiffness and damping parameters 
for linear structures or machines. Most of these are based on modal analysis techniques, 
which were essentially derived from the Frequency Response Functions (FRFs) [1]-[5]. 
To tackle the problem with finite element model updating, Arruda and Santos [1] 
estimated the mechanical parameters via curve fitting for measured frequency response 
functions using a non-linear least-squares method. Sunder and Ting [2] used the system 
parameter estimation method to detect the occurrence and location of damage on steel 
jacket offshore platforms. Also based on the FRFs, Hwang put forward an identification 
method for stiffness and damping parameters of connections using test data for a 
structure attached to another structure via connections [3]. Woodgate studied the problem 
of identifying a positive semi-definite symmetric stiffness matrix for a stable elastic 
structure from measurements of its displacement in response to some set of static loads 
[4]. Most recently, Živanović, Pavic and Reynolds [5] described a lively full-scale 
footbridge from its numerical modelling and dynamic testing. Their work is a successful 
application of the FRFs to system parameter estimation in practice.  

However, there are certain types of qualitative behaviour, which cannot be produced by 
linear models [6], encountered in engineering, for example, the generation of harmonics 
and inter-modulation behaviours. In cases where these effects are dominant or significant 
nonlinear behaviours exist, nonlinear models are required to describe the system, and the 
linear FRFs are no longer suitable to investigate the system dynamics.  

The Volterra series approach [7] is a powerful tool for the analysis of nonlinear systems, 
which extends the familiar concept of the convolution integral for linear systems to a 
series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra 
kernels are known as the kernel transforms, Higher-order Frequency Response Functions 
(HFRFs) [8], or Generalised Frequency Response Functions (GFRFs), and these provide 
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a convenient tool for analyzing nonlinear systems in the frequency domain. If a 
differential equation or discrete-time model is available for a system, the GFRFs can be 
determined using the algorithms in [9]~[11]. The GFRFs can be regarded as the extension 
of the classical frequency response function (FRF) of linear systems to the nonlinear case. 
So far only a few researchers have addressed the problem of nonlinear system parameter 
estimation for nonlinear systems using the GFRFs. Lee proposed a straightforward 
method to estimate the nonlinear system parameters using the GFRFs [12]. Khan and 
Vyas [13] employed the relationships between higher order GFRFs and first order GFRF 
to estimate the non-linear parameters. Later, Chatterjee and Vyas [14] further developed 
this method by using a method of recursive iteration.  

In engineering practice, for many mechanical and structural systems, more than one 
coordinate is needed to sufficiently describe the system dynamics. The result is a MDOF 
model. In addition, there are considerable mechanical and structural systems that behave 
nonlinearly just because one or a few components within the system are nonlinear. One 
well known example is beam structures [15] with breathing cracks, the global nonlinear 
behaviours of which are caused only by the cracked elements. Such nonlinear MDOF 
systems can be regarded as locally nonlinear MDOF systems. An important fact is that, 
for such nonlinear systems, the linear stiffness and damping are still the decisive 
characteristics which mainly determine the system behaviour. Therefore, a knowledge of 
the linear stiffness and damping are still of great significance for understanding the whole 
system dynamical properties.  

In this paper, a novel method is proposed to estimate the linear stiffness and damping 
parameters for locally nonlinear MDOF systems. The method is based on the concept of 
Nonlinear Output Frequency Response Functions [16], which was recently proposed by 
the authors and is an alternative extension of the FRF to the nonlinear case. NOFRFs are 
one dimensional functions of frequency. This allows the analysis of nonlinear systems to 
be implemented in a manner similar to the analysis of linear systems and provides great 
insight into the mechanisms which dominate many important nonlinear behaviours. 

The paper is organized as follows. Section 2 provides a brief introduction to the new 
concept of NOFRFs. Some important properties of the NOFRFs for locally nonlinear 
MDOF systems, which were first revealed in the authors’ recent studies [17], are given in 
Section 3. The NOFRF based algorithm for the linear stiffness and damping parameter 
estimation is presented in Section 4.  In Section 5, a numerical study is used to verify the 
effectiveness of the presented algorithm. Finally conclusions are given in Section 6. 
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2. Nonlinear Output Frequency Response Functions  

2.1 Nonlinear Output Frequency Response Functions under General Inputs  

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. 
The Volterra series extends the well-known convolution integral description for linear 
systems to a series of multi-dimensional convolution integrals, which can be used to 
represent a wide class of nonlinear systems [8].  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 
can be described in the neighbourhood of the equilibrium by the Volterra series 

1
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where  x(t) and u(t) are the output and input of the system, ),...,( n1nh ττ  is the nth order 
Volterra kernel, and N denotes the maximum order of  the system nonlinearity. Lang and 
Billings [8] derived an expression for the output frequency response of this class of 
nonlinear systems to a general input. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 
produce the system output frequency response. In (2), ( )X jω  and )( ωjU are the 
spectrum of the system output and input respectively, ( )nX jω  represents the nth order 
output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [8], and 
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ωωω =++ nL1 . Equation (2) is a natural extension of the well-known linear relationship 
( ) ( ) ( )X j H j U jω ω ω= , where )( ωjH  is the frequency response function, to the 

nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 
input. For nonlinear systems described by equation (1), however, the relationship between 
the input and output frequencies is more complicated. Given the frequency range of an 
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input, the output frequencies of system (1) can be determined using the explicit expression 
derived by Lang and Billings in [8].  

Based on the above results for the output frequency response of nonlinear systems, a new 
concept known as Nonlinear Output Frequency Response Function (NOFRF) was 
recently introduced by Lang and Billings [16]. The NOFRF is defined as 
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under the condition that 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 
determined using the algorithm in [8]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , equation (2) can be written as  

1 1
( ) ( ) ( ) ( )

N N

n n n
n n

X j X j G j U jω ω ω ω
= =

= =∑ ∑                               (6) 

which is similar to the description of the output frequency response for linear systems. 
The NOFRFs reflect a combined contribution of the system and the input to the system 
output frequency response behaviour. It can be seen from equation (4) that )( ωjGn  
depends not only on nH  (n=1,…,N) but also on the input )( ωjU . For any structure, the 
dynamical properties are determined by the GFRFs nH  (n= 1,…,N). However, from 
equation (3) it can be seen that the GFRF is multidimensional [18][19], which makes the 
GFRFs difficult to measure, display and interpret in practice. Feijoo, Worden and 
Stanway [20][21] demonstrated that the Volterra series can be described by a series of 
associated linear equations (ALEs) whose corresponding associated frequency response 
functions (AFRFs) are easier to analyze and interpret than the GFRFs. According to 
equation (4), the NOFRF )( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ nL1  with the weights depending on the test input. Therefore )( ωjGn  can be 
used as an alternative representation of the dynamical properties described by nH . The 
most important property of the NOFRF )( ωjGn  is that it is one dimensional, and thus 
allows the analysis of nonlinear systems to be implemented in a convenient manner 
similar to the analysis of linear systems. Moreover, there is an effective algorithm [16] 
available which allows the estimation of the NOFRFs to be implemented directly using 
system input output data. 
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2.2 Nonlinear Output Frequency Response Functions under Harmonic Inputs 

Harmonic inputs are pure sinusoidal signals which have been widely used for the 
dynamic testing of many engineering structures. Therefore, it is necessary to extend the 
NOFRF concept to the harmonic input case.  

When system (1) is subject to a harmonic input 
)cos()( βω += tAtu F                                                     (7) 

Lang and Billings [8] showed that equation (2) can be expressed as 
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Defining the frequency components of the nth order output of the system as nΩ , then 
according to equation (8), the frequency components in the system output can be 
expressed as 
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Equation (13) explains why some superharmonic components will be generated when a 
nonlinear system is subjected to a harmonic excitation. In the following, only those 
components with positive frequencies will be considered. 

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as 
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under the condition that 
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n  is only valid over nΩ  defined by equation (12). Consequently, the 

output spectrum ( )X jω  of nonlinear systems under a harmonic input can be expressed as 
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 
)( ωjG H

n  over the nth order output frequency range nΩ = { }nkkn F ,,1,0,)2( L=+− ω  is 
equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

nk ,,0 L= . 

3. The NOFRFs of Locally Nonlinear MDOF Systems 

The locally nonlinear MDOF systems to be investigated are shown in Figure 1. 

 
Figure 1, a multi-degree freedom oscillator 

If all springs and dampers of the systems have linear properties, then the governing 
motion equation of the MDOF oscillator can be written as 

)(tUKxxCxM =++ &&&                                                    (19) 
where M is the system mass matrix, 
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x is the displacement, '
1 ),,( nxxx L= , and u(t) is the external force acting on the right end 

of the oscillator, ( )')(,,0)( tutU L= .  

Equation (19) forms the basis of the modal analysis method, which is a well-established 
approach for determining dynamic characteristics of engineering structures. In the linear 
case, the displacements )(txi  ( ni ,,1L= ) can be expressed as 

∫
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where )()( th i  ( ni ,,1L= ) are the impulse response functions that are determined by 
equation  (19), the Fourier transforms of which are the well-known FRFs of the system. 

Assume the characteristics of the Lth spring and damper are nonlinear, and the restoring 
forces )(ΔLSS  and )(Δ&LDS  of the spring and damper are the polynomial functions of the 
deformation Δ and its derivative Δ&  respectively, e.g.,  
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where P is the degree of the polynomials. Without loss of generality, further assume 
nL ,1≠ . Then the motion of the oscillator in Figure 1 can be described by equations 

(22)~(26) as follows. 

For the masses that are not connected to the Lth spring and damper, the governing motion 
equations are  
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011 =−+−+ −− nnnnnnnnnn xkxkxcxcxm &&&&                               (24) 

Denote 1rkL =  and 1wcL = , then for the mass that is connected to the left of the Lth 
spring and damper, the governing motion equation is  
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For the mass that is connected to the right of the Lth spring and damper, the governing 
motion equation is 
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Then, the governing motion equation of the locally nonlinear oscillator can be written as 

 )(tUNFKxxCxM +−=++ &&&                                      (29) 
The systems described by (27)~(29) are typical locally nonlinear MDOF systems. The Lth 
nonlinear spring and damper components can lead the whole system to behave 
nonlinearly. Based on the Volterra series theory of nonlinear systems, the relationships 
between the displacements )(txi  ( ni ,,1L= ) and the input force )(tu  of the MDOF 
systems are 
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where ),...,( 1),( jjih ττ  is the jth order Volterra kernel associated to the ith mass. In the 
frequency domain, the relationship (30) can be expressed as 
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where )(),( ωjG li  is the lth order NOFRF associated to the ith mass. 

In a recent study by the authors [17], a series of relationships between the NOFRF 
)(),( ωjG li , ( ni ,,1L= , Nl ,,1L= ) of locally nonlinear MDOF systems were derived, the 

results reveal, for the first time, very important characteristics of this general class of 
nonlinear systems. These relationships in [17] give a comprehensive description how the 
linear system parameters govern the propagation of the nonlinear effect caused by the 
nonlinear component in the system and how the nonlinear component affects the 
vibration propagation in the system. It has been rigorously proved in [17] that, for any 
two consecutive masses, the NOFRFs satisfy the following relationships 
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and )(),1( ωjZL−Γ  is a term introduced by the nonlinear force NonF  for the Zth order 
NOFRF. As the form of )(),1( ωjZL−Γ  will not play crucial role in this study, its explicit 
expression will not be given. 

4. The Linear Stiffness and Damping Estimation Method 

Based on the results in Section 3, a novel method is developed in this section to estimate 
the linear stiffness and damping parameters for locally nonlinear MDOF systems. This 
method requires that the masses im , ( ni ,,1L= ) of the systems are known a priori. This 
is a reasonable assumption since the mass distribution of a mechanical structure or 
machine can usually be predetermined during the design stage and will not change 
significantly with the change of the structure’s or machine’s conditions even after years’ 
operation. In addition, the mass distribution can be easily obtained using the FE method 
or other methods.   

Consider Z= 1 in (35), it is known that  
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1
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1
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cjjcjjj
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ii
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i
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i
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i
iiii

+
+

++−

+
++−

=−+−+

−+−
  ( 11 −≤≤ ni )  (37) 

Denote 
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and  
[ ]Tiiii

ii kckcW 11
1,

++
+ =    

Equation (37) can then be written as 
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
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++−
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1

21,
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1 )(Im
)(Re

)(
ωωλ
ωωλ

ω
jm
jm

Wj ii
i

ii
iiiiii     ( 11 −≤≤ ni ) (38) 

where 1, +iiW  is the parameter vector to be estimated. 

Consider Z = 2 in (35), an equation similar to (38) can be obtained for LLi ,1−≠ as  
( )
( ) ⎥
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For i=L-1 and i=L, the extra terms introduced by the nonlinear force NonF  should be 
taken into account. When i=L-1, the result is 
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which can further be  written as  
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For i=L, the result is 
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According to equation (36), it can be known 
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Substituting equation (43) into equation (42) yields 
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When a sinusoidal input of frequency Fω  is used to excite the system, considering 
)(1,

1 F
ii jωλ +  and )2(1,

2 F
ii j ωλ + , equations (38), (39), (41) and (44) can be written as 
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Consider ))2(Re( ,1
2 F

LL j ω−Λ and ))2(Im( ,1
2 F

LL j ω−Λ as unknown parameters to be estimated, 
then there are totally 2n+2 parameters to be estimated in equations (45)~(48). There are 
clearly 4(n-1) equations in total in (45)~(48), and, obviously, when 3≥n , the number of 
equations is sufficient to estimate the unknown parameters. 
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then equations (45)~(48) can be assembled in the following form 
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where both )(1 FjωΦ  and )2(2 Fj ωΦ are a )22()1(2 +×− nn  matrix that can be 
constructed using a similar procedure given in Appendix 1.  
From equation (49), a Least Square based approach can be used to estimate the 
parameters in W as below 
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Equation (50) provides a simple way to estimate the linear stiffness and damping 
coefficients for a locally nonlinear MDOF system from the system NOFRFs. This 
algorithm requires the information of the 1st and 2nd order NOFRFs under sinusoidal 
inputs, which can readily be evaluated using an effective algorithm developed in [16] 
from the system input-output data.  

The linear parameter estimation algorithm can be summarized as the following 
procedures: 

Step 1: Estimate  )()1,( Fi jG ω  and )2()2,( Fi jG ω ( ni ≤≤1 ) under sinusoidal inputs using 
the algorithm developed in [16]. 

Step 2:  Calculate )(1,
1 F

ii jωλ +  and )2(1,
2 F

ii j ωλ +  ( 11 −≤≤ ni ). 

Step 3:  Calculate   )(1,,1 ωjiii
Z

+−Π , )(1, ωjii
Z
+Π , ( 11 −≤≤ ni , Z = 1, 2).  

Step 4:  Construct matrixes )(1 FjωΦ  and )2(2 Fj ωΦ using the method in Appendix 1. 

Step 5:  Estimate the linear parameters using equation (50). 

It is worth pointing out that although the algorithm above can only be used to determine 
the system linear parameters, the results themself are still of great significance in 
engineering system analysis such as, for example, in the modal analysis of MDOF 
systems. In addition the algorithm also provides a premise for the identification of all 
system characteristic parameters. It can be observed that the term )(),1( ωjZL−Γ  in (36) is 
related to the system nonlinear parameters. This provides a basis for the system nonlinear 
parameter estimation. Generally, )(),1( FNL jNω−Γ  can be expressed as  

)(),,()(),,()( ,1
),()(

,1
)2,(22)2(),1( F

LL
NNFNNNF

LL
NFFNL jFwrQjFwrQjN ωωωωω −−

− ++=Γ L   (51) 

where ),,()( Fiii wrQ ω )2( Ni ≤≤  are the functions which only depend on the nonlinear 
parameters ir  and iw and driving frequency Fω , )(,1

),( F
LL

iN jF ω− )12( −≤≤ Ni  depend on 
both the linear parameters and the nonlinear parameters lr  and lw , )12( +−≤≤ iNl , and 

)(,1
),( F
LL

NN jF ω−  only depends on the system linear parameters. According to equation (51), 
an effective method for the estimation of both the system linear and  nonlinear parameters 
with the linear parameter estimation using the above algorithm as the first step can be 
developed. Because of space limitations, this work will be reported in details in a 
subsequent paper. 

5 Numerical Study 
To verify the effectiveness of the proposed parameter estimation method, a damped 6-DOF 
oscillator is used, in which the fourth spring is nonlinear. As widely used in modal analysis, 
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the damping is assumed to be proportional damping, e.g., KC μ= .The values of the 
system parameters are 

161 === mm L ,  ,106.3 4
3211 ×==== kkkr  ,8.0 1654 kkkk ===  

01.0=μ , 2
12 8.0 rr ×= , 3

13 4.0 rr ×= , 11 rw μ= , 02 =w  
and the input is a harmonic force, )202sin()( tAtu ×= π . 

If only the NOFRFs up to the 4th order are considered, according to equations (16) and (17), 
the frequency components of the outputs of the 6 masses can be written as 

)()()()()( 3)3,(1)1,( FF
H
iFF

H
iFi jUjGjUjGjX ωωωωω +=

)2()2()2()2()2( 4)4,(2)2,( FF
H
iFF

H
iFi jUjGjUjGjX ωωωωω +=  

                        )3()3()3( 3)3,( FF
H
iFi jUjGjX ωωω =  

)4()4()4( 4)4,( FF
H
iFi jUjGjX ωωω =                                     )6,,1( L=i  (52) 

From equation (52), it can be seen that two different inputs with the same waveform but 
different strengths are sufficient to estimate the NOFRFs up to 4th order. This is the basic 
principle of the algorithm proposed in [16] for the evaluation of the NOFRFs. Therefore, in 
this numerical study, two different inputs are used, A=0.8 and A=1.0 respectively. The 
simulation studies were conducted using a fourth-order Runge–Kutta method to obtain 
the forced responses of the system. The evaluated results of )(1 F

H jG ω , )(3 F
H jG ω , 

)2(2 F
H jG ω  and )2(4 F

H jG ω of the six different masses are given in Table 1.  

From the evaluated NOFRFs given in Table 1, )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + ,  )2(1,
2 F

ii j ωλ +  and 
)2(1,

4 F
ii j ωλ +  (i=1,2,3,4,5) can be evaluated using equations (32), (33) and (34). Moreover, 

the theoretical values of )(1,
1 F

ii jωλ + , )(1,
3 F

ii jωλ + , )2(1,
2 F

ii j ωλ +  and )2(1,
4 F

ii j ωλ +   
(i=1,2,3,4,5) can also be calculated using the method in [17]. Both the evaluated and 
theoretical values of )(1,

1 F
ii jωλ + , )(1,

3 F
ii jωλ + ,  )2(1,

2 F
ii j ωλ +  and )2(1,

4 F
ii j ωλ +  (i=1,2,3,4,5) 

are given in Tables 2 and Table 3. The results in Table 2 and Table 3 clearly show that 
properties (32)~(34) are tenable. Obviously, )(1,

1 F
ii jωλ + ≠ )(1,

3 F
ii jωλ +  for i=3, 4, 5. 

Table 1, the evaluated results of )(1 F
H jG ω , )(3 F

H jG ω , )2(2 F
H jG ω  and )2(4 F

H jG ω  
 )(1 F

H jG ω  
(×10-6) 

)(3 F
H jG ω  
(×10-7) 

)2(2 F
H jG ω   
(×10-8) 

)2(4 F
H jG ω   
(×10-8) 

Mass1 -3.5291+6.0326i 1.2996 -2.3216i 2.9244-12.3188i -2.9300 -1.4749i 

Mass2 -7.7472+10.2849i 2.8744-3.9706i 12.5722-19.9209i -4.2684-4.3621i 

Mass3 -12.8459+11.1323i 4.8088-4.3299i 31.2120-15.1678i -1.9539-8.7759i 

Mass4 -19.4063+6.3260i -1.7437+2.4212i -31.6321+11.0973i 0.9027+ 8.6380i 

Mass5 -23.5870-4.9427i 0.5327+ 3.1966i -5.1398+17.9423i 4.2148+2.3702i 
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Mass6 -21.4328-21.4620i 1.8419+ 3.4348i 9.3753+15.5360i 4.4776-1.4327i 

Table 2, the evaluated and theoretical values of )(1,
1 F

ii jωλ +  and )(1,
3 F

ii jωλ +  
)(1,

1 F
ii jωλ +  )(1,

3 F
ii jωλ +   

Evaluated Theoretical Evaluated Theoretical 

i=1 0.5391 - 0.0630i 0.5391 - 0.0630i 0.5391-0.0630i 0.5391-0.0630i 

i=2 0.7407 - 0.1588i 0.7407 - 0.1588i 0.7407-0.1588i 0.7407-0.1588i 

i=3 0.7674 - 0.3235i 0.7654 - 0.3206i -2.1194-0.4597i -2.1194-0.4597i 

i=4 0.7343 - 0.4221i 0.7353 - 0.4228i 0.6485+ 0.6536i 0.6485+0.6536i 

i=5 0.6648 - 0.4351i 0.6646 - 0.4359i 0.7874+0.2672i 0.7874+0.2672i 

Table 3, the evaluated and theoretical values of  )2(1,
2 F

ii j ωλ +  and )2(1,
4 F

ii j ωλ +  
)2(1,

2 F
ii j ωλ +  )2(1,

4 F
ii j ωλ +   

Evaluated Theoretical Evaluated Theoretical 

i=1 0.5085 - 0.1741i 0.5085 - 0.1741i 0.5085-0.1741i 0.5085 - 0.1741i 

i=2 0.5768 - 0.3580i 0.5768 - 0.3580i 0.5768-0.3580i 0.5768 - 0.3580i 

i=3 -1.0284 + 0.1187i -1.0284 + 0.1187i -1.0284+0.1187i -1.0284 + 0.1187i 

i=4 1.0383 + 1.4656i 1.0383 + 1.4655i 1.0383+1.4656i 1.0383 + 1.4655i 

i=5 0.7002 + 0.7534i 0.7002 + 0.7534i 0.7002+0.7534i 0.7002 + 0.7534i 

Table 4, the estimated and real values of stiffness and damping 
 Evaluated( 410× ) Real( 410× )   Evaluated( 210× ) Real( 210× ) 
k1 3.6001 3.6000  c1 3.6000 3.6000 

k2 3.6001 3.6000  c2 3.6000 3.6000 

k3 3.6001 3.6000  c3 3.6000 3.6000 

k4 2.9208 2.8800  c4 2.8573 2.8800 

k5 2.8800 2.8800  c5 2.8799 2.8800 

 k6 2.8800 2.8800     c6 2.8799 2.8800 

Using the evaluated results of )(1,
1 F

ii jωλ +  and )2(1,
2 F

ii j ωλ +  (i=1,2,3,4,5), the linear 
stiffness  and damping can be estimated by the method proposed in the previous section, 
and the results are given in Table 4. It can be seen that the estimated results match the 
theoretical results very well except a slightly difference for k4 and c4. This difference 
mainly comes from the facts that the truncated Volterra series have to be applied in 
practice and the truncation can raise error only to the estimations of k4 and c4.  
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6 Conclusions and Remarks 

A new method for the estimation of the linear stiffness and damping parameters of locally 
nonlinear MDOF systems has been developed. This method is based on the concept of 
Nonlinear Output Frequency Response Functions (NOFRFs) which were derived from 
the Volterra series approach of nonlinear systems. This method assumes that the system 
masses and the position of the system nonlinear component are known priori. The masses 
can be readily obtained at the system design stage. The position of the nonlinear 
component can be determined using directly the relationships (32)~(34) [17], which can 
also be applied to detect the crack position in beams or structures. From these results, all 
linear stiffness and damping parameters of a nonlinear MDOF system can be estimated 
using the proposed method directly using the system input-output test data, which are of 
great engineering significance such as, e.g., in system modal analysis. In addition, 
although the method is demonstrated on the particular case where the linear oscillators 
are coupled in series and fixed at one end while excited in the other end, this method can 
be directly applied (without any modification) to the cases where the excitation force is 
acting at any position of the system, not only limited to the end. 

It is worthy noting here that the method is only valid when the system response can be 
described using the Volterra series, and basically, the validity of the Volterra series is 
dependent on the amplitude of the external force. Regarding the problem of determining 
the domain of validity of the Volterra series, many researchers have made many efforts, 
including the authors ourselves. The existing literature includes [22]~[26]. Our recent 
research studies have shown that, for the nonlinear damping system, the validity domain 
is very wide; on the other hand, the validity domain of the nonlinear stiffness system is 
relatively narrow, for example, at the region where the jump phenomenon [27] occurs, 
the Volterra series representation is not valid. However, from the system identification 
view point, because the amplitude of the external force is controllable, we can try to 
conduct the identification experiments such that the system always works in a region 
where the Volterra series theory works. In addition, when conducting the parameter 
estimation, theoretically, the choice of the excitation frequency can be arbitrary. However, 
according to our experiences, in practical applications, because the method will make use 
of the nonlinear effect, therefore, it might be better to choose an excitation frequency that 
can make the nonlinear effect significant, for example,  one half of a resonant frequency 
where the second harmonic component often reaches a maximum. More information 
about the resonances in nonlinear systems can be found in [28].  
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It is worth pointing out that the present study also provides a necessary basis for the 
identification of all characteristic parameters for the considered MDOF systems. With the 
algorithm proposed in this paper as the first step, an effective method can be developed to 
determine both the linear and nonlinear parameters of the MDOF systems. Because of 
space limitations, this method will be reported in details in a subsequent paper. 

Appendix 1:   Construction of )(1 FjωΦ  and )2(2 Fj ωΦ  
The construction of )(1 FjωΦ  using this procedure is given as below.   

For 21 −≤≤ Li , i.e., the first 2(L-2) rows of )(1 FjωΦ , 
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For i=L, 
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For 1−≤< niL  
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The construction of )2(2 Fj ωΦ  is similar except for the cases where i=L-1 and i=L. 
For i=L-1 
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and for i=L 
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