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Introduction

The knowledge of state variables of a dynamical system is crucial either to build a controller or
simply to obtain real-time information on the system for decision-making or monitoring. One
way to obtain such variables consists of combining a prior knowledge about physical systems
with experimental data to design an algorithm, called observer, whose role is to process the
incomplete and imperfect information to construct an estimate of the state variables.

The synthesis of such algorithms has attracted great attention from the automatic control com-
munity. Initially, the research was naturally oriented toward estimating the state of linear
systems. An optimal solution was first developed in the early 1960s by Kalman [1] in a stochas-
tic approach and later by Luenberger [2] in a deterministic context. These algorithms are still
widely used nowadays but since linear systems cover a small percentage of processes, nonlinear
solutions were quickly considered. A direct extension of these results to the nonlinear case is
obtained by means of a local linearization of the system dynamics along the estimated trajec-
tories: this is the principle of the extended Kalman filter [3]. However, the overall stability of
this observer in the presence of strong nonlinearities has not been proven and its performance
has been regularly challenged in practice.

Because of the lack of a general design method for nonlinear systems like in the linear case,
several methods have been developed in the literature, where each method corresponds to a
specific class of nonlinear systems. The concept of error linearization was introduced by [4], [5]
for a certain class of mono-output nonlinear dynamical systems, then it was extended by [6], [7]
to multi-output dynamic systems. From there, several algorithms have been proposed giving
rise to various approaches: algebraic [8–10], geometric [11–13] and direct transformations [14].

A straightforward approach to nonlinear observer design is to use linear feedback. If the non-
linearities are globally Lipschitz, then it is possible to use LMIs (Linear Matrix Inequalities)
combined with Lyapunov or Riccati equations which allow for elegantly treating the Lipschitz
terms in the error dynamics [15–18]. More precisely, the gain of the observer is designed through
the resolution of an LMI problem; consequently, an observer exists only if the considered LMI
problem is feasible [15], [19]. As pointed out in [20], the feasibility of the LMI problems consid-
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2 Introduction

ered is generally not known a priori and is to be determined numerically. Several approaches
have been explored in the literature to extend the class of systems considered. Among these,
are sliding mode observers which are based on the theory of variable structure systems [21–24].
Their implementation difficulties have justified on the one hand the appearance of different vari-
ants concerning the choice of the mathematical function used and on the other hand an extension
to higher orders.

Another important technique for nonlinear observer design is the high-gain observer introduced
initially by [25] in 1973. The main idea is to use sufficiently large observer gains so as to
dominate the nonlinearities (more precisely their Lipschitz constant) in the estimation error
dynamics. The synthesis of these observers is carried out either in the initial coordinates (under
certain structural hypotheses of the system) or in the canonical bases associated with uniformly
observable or U-uniformly observable systems. Two key papers, published in 1992 [26,27], repre-
sent the beginning of two schools of research on high-gain observers. The work by Gauthier [26]
started a line of work that is exemplified by [28–34]. This line of research covered a wide class
of nonlinear systems and obtained global results under global growth conditions. Although
high-gain observers are successfully applied in problems of estimation ( [28, 35] or [32]), output
feedback control [36–39] and output regulation (see [40] or [41]), their use in practical applica-
tions is made hard by a certain number of drawbacks related to numerical implementation. To
overcome these drawbacks, several solutions have been advanced in the literature.

The so-called extended high-gain observer is presented in [42] which is composed of an Extended
High Gain Observer (EHGO), for the estimation of the derivatives of the output, augmented
with an Extended Kalman Filter (EKF) for the estimation of the states of the internal dynamics.
Then, to account for the presence of disturbances acting on the system, several methods have
been proposed based on gain adaptation methods [43–47]. The selection of a high gain stems
also from the need to account for the nonlinearities in the error dynamics, which are usually
modeled as Lipschitz functions. In [48], the gain adaptation allows one to account for the
unknown Lipschitz constant. Resetting rules are proposed in [49]. The use of a time-varying
gain is addressed in [50,51], where a Lyapunov functional is used for the purpose of the stability
analysis of the estimation error instead of the classical quadratic Lyapunov function.

A new high-gain observer able to overtake some of the drawbacks of classical structures has been
recently proposed in [52] for a class of nonlinear systems with one output and dimension n ≥ 3.
The cornerstone of this contribution consists in limiting the power of the observer gain to 2
regardless of the dimension of the system, thus improving the performance of the observer with
respect to the measurement noise on the output. Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon is still present. Along this route,
two similar schemes, which follow the seminal idea presented in [52], have been recently proposed,
in [53] and [54], to address the implementation issues and the peaking phenomenon. In [53], the
author shows how to build a high-gain observer by interconnecting a cascade of reduced-order
high-gain observers of dimension 1. A simpler scheme, without feedback interconnection terms,
that cannot ensure asymptotic estimate, is presented in [54]. It is worth stressing, however, that
even if the dimension of the observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers.

The first objective of this thesis is to tackle the challenging performance issues that arise when
implementing high-gain observers. We develop a new high-gain observer design method for
nonlinear systems that has a lower gain compared to the standard high-gain observer in addition
to reducing the sensitivity to noise measurement. The idea is to augment the dimension of the
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system such that the nonlinearity does not depend on the last components of the augmented
system and explore the HG/LMI observer developed in [55] to decompose the nonlinearity of
the system which allows reducing the Lipschitz constant directly and proportionally related to
the high-gain tuning parameter.
The problem of observer design of nonlinear systems has been addressed from a different ap-
proach using moving horizon estimation techniques (MHE) [56–59]. The objective of these
methods is to provide numerical solutions instead of analytical ones. These solutions are ob-
tained from the resolution, in the sense of least squares, of a system of nonlinear equations
using optimization algorithms. In the second part of the thesis, we study the problem of state
estimation for quasi-LPV systems using a moving horizon estimator, this latter will be used to
estimate both state and variable parameters of the system simultaneously, using the pessimistic
and optimistic approaches.

Thesis Organization

Chapter 1 is essentially devoted to a presentation of some essential preliminaries necessary for
the understanding of this thesis. A reminder of the notions of stability and observability for
nonlinear systems is provided in the first section followed by a state-of-the-art on the different
existing methods concerning the design of observers for nonlinear systems in a non-exhaustive
way.
In chapter 2, the reader can find an overview of the theory of high-gain observers for nonlinear
systems where the main features and the main drawbacks are highlighted. Then, we introduce
a novel methodology for the design of high-gain observers by exploiting the HG/LMI technique
recently developed in [55] and the system state augmentation approach that helps in overcoming
(or improving) some of the main drawbacks of the standard high-gain observers. First, particular
attention is given to the design of the high-gain observer using the state augmentation approach,
where we highlight the benefit of augmenting the state of the system in achieving a desired
(fast) state reconstruction without sacrificing the steady-state performance in the presence of
measurement noise. The obtained results are then combined with HG/LMI technique which gives
us more degrees of freedom in selecting the observer parameter, thus getting a good tradeoff
between fast state reconstruction and measurement noise attenuation. We devote chapter 3 to
the problem of state estimation using the moving horizon estimation technique (MHE). We focus
on estimation for nonlinear systems that can be written under the form of quasi-linear-parameter-
varying systems (quasi-LPV) with bounded unknown parameters. Moving-horizon estimators
are proposed to estimate the state of such systems according to two different formulations, i.e.,
"optimistic" and "pessimistic". In the former case, we perform estimation by minimizing the least-
squares moving-horizon cost with respect to both state variables and parameters simultaneously.
In the latter, we minimize such a cost with respect to the state variables after picking up the
maximum with respect to the parameters. The analysis of the convergence of the MHE estimator
will be discussed.
Chapter 4 is dedicated to the validation of the obtained results on biological applications,
namely, genetic regulatory network (GRN), SI epidemic model, and dorsal closure of Am-
nioserosa cells. First, a brief presentation of the models under study is given with the motivation
to perform state estimation on these models. Simulation results are reported at the end of the
chapter to demonstrate the applicability of the proposed high-gain observer and MHE.
This dissertation closes with an overall conclusion highlighting the various points raised in the
four chapters and offering a set of perspectives for future work.
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Chapter

1 An overview on observer tools
for nonlinear systems

"Measure what is measurable and make it
measurable what is not so."

Galileo Galilei

Contents
1.1 Intoduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 On the stability of dynamical systems: Lyapunov stability . . . . . 6

1.2.1 Stability of continuous-time systems . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Stability of discrete-time systems . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Lyapunov direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 The indirect method of Lyapunov . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 Input-to-state stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 On the observability of dynamical systems . . . . . . . . . . . . . . . 15
1.3.1 Observation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Observability for nonlinear systems . . . . . . . . . . . . . . . . . . . . . 16

1.4 Observers for nonlinear systems: a state of the art . . . . . . . . . . 19
1.4.1 Nonlinear transformation methods . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Extended observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Generalized Luenberger observer (GLO) . . . . . . . . . . . . . . . . . . 24
1.4.4 Triangular normal forms: high-gain designs . . . . . . . . . . . . . . . . 25
1.4.5 Variable structure observers . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.6 State estimation via online optimization . . . . . . . . . . . . . . . . . . 28

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



6 Chapter 1. An overview on observer tools for nonlinear systems

Identification
p

OBSERVER

Model
state x

parameter p
disturbance d

Control
x

measured outputsknown inputsactions

Monitoring
d

Figure 1.1: Observer as the heart of control systems

1.1 Intoduction
The problem of observer design naturally arises in a system approach, as soon as one needs some
internal information from external (directly available) measurements. This need for internal
information can be motivated by various purposes: modeling (identification ), monitoring (fault
detection), or driving (control) the system. All those purposes are jointly required when aiming
at keeping a system under control, as summarized by figure 1.1 hereafter. This makes the
reconstruction -or observer-problem the heart of a general control problem.

The purpose of this chapter is to introduce the problem of observer design for nonlinear systems
and presents some basic notions of observability and stability which will be needed throughout
the thesis. In this framework, section 1.2 provides a set of definitions concerning stability (in
the Lyapunov sense) and observability of nonlinear dynamic systems. Unlike linear systems, the
observability of nonlinear systems is related to inputs and initial conditions, hence the funda-
mental role played by inputs in the study of the observability of nonlinear models is highlighted,
and the concepts of universal inputs and uniformly observable systems are introduced in sec-
tion 1.3. Section 1.4 provides state-of-the-art about different observer design techniques for
nonlinear systems. We will see that there is no universal method for the synthesis of observers,
and the possible approaches are either an approximation of linear algorithms or specific nonlin-
ear algorithms. We present the main approaches developed in this field since the 1970s, a field
which nevertheless remains very open, in particular, because of the multiplicity and diversity of
nonlinear systems.

1.2 On the stability of dynamical systems: Lyapunov stability
In this section, we recall some fundamental concepts on the stability of continuous-time and
discrete-time dynamical systems. By definition, the analysis of the stability of a dynamic system
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amounts to studying its behavior (its trajectory) when its initial state is close to a point of
equilibrium [60, 61]. The main notions of stability are presented here, namely the asymptotic
stability, exponential stability, in the sense of Lyapunov’s theory.

1.2.1 Stability of continuous-time systems

Consider a dynamic system that satisfies:

ẋ(t) = f(x, t), x (t0) = x0, x(t) ∈ Rn (1.1)

We will assume that f(x, t) satisfies the standard conditions for the existence and uniqueness of
solutions. Such conditions are, for instance, that f(x, t) is Lipschitz continuous with respect to
x, uniformly in t, and piecewise continuous in t. A point xe is an equilibrium point of (1.1) if
f (xe, t) = 0, ∀t ≥ t0, x (t0) and t0 are the initial state and initial time, respectively. We denote
by x (t, t0, x0) the solution of system (1.1) at t ≥ t0.
Throughout this thesis, only the stability of the estimation error is studied. For this reason,
we assume that the nonlinear system (1.1) possesses a unique equilibrium point xe = 0. This
assumption leads to representing some definitions of the stability of system (1.1) at the origin.

Definition 1.1: Stability

The equilibrium point xe = 0 (origin) of the system (1.1) is said to be stable (in the sense
of Lyapunov) at t = t0 if for any ϵ > 0, there exists a positive scalar δ (ϵ, t0) > 0 such that

∥x (t0)∥ < δ (ϵ, t0) ⇒ ∥x (t, t0, x0)∥ < ϵ, ∀t ≥ t0 ≥ 0 (1.2)

The system (1.1) is said to be unstable if it is not stable.

Lyapunov stability is a very mild requirement on equilibrium points. In particular, it does not
require that trajectories starting close to the origin tend to the origin asymptotically. Also,
stability is defined at a time instant t0. Uniform stability is a concept that guarantees that the
equilibrium point is not losing stability. We insist that for a uniformly stable equilibrium point
xe, δ in the Definition 1 not be a function of t0, so that equation 1.2 may hold for all t0 as
defined in the following.

Definition 1.2: Uniform stability

The equilibrium point xe = 0 of system (1.1)is said to be uniformly stable (in the sense of
Lyapunov), if for any ϵ > 0, there exists a positive scalar δ(ϵ) such that:

∥x (t0)∥ < δ(ϵ) ⇒ ∥x (t, t0, x0)∥ < ϵ, ∀t ≥ t0 ≥ 0 (1.3)

Definition 1.3: Asymptotic stability

The equilibrium point xe = 0 of system 1.1 is asymptotically stable at t = t0, if

1. xe = 0 is stable, and
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2. xe = 0 is locally attractive, i.e., there exists a positive scalar δ (t0) such that:

∥x (t0)∥ < δ (t0) ⇒ lim
t→∞

∥x (t, t0, x0)∥ = 0, ∀t ≥ t0 ≥ 0 (1.4)

As in the previous definition, asymptotic stability is defined at t0. Uniform asymptotic stability
requires:

1. xe = 0 is uniformly stable, and

2. xe = 0 is uniformly locally attractive, i.e., there exists δ independent of t0 for which
equation (1.4) holds. Further, it is required that the convergence in (1.4) is uniform.

Definitions 1, 2, and 3 are local definitions; they describe the behavior of a system near an
equilibrium point. We say an equilibrium point xe is globally stable if it is stable for all initial
conditions xe ∈ Rn. Global stability is very desirable, but in many applications, it can be
difficult to achieve. Notions of uniformity are only important for time-varying systems. Thus,
for time-invariant systems, stability implies uniform stability and asymptotic stability implies
uniform asymptotic stability.

Definition 1.4: Exponential stability

The equilibrium point xe = 0 is an exponentially stable equilibrium point of of system (1.1)
if there exist constants m,α > 0andϵ > 0 such that

∥x(t)∥ ≤ m exp (−α (t− t0)) (1.5)

for all t ≥ t0, ∥x(t0)∥ ≤ ϵ.. The largest constant α which may be utilized in (1.5) is called
the rate of convergence. The system is said to be globally exponentially stable if the bound
in equation (1.5) holds for all xe ∈ Rn.

Exponential stability is a strong form of stability; in particular, it implies uniform, asymp-
totic stability. Exponential convergence is important in applications because it can be shown
to be robust to perturbations and is essential for the consideration of more advanced control
algorithms.
Finally, we say that an equilibrium point is unstable if it is not stable.

1.2.2 Stability of discrete-time systems

Consider the discrete-time system described by the following difference equation

x(k + 1) = f(x(k), k), x (k0) = x0 (1.6)

where x(k) ∈ Rn is the state vector, f(x(k), k) : Rn × R+ → Rn is a continuous vector func-
tion, x (k0) and k0 are the initial state vector and the initial time, respectively. We denote by
x (k, k0, x0) the solution of the difference equation (D.2) at k ≥ k0.
The stability definitions for continuous-time systems (1.1) remain valid for discrete-time sys-
tems (1.6), except for the exponential stability which changes.
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Definition 1.5: Exponential stability

The equilibrium point xe = 0 of system (1.6) is said to be locally exponentially stable, if
there exists positive scalars m, ϵ > 0, and 0 < ρ < 1 such that :

∥x(k)∥ ≤ m ∥x(k0)∥ ρ(k−k0) (1.7)

for all k ≥ k0, ∥x(k0)∥ ≤ ϵ.. The largest constant α which may be utilized in (1.5) is called
the rate of convergence. The system is said to be globally exponentially stable if the bound
in equation (1.7) holds for all xe ∈ Rn.

1.2.3 Lyapunov direct method

The use of the previous definitions to check the stability of a system of the form (1.1) (resp.
(1.6)) requires an explicit solution of the differential equation (1.1) (resp. the difference equation
(1.6)). In most cases, it is not easy to compute the explicit solution of a nonlinear system or even
impossible, which makes these definitions difficult to apply. as an alternative, Lyapunovâ€™s
direct method (also called the second method of Lyapunov) allows us to determine the stability
of a system without explicitly integrating the differential equation (1.1) (resp. (1.6)). The
method is a generalization of the idea that if there is some "measure of energy" in a system, then
we can study the rate of change of the energy of the system to ascertain stability. To make this
precise, we need to define exactly what one means by a "measure of energy." Let Bϵ be a ball of
size around the origin, Bϵ = x ∈ Rn : ∥x∥ < ϵ .

Definition 1.6: Locally positive definite function (lpdf)

A continuous function V : Rn × R+ → R is a locally positive definite function if for some
ϵ > 0 and some continuous, strictly increasing function α : R+ → R,

V (0, t) = 0 and V (x, t) ≥ α(∥x∥) ∀x ∈ Bϵ,∀t ≥ 0.

A locally positive definite function is locally like an energy function. Functions that are globally
like energy functions are called positive definite functions:

Definition 1.7: Positive definite function (pdf)

A continuous function V : Rn × R+ → R is a positive definite function if it satisfies the
conditions of Definition 6 and, additionally, α(p) → ∞ as p → ∞.

To bound the energy function from above, we define decrescence as follows:

Definition 1.8: Decrescent function

A continuous function V : Rn×R+ → R is decrescent if for some ϵ > 0 and some continuous,
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strictly increasing function β : R+ → R,

V (x, t) ≤ β(∥x∥) ∀x ∈ Bϵ, ∀t ≥ 0

Definition 1.9: Lyapunov function

A function V (x, t) of class C1 is a local Lyapunov function (resp. global) for system (1.1),
if it is proper positive definite and if there exists a subset V0 ⊂ Rn containing the origin,
such that ∀x ∈ V0 (resp. x ∈ Rn ) :

V̇ (x, t) = ∂V (x, t)
∂t

+ ∂V (x, t)
∂x

f(x(t), t) ≤ 0.

If V̇ (x, t) < 0, then V (x, t) is called a strict Lyapunov function for system (1.1).

Using these definitions, the following theorem allows us to determine the stability of a system
by studying an appropriate Lyapunov function. Roughly, this theorem states that when V (x, t)
is a locally positive definite function and V̇ (x, t) ≤ 0 then we can conclude the stability of
the equilibrium point. In what follows, we denote by V̇ the time derivative of V along the
trajectories of the system, V̇

∣∣∣
ẋ=f(x,t)

.

Theorem 1.1

Let V (x, t) be a non-negative function with derivative V̇ along the trajectories of the system.

1. If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the
origin of the system is locally stable (in the sense of Lyapunov).

2. If V (x, t) is locally positive definite and decrescent, and V̇ (x, t) ≤ 0 locally in x and
for all t, then the origin of the system is uniformly locally stable (in the sense of
Lyapunov).

3. If V (x, t) is locally positive definite and decrescent, and −V̇ (x, t) is locally positive
definite, then the origin of the system is uniformly locally asymptotically stable.

4. If V (x, t) is positive definite and decrescent, and −V̇ (x, t) is positive definite, then
the origin of the system is globally uniformly asymptotically stable.

Remark 1.1

Theorem 1 gives sufficient conditions for the stability of the origin of a system. It does
not, however, give a prescription for determining the Lyapunov function V (x, t). Since the
theorem only gives sufficient conditions, the search for a Lyapunov function establishing the
stability of an equilibrium point could be arduous. However, it is a remarkable fact that
the converse of Theorem 1 also exists: if an equilibrium point is stable, then there exists a
function V (x, t) satisfying the conditions of the theorem. However, the utility of this and
other converse theorems is limited by the lack of a computable technique for generating
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Lyapunov functions.

For the case of exponential stability:

Definition 1.10: Exponential stability

xe = 0 is an exponentially stable equilibrium point of system (1.1) if and only if there exists
an ϵ > 0 and a function V (x, t) which satisfies

α1∥x∥2 ≤ V (x, t) ≤ α2∥x∥2,

V̇
∣∣∣
ẋ=f(x,t)

≤ −α3∥x∥2,∥∥∥∥∂V∂x (x, t)
∥∥∥∥ ≤ α4∥x∥

for some positive constants α1, α2, α3, α4, and ∥x∥ ≤ ϵ. The equilibrium point x∗ = 0 is
globally exponentially stable if the bounds in Theorem 4.5 hold for all x.

Remark 1.2

By choosing a quadratic Lyapunov function V (x(t), t) = xT (t)Px(t), P = P T > 0, then the
origin of the linear system ẋ(t) = Ax(t) is globally exponentially stable if P is a solution
for the matrix equation ATP + PA = −Q, for any positive definite matrix Q.

Lyapunov’s direct method can be applied to both continuous-time and discrete-time systems.
The exponential stability of a discrete-time system is expressed as follows:

Definition 1.11

The origin of system (1.6) is locally exponentially stable if there exists a proper definite
positive Lyapunov function V (xk, k) : Br× R+ → R+, V (0, k) = 0, scalars α1, α2 et 0 <
α3 < 1 such that, ∀x0 ∈ Br et ∀k ≥ k0 ≥ 0 :

1. α1 ∥xk∥2 ≤ V (x, t) ≤ α2 ∥xk∥2

2. The Lyapunov sequence {V (xk, k)}k=k0,...
is strictly decreasing, i.e :

∆V (xk, k) = V (xk+1, k + 1) − V (xk, k) ≤ −α3V (xk, k)

where
xk+1 = x (k + 1, k0, x0) = f(x(k + 1), k + 1).

Remark 1.3

By choosing the Lyapunov quadratic function V (xk, k) = xTk Pxk, P = P T > 0, The origin
of the discrete-time linear system xk+1 = Axk is globally asymptotically stable, if and only
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if P is a solution for the matrix equation ATPA−P = −Q, for any positive definite matrix
Q.

1.2.4 The indirect method of Lyapunov

The indirect method of Lyapunov uses the linearization of a system to determine the local
stability of the original system. Consider the system defined by (1.1) with f(0, t) = 0 for all
t ≥ 0. Define

A(t) = ∂f(x, t)
∂x

∣∣∣∣
x=0

(1.8)

to be the Jacobian matrix of f(x, t) with respect to x, evaluated at the origin. It follows that
for each fixed t, the remainder

f1(x, t) = f(x, t) −A(t)x (1.9)
approaches zero as x approaches zero. However, the remainder may not approach zero uniformly.
For this to be true, we require the stronger condition that

lim
∥x∥→0

sup
t≥0

∥f1(x, t)∥
∥x∥

= 0. (1.10)

If equation (1.10) holds, then the system

ż = A(t)z (1.11)

is referred to as the (uniform) linearization of equation (1.1) about the origin. When linearization
exists, its stability determines the local stability of the original nonlinear equation.

Theorem 1.2: Stability by linearization

Consider the system (1.1) and assume

lim
∥x∥→0

sup
t≥0

∥f1(x, t)∥
∥x∥

= 0.

Further, let A(·) defined in equation (1.8) be bounded. If 0 is a uniformly asymptoti-
cally stable equilibrium point of (1.11) then it is a locally uniformly asymptotically stable
equilibrium point of (1.1).

This theorem proves that the global uniform asymptotic stability of the linearization implies the
local uniform asymptotic stability of the original nonlinear system. The estimates provided by
the proof of the theorem can be used to give a (conservative) bound on the domain of attraction
of the origin. Systematic techniques for estimating the bounds on the regions of attraction of
equilibrium points of nonlinear systems is an important area of research and involves searching
for the "best" Lyapunov functions.

Remark 1.4

If the system (1.1) is time-invariant, then the indirect method says that if the eigenvalues
of

A = ∂f(x)
∂x

∣∣∣∣
x=0
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are in the open left half complex plane, then the origin is asymptotically stable.

1.2.5 Input-to-state stability

The concept of input-to-state stability was introduced by E. Sontag in his celebrated paper [62]
as a test for the robustness of nonlinear systems to external perturbations, for a concise summary
see [63]. In the framework of Input-to-state stability (ISS), error dynamics are regarded as a
system whose input is the measurement noise which gives rise to disturbance-to-error stable
(DES) observers. As a motivational example, consider the linear system described by

ẋ = Ax+Bu, (1.12)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the input and A and B constant matrices. The solution
corresponding to the initial condition x(0) can be written as

x(t) = exp(At)x(0) +
∫ t

0
exp(A(t− s))Bu(s)ds, ∀t ≥ 0 (1.13)

and, if A is Hurwitz, we can dominate the system state with

|x(t)| ≤ c1 exp (−c2t) |x(0)| + c3 sup
s∈[0,t]

|u(s)|, ∀t ≥ 0. (1.14)

The positive constants c1, c2 and c3 are such that

| exp(At)| ≤ c1 exp (−c2t) , c3 = c1c
−1
2 |B|

and, thus, they are independent of x(0) and u. The first term in (1.14) quantifies the effect of
the initial condition for short times, while the second term accounts for the input impact. These
ideas can be generalized for nonlinear systems by using comparison functions.

Definition 1.12

A function γ : R+ → R+is of class K if γ(0) = 0 and if it is strictly increasing and continuous.
It is of class K∞ if it is also unbounded. A function β : R+ × R+ → R+is of class KL if
β(r, t) is of class K for each t ∈ R+and if β(r, t) decreases to zero as t → ∞ for each r ∈ R+.
We use the notation γ ∈ K or γ ∈ K∞ and β ∈ KL.

For the following, we consider a nonlinear system of the form

ẋ = f(x, u), (1.15)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the input and f : Rn × Rm → Rn a continuously
differentiable function such that f(0, 0) = 0.

Definition 1.13

System (1.15) is said to be input-to-state practically stable (ISpS) if there exist functions
β ∈ KL and γ ∈ K and a constant c ≥ 0 such that for all inputs u ∈ L∞

m and all initial
conditions x(0) ∈ Rn, the solution x is defined on R+and it holds that

|x(t)| ≤ β(|x(0)|, t) + γ (|u|∞) + c, ∀t ≥ 0. (1.16)
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The system is input-to-state stable (ISS) if the latter is satisfied with c = 0.

An alternative definition makes use of sups∈[0,t] γ(|u(s)|) instead of γ (|u|∞), this is justified
by the causality of the system. In such a case, the space of inputs can be defined by local
boundedness

(
L∞
loc,m

)
.

Remark 1.5

We can recover a well-known stability property of system (1.15) if we fix u = 0. Indeed,
the equilibrium point x = 0 is stable if for each ϵ > 0 there exists δ > 0 such that
|x(0)| < δ =⇒ |x(t)| < ϵ, for all t ∈ R+. If additionally there exists δ > 0 such that
|x(0)| < δ =⇒ limt→∞ x(t) = 0, we say the point is asymptotically stable. If for such a point
the latter happens for all x(0) ∈ Rn, then system (1.15) is called 0-globally asymptotically
stable (0-GAS); which is equivalent to (1.16) with u = 0 and c = 0.

The concept of ISS was initially motivated by the problem of disturbances in state feedback
stabilization. In fact, it is of interest to analyze the influence of a time-varying disturbance d in
the closed-loop system

ẋ = f(x, k(x) + d),

where k stabilizes the system for d = 0. The author in [62] shows that, for control-affine systems,
k can be modified in order to achieve ISS when regarding d as the system input. The elegant
formulation of ISS has now become a standard tool in the literature in order to study the
robustness of nonlinear systems with respect to inputs in a wide range of situations.
Showing directly the ISS of a system can be challenging. Therefore, the following definition and
theorem provide a Lyapunov characterization of ISS.

Definition 1.14

A smooth function V : Rn → R+is called an ISpS-Lyapunov function for system (1.15) if
there exist functions α1, α2 ∈ K∞ and α3, χ ∈ K, and a constant cL ≥ 0 such that for all
x ∈ Rn and all u ∈ Rm we have

α1(|x|) ≤ V (x) ≤ α2(|x|)

and |x| ≥ χ(|u|) + cL implies

∂V

∂x
(x)f(x, u) ≤ −α3(|x|).

The function is called ISS-Lyapunov if the latter holds with cL = 0.

Theorem 1.3

System (2.32) is ISpS if and only if it has an ISpS-Lyapunov function. The same equivalence
holds for ISS. As an example, the linear system (1.12) is ISS precisely when A is Hurwitz.
We can construct the ISS-Lyapunov function as V (x) = x′Px, where A′P +PA < 0. [64,65]
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1.3 On the observability of dynamical systems
This section introduces the problem of observer design for nonlinear systems and presents some
basic notions of observability that will be needed throughout the thesis. Our aim is not to provide
an exhaustive study on nonlinear observability and observer design, but rather to situate our
contribution and introduce the basic tools/notations needed in the rest of this thesis and give a
brief overview on some existing techniques for designing observers for nonlinear systems.

1.3.1 Observation problem

We consider a general system of the form:

ẋ = f(x(t), u(t)), y = h(x(t), u(t)) (1.17)

where x denotes the state vector, taking values in X a connected manifold of dimension n, u
denotes the vector of known external inputs, taking values in some open subset U of Rm, and y
denotes the vector of measured outputs taking values in some open subset Y of Rp.
Functions f and h will in general be assumed to be C∞ with respect to their arguments, and
input functions u(.) to be locally essentially bounded and measurable functions in a set U .
Given a model (1.17), the purpose of acting on the system, or monitoring it, will in general need
to know x(t), while in practice one has only access to u and y. The observation problem can
then be formulated as follows:

For any input u in U , any initial condition x0 in X0, find an estimate x̂(t) of x(t) based on
the only knowledge of the input and output up to time t, namely u[0,t] and y[0,t], such that x̂(t)
asymptotically approaches x(t), at least when x̂(t) is defined on [0,+∞).

Clearly, this problem makes sense when one cannot invert h with respect to x at any time.
In front of this, one can use the idea of explicit feedback in estimating x(t). More precisely, if one
knows the initial value x(0), then an estimate of x(t) can be obtained by simply integrating (1.17)
from x(0). Hence, if x(0) is unknown, one can try to correct online the integration x̂(t) of (1.17)
from some erroneous x̂(0) according to the measurable error h(x̂(t)) − y(t), namely to look for
an estimate x̂ of x as the solution of a system:

˙̂x(t) = f(x̂(t), u(t)) + k(t, h(x̂(t)) − y(t)), with k(t, 0) = 0 (1.18)
Such an auxiliary system is what will be defined as an observer, and the above equation is the
most common form of an observer for a system (1.17) (as in the case of linear systems [1,2]). A
more rigorous mathematical definition is the following (a sketch is given in Figure 1.2).

Definition 1.15

An observer for (1.17) is given by an auxiliary system:

ż(t) = Φ(z(t), u(t), y(t), t)
x̂(t) = Ψ(z(t), u(t), y(t), t)

such that:

(i) x̂(0) = x(0) ⇒ x̂(t) = x(t), ∀t ≥ 0;
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(ii) ∥x̂(t) − x(t)∥ → 0 as t → ∞.

If (ii) holds for any x(0), x̂(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate that can be tuned, the observer is tunable.

Plant

Observer

u y

u
x̂

ẋ = f(x, u)
y = h(x, u) ż = Φ(z, u, y)

x̂ = Ψ(z, u, y)

Figure 1.2: Observer: dynamical system estimating the state of a plant from the knowledge of
its output and input only.

1.3.2 Observability for nonlinear systems

The role of an observer is to estimate the system state based on the knowledge of the input
and output. This means that those signals somehow contain enough information to uniquely
determine the system’s whole state. This brings us to the notion of observability. In the case of
nonlinear systems, the notion of observability is related to inputs and initial conditions. In this
section, a more precise definition of observability will be given in the case of continuous-time
systems of the form: {

ẋ = f(x, u),
y = h(x, u) (1.19)

where f : Rn × Rm → Rn and h : Rn × Rm → Rp
Observability is characterized by the fact that from an output measurement, one must be able
to distinguish between various initial states, or equivalently, one cannot admit indistinguishable
states (following [66]):

Definition 1.16: Distinguishability and indistinguishability

Two initial states x0, x1 ∈ X such that x0 ̸= x1 are said to be distinguishable in X if ∃t ≥ 0
and ∃u : [0, t] → U an admissible input such that the trajectories of the outputs from x0 and
x1, respectively, remain in X on the interval [0, t], and satisfy y(t, x0, u(t)) ̸= y(t, x1, u(t)).
In this case, we say that the input u distinguishes x0 from x1 in X . Conversely, two
initial states x0, x1 ∈ X such that x0 ̸= x1 are said to be indistinguishable if, ∀t ≥
and ∀u : [0, t] → U for which the trajectories from x0 and x1 remain in X , we have
y(t, x0, u(t)) = y(t, x1, u(t)).

The notion of observability of a system at a single point [67,68] derives directly from the previous
definition. By extension, it is possible to define the observability of a system at any point of X .
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Definition 1.17: Observability

The system (1.19) is observable at x0 if for any other state x0 ̸= x1, the two states x0 and
x1 are distinguishable in X . By extension, if this last property is true for any x0 ∈ X , then
we say that the system is observable.

This last definition leads to the following theorem that can be found in [1].

Theorem 1.4: [1]

Let the continuous linear time-invariant system:{
ẋ = Ax(t) +Bu(t)
y = Cx(t) (1.20)

with A ∈ Rn×n, B ∈ Rn and C ∈ Rn. The system (1.20) is observable if and only if the
observability matrix associated with this system is given by

Oy =


C
CA
CA2

...
CAn−1


is of full rank. In this case, we say the pair A,C is observable.

This result, widely used in the linear case, is in fact particularly restrictive in the nonlinear case.
Indeed, the notion of observability as given above is a global result. However, in practice, we
do not need to distinguish each trajectory on the set X and for any time interval [t0, t0 + T [.
For this, we will recall in the following the notion of weak local observability, given by [66]. It
is first necessary to define the notion of local observability [66].

Definition 1.18: Local observability

The system (1.19) is said to be locally observable at x0 if, for any neighborhood Vx0 of x0,
the set of indistinguishable states of x0 in Vx0 reduces to the singleton x0. By extension,
the system (1.19) is said to be locally observable if it is locally observable for all x0 ∈ X .

The notion of weak local observability given by [66] is then defined as follows.

Definition 1.19: Local weak observability

The system (1.19) is said to be locally weakly observable at x0 if there exists an open
neighborhood Vx0 of x0 such that for any open neighborhood V ′

x0 ⊂ Vx0 the set of indistin-
guishable states of x0 in V ′

x0 reduces to the singleton x0. By extension, the system (1.19)
is said to be locally weakly observable if it is locally weakly observable for all x0 ∈ X .
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Definition 19 means that a system is locally weakly observable if any state x0 can be distinguished
from its neighbors instantaneously. This notion is of more interest in practice and presents the
advantage of admitting some rank condition characterization. Such a condition relies on the
notion of observation space roughly corresponding to the space of all observable states.

Definition 1.20: Observation space

The observation space for a system (1.19) is defined as the smallest real vector space (de-
noted by O(h)) of C∞ functions containing the components of h and closed under Lie
derivation along fu(x) = f(x, u) for any constant u ∈ U .

Note that the Lie derivative of h(k)(x) along the direction of the field fu at constant u is given
by

Lfuh
(k)(x) = ∂h(k)(x)

∂x
· fu(x) =

(
∇h(k)(x)

)T
· fu(x) = dy(k)(t)

dt
(1.21)

and, more generally,

Lifu
h(k)(x) = Lfu

(
Li−1
fu
h(k)(x)

)
= diy(k)(t)

dti
(1.22)

Let us now define the observability rank condition [66].

Definition 1.21: Observability rank condition

A system (1.19) is said to satisfy the observability rank condition at x0 ∈ Rn if

dim dO(h)|x0 = n (1.23)

where, dO(h)|x0 = dψ(x0), ψ ∈ O(h).
Condition (1.23) is called the observability rank condition.
System (1.19) is observable if it satisfied the observability rank condition for any x0 ∈ X .
If system (1.19) satisfied the observability rank condition at x0, then it is locally weakly
observable in x0.

In all the previous definitions, the impact of the input u has not been taken into consideration.
Indeed, in the case of nonlinear systems, the observability of a system strongly depends on the
input applied to the system under consideration. The system (1.19) may be observable for some
inputs and be not observable for other inputs. With this in mind, we will introduce the notion of
universal input and that of U-uniform observability, a key concept in the contributions presented
in this manuscript [69].

Definition 1.22: Universal input

An admissible input u : [0, T ] → U is said to be universal for the system (1.19) on [0, T ] if,
for any pair of distinct initial states x0, x1, there exists at least one instant of time t ∈ [0, T ]
for which the resulting outputs of x0 and x1 are distinct, i.e. y (t, x0, u(t)) ̸= y (t, x1, u(t)).
A non-universal input is called a singular input.

In the case where all admissible inputs of U are universal, then any pair of initial states is dis-
tinguishable. This is called observability for any input, or U-uniform observability [70].
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Definition 1.23: U-uniform observability

A system (1.19) for which all admissible inputs with values in U are universal is said to be
U-uniformly observable.

In the nonlinear case, there are several ways to define the notion of observability. For the concept
of states indistinguishability, a very frequent definition has been established in [66]. Important
results have been established in [67] and [71] for a special class of control-affine systems. For
more details on the different types of definitions of the observability of nonlinear systems, we
refer the reader to [66,71–73].

Remark 1.6

The concept of observability mentioned above can be extended directly to the class of
discrete-time systems. Different types of definitions have been discussed in [74].

1.4 Observers for nonlinear systems: a state of the art

The problem of state estimation for linear systems was completely solved in the 1960sâˆ’1970s by
Kalman [1] in a stochastic approach and by Luenberger [2] in a deterministic framework. For the
case of nonlinear systems, which concerns the majority of physical systems, the problem remains
widely open giving rise to a wide range of estimation algorithms. The methods presented in
the literature are either an extension of linear techniques which are based on a linearization of
the model around an operating point or specific nonlinear algorithms [75,76]. In this section, a
fairly comprehensive, but by no means exhaustive, review of nonlinear state estimation methods
will be given. All methods have their own positive and negative aspects, either as extensions of
linear techniques or as novel nonlinear techniques.

1.4.1 Nonlinear transformation methods

This technique consists in transforming, using a change of coordinates, a nonlinear system into
a linear system modulo an output injection. Once such a change of coordinates is obtained, the
use of a Luenberger-type observer (corrected by output injection) can be used to estimate the
state of the transformed system, and therefore the state of the original nonlinear system using
the inverse change of coordinates. One of the first works in this direction is proposed in [4],
where the autonomous system of the form

ẋ = f(x) (1.24a)

y = h(x) (1.24b)

is transformed by, a nonlinear change of coordinates z = Φ(x), to a linear system under the
following observer canonical form

ż = Acz + λ(y) (1.25a)

y = Ccz (1.25b)
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where Ac and Cc are under the Brunovsky dual form, i.e.,

Ac =
[

0n−1 In−1
0 0Tn−1

]
, Cc =

[
1 0Tn−1

]
.

The Luenberger observer corresponding to (1.24) is given by

˙̂z = Acẑ + λ(y) +K (y − Ccẑ) (1.26)

whose linear error dynamics ε = z − ẑ is

ε̇ = (Ac −KCc) ε. (1.27)

The gain K is obtained through a pole placement condition.
This method has been extended in [6] to the case of systems with multiple outputs and the
nonlinear transformation has been generalized as follows{

z = Φ(x)
v = Ψ(y)

(1.28)

where v is the transformation of the output y using the nonlinear change of coordinates Ψ(.). The
conditions under which such a transformation exists are established. However, three problems
are related to this approach:

1. The class of systems for which such a transformation exists is very restrictive.

2. The procedure to find such a transformation is complicated.

3. In the case of multi-input systems (controlled systems), the transformed system contains
all the input derivatives.

In [8], the system
ẋ = f(x, u)
y = h(x, u)

(1.29)

is considered. In this case, the transformed system under the general canonical form is defined
as

ż = Acz + λ
(
y, u′) (1.30a)

v = Ccz (1.30b)

where u′ =
[
u u̇ . . . u(n)

]T
. The nonlinear transformation used is

z = Φ
(
x, u′)

v = Ψ
(
x, u′) (1.31)

By assuming that the derivatives of the input u are available, the structure of the proposed
observer is

˙̂z = Acẑ + λ
(
y, u′)+K(v − v̂)

v̂ = Ccẑ
(1.32)
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The dynamics of the estimation error are given by (1.27).
Other generalizations to multi-output systems have been proposed in [7,10] and [11]. A simplified
algorithm to compute the suitable transformation, for the case of autonomous systems, has been
designed in [9]. Necessary and sufficient conditions for the existence of the transformation for
single-output systems have been given in [77]. These results have been generalized in [78] to
systems with multiple outputs, and an algorithm to find the change of variables has been given.
One reason why the class of systems that can be transformed into linear observable form is
restricted is that the output must be linear as in (1.24b)and (1.30b). This condition is re-
laxed in [79] for the class of single-output autonomous systems. The idea is to transform the
system (1.24), using the change of variables z = Φ(x), into

ż = Az + Ly (1.33a)

y = η(z) (1.33b)

where η(z) = h(x)|x=Φ−1(z). The obtained observer is

˙̂z = Aẑ + Ly, (1.34)

and the error dynamics ε = z − ẑ is
ε̇ = Aε. (1.35)

The transformation Φ is chosen such that the matrix A is obtained with the desired properties.
In order to overcome the difficulty of obtaining the proper transformation, independently of
previous works, a new approach has been presented in [5] for the class of autonomous and
mono-output nonlinear systems. The necessary and sufficient conditions for the existence of
the canonical form have been stated in [80]. Several extensions of this approach to the case of
controlled and multi-output nonlinear systems are given in [81–83].

1.4.2 Extended observers

The observer based on the extended linearization method is another technique that exploits the
useful tools available for linear systems. The gain of the observer is calculated from the linearized
model around an operating point. This is for example the case of the extended Kalman filter
and the extended Luenberger observer that we discuss in what follows.

Extended Kalman filter (EKF)

The extended Kalman filter is one of the most interesting and successful applications of the
Kalman filter in the case of nonlinear systems. This extended filter consists in linearizing the
equations of the standard Klaman filter by a first-order Taylor’s formula.
The extended filter has been successfully applied to different types of nonlinear processes. Un-
fortunately, the proofs of stability and convergence established in the linear case, cannot be
extended in a general way to the case of nonlinear systems. The analysis of the convergence of
this estimator remains, at present, an open problem giving rise to a large number of papers and
books [84–88].
Before introducing the extended Kalman filter, we need to introduce the standard Kalman filter
for linear time-varying (LTV) systems.

• Continous time LTV systems: for the case of LTV systems in the form
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ẋ = A(t)x+B(t)u+ v1(t) (1.36a)

y = C(t)x+ v2(t) (1.36b)

the standard Kalman filter is given by

˙̂x = A(t)x̂+B(t)u+ PCT (t)R−1(y − C(t)x̂) (1.37)

where P is the symmetric positive definite solution of the following Riccati equation

Ṗ = AP + PAT +Q− PCTR−1CP. (1.38)

• Discrete time LTV systems: for LTV systems in the form

xk+1 = Akxk +Bkuk + vk (1.39a)

yk = Ckxk + wk (1.39b)

the standard Kalman filter is given by

x̂k+1 = x̂k+1/k +Kk+1
(
yk+1 − Ck+1x̂k+1/k

)
(1.40a)

Pk+1 =
(
P−1
k+1/k + CTk+1R

−1
k+1Ck+1

)−1
; (1.40b)

Kk+1 = Pk+1/kC
T
k+1

(
Ck+1Pk+1/kC

T
k+1 +Rk+1

)−1
(1.40c)

where
x̂k+1/k = Akx̂k +Bkuk (1.41a)

Pk+1/k = AkPkA
T
k +Qk (1.41b)

P0 = µIn > 0. x̂k+1 and x̂k+1/k are the estimation and prediction of the state xk+1. The
matrices Pk+1 and Pk+1/k are the covariances of the estimation and prediction errors.. Qk and
Rk+1 are weighting matrices depending on the stochastic variables vk and wk.
The extended Kalman filter [89] is a direct extension of the standard Kalman filter by replacing
the state and output matrices A,C of system (1.36) or (1.39) by the jacobians of the system
nonlinearities.
Consider the nonlinear system

ẋ = f(x, u) + v(t) (1.42a)

y = h(x, u) + w(t) (1.42b)

The EKF is described as follows

ẋ = f(x̂, u) + PH(x̂, u)R−1(y − h(x̂, u)) (1.43a)

Ṗ = F (x̂, u)P + PF (x̂, u)T +Q− PH(x̂, u)TR−1H(x̂, u)P (1.43b)

where
F (x̂, u) = ∂f

∂x
(x̂, u)

H(x̂, u) = ∂h

∂x
(x̂, u).
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In the case of discrete-time systems of the form

xk+1 = f (xk, uk) +Gkvk (1.44a)

yk = h (xk, uk) +Dkwk (1.44b)

the EKF is given by
x̂k+1 = x̂k+1/k +Kk+1ek+1 (1.45)

where
Pk+1 = (In −Kk+1Hk+1)Pk+1/k (1.46a)

x̂k+1/k = f (x̂k, uk) (1.46b)

Pk+1/k = FkPkF
T
k +Qk (1.46c)

Kk+1 = Pk+1/kH
T
k+1

(
Hk+1Pk+1/kH

T
k+1 +Rk+1

)−1
(1.46d)

ek+1 = yk+1 − h
(
x̂k+1/k, uk+1

)
(1.46e)

Fk = F (x̂k, uk) = ∂f

∂x
(x̂k, uk) (1.46f)

Hk = H (x̂k, uk) = ∂h

∂x
(x̂k, uk) (1.46g)

where P0 = µIn > 0.
In common use, the matrices Qk and Rk+1 correspond to the process and measurement noise
covariance matrices, respectively.

Qk = GkG
T
k , Rk+1 = Dk+1D

T
k+1.

Extended Luenberger observer

With reference to the extended Kalman filter algorithm, the extended Luenberger observer is
proposed for nonlinear single-input single-output systems. The extended Luenberger observer is
used, either on the original system with a constant gain or through a change of coordinates with
a gain depending on the state to estimate. In the first case, a linearized model is needed, and the
observer gain is calculated by pole placement. This type of observer can only be used when it is
certain that the state will remain in the neighborhood of the equilibrium state. For this reason,
this method is not widely because only local behavior can be guaranteed, i.e., the stability is
guaranteed in a sufficiently small neighborhood of constant operating points. If disturbances
and modeling errors are present, then performance and stability cannot be guaranteed. In the
second case, as we mentioned previously, the methods based on a change of coordinates concern
only a restricted class of nonlinear systems. Indeed, many approaches that use a change of
coordinates require the integration of a set of nonlinear partial differential equations, which is
often very tricky to achieve, therefore, only approximate solutions can be obtained. Some results
and consequences for an extended Luenberger observer design are briefly summarized in [90].
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1.4.3 Generalized Luenberger observer (GLO)

A new observer design technique has been proposed in [20,91–93]. The class of systems concerned
by this new design is to add to the Luenberger observer, a second linear output feedback inside
the nonlinear part of the system. This approach concerns systems described by the following
equations:

ẋ = Ax+Gγ(Hx) + ϱ(y, u) (1.47a)

y = Cx. (1.47b)
The proposed observer has the following structure

˙̂x = Ax̂+Gγ(Hx̂+K(y − Cx̂)) + ϱ(y, u) + L(y − Cx̂) (1.48)

Convergence conditions of (1.48) have been established in [20]. This result concerns systems for
which the nonlinear function γ satisfies the following assumptions:

1. any component γi is a scalar function with a scalar variable, i.e :

γi = γi

j=n∑
j=1

Hijxj

 , i = 1, . . . , r (1.49)

3. all components of γ are non-decreasing functions, i.e :

0 ≤ γi(v) − γi(w)
v − w

,∀v ̸= w ∈ R (1.50)

Using (1.47) and (1.48), the estimation error dynamics ε = x− x̂ are given as

ε̇ = (A− LC)ε+G(γ(v) − γ(w)) (1.51)

where
v = Hx et w = Hx̂+K(y − Cx̂).

These convergence conditions are illustrated in the following theorem

Theorem 1.5

The estimation error (1.51) is exponentially stable at the origin if there exists a matrix
P = P T > 0, a constant ν > 0 and a diagonal matrix Λ > 0 such that the inequality[

(A− LC)TP + P (A− LC) + νIn PG+ (H −KC)TΛ
GTP + Λ(H −KC) 0

]
≤ 0 (1.52)

is satisfied.

This technique has been extended in [19] and [93] to the case of monotonic multi-variable systems.
Similar convergence conditions were obtained. New sufficient conditions for the synthesis of the
gains K and L have been proposed in [92] for a class of systems whose nonlinearity is a scalar
function with a scalar variable. This result is more general than the previous one since it takes
into account the bounds of the term γ(v)−γ(w)

v−w when they exist, i.e. when the nonlinearity satisfies
the condition

0 ≤ γ(v) − γ(w)
v − w

≤ b,∀v ̸= w ∈ R (1.53)

By exploiting condition (1.53), the following theorem is derived.
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Theorem 1.6

The observer (1.48) converges exponentially if there exists a matrix P = P T > 0, a constant
ν > 0 and a diagonal matrix Λ > 0 such that the inequality[

(A− LC)TP + P (A− LC) + νIn PG+ (H −KC)T
GTP + (H −KC) −2

b

]
≤ 0 (1.54)

is satisfied.

This last inequality is less restrictive than (1.52). In fact, in (1.52) it is necessary to have
PG + (H − KC)TΛ = 0 because of the presence of a zero on the diagonal which makes the
inequality very restrictive. However, in (1.54), the zero on the diagonal is replaced by −2

b which
does not require PG + (H − KC)T to be null. Note that for b = +∞, inequality (1.52) is
obtained.

1.4.4 Triangular normal forms: high-gain designs

Triangular forms became of interest when [94] related their structure to uniformly observable
systems, and when [95] introduced the phase-variable form for differentially observable systems.
The celebrated high-gain observer proposed in [96] for phase variable forms and later in [26,97]
for triangular forms, have been extensively studied ever since.
The two papers [25, 98] are at the origin of these high-gain techniques which use Lyapunov’s
stability theory to adapt the techniques developed in the linear case. The method presented
in [25] gives sufficient conditions for convergence of the estimated state towards the real state,
for the class of nonlinear systems described by

ẋ = Ax+ ϕ(x, u) (1.55a)
y = Cx (1.55b)

where x ∈ Rn, u ∈ Rm and y ∈ Rp represent the state vectors, inputs and outputs of the system,
respectively. The pair (A,C) is detectable and the nonlinearity, ϕ is Lipschitz with respect to
x:

∥ϕ(x, u) − ϕ(x̂, u)∥ ≤ γϕ∥x− x̂∥, ∀x, x̂ ∈ Rn et ∀u ∈ Rm (1.56)
where γϕ is the Lipschitz constant of the function ϕ.
The high-gain observer has the following structure

˙̂x = Ax̂+ ϕ(x̂, u) +K(y − Cx̂) (1.57)
The name "high-gain" comes from the structure of the observer: when the nonlinear function
f has a large Lipschitz constant, the difference between the real state and the estimated state
increases. Therefore, the observer gain L (1.57) must be large to compensate for this error
amplification.
The dynamics of the estimation error ε = x− x̂ is given by:

ε̇ = (A− LC)ε+ ϕ(x, u) − ϕ(x̂, u) (1.58)
The objective is to determine under which conditions the gain L guarantees the stability of the
estimation error ε at zero.
Thau’s method [25] provides a sufficient condition for the asymptotic stability of the estimation
error (1.58). The result of this method is given by the following theorem.



26 Chapter 1. An overview on observer tools for nonlinear systems

Theorem 1.7

Consider system (1.55) and the observer (1.57). If the gain L is chosen such that:

γϕ <
λmin(Q)

2λmax(P ) (1.59)

where λmin(S) and λmax(S) are the minimum and maximum eigenvalues of the matrix S,
respectively, the matrices P = P T > 0 and Q = QT > 0 are solutions to the Lyapunov
equation:

(A−KC)TP + P (A−KC) +Q = 0 (1.60)

then, the estimation error (1.58) is exponentially stable.

The proof of this theorem is based on the use of the standard Lyapunov function

V = V (ε) = εTPε.

For more details on the proof of Theorem 7, see [25].
Thau’s approach allows only to verify convergence of the observer (1.57), a posteriori. Indeed, the
choice of the matrices P , Q and K which satisfy the inequality (1.59) is not direct. For example,
placing the eigenvalues of (A − LC) in the left half-plane does not imply that condition (1.59)
is satisfied. There is no specific relationship between the eigenvalues of (A−LC) and λmax(P ),
this was proved in [16] by a simple numerical example.
Thau’s method is not constructive, it gives no indication of the choice of a gain satisfying the
condition (1.59). This is a verification technique, which guarantees the asymptotic convergence
of the estimated state x̂ towards the real state x when the gain L is already been chosen. The
article [98] extended Thau’s results in the deterministic framework. Among the so-called "high
gain" techniques we can also find the work by [26,99], and more recently [100], which propose to
compensate for nonlinearity, at the level of the dynamics of the estimation error, by a sufficiently
large gain (compared to the Lipschitz constant). An extension of these results to exponential
observers is detailed in [30]. The work presented in [16] is at the origin of a series of articles
describing constructive methods of the gain L of the observer (1.57). Indeed, it proposes the
following proposition:

Proposition 1.1

Consider system (1.55) and the observer (1.57). If there exists ϵ > 0 such that the Riccati
equation

AP + PAT + P

(
γ2
ϕIn − 1

ϵ
CTC

)
P + In + ϵIn = 0 (1.61)

admits a symmetric positive definite matrix P as a solution, then the gain can be chosen as

L = 1
2ϵPC

T (1.62)

to ensure the asymptotic convergence of the observer (1.58).

However, this algorithm does not work for all observable pairs (A,C) and unfortunately does
not give information on the conditions to be satisfied by the matrix (A−LC) in order to ensure
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the stability of the estimation error. The placement of the eigenvalues of (A − LC) in the left
half-plane is certainly not enough.
In the work by [15], sufficient conditions on the matrix (A− LC) have been established for the
dynamical system (1.57) to be an observer of the system (1.55):

Proposition 1.2

System (1.57) is an observer for system (1.55) if the following conditions are satisfied:

(i) the pair (A,C) is observable;

(ii) the gain L is chosen such that (A− LC) is stable and

min
ω∈R+

σmin(A− LC − jωI) > k (1.63)

The complete proof of this theorem is given in three steps in [15].
The work presented in [101] extended the previous results to reduced observers: it has been
shown that the conditions of Proposition 2 also guarantee the existence of an asymptotically
convergent reduced observer for the nonlinear system (1.55).
Other high-gain observer techniques have been developed in the literature, especially for the
class of uniformly observable systems [26, 97, 102]. These methods use a change of variables
to transform the system under consideration under the form of (1.55). The adaptive case is
addressed in [28], which proposes an adaptive high-gain observer for nonlinear systems depending
linearly on unknown parameters. The input-state stability theory is used in [103] to study its
robustness to uncertainties. This type of observer has been applied to a class of biological
systems and biotechnological processes in [26,104,105].

1.4.5 Variable structure observers

Variable structure observers constitute another family of observers. In all the previous methods,
the studied system’s dynamic model was assumed to be perfectly known. Here, it is a question
of developing certain robustness with respect to parametric uncertainties. The method used to
construct these observers is based on the theory of sliding modes [106,107]. The class of systems
studied is described by: {

ẋ(t) = Ax(t) + f(x(t), u(t))
y(t) = Cx(t)

(1.64)

The function f represents the nonlinearities and uncertainties of the system. The following
assumptions are made about the system

(i) the pair (C,A) is detectable, hence there exists a matrix K such that the matrix A−KC
is stable;

(ii) the function f is under the form

f(x(t), u(t)) = P−1CTh(x(t), u(t)) (1.65)

where P is a symmetric positive definite matrix, the solution to the Lyapunov equation
(P exists according to assumption (i))

(A−KC)TP + P (A−KC) = −Q < 0 (1.66)



28 Chapter 1. An overview on observer tools for nonlinear systems

the function h is unknown but bounded

∥h(x(t), u(t))∥ ⩽ ρ(u(t)) (1.67)

We can underline that the nonlinearity does not appear in the structure of the observer proposed
by [107]

˙̂x(t) = Ax̂(t) +K(y(t) − Cx̂(t)) + κ(x̂(t), u(t), y(t)) (1.68)
with

κ(x̂(t), u(t), y(t)) =


P−1CT (y(t)−Cx̂(t))

∥(y(t)−Cx̂(t))∥ ρ(u(t)) si (x(t) − x̂(t)) ̸= 0
0 si (x(t) − x̂(t)) = 0

(1.69)

The term κ(x̂(t), u(t), y(t)) in (1.69) can be considered as a variable gain, which becomes infinite
when the estimation error is small. It is shown in [75] that the observer (1.68) is an exponential
observer of the system (1.64). It should be noted that the exact knowledge of the system is not
necessary, it suffices to know an upper bound ρ(u) on the nonlinearities or uncertainties. On the
other hand, assumption (ii) imposes a structural constraint on f , which can be difficult to verify
in the presence of model uncertainties. In [106], the authors propose a slightly different observer,
which does not use this condition, but in return, global convergence is no longer guaranteed.
The discontinuity of the function (1.69) is another drawback of this method: an oscillatory
behavior can appear in the dynamics of the estimation error at high frequencies. To overcome
this problem, the paper [108] proposes another choice for the function.

1.4.6 State estimation via online optimization

This class of estimation technique involves the formulation of state estimation as a minimization
problem, wherein the state estimates are obtained by solving an online minimization prob-
lem [56–59, 109, 110]. The optimization is carried out over a horizon (into the past) using a
series of continuously sampled measurements over time leading to a moving horizon state es-
timation. This estimation approach is in principle identical to Kalman filtering, however, the
Kalman filter considers only one set of measurements at a time without taking into consideration
the constraints on the system.
The following discrete-time linear system is considered,

xk+1 = Axk +Buk +Gwk (1.70a)

yk = Cxk + vk (1.70b)
for t = 0, 1, . . . , where xk ∈ Rn is the state vector (the initial state x0 is unknown) and
uk ∈ Rm is the control vector. The vector wk ∈ Rn is an additive disturbance affecting the
system dynamics. The state vector is observed through the measurement equation (1.70b),
where yk ∈ Rp is the observation vector and vk ∈ Rp is a measurement noise vector.
In [111] is shown that the Kalman filter is the algebraic solution to the following unconstrained
least-square optimization problem:

min
x̂0,{ŵ}T −1

k=0

= ∥x̂0 − x0∥2
P−1

0
+
T−1∑
k=0

∥ŵk∥2
Q−1

k
+

T∑
k=0

∥v̂k∥2
R−1

k
(1.71)

where
x̂k+1 = Ax̂k +Buk +Gŵk

ŷk = Cx̂k + v̂k
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and Qk ≻ 0, Rk ≻ 0, P0 ≻ 0 are positive definite matrices and x0 is the mean of x̂0. This opti-
mization problem now opens the possibility to add system knowledge in the form of constraints,
then the optimization problem (1.71) becomes not equivalent to the Kalman filter anymore. If all
the available past measurements are used for the estimation as in (1.71), the estimation problem
grows unbounded with time which is referred to as the full information estimator [112]. In order
to keep the estimation problem computationally tractable it is necessary to limit the processed
data, for example by discarding the oldest measurement once a new one becomes available. This
essentially slides a window over the data, leading to the moving horizon estimator (MHE). The
data that is discarded can be accounted for by the so-called arrival cost so that the information
is not lost. The MHE then considers only a limited amount of data so that the constrained
optimization problem becomes:

min
x̂T −N|T ,ŴT

∥∥∥x̂T−N |T − xT−N |T

∥∥∥2

P−1
T −N|T −1

−
∥∥∥Y T−1

T−N − Ox̂T−N |T − c̄bUT−2
T−N

∥∥∥2

W−1
+

T−1∑
k=T−N

∥ŵk∥2
Q−1

k
+

T∑
k=T−N

∥v̂k∥2
R−1

k
(1.72)

such that,
x̂k+1 = Ax̂k +Buk +Gŵk, ŷk = Cx̂k + v̂k,

x̂k ∈ X̂ ≜
{
x̂k ∈ Rn | D̂xx̂k ≤ d̂x

}
,

ŵk ∈ Ŵ ≜
{
ŵk ∈ Rq | D̂wŵk ≤ d̂w

}
v̂k ∈ V̂ ≜

{
v̂k ∈ Rr | D̂vv̂k ≤ d̂v

} (1.73)

where T is the current time, Qk ≻ 0, Rk ≻ 0, PT−N |T−1 ≻ 0 are the covariances of wk, vk, xT−N
assumed to be symmetric, N is the horizon length of the MHE, i.e. the amount of past data
taken into account. Y T

T−N =
[
yTT−N , . . . , y

T
T

]T
is a vector containing the past N + 1 measure-

ments, UT−1
T−N =

[
uTT−N , . . . , u

T
T−1

]T
is a vector containing the past N inputs. x,w, v denote

the variables of the system (1.70). x̂, ŵ, v̂ denote the estimated variables of system (1.73), and
x̂∗
T |T−N and Ŵ ∗

T = W T−1
T−N

∗ = {ŵ}T−1
T |T−N

∗ denote the optimizers of problem (1.72)-(1.73) where
ŴT = W T−1

T−N = {ŵ}T−1
T |T−N denotes the estimated noise sequence from time T − N to time

T − 1. Finally,
∥∥∥x̂T−N |T − xT−N |T

∥∥∥2

P−1
T −N|T −1

−
∥∥∥Y T−1

T−N − Ox̂T−N |T − c̄bUT−2
T−N

∥∥∥2

W−1
is the arrival

cost. For steady-state MHEQk = Q,Rk = R, and PT−N |T−1 = P are time-invariant.
The current state of the system can be calculated from the initial state xT |T−N by forward
programming using the system equations (1.70a) and (1.70b) if the deterministic input UT−1

T−N
and the noise sequence {w}T−1

T−N are known. It is thus sufficient to estimate the initial state
x̂∗
T |T−N and the noise Ŵ ∗

T .

Remark 1.7

In the case T ≤ N , the full information estimator is solved using the arrival cost:∥∥∥x̂T−N |T − xT−N |T

∥∥∥2

P−1
0
.
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The horizon "fills up" and no data is discarded [112].

This remark points out that wrongly posed constraints might lead to an infeasible optimization
problem and that hard constraints on v̂k could be problematic due to the possibility of outliers
in the measurement. Any constraints posed in (1.73) should hence be chosen such that the real
system does not violate them [112].
The MHE can only consider a limited amount of past data while remaining computationally
tractable. The information in the discarded data should be preserved and this is achieved
through the arrival cost which captures the older data through forward dynamic programming.
It can hence be seen as equivalent to the cost to go into backward dynamic programming [112].
In the constrained case, the arrival cost cannot be calculated analytically. Caution needs to
be taken because an ill-chosen arrival cost can lead to an unstable estimator, but in [112]
it is also shown that the steady-state (constant PT−N |T−1

)
constrained estimator is stable if

PT−N |T−1 ≥ P∞ where P∞ is the solution of the discrete algebraic Riccati equation:

P = ATPA−ATPB
(
BTPB +Rkal

)−1
BTPA+Qkal (1.74)

The arrival cost needs to be updated at each time step. Two different update schemes are
proposed in [113] and [112] for xT−N |T :

1. Filtered update scheme: use of the optimal estimate N + 1 time steps in the past:

xT−N |T = Ax̂∗
T−N−1|T−N−1 +BuT−N−1|T−N−1 +Gŵ∗

T−N−1|T−N−1

2. Smoothed update scheme: use of the optimal estimate from the last time step:

xT−N |T = Ax̂∗
T−N−1|T−1 +BuT−N−1|T−1 +Gŵ∗

T−N−1|T−1

.

In [112], the author demonstrates that either update can give a better estimate than the full-
information estimator if the estimation constraints (1.73) are not properly posed and the real
system violates them but no general claim about robustness is made. The MHE with the
smoothed update performs best but further research in this direction still remains open. The
main disadvantage of the filtered update is that cycling effects can occur because the filtered
update can be seen as N independent parallel running filters [112,113]. The use of the smoothed
update however avoids the cycling effect and hence this work only considers the smoothed update.
The smoothed arrival cost is calculated as follows [114]:∥∥∥x̂T−N |T − xT−N |T

∥∥∥2

P−1
T −N|T −1

−
∥∥∥Y T−1

T−N − Ox̂T−N |T − cbUT−2
T−N

∥∥∥2

W−1
(1.75)

where for i, j ≤ N

O =
[
CT ATCT . . . A(N−1)T

CT
]T
,

Mi,j =


0 if j ≥ i,

CG if j = i− 1,
CAi−1Ai−2 . . . Aj+1G otherwise,

W = diag(R) + M diag(Q)MT

(1.76)
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and PT−N |T−1 is calculated by the following backward Riccati equation [114]:

Pk|T = Pk|k + Pk|kA
TP−1

k+1|k

(
Pk+1|T − Pk+1|k

)
P−1
k+1|kAPk|k,

Pk|k = Pk|k−1 − Pk|k−1C
T
(
R+ CPk|k−1C

T
)−1

CPk|k−1

Pk|k−1 = GQGT +APk−1|k−1A
T

Apart from the MHE formulation stated in equation (1.70a), a number of variations in the formu-
lation can be found in the literature. In [115], the authors used the following objective function
in which the estimates of the noise sequence ŴT are not obtained: J = µ

∥∥∥x̂T−N |T − xT−N |T

∥∥∥2
+∑T

k=T−N ∥y(T )−Cx̂(k | T )∥2. In this formulation, the scalar µ is used to guarantee stability. By
reason of optimality, the formulation (1.70a) will give at least as good a result as the formulation
in [115]. The authors in [116] introduced a nonzero mean wm,k for ŵk using the filtered update
of the arrival cost:

min
x̂T −N|T ,Ŵ

T −1
T −N|T

∥∥∥x̂T−N |T − xT−N |T

∥∥∥2

P−1
T −N|T −N

+

T−1∑
k=T−N

∥∥ŵk − wm,k
∥∥2
Q−1 +

T∑
k=T−N

∥v̂k∥2
R−1

(1.77)

Remark 1.8

The unconstrained linear MHE is equivalent to the linear Kalman filter if the solution of
the differential-algebraic Riccati equation (1.74) is used for P0 in the arrival cost of the
MHE and in the Kalman filter [112,113].

1.5 Conclusion
The purpose of this chapter was to give an overview of fundamental concepts essential in observer
design for nonlinear systems. The presentation follows a particular viewpoint on the problem
and does not claim to be exhaustive. In particular, the most important notions of stability
and observability (from this viewpoint) have been reviewed, and some observer techniques have
been presented for discrete-time and continuous-time nonlinear systems. We have seen that
the designs are driven by specific structures of systems and there is no universal method for the
synthesis of nonlinear observers in the literature. The approaches developed to date are either an
approximation of linear algorithms (linearization around an operating point) or specific nonlinear
algorithms for certain classes of systems.
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Chapter

2 High-gain like observer design for
a class of nonlinear systems

"Accuracy of observation is the equivalent
of accuracy of thinking."

Wallace Stevens
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2.1 Introduction
High-gain observers play an important role in state estimation and output feedback control
of nonlinear systems. After two seminal works appeared in 1992 [26, 27] the investigation of
high-gain observers in nonlinear theory attracted the attention of many researchers. In the
absence of measurement noise, this technique robustly estimates the derivatives of the output
while achieving convergence of the estimation error that can be imposed arbitrarily fast by

33
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acting on a design parameter, appearing in the observer structure, typically known as the "high-
gain parameter" [32]. Moreover, for a sufficiently high observer gain and a globally bounded
controller, the high-gain observer is able to recover the system performance achieved with the
state feedback control.
Although the effectiveness of such an observer has been nicely demonstrated in [117, 118], the
standard high-gain observer faces a numerical challenge with high dimensional systems. Indeed,
in the design of a standard high-gain observer, the observer gain is proportional to the powers of
the tuning parameter denoted θ in this work, which is powered to the dimension of the observed
state n. This creates a challenge in the numerical implementation when the state dimension
is high or when the high-gain parameter has to be chosen largely to achieve fast estimation.
Moreover, high-gain observers are known for having high sensitivity to high-frequency measure-
ment noise, which makes state estimates practically unusable, especially for higher dimensional
systems having nonlinearities with large Lipschitz constants.
Some of the earlier research performed in the spirit of high-gain observers can be found in the
literature such as the so-called extended high-gain observer [42] which is composed of an extended
high-gain observer (EHGO), for the estimation of the derivatives of the output, augmented with
an extended Kalman filter (EKF) for the estimation of the states of the internal dynamics.
Then, to account for the presence of disturbances acting on the system, several methods have
been proposed based on gain adaptation methods [43], [44], [45], [46] and [47].
The selection of a high gain stems also from the need to account for the nonlinearities in the
error dynamics, which are usually modeled as Lipschitz functions. In [48], the gain adaptation
allows one to account for the unknown Lipschitz constant. Resetting rules are proposed in [49].
The use of a time-varying gain is addressed in [50], [51], where a Lyapunov functional is used
for the purpose of the stability analysis of the estimation error instead of the classical quadratic
Lyapunov function.
A new high-gain observer able to overtake some of the drawbacks of classical structures has been
recently proposed in [52] for a class of nonlinear systems with one output and dimension n ≥ 3.
The cornerstone of this contribution consists in limiting the power of the observer gain to 2
regardless of the dimension of the system, thus improving the performance of the observer with
respect to the measurement noise on the output. Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon is still present. Along this route,
two similar schemes, which follow the seminal idea presented in [52], have been recently proposed,
in [53] and [54], to address the implementation issues and the peaking phenomenon. In [53], the
author shows how to build a high-gain observer by interconnecting a cascade of reduced-order
high-gain observers of dimension 1. A simpler scheme, without feedback interconnection terms,
that cannot ensure an asymptotic estimate, is presented in [54]. It is worth stressing, however,
that even if the dimension of the observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers. Hence, the focus of this chapter is to analyze and
address the issues that arise when implementing high-gain observers in both scenarios: noise-free
and in the presence of measurement noise. In particular, we focus on the trade-off between fast-
state reconstruction, minimizing the bound on the steady-state estimation error, and rejecting
the high-frequency measurement noise.
First, we will present a new observer structure for triangular systems having Lipschitz nonlin-
earities. The proposed observer is based on system state augmentation which transforms the
original system of dimension n into an augmented system of dimension n + js which allows
obtaining a new threshold on the observer parameter θ that guarantees the exponential con-
vergence of the estimation error and reduces the value of the observer gain. Then, we combine
the HG/LMI technique recently proposed in [55] with the system state augmentation approach
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to obtain a new enhanced high-gain observer. The key idea behind this proposed observer is
based on transforming the original system of dimension n into an augmented system of dimen-
sion n + js, then applying the HG/LMI technique to the resulting system. Such an observer
has more degrees of freedom as compared with the standard high-gain observer, which can be
regarded as a particular case of this improved high-gain observer because of a special choice of
design parameters.

2.2 Highlights on high-gain observers
This section is devoted to presenting an overview of sufficient conditions for the existence of
observability canonical forms for nonlinear systems. These observability forms can be seen as
a special case of a feedback form. As a matter of fact, when the aforementioned sufficient
conditions are verified, the nonlinear system is diffeomorphic to a system for which we know
how to design an observer. For the sake of simplicity, we consider the class of single-input single-
output nonlinear systems. The results presented herein cannot be extended to the multi-output
multi-input case in a trivial way.

Observabilility canonical forms

Single input observability is the practical observability notion that can be used for state and
parameter estimation. A system is single-input observable if there exists an input that distin-
guishes any different initial states (see chapter 1). Such inputs are called universal inputs. For
analytic systems, the observability is equivalent to the single input observability [69]. For non-
linear systems, even if the system is single input observable, it may admit an input that makes
it unobservable. However, for stationary linear systems, the single observability doesnâ€™t
depend on the input and can be characterized using a Brunowsky canonical form [119]. The
property that the single input observability does not depend on the input will be called uniform
observability. As for stationary linear systems, canonical forms can be designed in order to
characterize some class of uniformly observable nonlinear systems.
In the observation context, a natural extension of stationary linear systems consists in consid-
ering linear systems up to output injection:{

ẋ = Ax+ φ((u, y))
y = Cx

(2.1)

where the state x = (x1, . . . , xn) ∈ Rn evolves in compact subset X of Rn, the input u is any
function assumed to be known evolving in compact subset U of Rm the known input and y ∈ Rp
is the measured output.
The observability of (C,A) is equivalent to the fact that system (2.1) is observable independently
on the input.
An observer for systems (2.1) is a simple extension of the Luenberger observer:

˙̂x = Ax̂+ φ((u, y)) + L(Cx̂− y) (2.2)

where L is any constant n× p constant matrix such that A+ LC is stable.
Based on this nice observability property and the fact that the observability is an intrinsic
property (it does not depend on the system of coordinates), the problem of transforming a
nonlinear system to systems of the form (2.1) by a change of coordinate has been initiated in [4]
and extended to the multi-output case in [6, 7].
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In the followings, we recall some of the results in [4].
Consider the single output nonlinear system:{

ẋ = f(x)
y = h(x) (2.3)

where, x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp
In the single output case (p = 1), we will recall the necessary and sufficient condition that
systems (2.3) must satisfy in order to be transformed into the canonical form:{

ẋ = Ax+ φ(y)
y = Cx

(2.4)

where,

A =


0 0 0
1 0 0
... . . . ...
0 . . . 1 0

 and C =
(
0, . . . , 0, 1

)

To do so, consider the family of vector fields X1, . . . , Xn defined by:
LX1

(
Lkf (h)

)
= 0, for k = 0, . . . , n− 1

LX1

(
Ln−1
f (h)

)
= 1

Xi = [Xi−1, f ] , for i = 2, . . . , n
(2.5)

where LX1 denotes the Lie derivative along the vector field X1 and [,] denotes the symbol of the
Lie bracket operation.
Now, define the following transformation Φ = (Φ1, . . . ,Φn) by:
LXi (Φj) (x) = δji , where δji is the symbol of Kronecker.

Theorem 2.1

Assuming that the system (2.3) is observable in the rank sense at some x0 ∈ Rn. A necessary
and sufficient condition for which z = Φ(x) becomes a local system of coordinates around
x0 in which system (2.3) becomes of the form (2.4) is that the vector fields X1, . . . , Xn

commute. Namely, [Xi, Xj ] = 0, for every, i, j.

For the proof (refer to [28]).
In [6, 7], the authors gave an extension of this result to the multi-output systems which can be
transformed into the Brunowsky canonical form:{

ẋ = Amx+ φ(y)
y = Cmx

(2.6)

where,

Am =


0 0 0
A1 0 0
... . . . ...
0 . . . Ap 0

 , Ai =


0 0 0
A1 0 0
... . . . ...
0 . . . Ap 0
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is nk × nk matrix with n1 + . . .+ np= n and Cm =

C1 0 0
... . . . ...
0 . . . Cp

 with Cp =
(
0, . . . , 1

)
a

nk vector.

2.2.1 Canonical form and high-gain observer

Consider nonlinear systems of the form:{
ẋ = f(x, u)
y = h(x) (2.7)

where, x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp is the measured output.
System (2.7) is uniformly observable, if for every input u ∈ L∞ ([0, T ],Rm), where T > 0
is fixed, u is universal input. Namely, for every initial states x0, x1, the associated outputs
y (x0, u, t) , y (x1, u, t) are not identically equal on [0, T (, x0, x1, u) [ , where T (, x0, x1, u) ≤ T is
largest time such that the trajectories x(t) and x1(t) are will defined for every t ∈ [0, T (, x0, x1, u) [ .
Notice that if the linear part of systems (2.3) is observable then system (2.3) is uniformly ob-
servable. Moreover, an observer takes the form (2.2) observer exponentially converges whenever
the unknown trajectory x(t) is defined for all t ≥ 0. A sufficient condition that guarantees the
completeness of the system (ie. the trajectories are defined on the whole R+) is that φ is a
global Lipschitz function. Notice that completeness is necessary for the existence of an observer
which converges as t → ∞.

2.2.2 Observability canonical corm for uniformly observable systems

For the sake of simplicity, we consider the control affine nonlinear system:{
ẋ = f0(x) + u1f1 + . . .+ umfm(x)
y = h(x) (2.8)

where, the fi ’s are assumed to be of class C∞.
Given a function φ from Rn into R of class Cn, the the Lie derivatives of φ along the vector f0
are:
Lf0(φ) = ∑n

i=1 f0i
∂φ
∂xk

. For k = 1, . . . , n, Lkf0
(φ) = Lf0

(
Lk−1
f0

(φ)
)
, with L0

f0
(φ) = φ.

Denote by Φ(x) =

 Φ1(x)
...

Φn(x)

 the transformation defined by:

Φk(x) = Lk−1
f0

(h)(x), for k = 1, . . . , n.
Then the following theorem is introduced.

Theorem 2.2: [26]

If system (2.8) is uniformly observable, then there exists an open dense subset M of Rn
such that for every x0 ∈ M, there exists a neighborhood V , such that the map Φ becomes
a diffeomorphism from V into its range. Moreover, it transforms system (2.8) restricted to
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V into the following canonical form:{
ż = Az + ψ0(z) +∑m

i=1 ψi(z)ui
y = Cz

(2.9)

A =


0 1 0
... . . .

1
0 . . . 0

, ψ0(z) =

 0
...

ψn(z)

, ψ0(z) =



ψk1(z1)
...

ψkj
(z1, . . . , zj)

...
ψkn(zn)


, C =

(
1, 0, . . . , 0

)
.

Conversely, if a system (2.8) can be transformed into the above canonical form using any
diffeomorphism, then the system is uniformly observable on the domain of definition of the
diffeomorphism.

For the proof, we refer the reader to [26].

High-gain observer design

In this section, we deal with the design of high-gain observers for the class of observer canonical
form systems described as: 

ż = Az + φ(u, z)
y = Cz

z ∈ Rn; u ∈ Rm
(2.10)

where, A =


0 1 0
... . . .

1
0 . . . 0

 and C =
(
1, 0, . . . , 0

)
and ψ(z, u) =



ψ1(z1, u)
...

ψk(z1, . . . , zj , u)
...

ψn(z, u)


In order to design the high-gain observer, the following assumption is first introduced.

Assumption 2.1

The nonlinear function φ is a global Lipschitz function, i.e., for all bounded subset of Rm;
∃γ > 0 such that ∀z, z′ ∈ Rn, we have ∥φ(z, u) − φ(z′, u)∥ ≤ ∥z − z′∥, where ∥∥ denotes the
euclidian norm of Rn.

Remark 2.1

This hypothesis guarantees the completeness of the system (for every admissible control,
all trajectories of the system are defined in R+). If the concerned trajectories of the system
lie into a bounded subset Ω of Rn, then we can prolong the nonlinear term φ to a global
Lipschitz function φ̃ outside B, so that trajectories of the new system coincide with those
of the initial system.
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Now, let θ > 0 a parameter and set: ∆θ =

θ 0 0
... . . .
0 . . . θn

 and L =

l1...
ln

 such that

A+ LC =


l1 1 0
... . . .

ln−1 0 1
ln 0 . . . . . . 0

 becomes a Hurwitz matrix.

Then, the candidate observer has the following form:

˙̂z = Aẑ + ∆θL(Cẑ − y) (2.11)

Then the following theorem is derived:

Theorem 2.3

Under assumption 1, system (2.11) forms an exponential observer for system (2.10). Let U
be a compact subset of Rm, then there exists a constant θ0 > 0 such that ∀θ > θ0; ∃α >
0; ∃β > 0 such that ∀ẑ(0), we have ∥ẑ(t) − z(t)∥ ≤ αe−βt∥ẑ(0) − z(0)∥, where z(t) is the
unknown trajectory to be estimated.

Remark 2.2

The high-gain observer (2.11) is characterized by the nice feature of being extremely easy
to tune. The convergence of the observer can be arbitrarily chosen by selecting a large
high-gain parameter θ in order to overcome the Lipschitz constant of the nonlinear function
φ. More precisely, β depends on the parameter θ and lim β(θ) = +∞.

The high-gain observer limitations

The high-gain observer design introduced in Theorem 3 highlights three main drawbacks of this
approach:

1. Implementation issues: the high-gain observer (2.11) is characterized by having the
gain of the output injection terms which is proportional to θ, θ2, . . . , θn. Furthermore,
the minimum value of ‘ which guarantees asymptotic convergence of the observer, is pro-
portional to the Lipschitz constant of the nonlinear function φ. As a consequence, if the
high-gain parameter θ or the dimension n of the observed system is large, we need to
implement in the observer a term ‘n which may be very harmful from a numerical point of
view. If we want to avoid implementing powers of θ in the observer, we need some different
strategies, such as a nonlinear change of coordinates, the use of non-linear functions, or
dynamic extension.

2. "peaking phenomenon": convergence of the observer (2.11) has been stated in the proof
of Theorem 3. In absence of measurement noise and of model uncertainties, the ẑ dynamics
can be bounded as

∥z(t) − ẑ(t)∥ ≤ αe−βt∥z(0) − ẑ(0)∥
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During the transient, the decaying term e−βt is closed to one. As a consequence, the
variable ẑ shows a peak that is proportional to the error in the initial conditions and
multiplied by a term α, producing an estimate completely unreliable and which can be very
large from a numerical point of view when θ are very large. The interaction of peaking with
nonlinearities can induce finite escape time in output feedback scenarios. In particular,
in the lack of global growth conditions, high-gain observers can destabilize the closed-
loop system as the observer gain is driven sufficiently high. The peaking phenomenon
has been extensively studied in literature [27, 37, 120] and different solutions have been
proposed, based on re-scaling [27], projections [121], hybrid re-design [49] or time-varying
gain approaches [122]. Finally, very recent publications [53] based on a nested-saturation
design and [55] based on HG/LMI technique.

3. Sensitivity to measurement noise: one of the main features which questions the use
of a high-gain observer in applications is its sensitivity to measurement noise making their
use practically impossible in a really noisy environment. Indeed, the estimates may become
completely unreliable, imposing some upper bound on the value of the high-gain parameter
θ if estimation in presence of measurement noise is desired. This trade-off between the
speed of the state estimation and the sensitivity to measurement noise is a well-known fact
in the observer theory. In this respect, high-gain observers tuned to obtain fast estimation
dynamics are necessarily very sensitive to high-frequency noise. Some strategies have
been advanced in the literature to achieve fast convergence while reducing the impact of
measurement noise at a steady state such as using a larger θ during the transient time and
then decreasing it at steady state [118] and many other schemes [44–46,55,123].

In the next section, we propose a new analysis tool to overcome or at least to mitigate the
aforementioned drawbacks.

2.3 Enhancing high-gain observer performances

This section addresses the challenging performance issues that arise when implementing high-
gain observers in noise-free and in the presence of measurement noise. In particular, we focus
on the trade-off between fast-state reconstruction, minimizing the bound on the steady-state
estimation error, and rejecting the model uncertainty. Motivated by these considerations, we
propose a new class of nonlinear high-gain observers, which substantially overtakes the drawbacks
mentioned in the previous section. Our technique follows the standard high-gain methodology
with the same state observer structure of dimension n. However, by exploiting the system state
augmentation approach, we are able to decrease the tuning parameter (then implicitly, the gain
power is decreased). This is achieved by augmenting the state of the system to the dimension
n+ js where js is a design parameter that can take values between 0 and n. Then, the HG/LMI
technique proposed in [55] is combined with this state augmentation approach to avoid the
peaking phenomenon, reduce the sensitivity to high-frequency measurement noise, and enhance
the convergence rate if necessary. To get a good trade-off between all these criteria, the new
observer offers the possibility to play with the values of j0, js, and the tuning parameter θ.

2.3.1 Basic ingredients of the observer construction

In this section, we introduce some background results on high-gain observers essential to the
development of the proposed technique.
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System description

Before describing the high-gain observer form, it is important to lay the foundation for the
types of systems that are considered in this body of work. Namely, We will consider the class
of nonlinear systems in the triangular form described by the following set of equations:

ẋ =


ẋ1
ẋ2
...

ẋn−1
ẋn

 =


x2
x3
...
xn
f(x)


y = x1

(2.12)

where x ∈ Rn is the system state, x ∈ R is the measured output, and f : Rn → R is a nonlinear
function satisfying the Lipschitz property:∣∣∣f(x1 + ∆1, . . . , xn + ∆n) − f(x1, . . . , xn)

∣∣∣ ≤ kf

n∑
j=1

|∆j | . (2.13)

Using a nonlinear transformation, system (2.12) can be rewritten under the form:{
ẋ = Ax+Bf(x)
y = Cx

, (2.14)

where the system matrices take the form

A =


0 1 . . . . . . 0
0 0 1 . . . 0
... . . . ...
0 . . . . 0 1
0 0 . . . . . . 0

 , i.e., (A)i,j =
{

1 if j = i+ 1
0 if j ̸= i+ 1 . (2.15)

B =
(
0 . . . 0 1

)T
, C =

(
1 0 . . . 0

)
(2.16)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n

It should be noticed that as demonstrated in [31], all uniformly observable systems can be
transformed into system (2.14). Several real-world models are or can be transformed into the
triangular form [31,118]. The following references give more details about this family of systems
and their practical importance [26,28].

Standard high-gain methodology

Here, we recall the basic standard high-gain observer as in [32]. For the class of nonlinear systems
written in the triangular form as given in by equation (2.14), a candidate observer system is (as
in [26]) just the "high-gain extended Luenberger observer":

˙̂x = Ax̂+Bf(x̂) + L
(
y − Cx̂

)
. (2.17)

The dynamics of the estimation error x̃ = x− x̂ is then given by:

˙̃x =
(
A− LC

)
x̃+B

[
f(x) − f(x̂)

]
, (2.18)
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in which the observer gain L is rewritten under the following form:

L := T(θ)K, θ ≥ 1. (2.19)

where
T(θ) := diag

(
θ, . . . , θn

)
and K ∈ Rn×p.

In addition, the high-gain methodology focuses on the transformed estimation error

ˆ̃x := T−1(θ)x̃, (2.20)

where T−1(θ) is the inverse of T(θ) given by

T−1(θ) = diag
(1
θ
, . . . ,

1
θn

)
.

It is well-known that the dynamics of the error ˆ̃x is given by

˙̃̂x = θ
(
A−KC

)ˆ̃x+ 1
θn
B∆f, (2.21)

with
∆f := f(x) − f(x− T(θ)ˆ̃x).

From the Lipschitz condition (2.13) and the fact that θ ≥ 1, we can show as in [50] that there
always exists a positive scalar constant kf , independent of θ, such that

∥T−1(θ)B∆f∥ ≤ kf∥ˆ̃x∥. (2.22)

then, the following theorem is derived,

Theorem 2.4: [32]

If there exist P > 0, λ > 0, Y of appropriate dimensions, such that

ATP + PA− CTY − Y TC + λI < 0, (2.23)

then the observer converges exponentially to zero for

θ > max{1, 2kfλmax(P )
λ

}, (2.24)

and
K = P−1Y T

where λmax(P ) is the largest eigenvalue of the matrix P .

Proof. For more details about the proof of this theorem, we refer the reader to [32], [50], [51].
□
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2.3.2 LPV-based approach

We consider a class of nonlinear systems without the linear state part which is not necessary
for this design technique. For simplicity of presentation, we consider, without loss of generality,
that the nonlinear function depends only on the system state, and the output is linear. The
extension to nonlinear output is straightforward. Hence, the class of systems we treat in this
section is given as {

ẋ = Ψ(x)
y = Cx

(2.25)

where the nonlinear function Ψ : Rn −→ Rn is assumed to be γΨ-Lipschitz, i.e.:∥∥∥Ψ(x) − Ψ(y)
∥∥∥ ≤ γΨ

∥∥∥x− y
∥∥∥, ∀ x, y ∈ Rn (2.26)

Hereafter, we introduce some definitions and preliminaries which will be of crucial use in the
developed LPV-approach for Lipschitz and not necessarily differentiable systems.

Definition 2.1

Consider two vectors

X =

x1
...
xn

 ∈ Rn and Y =

y1
...
yn

 ∈ Rn.

For all i = 0, ..., n, we define an auxiliary vector XYi ∈ Rn corresponding to X and Y as
follows: 

XYi =



y1
...
yi
xi+1

...
xn


for i = 1, ..., n

XY0 = X

(2.27)

Lemma 1 and 2 introduced in the following are crucial for the HG/LMI observer design.

Lemma 2.1: [124]

Consider a continuous function Ψ : Rn −→ R. Then, for all

X =

x1
...
xn

 ∈ Rn and Z =

z1
...
zn

 ∈ Rn,
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there exist functions ψj : Rn × Rn −→ R, j = 1, ..., n such that

Ψ(X) − Ψ(Z) =
j=n∑
j=1

ψj
(
XZj−1 , XZj

)
e⊤
n (j)

(
X − Z

)
, (2.28)

where XZj ∈ Rn is an auxiliary vector corresponding to X and Z as follows:
XZj =



z1
...
zj
xj+1

...
xn


for j = 1, ..., n

XZ0 = X

(2.29)

where, en(j) is the jth vector of the canonical basis of Rn.

Proof. The proof consists of rewriting Ψ(X) − Ψ(Y ) as

Ψ(X) − Ψ(Y ) =
j=n∑
j=1

[
Ψ
(
XYj−1

)
− Ψ

(
XYj

)]
Now, defining the functions ψj by

ψj
(
XYj−1 , XYj

)
=


0 if xj = yj

Ψ
(
XYj−1

)
−Ψ
(
XYj

)
xj−yj

if xj ̸= yj

(2.30)

we can write

Ψ(X) − Ψ(Y ) =
j=n∑
j=1

[
ψj
(
XYj−1 , XYj

)]
(xj − yj)

=
j=n∑
j=1

[
ψj
(
XYj−1 , XYj

)
eTn (j)

] (
X − Y

) (2.31)

□

Lemma 2.2: [124]

Consider a function Ψ : Rn −→ Rn, then, the two following items are equivalent:

• Ψ is γΨ-Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X) − Ψ(Z)
∥∥∥ ≤ γΨ

∥∥∥X − Y
∥∥∥, ∀ X,Z ∈ Rn; (2.32)

• for all i, j = 1, ..., n, there exist functions

ψij : Rn × Rn −→ R
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and constants γ
ψij

≤ 0, γ̄ψij
≥ 0, so that ∀ X,Z ∈ Rn,

Ψ(X) − Ψ(Z) =
i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Z

)
, (2.33)

and
−γΨ ≤ γ

ψij
≤ ψij ≤ γ̄ψij

≤ γΨ, (2.34)

where
ψij ≜ ψij

(
XZj−1 , XZj

)
and Hij = en(i)e⊤

n (j).

Proof.

1. Sufficiency: we start by proving sufficiency. Assume that for all i, j = 1, ..., n, there exist
functions

ψij : Rn × Rn −→ R

and constants γ
ψij

and γ̄ψij
, so that (2.33) and (2.34) hold for all X,Y ∈ Rn. Then, we

have ∥∥∥Ψ(X) − Ψ(Y )
∥∥∥ ≤

i=n∑
i=1

j=n∑
j=1

|ψij |
∥∥∥X − Y

∥∥∥
≤

i=n∑
i=1

j=n∑
j=1

λij

∥∥∥X − Y
∥∥∥

(2.35)

where λij = max
(
|γ
ψij

|, |γ̄ψij
|
)
. Hence, the function Ψ is γΨ-Lipschitz with

γΨ ≤
i=n∑
i=1

j=n∑
j=1

max
(
|γ
ψij

|, |γ̄ψij
|
)
.

2. Necessity: We know that for all X, we can write

Ψ(X) =

Ψ1(X)
...

Ψn(X)

 =
i=n∑
i=1

en(i)Ψi(X)

Consequently, if Ψ is γΨ-Lipschitz, then we deduce that there are constants 0 < γΨi ≤ γΨ
for all i = 1, ..., n so that each component Ψi is γΨi-Lipschitz. Indeed, we have

∥∥∥Ψ(X) − Ψ(Y )
∥∥∥2

=
i=n∑
i=1

∣∣∣Ψi(X) − Ψi(Y )
∣∣∣2

≤ γ2
Ψ

∥∥∥X − Y
∥∥∥2
.

(2.36)

Inequality (2.36) leads to ∣∣∣Ψi(X) − Ψi(Y )
∣∣∣ ≤ γΨ

∥∥∥X − Y
∥∥∥
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which means that Ψi is γΨi-Lipschitz with γΨi ≤ γΨ. From lemma 1, there are functions
ψij : Rn × Rn −→ R, j = 1, ..., n so that

Ψi(X) − Ψi(Y ) =
j=n∑
j=1

ψij
(
XYj−1 , XYj

)
eTn (j)

(
X − Y

)
(2.37)

where ψij is given as in equation (2.30) of Lemma 1 by replacing Ψ by Ψi. Since Ψi is
γΨi-Lipschitz, then we have∣∣∣Ψi(XYj−1) − Ψi(XYj )

∣∣∣ ≤ γΨi

∥∥∥XYj−1 −XYj

∥∥∥
= γΨi

∣∣∣xj − yj
∣∣∣

which means that
−γΨi ≤ ψij ≤ γΨi .

This ends the proof.
□

Lemma 2 provides a best less conservative Lipschitz condition. Indeed, the reformulation (2.33)-
(2.34) allows to treat the nonlinearity with the best precision and exploits all the interesting
properties of the system’s nonlinearity.

LPV/LMI based observer

Consider the following Luenberger observer:

˙̂x = Ψ(x̂) + L
(
y − Cx̂

)
(2.38)

The dynamic of the estimation error e = x− x̂ is given by:

ė =
[
Ψ(x) − Ψ(x̂)

]
− LCe (2.39)

Since Ψ(.) is γΨ-Lipschitz, then following Lemma 2 there are functions

ψij : Rn × Rn −→ R

and constants γ
ψij

and γ̄ψij
, such that

Ψ(x) − Ψ(x̂) =
[ i=n∑
i=1

j=n∑
j=1

ψijHij

]
e (2.40)

and
γ
ψij

≤ ψij ≤ γ̄ψij
(2.41)

where
ψij ≜ ψij

(
x
x̂j−1
k , xx̂j

)
is defined as in (2.30),then replacing Ψ by Ψi (the ith component of Ψ).
For the sake of shortness, we use ψij instead of ψij

(
xx̂j−1 , xx̂j

)
in what follows.
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Now, define the matrices
Θ =

(
ψij
)
ij

(2.42)

and

A
(
Θ
)

=
i=n∑
i=1

j=n∑
j=1

ψijHij (2.43)

Consequently, the dynamics (2.39) can be rewritten as

ė =
[
A
(
Θ
)

− LC
]
e (2.44)

According to (2.41), the matrix parameter Θ belongs to a bounded convex set Hn for which the
set of vertices is defined by:

VHn =
{

Φ ∈ Rn×n : Φij ∈
{
γ
ψij
, γ̄ψij

}}
. (2.45)

The following theorem is derived, it provides LMI conditions for the observer design of Lipschitz
systems.

Theorem 2.5: [124]

The observer (2.38) is asymptotically convergent if there exist a positive definite matrix P,
a matrix R of appropriate dimension such that the following LMI conditions hold:

A
(
Φ
)T

P + PA
(
Φ
)

− CTR − RTC < 0, ∀ Φ ∈ VHn (2.46)

Hence, the observer gain is given by

L = P−1RT .

For the proof (refer to [124]).

Remark 2.3

The LPV/LMI-based approach is the best LMI technique which avoids high-gain, however,
from the complexity point of view it is less interesting. Indeed, to synthesize the observer
gain, the LPV/LMI-based approach typically needs to solve 2n2 LMIs. In addition, this
technique, as is the case for all LMI techniques, contrary to the high-gain method, provides
sufficient LMI conditions from which we cannot guarantee the existence of a stable ob-
server before solving the LMIs. On the other hand, the high-gain methodology guarantees
convergence at the cost of a larger gain even for small values of the Lipschitz constants.

2.3.3 HG/LMI approach

To improve the design strategy based on the LPV approach, a combination of the high-gain
methodology and the LPV-based technique is given in this section. The advantages of each
method are exploited to get an improved observer design method. This latter is called "HG/LMI
observer which proved a smaller gain in addition to a reduced number of LMIs conditions to be
satisfied.
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Motivating example

The fact that kf in inequality (2.13) is independent of θ is not necessarily an advantage. Indeed,
this depends on how θ would be involved in kf . Also, the fact that kf is independent of θ does
not come only from the condition θ ≥ 1, but essentially from the presence of the last component
of x in f . Because of this last component, the parameter θ vanishes from the term 1

θn ∆f for
θ ≥ 1. In this brief and simple example, we present the motivation and the key idea of the
HG/LMI technique. Consider a simple three-dimensional system.
If we take a nonlinear function

f(x) = γf sin(x3),

then, from (2.13) we get

1
θ3 ∥∆f∥ ≤ γf

θ3 × | θ3 ˆ̃x3 |= γf | ˆ̃x3 |≤ kf∥ˆ̃x∥,

where kf = γf in this case. However, if we take

f(x) = γf sin(x2),

then we get
1
θ3 ∥∆f∥ ≤ γf

θ3 × | θ2 ˆ̃x2 |= γf
θ

| ˆ̃x2 |≤ kf
θ

∥ˆ̃x∥.

Hence, by replacing in (2.24) kf by kf

θ , θ0 will be reduced to
√
θ0, which will reduce significantly

the values of the observer gain.

HG/LMI based observer

This observer design technique follows the standard high-gain methodology with the same state
observer structure of dimension n. However, by exploiting the LPV/LMI presented in the
previous section, the values of the tuning parameter and observer gain are decreased. Indeed,
by introducing a "compromise index" j0, with 0 ≤ j0 ≤ n, the power of the proposed high-gain is
limited to j0 with 2j0 LMIs to solve instead of one single LMI as in standard high-gain observer.
We consider the standard high-gain observer structure:

˙̂x = Ax̂+ f(x̂) + L
(
y − Cx̂

)
, (2.47)

where L is defined as in (2.19).
The dynamics of the transformed error ˆ̃x, defined in (2.21), is then given by:

˙̃̂x = θ
(
A−KC

)ˆ̃x+ T−1(θ)∆f (2.48)

with
∆f := f(x) − f(x− T(θ)ˆ̃x).

Each nonlinear component fi can be written under the form

∆fi =
i−ji∑
j=1

θjψij ˆ̃xj +
ji∑
j=1

θki(j)ψiki(j)
ˆ̃xki(j), (2.49)

where
ki(j) = i− (j0 − j),
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0 ≤ j0 ≤ i.

It follows that ∆f is written as

∆f =

for HG︷ ︸︸ ︷
n∑
i=1

i−j0∑
j=1

θjψijen(i)ˆ̃xj︸ ︷︷ ︸
∆f1

+

for LPV/LMI︷ ︸︸ ︷
n∑
i=1

j0∑
j=1

θki(j)ψiki(j)en(i)ˆ̃xki(j) . (2.50)

Hence, the error dynamics (2.21) is rewritten as follows:

˙̃̂x = θ
(
A(Ψθ) −KC

)
ˆ̃x+ T−1(θ)∆f1, (2.51)

where

A(Ψθ) = A+B
n∑
i=1

ji∑
j=1

ψθijen(i)e⊤
n (ki(j)), (2.52)

Ψθ =



ψθ11
...

ψθ1j1
ψθ21

...
ψθ2j2...
ψθnjn


∈ R

n∑
i=1

ji
, (2.53)

ψθij =
ψiki(j)

θ1+(ji−j)
. (2.54)

Now define the convex bounded set

Hσ
jmin =

Φ ∈ R

n∑
i=1

ji
:

γ
γiki(j)

σ1+(ji−j)
≤ Φij ≤

γ̄γiki(j)

σ1+(ji−j)

 (2.55)

for which the set of vertices is defined by

VHσ
jmin

=

Φ ∈ R

n∑
i=1

ji
: Φij ∈

{ γ
γiki(j)

σ1+(ji−j)
,
γ̄γiki(j)

σ1+(ji−j)

} , (2.56)

where γ
γiki(j)

≤ 0 and γ̄γiki(j) ≥ 0 are respectively, the lower and upper bounds of the bounded
parameter ψiki(j). Since γ̄γk(j) ≥ 0 and γ

γk(j)
≤ 0, then it is obvious that for two positive scalars

σ1, σ2, we have the following implication

σ1 < σ2 =⇒ Hσ1
j0

⊃ Hσ2
j0
. (2.57)

Moreover,
lim

σ→+∞

(
Hσ
j0

)
=
{

0Rj0

}
. (2.58)
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On the other hand, we can show that there exists a positive real number kj0 ≤ kf such that ∆f1
satisfies

∥T−1(θ)B∆f1∥ ≤ kj0
θj0

∥ê∥. (2.59)

Hence, the following theorem is obtained.

Theorem 2.6: [55]

If there exist P > 0, λ > 0, Y , and σ > 0 such that

A(Ψσ)TP + PA(Ψσ) − CTY

− Y TC + λI < 0, ∀Ψσ ∈ VHσ
j0
, (2.60)

θ > θ
1

1+j0
j0

= 2kj0λmax(P )
λ

, (2.61)

then the estimation error x̃ is asymptotically stable with

L = T(θ)
K︷ ︸︸ ︷

P−1Y T , θ ≥ max
(
σ, θ

1
1+j0
j0

)
.

Proof. For the proof, we refer the reader to [55]. □

2.3.4 New solution using system state augmentation approach

This section is devoted to the main result of this paper. The motivation of this work is inspired
by the HG/LMI design presented in the previous section. We will show that by augmenting
the state of the system, we can reduce the value of the tuning parameter and the power of the
observer gain.

Motivation

The motivation for developing the new solution comes from work in [55]. Indeed, as demonstrated
in [55], if the nonlinear function f(.) satisfies the condition

∂f

∂xj
(x) ≡ 0,∀ j > n− js (2.62)

for a given js ≥ 0, then the Lipschitz inequality (2.22) becomes

∥T−1(θ)B∆f∥ ≤ kf
θjs

∥ˆ̃x∥. (2.63)

It follows that the high-gain inequality (2.24) becomes

θ >

(2kfλmax(P )
λ

) 1
1+js

= θ
1

1+js
0 . (2.64)

This new threshold on θ which guarantee exponential convergence of the estimation error is
significantly reduced due to the power 1

1+js . Indeed, instead of T(θ) in L, we have T(θ)
1

1+js .
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x̂

ẑ

y

u {
ẋ = Ax+Bf(x)
y = Cx

High-gain
observer

∂fΨ
∂zj

≡ 0, ∀ j > n

Ψ : Rn → Rn+js

x → z = Ψ(x)

{
ż = AΨ z +BΨfΨ(z, u)
y = CΨ z

Φ : Rn+js → Rn
ẑ → x̂ = Φ(ẑ)

Figure 2.1: Block diagram of the high-gain observer design procedure based on system state
augmentation approach.

Hence it is important to exploit condition (2.62) for systems satisfying it since it allows decreasing
considerably the values of the high-gain observer. A solution is proposed in [55] by using a
decomposition of the nonlinearity into two parts by using the HG/LMI technique presented in
the previous section. Such a solution improves highly the standard high-gain observer, however,
the decomposition of the nonlinearity affects the design of the matrices P and K subject to a set
of 2js LMIs to be solved. Hence, in this section, we propose a new design procedure technique in
which we have one LMI as in the standard high-gain observer in addition to a new threshold on
the design parameter θ which will result in a smaller gain as compared to the standard high-gain
observer.

System state augmentation approach

In this section, we present the main idea of the design procedure based on the system state
augmentation approach. Basically, the idea relies on transforming the original system of dimen-
sion n into a new one with augmented dimension n+ js, where the new nonlinear function does
not depend on js last components of the new state, we then construct a high-gain observer for
the augmented system which yields a new threshold on θ attenuated to the power 1

(1+js) . This
design procedure is summarized in Figure 2.1.

The following theorem summarizes the design procedure of the proposed high-gain observer
based on the system state augmentation approach.
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Theorem 2.7

Let us consider the uniformly observable system{
ẋ=ψ(x, u)
y=ϕ(x, u) (2.65)

Assume there exists a state transformation (an embedding)

Ψ : Rn → Rn+js

x → z = Ψ(x) (2.66)

which transforms the system (2.65) into the following one{
ż = AΨz +BΨfΨ(z)
y = CΨz

(2.67)

where AΨ, BΨ, and CΨ have the same structure as A,B, and C, respectively, but with
dimension n+ js. We also have

fΨ(z) ≜ fΨ(z1, . . . , zn) ⇔ ∂fΨ
∂zj

(z) ≡ 0, ∀ j > n. (2.68)

Consider the state observer described by (2.69).{ ˙̂z = AΨx̂+BΨfΨ(ẑ) + LΨ
(
y − CΨẑ

)
x̂ = Φ(ẑ),

(2.69)

where Φ is a continuous left inverse of the embedding Ψ satisfying x = Φ(z) and LΨ ≜
TΨ(θ)KΨ, with TΨ(θ) ≜ diag(θ, . . . , θn+js). If there exist P > 0, λ > 0, Y , and θ ≥ 1 such
that

A⊤
ΨP + PAΨ − C⊤

ΨY − Y ⊤CΨ + λI < 0, (2.70)
KΨ ≜ P−1Y ⊤, (2.71)

θ > θΨ ≜
1+js

√
2kfΨλmax(P )

λ
, (2.72)

then the estimation error x̃ = x− x̂ converges exponentially to zero.

Proof. The proof is straightforward. Indeed, from Theorem 7, if the conditions (2.70)-(2.72) are
satisfied, then the error z̃ = z − ẑ converges exponentially to zero. The presence of (1 + js)th

root in (2.72), as also mentioned in (2.64), is due to the fact that fΨ does not depends on the
js last components of z, which leads to

∥T−1
Ψ (θ)BΨ∆fΨ∥ ≤ kfΨ

θjs
∥ˆ̃z∥, (2.73)

where ˆ̃z = T−1
Ψ (θ)z̃. Hence, the exponential stability of x̃ towards zero is then preserved due to

the invertibility of the mapping Φ. □
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Particular transformation: adding a chain of integrators

This section is devoted to a special case of transforming the system (2.14) into a higher dimen-
sional system by adding js integrators. The aim of this section is to show that there exists a
transformation satisfying the properties stated in Theorem 7.
Let us consider the following transformation

z =

 z1
...

zn+js

 = Ψ(x) ≜



x1
...
xn

f(x(t))
df(x(t))

dt...
d(js−1)f(x(t))

dt(js−1)


. (2.74)

It is obvious to see that

żi = zi+1, for i = 1, . . . , n+ js − 1, (2.75)

żn+js = djsf(x(t))
dtjs ≜ fΨ(z1, . . . , zn), (2.76)

x =

z1
...
zn

 =

Φ︷ ︸︸ ︷[
In 0Rn×js

]
z (2.77)

where In is the identity matrix of dimension n.
Then following the previous section, the corresponding observer is ˙̂z = AΨx̂+BΨfΨ(ẑ) + LΨ

(
y − CΨẑ

)
x̂ =

[
In 0Rn×js

]
ẑ.

(2.78)

The advantage of the proposed augmentation system is the presence of the θΨ ≜
1+js

√
2kfΨλmax(P )

λ ,
instead of 2kfΨλmax(P )

λ if the standard high-gain observer is applied on the augmented system. We
are aware that if the standard high-gain observer is applied directly on the original system (2.14),
the obtained value of θ0 in (2.24) will be smaller than 2kfΨλmax(P )

λ . However, the presence of
power 1

1+js will reduce significantly the values of the observer gains.

ISS with respect to measurement noise

In this section, we compare the properties of the standard high-gain observer (2.17) and the
proposed observer (2.69) with respect to measurement noises. To this end, we consider the
following system where a bounded disturbance corrupts the measurement:

ẋ = Ax+Bf(x)
y = Cx+ ν

(2.79)

where ν represents the disturbance affecting the measurement y. We will show that an upper
bound on the estimation error, in an ISS sens with appropriate norms, can be ensured by the
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observers (2.17) and (2.69), respectively. However, we will demonstrate that using the state
augmentation approach can lead to a smaller bound on the estimation error, compared to the
one we get using the standard high-gain observer.

1. ISS property with Standard high-gain observer

Consider system (2.79) and the standard high-gain observer (2.17), then the transformed error
dynamics system is given as

˙̃̂x = θ
(
A−KC

)︸ ︷︷ ︸
AK

ˆ̃x+ 1
θn
B∆f −Kν. (2.80)

Therefore, as introduced in the following proposition, the observer parameters designed by
Theorem 7 ensure an ISS property.

Proposition 2.1

Assume that there exists a symmetric positive definite matrix P , a positive constant λ, and
a matrix Y of appropriate dimensions such that the inequalities (2.23)-(2.24) hold. Then
with the observer gain L given in (2.19), there exists a positive constant α such that the
estimation error x̃(t) verifies the following ISS conditions:

∥x̃(t)∥ ≤ θn−1
√
λmax(P )
λmin(P ) ∥x̃0∥e− β

2 t + θn

√
γ(1 − e−βt)
βλmin(P ) sup

s∈[0,t]
∥ν(s)∥, (2.81a)

lim
t→+∞

∥x̃(t)∥ ≤ θn
√

γ

βλmin(P ) sup
s∈[0, +∞]

∥ν(s)∥, (2.81b)

where
β = θλ− 2kfλmax(P ) − α

λmax(P ) , γ = ∥Y ∥2

α
. (2.82)

Proof. The stability analysis is performed using the following Lyapunov function candidate

V = ˆ̃x⊤
P ˆ̃x. (2.83)

The derivative of V along the trajectory of (2.80) is given by

V̇ = θ ˆ̃x⊤[
AKP + PAK

]ˆ̃x+ 2
θn

ˆ̃x⊤
PB∆f − 2ˆ̃x⊤

Y ⊤ν

≤ −θλ∥ˆ̃x∥2 + 2kfλmax(P )∥ˆ̃x∥2 + α∥ˆ̃x∥2 + ∥Y ∥2

α
∥ν∥2

≤ −
(
θλ− 2kfλmax(P ) − α

λmax(P )

)
︸ ︷︷ ︸

β

V + ∥Y ∥2

α︸ ︷︷ ︸
γ

∥ν∥2. (2.84)
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Therefore, from the comparison theorem [117], we deduce that

V (t) ≤ V (0)e−βt + γe−βt
∫ t

0
eβs∥ν(s)∥2ds

≤ V (0)e−βt + γ sup
s∈[0,t]

∥ν(s)∥2e−βt
∫ t

0
eβsds

≤ V (0)e−βt + γ

β

(
1 − e−βt) sup

s∈[0,t]
∥ν(s)∥2. (2.85)

Using the fact that
λmin(P )∥ˆ̃x∥2 ≤ V (t) ≤ λmax(P )∥ˆ̃x∥2,

we obtain

∥ˆ̃x(t)∥2 ≤ λmax(P )
λmin(P ) ∥ˆ̃x(0)∥2e−βt

+ γ

βλmin(P )
(
1 − e−βt) sup

s∈[0,t]
∥ν(s)∥2, (2.86)

which leads to

∥ˆ̃x(t)∥ ≤
√
λmax(P )
λmin(P ) ∥ˆ̃x(0)∥e− β

2 t

+
√
γ
(
1 − e−βt)
βλmin(P ) sup

s∈[0,t]
∥ν(s)∥. (2.87)

Finally, from (2.20) we get

∥ˆ̃x(t)∥ ≤ 1
θ

∥x̃(t)∥ and ∥x̃(t)∥ ≤ θn∥ˆ̃x(t)∥

and then the relation (2.81a) is inferred.
As for (2.81b), we use limt→+∞ e−βt = 0 and limt→+∞ sups∈[0,t] ∥ν(s)∥ = sups∈[0, +∞] ∥ν(s)∥,
which ends the proof. □

2. State augmentation approach vs standard high-gain

By a straightforward analogy, we know that we can apply the results of Proposition 1 on the
augmented system defined by (2.74)-(2.77). That is the observer (2.78) designed by (2.70)-(2.72)
ensures a similar ISS property than that in (2.81a)-(2.81b). However, the presence of the power

1
1+js in the case of augmented state-based observer (2.78), especially in the high-gain threshold
condition (2.72), allows reducing significantly the values of the observer gain. For instance, for
an ϵ > 0, if we take θ = θ0 + ϵ in the standard high-gain, then according to (2.81b), the upper
bound of the estimation error satisfies:

lim
t→+∞

∥x̃(t)∥ ≤ (θ0 + ϵ)n
√

γ

βλmin(P ) sup
s∈[0, +∞]

∥ν(s)∥ (2.88)

while with the augmented approach for θ = θϵΨ ≜ θΨ + ϵ, we get

lim
t→+∞

∥x̃(t)∥ ≤ (θϵΨ)
n

1+js

√
γΨ

βΨλmin(PΨ) sup
s∈[0, +∞]

∥ν(s)∥. (2.89)
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It is quite clear from (2.88)-(2.89) that even for θΨ greater than θ0, the presence of n
1+js will

reduce the effect of the measurement noise ν(t) in case of high-gain observer based on state
augmentation technique. Analytically speaking, we cannot provide an explicit relation between
θ0 and θΨ, however, from a numerical viewpoint, the value of the tuning parameter obtained
by the proposed state augmentation-based observer is clearly smaller than that we get with the
standard high-gain strategy. The inverse holds only if θΨ > θ1+js

0 , which is hard to reach in
practice.

2.3.5 Observer based on a combination of HG/LMI technique and system
state augmentation approach

In this section, we investigate another strategy of high-gain observer design by combining the
HG/LMI technique given in section 2.3.3 with the system state augmentation approach presented
in section 2.3.4 to get an improved high-gain observer with more degrees on freedom as it offers
the choice to select the values of two compromise indices j0 and js. Furthermore, the gain of this
proposed observer is significantly reduced compared to the standard high-gain observer. This
gain attenuation is due to the presence of the power n

(1+js)(1+j0) in the observer tuning parameter
θ which evidently results in better observer performances (less sensitivity to measurement noise
and removal of the peaking).

Observer design

The design procedure is illustrated in Figure 2.2 which consists in transforming the original
system of dimension n into a system of dimension n+ js, where the new nonlinear function does
not depend on js last components of the new state, we then construct a HG/LMI observer for
the obtained.

Consider the system defined as {
ż = Ax+Bf(x)
y = Cx

(2.90)

Using a nonlinear transformation Γ(.), system (2.90) is transformed into the following augmented
form {

ż = AΓz +BΓfΓ(z, u)
y = CΓz

(2.91)

where
∂fΓ
∂zj

(x) ≡ 0, ∀ j > n− js (2.92)

As stated in the previous section, one natural solution to obtain a new system satisfying (2.92)
is by adding a chain of integrators leading to the following transformation

z =

 z1
...

zn+js

 = Γ(x) ≜



x1
...
xn

f(x(t))
df(x(t))

dt...
d(js−1)f(x(t))

dt(js−1)


. (2.93)
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x̂

ẑ

y

u {
ẋ = Ax+Bf(x)
y = Cx

HG/LMI
observer

∂fΓ
∂zj

≡ 0, ∀ j > n

Γ : Rn → Rn+js

x → z = Γ(x)

Φ : Rn+js →Rn
ẑ → x̂ = Φ(ẑ)

ż = AΓ z +BΓ fΓ(z, u)︸ ︷︷ ︸
y = CΓ z

Figure 2.2: High-gain observer based on HG/LMI technique and the system state augmentation
approach.

It is easy to see that z obeys the following dynamics:

żi = zi+1, for i = 1, . . . , n+ js − 1, (2.94)

żn+js = djsf(x(t))
dtjs ≜ fΓ(z1, . . . , zn), (2.95)

x =

z1
...
zn

 =

Φ︷ ︸︸ ︷[
In 0Rn×js

]
z (2.96)

where In is the identity matrix of dimension n. The new system (2.94)-(2.95) satisfies the
condition (2.92); hence, the idea consists in constructing a HG/LMI observer for system (2.94)-
(2.95) and deduce an estimate x̂ of x through (2.96), namely x̂ = Φẑ.
The corresponding observer is given as:

˙̂z = AΓẑ +BΓfΓ(ẑ) + LΓ
(
y − CΓẑ

)
(2.97)

where LΓ ≜ TΓ(θ)KΓ, with TΓ(θ) ≜ diag(θ, . . . , θn+js). The objective consists in determining
KΓ and θ such that ẑ converges exponentially to z. Hence, the estimated state x̂(t) given by

x̂(t) =
[
In 0Rn×js

]
ẑ(t) (2.98)
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converges exponentially to x(t), which is ensured by the fact that we used the HG/LMI method-
ology on the transformed system (2.91). For more details, we refer the reader to [55]. This is
detailed in the next theorem.

Theorem 2.8

Assume there exist PΓ > 0, λΓ > 0, YΓ, and σ ≥ 0 such that the following conditions hold:

AΓ(Ψ̄σ)TPΓ + PΓAΓ(Ψ̄σ) − CTΓ YΓ

− Y T
Γ CΓ + λΓI < 0,∀Ψ̄σ ∈ VHσ

j0
, (2.99)

KΓ ≜ P−1
Γ Y ⊤

Γ , (2.100)

θ > θΓ ≜
(2kfΓλmax(PΓ)

λΓ

) 1
(1+js)(1+j0)

, (2.101)

where Hσ
j0 is as given in (2.55) with different vertices corresponding to the new nonlinear

function fΓ. Then x̂ given by (2.98) converges exponentially to x(t).

Proof. It is sufficient to prove that ẑ converges exponentially to z, which is ensured by the fact
that we use the HG/LMI methodology on the transformed system (2.91). For more details on
the proof, we refer the reader to [55]. □

Remark 2.4

It is worth noticing that at this stage, we cannot give an explicit relation between the
conditions (2.24) and (2.101). However, the presence of the power 1

(1+js)(1+j0) can reduces
significantly the value of the threshold in (2.101) even in case of higher values of parameters
kfΓ , PΓ, λΓ and js.

ISS with respect to measurement noise

By a straightforward analogy, we can obtain the ISS property of the observer proposed in this
section which is based on the combination of the HG/LMI technique and the state augmentation
approach.
To this end, we consider the following system where the measurement is corrupted by a bounded
disturbance:

ẋ = Ax+Bf(x)
y = Cx+ ν

(2.102)

where ν represents the disturbance affecting the measurement y.
The transformed error dynamics system is given as

˙̃̂x = θ
(
A−KC

)︸ ︷︷ ︸
AK

ˆ̃x+ 1
θn
B∆f −Kν. (2.103)

Therefore, the observer parameters designed by Theorem 8 ensure an ISS property as introduced
in the following proposition.
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Proposition 2.2

Assume that there exists a symmetric positive definite matrix PΓ, a positive constant λ,
and a matrix Y of appropriate dimensions such that the inequalities (2.99)-(2.101) hold.
Then with the observer gain L given in (2.19), there exists a positive constant α such that
the estimation error x̃(t) verifies the following ISS conditions:

∥x̃(t)∥ ≤ θ
n−1

(1+js)(1+j0)
Γ

√
λmax(PΓ)
λmin(PΓ) ∥x̃0∥e− βΓ

2 t + θ
n

(1+js)(j+j0)
Γ

√
γ(1 − e−βΓt)
βλmin(PΓ) sup

s∈[0,t]
∥ν(s)∥,

(2.104a)

lim
t→+∞

∥x̃(t)∥ ≤ (θϵΓ)
n+js

(1+js)(1+j0)

√
γΓ

βΓλmin(PΓ) sup
s∈[0, +∞]

∥ν(s)∥. (2.104b)

where
βΓ = θΓλ− 2kfλmax(PΓ) − α

λmax(PΓ) , γ = ∥Y ∥2

α
. (2.105)

Remark 2.5

The advantage of the observer proposed in this section lies in its ability to combine the
classical standard high-gain observer, the HG/LMI-based observer, and the observer based
on the system state augmentation approach. This allows the observer to benefit simultane-
ously from the advantages of each of these three methodologies, specifically, the observer is
able to avoid the peaking phenomenon, reduce the sensitivity to high-frequency measure-
ment noise, and enhance the convergence rate if necessary. To get a good trade-off between
all these criteria, the new observer offers the possibility to play with the values of j0 and
js and in the case of js = j0 = 0, we have the particular case of the standard high-gain
observer.

2.4 Conclusion
This chapter has been devoted to the design of nonlinear observers which relies on high-gain
techniques. A design strategy based on the system state augmentation approach is proposed
then a combination of this latter with the HG/LMI technique from the work in [55] is established.
The main motivation of the new structure is overcoming the drawbacks which make the use of
high-gain observers questionable in practical applications. It was shown that by augmenting the
state of the system under consideration we may reduce the value of the tuning parameter θ and
thereafter, the value of the observer gain is attenuated.
Another design procedure proposed in this chapter is the combination of the system state aug-
mentation approach together with the HG/LMI technique. This combination allows to benefit
from the advantages of each methodology, hence, thanks to the HG/LMI technique which allows
a particular decomposition of the nonlinearity, the value of the Lipschitz constant is reduced
resulting in a smaller value of the tuning parameter and consequently an even smaller gain.
Since the main problem of the high-gain observer is the amplification of high-frequency measure-
ment noise, we have considered the case where the measurement is affected by noises, then we
have investigated the stability and robustness properties of the considered high-gain techniques
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using the theory of input-to-state stability. Moreover, we have shown that the ISS properties of
the estimation error dynamics from measurement noise are not deteriorated as compared with
the classical high-gain observer case.
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"Study the past, if you would divine the
future."

Confucius

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Optimization based estimation techniques . . . . . . . . . . . . . . . 63

3.2.1 Optimal linear state estimation . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Linear batch state estimation . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.4 Nonlinear batch state estimation . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Moving horizon state estimation . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Moving horizon for linear systems . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Moving horizon for nonlinear systems . . . . . . . . . . . . . . . . . . . 70

3.4 Moving horizon state estimation for quasi-LPV systems . . . . . . . 72
3.4.1 LPV modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 MHE for nonlinear discrete-time systems . . . . . . . . . . . . . . . . . 75
3.4.3 MHE for quasi-LPV systems . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1 Introduction
It is well established that the Kalman filter is the optimal state estimator for unconstrained,
linear systems subject to normally distributed state and measurement noise. Many physical sys-
tems, however, exhibit nonlinear dynamics and have states subject to hard constraints, hence,
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Kalman filtering is no longer directly applicable. As a result, many different types of nonlinear
state estimators have been proposed, such as extended Kalman filters, moving horizon estima-
tion, model inversion, and Bayesian estimation. The extended Kalman filter appears to be the
standard technique that is used in a number of nonlinear estimation applications due to its rela-
tive simplicity and demonstrated efficacy in handling nonlinear systems. However, the extended
Kalman filter, or EKF, is at best an ad hoc solution to a difficult problem, and hence there
exist many barriers to the practical implementation of EKFs. Some of these problems include
the inability to accurately incorporate physical state constraints and poor use of the nonlinear
model. This was one of the main motivations for early ventures into moving horizon estimation
techniques.
MHE is an online optimization strategy that accurately employs the nonlinear model and in-
corporates information about the system in the form of constraints to improve the estimate.
First ideas on MHE date back to the sixties [125], motivated by its intrinsic robustness. In
the moving horizon estimation approach, the state estimate is determined by solving an opti-
mization problem online that minimizes the sum of the squared errors. At a sampling time,
when a new measurement is obtainable, the older measuring within the estimation window is
discarded and the horizon finite optimization problem is solved again to obtain the new state
estimate [126–128]. The cost function is usually made up of two contributions: a prediction
error computed on a recent batch of inputs and outputs; an arrival cost that serves the purpose
of summarizing the past data.
Moving horizon estimation techniques gained increasing interest over the last decades and were
explicitly addressed first in the papers [58,129,130]. Thereafter, researchers have focused on the
application of such techniques to linear systems [115,126,131,132], hybrid systems [133,134], and
nonlinear systems [58, 59, 130, 135–137]. In [59] an asymptotic state observer is described that
results from the numerical solution of a sequence of nonlinear algebraic equations via Newton’s
method. Similar optimization-based solution techniques are employed in [130,135] to construct
stable estimators for continuous-time dynamic systems. In [58], a moving horizon estimator
for nonlinear continuous-time systems was proposed that performs estimation at discrete time
instants by approximately minimizing an integral error defined on the preceding time window.
In [136], a moving horizon estimation scheme was presented that allows one to explicitly take
into account possible constraints on the system and requires the solution of a nonlinear program-
ming problem at each time step. Moreover, a sufficient condition for the non-divergence of the
estimation error in the presence of bounded noises was provided. In [138], system uncertainties
have been explicitly considered and in [139]- [140] distribution and decentralization have been
investigated.
In this third part of the manuscript, we address the problem of state estimation of nonlinear
plants rewritten in the form of quasi-LPV discrete-time systems using the moving horizon esti-
mation approach. In general, the problem of estimation of LPV systems consists in fitting the
model to a set of measurements. A parameter estimator calculates the parameter values that ren-
der the model-predicted values of process outputs closest to the corresponding measured values
of the process outputs. In offline parameter estimation, a model is fitted optimally to the process
measurements from one or several completed process runs [141]. However, in online parameter
estimation, a model is fitted optimally to the past and present process measurements while the
process is in operation [142–144]. The available methods on parameter estimation via state
estimation include extended Kalman filter [145–149], reduced-order observer [150,151], propor-
tional observer [152, 153], interval observers [154–157], generalized dynamic observer [158, 159],
adaptive observer [160–162].
The main contribution of this chapter is the design and analysis of a robust estimator for non-
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linear systems under bounded disturbances combining quasi-LPV models and dual estimation
using a receding horizon framework. The proposed algorithm simultaneously estimates the un-
known parameters and the states using a dual estimation approach by focusing on two different
formulations, which will be referred to as "optimistic" and "pessimistic" MHE. The conditions
to guarantee robust stability and convergence to the true system and states in the presence
of bounded disturbances are derived. To achieve these results the prior weighting in the cost
function and the length of the estimation horizon are properly chosen and the optimization is
performed within a multiple iteration scheme that improves the performance of the estimation
at each sample.

3.2 Optimization based estimation techniques
Basically, there are two classes of state estimators in systems and control theory. The first
class of state estimators is the class of estimators to which belong for example the Luenberger
observer. In this traditional class, state estimators are realized in a typically system-theoretic
fashion, namely as control systems where the available measurements are fed into the input of
the estimator and the output delivers the estimated state. In this class of estimation techniques,
an explicit observer equation must be derived such that the induced dynamics on the estimation
error is provably asymptotically stable. However, the search for such an observer candidate is
clearly a hard task as a high level of genericity is required. Contrary to analytic observers that
use the explicit study of the state estimation error in order to design the observer correction
term, optimization-based observers use the very definition of observability in order to derive
the state estimation algorithm. The idea is to use the fact that as long as the nominal system
is considered, estimating the state of an observable system is equivalent to minimizing a cost
function which is usually taken as the sum of the squared output prediction error over some
observation horizon. Consequently, if an algorithm can guarantee that this quantity converges
asymptotically to 0, then there is no need for additional proof of convergence. The convergence
of the state estimation error is a direct consequence of the convergence of the cost function [163].
In this section, an overview of optimization-based estimation techniques is presented briefly.

3.2.1 Optimal linear state estimation

The following discrete-time linear system is considered

xk+1 = Axk +Buk + wk, (3.1)
yk = Cxk + vk,

where x ∈ Rn is the state vector, u ∈ Rm is the input, y ∈ Rp is the output or measurement
vector, w ∈ Rn is the process disturbance vector and v ∈ Rp is the measurement noise vector.
This model can be derived from a continuous-time system in which the output measurements
are available at equally spaced sampling times, the input remains constant over this sampling
period, and the output is sampled at the same time the input is injected. We assume that the
input sequence is bounded and known exactly and that a priori estimate of the initial state, x̄0,
is available.
For the stochastic linear system in (3.1), it can be shown that when wk and vk are independent,
zero mean, normally distributed random variables with covariances Q and R, respectively, and
x̄0 is an independent, normally distributed random variable with covariance Q0, the Kalman
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filter produces the optimal estimate of the state [89]. For linear Gaussian systems, this estimate
is also the maximum likelihood estimate. The Kalman filter recursively estimates the state of
the linear system given by (3.1) from the output measurements at each sampling time as follows

• Time update/ prediction step/ a-priori:
prediction of the state

x̂k|k = Ax̂k−1|k−1 +Buk−1, (3.2)

projection of the error covariance

Pk|k−1 = APk−1A
T +Q, (3.3)

• Measurement update/ correction step/ a-posteriori
computation of the Kalman gain

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (3.4)

update of the estimate with the measurement

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (3.5)

update of the error covariance

Pk = (I −KkC)Pk|k−1, (3.6)

where x̂k|k is the optimal estimate of the state at sample time k given k output measurements, Q
and R present the measure of confidence in the model and the measurement, respectively. If the
covariance of the measurement noise, R, is small relative to the covariance of the process noise,
Q, then the measurements are relatively noise-free and the deviations between the measured
output and the predicted output should be made small. If the measurement noise covariance is
large relative to the process noise covariance, then the measurements are relatively noisy and
the feedback correction to the model prediction should be small.
As given by (3.2) and (3.5), the Kalman filter follows a two-step procedure to calculate the
maximum a-posteriori Bayesian estimate [164]. The first step is the time update, the second
step is the measurement update. The first step uses the system model to predict the current state
of the system based on the last estimate. In the measurement step, this prediction is updated
by using the measurements. The Kalman filter is hence a predictor-corrector type estimator
that is optimal in the sense that it minimizes the estimated error covariance. The filter gain is
computed at each sample time from the expression in (3.4) in which Pk is the covariance of the
state estimate. The solution of the discrete algebraic Riccati equation

P = ATPA−ATPB
(
BTPB +R

)−1
BTPA+Q (3.7)

can be used for the calculation of the steady-state gain which makes Pk+1 = Pk = P constant.
The stability of the Kalman filter is ensured provided that R is positive definite, Q and Q0
are positive semidefinite, and the system (3.1) is detectable. Then the reconstruction error,
ek = xk − x̂k|k−1, converges to zero for the nominal system with no state or measurement noise.
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3.2.2 Extended Kalman filter

A straightforward approximation to optimal nonlinear state estimation is to linearize the non-
linear model about a given operating point and apply optimal linear state estimation to the
linearized system which gives rise to the extended Kalman filter (EKF). hence, the EKF is just
an extension of the Kalman filter to nonlinear systems. This means that the difference with the
EKF is that the state and/or the output equations can contain nonlinear functions. So rather
than considering systems of the form (3.1), the EKF can consider a more general nonlinear set
of equations:

xk = f(xk−1, uk−1) + wk−1 (3.8)
yk = h(xk) + vk (3.9)

where f is the vector-valued nonlinear state transition function and h is the vector-valued,
nonlinear observation or output function. A linearized model of the system about the state x∗

can be developed from the Taylor series expansion. Depending on the selection of x∗, several
variations of the extended Kalman filter can be developed. The most common approach is the
first-order filter in which the nonlinear system is linearized about the current state estimate at
each sampling time using the first-order terms of the Taylor expansion. Further discussion of
extended Kalman filtering is contained in [89,165–167].
We summarize the algorithm for implementing the EKF presented in [167],

x̂k|k−1 = f (x̂k−1,uk−1) (3.10)
Pk|k−1 = Fk−1Pk−1FT

k−1 + Qk−1 (3.11)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(3.12)

x̂k = x̂k|k−1 + Kk

[
zk − h

(
x̂k|k−1

)]
(3.13)

Pk = (I − KkHk) Pk|k−1 (3.14)

where

Fk = ∂f(x, t)
∂x

∣∣∣∣∣
x̂k−1

(3.15)

Hk = ∂h(x, t)
∂x

∣∣∣∣∣
x̂k|k−1

(3.16)

are the corresponding Jacobian matrices of f and h, respectively.
An important feature of the EKF is that the Jacobian Hk in the equation for the Kalman gain
Kk serves to correctly propagate or "magnify" only the relevant component of the measurement
information. For example, if there is not a one-to-one mapping between the measurement and
the state via h, the Jacobian Hk affects the Kalman gain so that it only magnifies the portion
of the residual zk − h(x̂−

k , 0) that does affect the state. If overall measurements, there is not a
one-to-one mapping between the measurement zk and the state via h, then as you might expect
the filter will quickly diverge. In this case, the process is unobservable. A block diagram of the
extended Kalman filter is given in Figure 3.1.
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Measurement update (correct)

1. Compute the Kalman gain

2. Update estimate with measurement

Kk = P−
k H

T
k

(
HkP

−
k H

T
k + VkRkV

T
k

)−1

Time update (predict)

1. Project the state ahead

x̂k = f(x̂k−1, uk−1, 0)

2. Project the error covariance ahead

P−
k = APk−1A

T
k +WkQk−1W

T
k

x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0)

3. Update the error covariance

Pk = (I −KkHk)P−
k

Initial estimate of x̂k−1 and Pk−1

Figure 3.1: A complete picture of the operation of the extended Kalman filter.

3.2.3 Linear batch state estimation

If the assumption on wk and vk does not hold anymore, i.e., they are not Gaussian random
variables which can be considered as process and measurement disturbances with unknown
statistics, then, an optimal state estimate in the probabilistic sense cannot be obtained. However,
an estimator that provides the best state estimate can be established in a deterministic sense
based on the following least squares problem.

min
{ŵ−1|k,...,ŵk−1|k}

Φk = ŵT−1|kQ
−1
0 ŵ−1|k

+
k−1∑
j=0

ŵTj|kQ
−1ŵj|k +

k∑
j=0

v̂Tj|kR
−1v̂j|k

(3.17)

subject to:

x̂0|k = x̄0 + ŵ−1|k (3.18)
x̂j+1|k = Ax̂j|k +Buj + ŵj|k (3.19)

yj = Cx̂j|k + v̂j|k (3.20)

where x̂0|k is the estimate of x0 given k output measurements, x̄0 is an a priori estimate of the
initial state, ŵj|k are the estimated process disturbances, and v̂j|k are the estimated measurement
disturbances. The weighting matrices, Q−1

0 , Q−1, and R−1, specify the relative contribution of
each of the terms in the quadratic objective and are the tuning parameters for the least squares
estimator. This approach attempts to minimize the estimated process and measurement distur-
bances in the least squares sense. The choice of the weighting matrices is based on a compromise
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between minimizing the estimated process disturbances and minimizing the estimated measure-
ment disturbances in a manner similar to the measurement and state noise covariance matrices
used in the Kalman filter.
The solution to the least squares problem, ŵ∗

j|k is used to compute the state estimate at time j
given k output measurements, x̂j|k, as follows

x̂j|k = Aj x̄0 +
j∑
i=0

Aj−iŵ∗
i−1|k +

j∑
i=1

Aj−iBui−1 (3.21)

Remark 3.1

This expression computes a smoothed state estimate when j < k, a filtered state estimate
when j = k, and a predicted state estimate when j > k. It can be shown that the filtered
estimate from the batch least squares estimator is the optimal filtered estimate for the
stochastic system in (3.1) when vk, wk and x0 follow the same assumptions made in the
Kalman filter and the weighting matrices are chosen as the inverse of the corresponding
covariance matrices [89].

The choice of the coefficients of the weighting matrices is a compromise between minimizing
the estimated process disturbances versus minimizing the estimated measurement disturbances.
This choice is based on the expected magnitudes of each of these disturbances. If the output
measurements are reliable, then R−1 is chosen to be large relative to Q−1. On the other hand, if
the output measurements are poor, then R−1 is chosen to be small relative to Q−1. In this case,
the model is assumed to be a more reliable indication of the state than the output measurements.

3.2.4 Nonlinear batch state estimation

We now consider the following nonlinear discrete system model

xk+1 = f (xk, uk) + wk, (3.22)
yk = h (xk) + vk,

where f : Rn × Rm → Rn and h : Rn → Rp are continuous functions and as in the linear case,
the input sequence uk is assumed to be bounded and known and that a priori estimate of the
initial state, x0, is available.
Consider any admissible input sequence u0, u1, . . . , uN and two state values, x0, z0. Let xj and
zj , j = 1, . . . , N denote the state sequences generated by the model, xj = f(xj−1, uj−1) and
zj = f(zj−1, uj−1). We require the following observability condition for the nonlinear system.
For any two states, xo and zo, and all admissible input sequences, there exists a horizon length
N ∈ [n− 1,∞) and a function α : R+ → R+ such that

N∑
j=0

∥g(zj) − g(xj)∥ ≥ α (∥z0 − x0∥) (3.23)

where α is a continuous, increasing function with α(0) = 0. This condition is similar to the
uniform observability property in [168] referred to as Property O. It is a weaker discrete-time
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version of that presented in [58] for continuous systems and a stronger condition than strong
observability or finite time observability presented in [74].
The nonlinear batch state estimator is formed in a similar manner to the linear batch state
estimator presented previously

min
{ŵ−1|k,...,ŵk−1|k}

Φk = ŵT−1|kQ
−1
0 ŵ−1|k

+
k−1∑
j=0

ŵTj|kQ
−1ŵj|k +

k∑
j=0

v̂Tj|kR
−1v̂j|k

(3.24)

subject to:

x̂0|k = x̄0 + ŵ−1|k (3.25)
x̂j+1|k = f(x̂j|k, uk) + ŵj|k (3.26)

yj = g(x̂j|k) + v̂j|k (3.27)

The solution to the least squares problem, ŵ∗
j|k is used to compute the state estimate at time j

given k output measurements, x̂j|k, as follows

x̂j+1|k = f(x̂j|k, uk) + ŵ∗
j|k (3.28)

x̂0|k = x̄0 + ŵ∗
−1|k (3.29)

Convergence of the constrained batch state estimator for linear systems is proved in [169]. A
convergence proof for the nonlinear system in (3.22) is given in [109]. It was shown that the
filtered state estimate converges to the true state for a non-zero initial reconstruction error and
no model mismatch. The relation (3.30) is obtained from optimization at each time k

ϕk − v̂∗T
k|kR

−1v̂∗
k|k − ŵ∗T

k−1|kQ
−1ŵ∗

k−1|k ≥ ϕk−1 (3.30)

Since Q and R are positive definite, the sequence ϕk is monotonically non-decreasing and
bounded above and therefore converges. The convergence of ϕk and equation (3.30) imply
ŵ∗
k−1|k and v̂∗

k−1|k converge to zero. From the continuity of f and the observability condition
given in (3.23), it follows that x̂k|k converges to xk.

3.3 Moving horizon state estimation

One of the main problems of the batch state estimation seen in the previous section is that it
becomes intractable as time goes on. Hence, the moving horizon estimator (MHE) arose to face
this drawback. In this approach, the state is estimated from the most recent N + 1 output
measurements. These measurements are referred to as the history or observer horizon of length
N . The horizon can be viewed as a window of past output measurements that moves forward in
time at each sampling time when a new measurement is available. In this section, a summary
of the moving horizon estimation scheme is provided. Most of the theoretical background can
be found in detail in [112] and references therein.
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Figure 3.2: Concept of moving horizon estimation approach.

3.3.1 Moving horizon for linear systems

A recursive form of the linear batch state estimation problem in (3.17) can be constructed for
system (3.1) using the moving horizon approach. In this approach, the state estimate at time
k is determined recursively from the solution of a least squares problem that uses the predicted
estimate at time k −N − 1 denoted by x̂k−N |k−N−1 and the most recent N + 1 measurements.
The least squares problem is defined as follows

min
{ŵk−N−1|k,...,ŵk−1|k}

Φk = ŵTk−N−1|kP
−1
k−N ŵk−N−1|k

+
k−1∑

j=k−N
ŵTj|kQ

−1ŵj|k +
k∑

j=k−N
v̂Tj|kR

−1v̂j|k

(3.31)

subject to:

x̂k−N |k = x̂k−N |k−N−1 + ŵk−N−1|k (3.32)
x̂j+1|k = Ax̂j|k +Buj + ŵj|k (3.33)

yj = Cx̂j|k + v̂j|k (3.34)

The moving horizon allows for a finite number of decision variables at each sampling time. The
filtered state estimate at time k is determined recursively from the predicted estimate at time
k−N −1 and the most recent N +1 output measurements. The first N estimates are computed
using the batch estimator to initialize the observer horizon. The state estimate at time k−N+j
given k output measurements denoted by xk−N+j|k, is computed from the solution of the least
squares problem in a manner similar to the batch estimator.

x̂k−N+j|k = Aj x̂k−N |k−N−1 +
j∑
i=0

Aj−iŵ∗
k−N−1+i|k +

j∑
i=1

Aj−iBuk−N−1+i (3.35)
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Remark 3.2

This expression computes a smoothed state estimate when j < N , a filtered state estimate
when j = N , and a predicted state estimate when j > N . It can be shown that the
filtered estimate from the moving horizon estimator is the optimal filtered estimate for the
stochastic system in (3.1) in which vk, wk and x0 follow the same assumptions made in
the Kalman filter and the weighting matrices P−1

k−N , Q−1 and R−1, are the inverses of the
nonsingular covariance matrices for x̂k−N |k−N−1, wk and vk, respectively [169]. The matrix
Pk−N is the discrete filtering Riccati matrix at time k − N and is computed using the
recursion in (3.7).

MHE constraints

One of the main advantages of the MHE-based schemes over the Kalman filter is the direct
constraints handling. The addition of constraints to the estimator results in a deterministic
quadratic programming problem that attempts to minimize the output prediction errors and
state disturbances subject to the constraints which can be expressed as follows

hmin ≤ Hx̂j | k ≤ hmax (3.36)

wmin ≤ ŵi | k ≤ wmax (3.37)

The estimated state constraints in (3.36) specify maximum and minimum limits on the state
estimates. These constraints are applied to prevent physically unrealistic state estimates and
the estimated state disturbance constraints in (3.37) specify an upper and lower bound on the
estimated state disturbances. These constraints can be viewed as altering the distribution of
the state disturbances such that the probability of a state disturbance outside of the constraints
is zero. These constraints prevent estimated state disturbances that cannot realistically occur
in the process.

Remark 3.3

The constraints in (3.36)-(3.37) are imposed based on a heuristic argument with no prob-
abilistic justification. Therefore, this estimator is not optimal in any probabilistic sense
even for linear, Gaussian systems. However, the constraints allow for the implementation
of a reasonably simple estimator that can handle a complex, constrained stochastic system
without detailed probabilistic analysis [109].

3.3.2 Moving horizon for nonlinear systems

Generalizing ideas from linear filtering [125], early formulations of nonlinear moving horizon es-
timator were developed in [58,129,130,170–172]. A direct approach to the deterministic discrete-
time nonlinear MHE problem is to view the problem as one of inverting a sequence of nonlinear
algebraic equations defined from the state update and measurement equations, and some mov-
ing time horizon [59] Moraal. Such discrete-time observers are formulated in the context of
numerical nonlinear optimization and analyzed with respect to convergence in [?, 136,173–175].
In recent contributions [176] provides results on how to use a continuous time model in the
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discrete-time design, while issues related to parameterization are highlighted in [163] computa-
tional efficiency are central targets of [163,174,177]. Uniform observability is a key assumption
in most formulations and analyses of nonlinear MHE. For many practical problems, like com-
bined state and parameter estimation problems, uniform observability is often not fulfilled and
modifications are needed to achieve robustness [59,178].
In this section, the moving horizon state estimator presented in the previous section for linear
systems is extended to nonlinear systems. The main objective is to define a deterministic least
squares estimator for the discrete nonlinear system given in (3.22).

Estimated state disturbance approach

Since it is not possible to obtain a general closed-form recursive solution to the nonlinear batch
state estimation problem as stated before, it is also difficult to develop a moving horizon estima-
tor equivalent to the nonlinear batch estimation problem. Therefore, a moving horizon estimator
similar to the linear case is usually constructed as follows

min
{ŵk−N−1|k,...,ŵk−1|k}

ΦN
k = +

k−1∑
j=k−N

ŵTj|kQ
−1ŵj|k +

k∑
j=k−N

v̂Tj|kR
−1v̂j|k (3.38)

subject to:

x̂j+1|k = f
(
x̂j|k, uj

)
+ ŵj|k (3.39)

v̂j|k = yj − g
(
x̂j|k

)
(3.40)

This nonlinear moving horizon estimator does not penalize the initial state disturbances in
the horizon allowing the initial state estimate x̂k−N |k in the horizon to be chosen freely. The
advantage of this approach is that nominal convergence of the estimated state to the true state
is achieved [109].
Since the process model is nonlinear, the MHE technique requires the solution to a general
nonlinear optimization problem. The state estimate at sample time n+ j where n = k −N , is
computed from the optimal solution using the following recursion.

x̂n+j+1|k = f
(
x̂n+j|k, un+j

)
+ ŵ∗

n+j (3.41)

x̂n|k = x̂∗
n|k

Initial State Estimate Approach

Another approach is based on estimating the initial state without including the estimated state
disturbances in the least squares problem. This approach is well motivated if there are no
state or process disturbances and that the measurement is corrupted by zero-mean noise [165].
Hence, the objective is to determine the initial estimate that minimizes the difference between
the measured output and the predicted output throughout the horizon.

min
{ŵk−N−1|k,...,ŵk−1|k}

ΦN
k = +

k−1∑
j=k−N

v̂Tj|kR
−1v̂j|k (3.42)

subject to:

x̂j+1|k = f
(
x̂j|k, uj

)
(3.43)

yj = g
(
x̂j|k

)
+ v̂j|k (3.44)
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The nominal convergence of this approach for continuous-time systems is shown in [58]. The
proof of convergence for discrete systems follows in the same manner as the moving horizon
presented in the previous section. Continuous-time systems with discrete time measurements
can also be considered with this approach.
The advantage of this initial state estimate approach is a smaller number of decision variables
for a given horizon length which reduces the complexity of the optimization problem since the
horizon length is the only tuning parameter. However, neglecting the disturbances is not realistic
for many applications. issues such as unmeasured or unmodeled disturbances, process modeling
errors, and variation in the model parameters cannot be addressed adequately when only the
initial state horizon is estimated.

3.4 Moving horizon state estimation for quasi-LPV systems
The assumptions of constant model parameters may not always be realistic in many practical
applications in which parameters may change during the operation. In this situation, a more
accurate determination of the state can be made by allowing one or more model parameters
to vary. The parameter values are then estimated along with the state which is referred to as
combined state and parameter estimation. In this section, we are going to address the problem
of MHE design on LPV systems written under the form of quasi-LPV formulation.
Combined state and parameter estimation typically is performed by augmenting the state of
the system to include the parameters to be estimated simultaneously with the state. The most
common assumption made to describe the dynamic behavior of these parameters is an integrated
white noise process. Let’s consider the discrete-time system

xk+1 = f(xk, uk) (3.45)
yk = g(xk)

Using the assumption given before, (3.45) is augmented as follows.[
xk+1
Θk+1

]
=
[
f (xk, uk,Θk, k)

Θk

]
yk = g (xk,Θk, k)

(3.46)

where Θ is the vector of parameters to be estimated.
The observability of the augmented system is not the same as the observability of the original
system, hence it should be verified using the observability techniques seen in the first chapter.
Parameter estimation using the extended Kalman filter is discussed in [179,180]. The extended
Schmidtâ€” Kalman filter is discussed in Jazwinski [89]. This filter accounts for the effect of
parameter variation on the state but does not compute an estimate of the parameter values.
A discussion of modeling techniques that can improve the estimation of parameter values is
presented in [181]. The authors in [182] recommend a decoupled estimator in which the states
and parameters are computed separately to reduce the nonlinearity due to parameter-state
interactions.

3.4.1 LPV modeling

Linear parameter varying (LPV) systems are described by linear differential equations whose
parameters depend on some online measured signals (possibly in a nonlinear fashion) [4]. A
typical LPV model has the following state space form
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ẋ = A (θ)x+B (θ)u (3.47)
y = C (θ)x+D (θ)u

where the time-varying parameter θ is regarded as an "exogenous" real-time measured signal.
Typical assumptions on θ are the bound on magnitude and rate of variation, e.g., θ ≤ θ ≤ θ̄

and θ̇ ≤ θ ≤ ¯̇θ for all t ≥ 0, with θ, θ̇ being the lower bounds and θ̄, ¯̇θ the upper bounds. In the
subsequent analysis, the notation

(
θ, θ̇
)

∈ Θ × Θ will be frequently used, where Θ and Θd are
the parameter spaces that contain θ and θ̇, respectively. Hence, the state space form in (3.4.1)
can be regarded as a collection of linear systems (linear differential inclusion).
From a linear perspective, θ can be considered as a time-varying signal, which is independent
of the state variables. Therefore, the state space form given by (3.47) can also be regarded as
a linear time-varying (LTV) system. However, the following two points make the LPV system
different from the traditional LTV system.

• The parameter θ can only be measured in real-time as no future parameter values are
available. Hence, the control signal is constrained to be a causal function of the parameter.
However, some control algorithms for LTV system explicitly use the future information of
this parameter [183].

• The LPV framework can be extended to represent a nonlinear dynamical model. In this
case, it is called a "quasi-LPV" model, where the time-varying parameter θ is a nonlinear
function of the measurable state variables [183]. In this case, the parameter becomes
"endogenous". In the LPV model, the complex nonlinearity is hidden behind the time-
varying parameter which results in a linear but non-stationary dynamical system. For
example, the state equation of an input affine nonlinear system can be transferred to an
LPV state equation as

ẋ = f(x) + g(x)u ⇐⇒ ẋ = A[θ(x)]x+B[θ(x)]u (3.48)

where f(x) = A[θ(x)], g(x) = B[θ(x)] and θ(x) is a state-dependent measurable parameter.

Stability analysis of LPV systems

For stability analysis, the following three different methodologies are proposed in the literature
to analyze the asymptotic stability of the LPV system [184].

1. Single quadratic Lyapunov function (SQLF) V = xTPx.

2. Parameter dependent quadratic Lyapunov function (PDQLF) V = xTP (θ)x.

3. Linear fractional representations (LFR) which relies on µ analysis or small gain theorem
for performance optimization and robustness analysis;

Here, an example will be presented to illustrate the application of the 1st approach for stability
analysis.
For the LPV system ẋ = A(θ)x, where the parameter vector θ ∈ Rm×1 belongs to a parameter
space Θ. The stability analysis resorts to searching for a Lyapunov function V = xTPx such
that the following LMIs are feasible [185].

P ≻ 0, AT (θ)P + PA(θ) ≺ 0, ∀θ ∈ Θ (3.49)
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This is indeed an infinite dimensional LMI feasibility problem due to its continuous dependence
on the parameter θ. Fortunately, if the parameter space Θ is a convex hull with finite vertices
and A(θ) depends affinely on θ, there exists a sufficient and necessary finite dimensional LMI
relaxation condition as shown in Lemma 1 [183–185].

Lemma 3.1

Suppose the parameter space Θ is a convex hull with finite vertices and A(θ) depends
affinely on θ ∈ Rm×1. Then, the LMIs given by (3.49) are feasible if and only if they are
feasible on all the vertices of Θ.

Proof. A(θ) is an affine matrix function of θ ∈ Rm×1 as shown below.

A(θ) = A0 +
m∑
j=1

θjAj (3.50)

where θj denotes the j-th element of θ . A0, A1, . . . , Am are all constant matrices. Any parameter
θ in the convex hull Θ can be represented as a convex combination form as given in (3.51).

θ =
k∑
i=1

λiθ
(i) (3.51)

where θ(i) denotes one of the k vertices of Θ.λi, i = 1, . . . , k are the normalized scheduling
parameters that satisfy the following convex condition.

k∑
i=1

λk = 1, with 0 ≤ λi ≤ 1, ∀i = 1 . . . , k (3.52)

Substituting the right side of Eq. (3.51) for θ in Eq. (3.50), the state matrix A(θ) can be obtained
as the similar convex combination form shown below.

A(θ) = A0 +
m∑
j=1

(
k∑
i=1

λiθ
(i)
j

)
Aj

= A0 +
k∑
i=1

λi

 m∑
j=1

θ
(i)
j Aj


=

k∑
i=1

λiA
(
θ(i)
)

(3.53)

Furthermore, the parameter dependent matrix AT (θ)P + PA(θ) can be represented as

AT (θ)P + PA(θ) =
k∑
i=1

λi
[
AT

(
θ(i)
)
P + PA

(
θ(i)
)]

(3.54)

• If : The nonnegativity of λi in Eq. (3.54) guarantees that AT (θ)P + PA(θ) is negative
definite if AT (θ(i))P + PA(θ(i)) is a negative definite matrix ∀i = 1, . . . , k.

• Only if : The necessity is quite straightforward. Suppose the negative definite condition
of AT (θ(i))P + PA(θ(i)) is violated at some vertex. Then, AT (θ)P + PA(θ) cannot be a
negative definite matrix ∀θ ∈ Θ which leads to a contradiction.

□
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3.4.2 MHE for nonlinear discrete-time systems

Following the lines of [173], we address the estimation of a discrete-time nonlinear system by
adopting the MHE strategy.

Problem formulation

Let us consider a dynamic system described by the discrete-time equations

xk+1 = f (xk, uk) + vk (3.55a)
yk = h(xk) + wk (3.55b)

where xk ∈ Rn is the state vector (the initial state x0 is unknown) and uk ∈ Rm is the control
vector, yk ∈ Rp . The vector wk ∈ Rn is an additive disturbance affecting the system dynamics
and vk is the noise in the measurements. We assume the statistics of x0, vk and wk to be
unknown and consider them as deterministic variables of unknown character that take their
values from known compact sets.
The problem consists in estimating, at any time k = N,N+1, . . ., the state vectors xk−N , . . . , xk
on the basis of a prediction x̄k−N of the state xk−N and of the information vector defined as

Ik ≜ col (yt−N , . . . , yt, ut−N , . . . , ut−1) (3.56)

where N +1 measurements and N input vectors are collected within a sliding window [k−N, k].
Let us define as x̂k−N,k, . . . , x̂k,t the estimates of xk−N , . . ., xk, respectively, to be made at time
t. We assume that the prediction x̄t−N is determined from the estimate x̂k−N−1,k−1 via the
application of the function f , that is

x̂i+1,t = f (x̂i,t, ui) , i = t−N, . . . , t− 1
.
The vector x̄0 denotes a priori prediction of x0.
A notable simplification of the estimation scheme can be obtained by defining x̂k−N+1,k, . . . , x̂k,k
as estimates generated by x̂k−N,k through the noise-free dynamics, that is,

x̂i+1,k = f (x̂i,k, ui) , i = t−N, . . . , k − 1 (3.57)

Hence it follows that at time k only the estimate x̂k−N,k has to be determined, whereas the
vectors x̂k−N+1,k, . . . , x̂k,k can be computed via (3.57).
Let us denote the set of admissible controls by U and the sets from which the vectors wk and vk
take their values by W and V, respectively. In order to derive stability results for the estimation
error the following assumptions are needed.

Assumption 3.1

W,V, and U are compact sets, with 0 ∈ W and 0 ∈ V.

Assumption 3.2

The initial state x0 and the control sequence {uk} are such that, for any possible sequence
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of disturbances {wk}, the system trajectory {xk} lies in a compact set X.

Let X be the closed convex hull of the set X. The following assumption is also needed.

Assumption 3.3

The functions f and h are C2 functions with respect to x on X for every u ∈ U .

Note that assumptions 1 and 2 are quite reasonable from a practical point of view when con-
sidering state estimation for a physical system: it is very typical that the state variables and
the disturbances are bounded in some way. For instance, if assumption 1 is satisfied, then as-
sumption 2 is automatically verified whenever system (3.55a) is input-to-state stable (ISS) with
respect to the controls and the disturbances.
We also label as Y and I the sets from which the vectors yk and Ik take their values, respectively.
Clearly, we have

Y = {y ∈ Rp : y = h(x) + v, x ∈ X, v ∈ V}

,
I = Y N+1 × UN

Since, under assumption 2, at every time step k = 0, 1, . . ., the state xk falls within the set X,
we consider the condition

x̂k−N,t ∈ X (3.58)

The prediction x̄k−N belongs to the compact set X̄ ≜ f(X,U) for every t = N,N + 1, . . . (the
a priori prediction x̄0 is chosen inside the set X̄

)
.

The MHE problem consists in deriving the state estimates as functions of the prediction x̄k−N
and of the information vector Ik. From a formal point of view, this means that we search for a
state estimation function of the form a : X̄ × I 7→ X that provides the estimate
x̂k−N,k = a (x̄k−N , Ik)
Then, the estimation scheme can be summarized as follows

x̂k−N,k = a (x̄k−N , Ik) , k = N,N + 1, . . . (3.59a)

x̄t−N+1 = f (x̂t−N,t, ut−N ) , t = N,N + 1, . . . x̄0 ∈ X̄. (3.59b)

As we have assumed the statistics of x0, {ξk}, and {vk} to be unknown, a natural criterion to
derive the state estimation function consists in resorting to a least-squares approach. Toward
this end, we consider the following cost function:

J (x̂k−N,k, x̄k−N , Ik) = µ ∥x̂k−N,k − x̄k−N∥2 +
k∑

i=k−N
∥yi − h (x̂i,k)∥2 (3.60)

where µ is a positive scalar by which we express our belief in the prediction x̄k−N with respect
to the observation model. The estimates x̂i,t, i = t − N + 1, . . . , t are obtained as in (3). Then
the following estimation algorithm can be stated.
Then, the MHE algorithm is stated as follows:
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• MHE problem: given an a priori prediction x̄◦
0 ∈ X̄, at any time step k = N,N + 1, . . .,

find an estimate x̂◦
k−N,k such that

x̂◦
k−N,k ∈ arg min

x̂k−N,k∈X
J
(
x̂k−N,k, x̄

◦
k−N , Ik

)
(3.61)

At each step, the prediction is propagated as

x̄◦
k−N+1 = f

(
x̂◦
k−N,k, uk−N

)
. (3.62)

Stability of the estimation error

Before stating the results on the stability of the estimation error, the observability properties
of the dynamic system (3.55a) observed through the measurement equation (3.55b). In this
respect, we shall introduce some useful notations and definitions. Specifically, let us define the
function

F
(
xk−N , u

k−1
k−N

)
≜


h (xk−N )

h ◦ fuk−N (xk−N )
...

h ◦ fuk−1 ◦ · · · ◦ fuk−N (xk−N )

 , (3.63)

for k = N,N +1, . . ., where uk−1
k−N ≜ col (uk−N , . . . , uk−1), "o" denotes function composition, and

fui (xi) ≜ f (xi, ui). For the sake of brevity, the vector ui will be omitted as an argument of the

function f . Moreover, for the sake of compactness, let f(i) ≜

i times︷ ︸︸ ︷
f ◦ · · · ◦ f and

f
ξt−N+i−1

t−N

(i) (x) ≜ f (· · · f (f(x) + ξt−N ) + ξt−N+1 · · · ) + ξt−N+i−1.

The observability definition is stated below.

Definition 3.1

Given a set S ⊆ Rn, system (3.55) is said to be S observable in N + 1 steps if there exists
a K-function φ(·), such that

φ
(
∥x1 − x2∥2

)
≤ ∥F (x1, ū) − F (x2, ū)∥2 , ∀x1, x2 ∈ S, ∀ū ∈ UN . (3.64)

Such a definition has been widely used in the framework of nonlinear state estimation in both the
discrete-time and the continuous-time settings (see for example [?, 59,136] and is related to the
properties of the mapping F (·, ū). More specifically, if the algebraic system F

(
xk−N , u

t−1
k−N

)
=

ykk−N can be uniquely solved by xk−N for any uk−1
k−N (i.e., if the mapping F (·, ū) is injective for

any ū ∈ UN ), then condition

∥F (x1, ū) − F (x2, ū)∥2 = 0

implies x1 = x2 and hence system (3.55) turns out to be observable in the sense of Definition 1.
The following observability assumption is now given.
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Assumption 3.4

System (3.55) is X -observable in N + 1 steps with a K function φ.

Let us now consider a sequence of optimal estimates x̂◦
k−N,k, k = N,N +1, . . . obtained from the

MHE algorithm introduced before, and denote the estimation error by e◦
k−N ≜ xk−N − x̂◦

k−N,k.
Owing to the definitions and the assumptions given previously, we can state the following results
on the stability of the MHE.

Theorem 3.1: [186]

Suppose that assumptions 1, 2, 3 and 4 hold. Moreover suppose that the K-function φ,
defined in assumption 4, satisfies the following condition

δ ≜ inf
x1,x2∈X ;x1 ̸=x2

φ
(
∥x1 − x2∥2

)
∥x1 − x2∥2 > 0 (3.65)

Then the square norm of the estimation error is bounded as∥∥e◦
k−N

∥∥2 ≤ ζk−N (3.66)

where {ζk} is a sequence generated by

ζ0 = β0 (3.67)
ζk = αζk−1 + β, t = 1, 2, . . .

with
α ≜

8k2
fµ

µ+ δ
,

β ≜
4

µ+ δ

{
2µr2

w +

∆w

√
Nrw +

√
N + 1rv + k̄

2

√
N(N + 1)(2N + 1)

6 r2
w

2}

β0 ≜
4

µ+ δ

{
µd2

x +

∆w
√
Nrw +

√
N + 1rv + k̄

2

√
N(N + 1)(2N + 1)

6 r2
w

2}

Moreover, if µ is selected such that
8k2

fµ

µ+ δ
< 1, (3.68)

the bounding sequence {ζk} has the following properties:

i) {ζk} converges exponentially to the asymptotic value e◦
∞(µ) ≜ β/(1 − α)

ii) if ζk > e◦
∞(µ) then ζt+1 < ζt, t = 0, 1, . . .

Proof. For the proof, refer to [186]. □
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One may notice that e◦
∞(µ), which represents an asymptotic upper bound on the quadratic

norm of the estimation error, is equal to 0 whenever the system is not affected by system and
measurement disturbances(rw = 0 and rv = 0). Hence the following corollary stems directly
from Theorem 1.

Corollary 3.1

Suppose that assumptions 1, 2, 3 and 4 hold. Moreover suppose that the K-function φ,
defined in assumption 4, satisfies condition (3.65). Then, if wk = 0, vk = 0 for k = 0, 1, . . .,
the norm of the estimation error is bounded as∥∥e◦

k−N
∥∥2 ≤ αk−Nβ0, k = N,N + 1, . . . (3.69)

with α and β0 defined in Theorem 1. Moreover, if µ satisfies condition (3.68), then

lim
k→∞

∥∥e◦
k−N

∥∥2 = 0

3.4.3 MHE for quasi-LPV systems

Consider the quasi-LPV system described by the following set of equations:

xk+1 = A (p (xk))xk +B (p (xk))uk + wk (3.70a)

yk = C (p (xk))xk + vk (3.70b)

where k = 0, 1, . . . is the time instant, xk ∈ Rn is the state vector, uk ∈ Rq is the control vector,
wk ∈ Rn is the system noise vector, yk ∈ Rm is the vector of the measures, and vk ∈ Rm is the
measurement noise vector. The matrices in (3.70) depend on a set of time-varying parameters
that in turn depend on xk with the mapping x 7→ p(x) ∈ Rr unknown. However, we assume to
know the image of such a mapping, namely, the compact set P ⊂ Rr to which the parameters
belong (i.e., p (xk) ∈ P for all k = 0, 1, . . . ). Thus, in principle, we may rely also on such
information for the purpose of estimation.
The systems given by (3.70) include many families of plants and dynamic processes such as
those briefly described in the following to highlight the potential advantage as compared with
the estimation methods reported in the literature for LPV systems.

A. Uncertain linear systems: linear systems with parameter uncertainties can be viewed as a
particular case of (3.70). Such a family of systems is often encountered in the literature
because it leads to complicated stabilization problems, as discussed in [187]. The pro-
posed MHE approach enables us to address such issues by estimating simultaneously the
uncertain parameters and the state variables.

B. Multi-model systems: the family of multi-model systems under Takagi-Sugeno fuzzy struc-
ture [188] is widely investigated in the literature, especially in the research area of fault
diagnosis [189]. Such systems can be regarded as belonging to a particular class of plants
that can be written under the form (3.70) with bounded unknown parameters. Such un-
known parameters, in fuzzy systems, are called premise variables. Generally speaking,
when the premise variables are unmeasurable, the estimation and stabilization problems
become complicated and from the LMI point of view, the resulting conditions are very
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conservative. Using the proposed MHE approach, such premise variables can be estimated
and then used for the purpose of stabilization.

C. Lipschitz nonlinear systems: one of the major advantages of handling the class of systems
given by (3.70) is the fact that such a class includes nonlinear Lipschitz systems often
studied in the context of the nonlinear observer design. More specifically, let us consider
the Lipschitz nonlinear systems [190] described by{

xk+1 = Axk +Bγ (xk) + wk
yk = Cxk + Gσ (xk) + vk

(3.71)

where xk ∈ Rn is the state vector; yk ∈ Rm is the output measurement; wk ∈ Rn and vk ∈ Rm
are bounded disturbances. The matrices A ∈ Rn×n, B ∈ Rn×nγ , G ∈ Rm×nσ , and C ∈ Rm×n are
constant. The function γ : Rn −→ Rnγ is assumed to be globally Lipschitz and γ(0) = 0. The
same is assumed to hold for σ : Rn −→ Rnσ , i.e., globally Lipschitz with σ(0) = 0.
Using [ [124], Lemma 2], it follows that there exist functions

ϕij : Rn × Rn −→ R (3.72)
and constants aij , bij such that

γ (xk) =

i,j=nγ ,n∑
i,j=1

ϕij(k)Hij

xk (3.73)

and
aij ≤ ϕij

(
x

0j−1
k , x

0j

k

)
≤ bij (3.74)

where, for any X,Y ∈ Rn, we define
XYi := (y1, . . . , yi, xi+1, . . . , xn) (3.75)

for i = 1, . . . , n with XY0 := X. Similarly, there exist functions
ψij : Rn × Rn −→ R (3.76)

and constants aij , bij , such that

σ (xk) =

i,j=nσ ,n∑
i,j=1

ψij(k)Hσ
ij

xk (3.77)

and
cij ≤ ψij

(
x

0j−1
k , x

0j

k

)
≤ dij . (3.78)

It follows that (3.71) can be rewritten as an LPV system with

A (pk) := A +B

i,j=nγ ,n∑
i,j=1

ϕij(k)Hγ
ij

C (pk) := C +G

i,j=nγ ,n∑
i,j=1

ψij(k)Hσ
ij

(3.79)

pk :=
(
ϕ11(k), . . . , ϕ1n(t), ϕ21(k), . . . , ϕnγn(t), . . . , ϕnσn(t)

)
where for the sake of shortness,

ϕij(k) := ϕij
(
x

0j−1
k , x

0j

k

)
, Hγ

ij := enγ (i)e⊤
n (j),

ψij(t) := ψij
(
x

0j−1
k , x

0j

k

)
, Hσ

ij := enσ (i)e⊤
n (j).
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Formulation of the MHE problem

Two MHE problem can be formulated depending on our trust in the variable parameter p. In
the first case, a least-squares is considered by minimizing with respect to the parameters which
is denoted as the "optimistic" approach, and in the second case by maximizing with respect to
the parameters which is denoted by the "pessimistic" approach. In both cases, we will study the
stability of the estimation error, i.e., we will prove the exponential boundedness in the presence
of the bounded system and measurement noises.
Let us consider a class of quasi-LPV system described by

xk+1 = A (p (xk))xk +B (p (xk))uk + wk (3.80a)

yk = C (p (xk))xk + vk (3.80b)

where k = 0, 1, . . . is the time instant, xk ∈ Rn is the state vector, wk ∈ Rn is the system noise
vector, yk ∈ Rm is the vector of the measures, and vk ∈ Rm is the measurement noise vector.
p ∈ P is the variable parameter, and for the sake of brevity, we denoted p(xk) by pk. We assume
the statistics of x0, wk, and vk to be unknown, and consider them as deterministic variables of
unknown character that take their values from known compact sets.
We can now state the MHE problem according to the two different formulations, i.e., "optimistic"
and "pessimistic".

Problem 1. Find x̂kk−N |k ∈ Rn×(N+1) and p̂kk−N |t ∈ PN+1 that minimize

J1
(
xkk−N , p

k
k−N

)
= µ

∣∣∣xk−N − x̄k−N |k

∣∣∣2 +
k∑

i=k−N
|yi − C xi|2 (3.81)

under the constraints

xi+1 = A(pi)xi +B(pi)ui , i = k −N, . . . , k − 1 . (3.82)

In practice, the problem consists in finding x̂kk−N |t, p̂
k
k−N |t such that:

J1
(
x̂kk−N |t, p̂

k
k−N |k

)
≤ J1

(
xkk−N , p

k
k−N

)
for all xkk−N ∈ Rn×(N+1) and pkk−N ∈ PN+1.

Problem 2. Find x̂kk−N |k ∈ Rn×(N+1) that minimize

J2
(
xkk−N

)
= max

pt−N|tt∈PN+1
µ
∣∣∣xk−N − x̄k−N |k

∣∣∣2 +
k∑

i=k−N
|yi − C xi|2 (3.83)

under the constraints

xi+1 = A(pi)xi +B(pi)ui , i = k −N, . . . , k − 1 . (3.84)
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Stability analysis

In order to study the stability properties of the proposed MHE algorithm, some preliminary
definitions and assumptions are needed and introduced in the following. Let us define the
following function.

F
(
pkk−N

)
:=


C

CA(pk−N )
...

C
∏N
i=1A(pk−i)

 . (3.85)

By exploiting this definition, we get

ykk−N = F
(
pkk−N

)
xk−N +G

(
ptk−N

)
uk−1
k−N +H

(
ptk−N

)
wk−1
k−N + vkk−N (3.86)

with k ≥ N . The matrices H(.) and G(.) are given by (3.87) and (3.88), respectively.

H
(
ptk−N

)
:=



0 . . . 0
C . . . 0

CA(pk−N+1) . . . 0
... . . . ...

C
N−1∏
i=1

A(pk−i) . . . C


, (3.87)

G
(
pkk−N

)
≜ H

(
ptk−N

)
diag

(
B (pk−N ) , . . . , B (pk)

)
. (3.88)

The pair (A,C) is observable in N steps if the following assumption is satisfied

Assumption 3.5

the constant
δ := min

pt
k−N

∈PN+1
λmin

(
F
(
ptt−N

)⊤
F
(
ptk−N

))
(3.89)

is strictly positive.

In order to derive stability results for the estimation error, we also need that the dynamics of
the system to be such that the state vector remains inside some compact set. Therefore, the
following assumptions are needed.

Assumption 3.6

There exists a compact set X ⊂ Rn such that xt ∈ X for all k = 0, 1, . . ., and let ρx :=
maxx∈X |x|.
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Assumption 3.7

There exists ρu > 0 such that |ut| ≤ ρu for all t = 0, 1, . . ..

The disturbances are assumed to be bounded as stated in the following assumption.

Assumption 3.8

There exist ρw, ρv > 0 such that |wt| ≤ ρw and |vt| ≤ ρv for all t = 0, 1, . . ..

The following assumption is also needed.

Assumption 3.9

The mappings p 7→ A(p) ∈ Rn×n and p 7→ B(p) ∈ Rn×m and p 7→ C(p) ∈ ℜr×n are
continuous.

Most of the assumptions made so far are of rather technical significance, which will be clear in
the proof of the theorem stated in the following.
Before stating the theorem providing a solution to the MHE problem for quasi-LPV systems,
we need to introduce the following definition.

Definition 3.2

A sequence of vector {vt} is said to be exponentially bounded if there exist a ∈ (0, 1) and
b > 0 such that:

|vt| ≤ |v0|at + b, t = 0, 1, . . . . (3.90)

To carry out the stability analysis, we will first provide lower and upper bounds before giving a
final bound. Such a final bound will depend on the design parameters, which should be selected
conveniently such that the estimation error is exponentially bounded. For the sake of brevity,
here we adopt the simpler notations:
Fk−N := F

(
ptk−N

)
, Gk−N := G

(
pkk−N

)
, Hk−N := H

(
pkt−N

)
, F̂k−N := F

(
p̂kk−N

)
, Ĝk−N :=

G
(
p̂kk−N

)
, Ĥk−N := H

(
p̂kk−N

)
, and x̂i := x̂i|k, p̂i := p̂i|k, for i = k −N, . . . , k.

Let us consider the optimal cost that results from the solution of problem 1 defined before,
namely,

J1
(
x̂kk−N , p̂

k
k−N

)
= µ

∣∣∣ x̂k−N − x̄k−N |k

∣∣∣2 +
∣∣∣ykk−N − F̂k−N x̂k−N

−Ĝk−N−1u
t−1
k−N−1

∣∣∣2 . (3.91)

Likewise in [138, 174], the proof consists in deriving lower and upper bounds on such a cost,
which will be combined define the final bound on the norm of the estimation error.

• Lower bound
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First, we bound the first term of (3.91). We have:

|xk−N − x̂k−N | = |xk−N − x̄k−N |t + x̄k−N |k − x̂k−N |
≤ |xk−N − x̄k−N |t| + |x̄k−N |t − x̂k−N |.

Using Young’s inequality we get:

|xk−N − x̂k−N |2 ≤ (1 + 1
ϵ1

)|xk−N − x̄k−N |k|2 + (1 + ϵ1)|x̄k−N |k − x̂t−N |2

and therefore

µ|x̄k−N |k − x̂k−N |2 ≥ µ

1 + ϵ1
|x−N − x̂−N |2 − µ

ϵ1
|x−N − x̄−N ||2 (3.92)

for any µ ≥ 0 and ϵ1 > 0.

Now, we focus on the second term of (3.91):∣∣∣F̂k−N xk−N − F̂k−N x̂k−N
∣∣∣ =

∣∣∣F̂k−N xk−N − Fk−N xk−N + Fk−N xk−N − ykk−N+1 + Ĝk−Nu
k−1
k−N

+ ykk−N+1 − F̂k−N x̂k−N − Ĝk−Nu
k−1
k−N

∣∣∣
≤
∣∣∣ (F̂k−N − Fk−N

)
xk−N

∣∣∣∣∣∣Fk−N xk−N − ykk−N+1 + Ĝk−Nu
k−1
k−N

∣∣∣
+
∣∣∣ykk−N+1 − F̂k−N x̂k−N − Ĝk−Nu

k−1
k−N

∣∣∣.
≤
∣∣∣ykk−N+1 − F̂k−N x̂k−N − Ĝk−Nu

k−1
k−N

∣∣∣
+ ∆Fρx + ρHNρw + (N + 1)ρv + ρuN∆G︸ ︷︷ ︸

c1

(3.93)

where

∆F := max
p1k

k−N
,p2k

k−N
∈PN+1

∣∣∣F (p1
k
k−N

)
− F

(
p2
k
k−N

) ∣∣∣
∆G := max

p1k
k−N

,p2k
k−N

∈PN+1

∣∣∣G (p1
k
k−N

)
−G

(
p2
k
k−N

) ∣∣∣
ρH := max

pk
k−N

∈PN+1

∣∣∣H (
pkk−N

) ∣∣∣ , ρu := max
k

|uk|.

From Young’s inequality we obtain:∣∣∣F̂k−N k−N − F̂k−N x̂k−N
∣∣∣2 ≤

(
1 + ϵ2

)∣∣∣ykk−N+1 − F̂k−N p̂k−N − Ĝk−Nu
k−1
k−N

∣∣∣2
+ c2

1
(
1 + 1

ϵ2

)
. (3.94)

Using Assumption 5, we obtain∣∣∣ykk−N+1 − F̂k−N x̂k−N − Ĝk−Nu
k−1
k−N

∣∣∣2 ≥ 1(
1 + ϵ2

) ∣∣∣F̂k−N (xk−N − x̂k−N )
∣∣∣2 − 1

ϵ2
c2

1

≥ δ

1 + ϵ2
|xk−N − x̂k−N |2 − 1

ϵ2
c2

1. (3.95)
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To conclude, by replacing (3.92) and (3.95) in (3.91), we get

J1
(
x̂kk−N , p̂

k
k−N

)
≥ µ

1 + ϵ1
|xk−N − x̂k−N |2 − µ

ϵ1
|xk−N − x̄k−N |k|2

+ δ

1 + ϵ2
|xk−N − x̂k−N |2 − c2

1
ϵ2
. (3.96)

• Upper Bound

It is straightforward to proceed with the upper bound as follows:

J
(
q̂kk−N , p̂

k
k−N

)
≤ J

(
qkk−N , p

k
k−N

)
=
∣∣∣ykk−N+1 − Fk−N qk−N −Gk−Nu

k−1
k−N

∣∣∣2 + µ |qk−N − q̄k−N |k|2

= µ |qk−N − q̄k−N |k|2 +
∣∣∣Hk−N w

k−1
k−N + vkk−N

∣∣∣2
≤ µ |qk−N − q̄k−N |k|2 + 2

∣∣∣Hk−N w
k−1
k−N

∣∣∣2 + 2
∣∣∣vkk−N

∣∣∣2
≤ µ |qk−N − q̄k−N |k|2 + c2, (3.97)

where
c2 := 2 ρ2

HN
2ρ2
w + 2(N + 1)2ρ2

v .

• Final bound

Using (3.96) and (3.97), we get:

(
δ

1 + ϵ2
+ µ

1 + ϵ1

)
|qk−N − q̂k−N |2 ≤ c2

1
ϵ2

+ c2 + µ
(
1 + 1

ϵ1

)
|qk−N − q̄k−N |k|2. (3.98)

Let us now focus on the term |qk−N − q̄k−N | in the r.h.s. of (3.105). It follows that:

|qk−N − q̄k−N | =
∣∣∣A(pk−N−1) qk−N−1 + wk−N−1 −A(p̂k−N−1) q̂k−N−1

+
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1

∣∣∣
=
∣∣∣(A(pk−N−1) −A(p̂k−N−1)) qk−N−1 +A(p̂k−N−1) (qk−N−1 − q̂k−N−1)

+
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1 + wk−N−1

∣∣∣
≤ |(A(pk−N−1) −A(p̂k−N−1)) qk−N−1||A(p̂k−N−1) (qk−N−1 − q̂k−N−1)|

+ |
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1| + |wk−N−1|.

Using Young’s inequality, we get

|qk−N − q̄k−N |2 ≤ 1 + ϵ3
ϵ3

(
∆Aρq + ρw + ∆Bρu

)2
+
(
1 + ϵ3

)
ρ2
A|qk−N−1 − q̂k−N−1|2 (3.99)

for all ϵ3 > 0, where
∆A := max

p1,p2∈P
|A (p1) −A (p2)| , (3.100)

∆B := max
p1,p2∈P

|B (p1) −B (p2)| . (3.101)
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By substituting (3.106) in (3.105), we finally obtain

|x̃k−N |2 ≤
(
µ
(
1 + 1

ϵ1

)(
1 + ϵ3

)
δ

1+ϵ2 + µ
1+ϵ1

)
ρ2
A|x̃k−N−1|2 +

 c2
1
ϵ2

+ c2 + 1+ϵ3
ϵ3
µσ2

δ
1+ϵ2 + µ

1+ϵ1

 (3.102)

where σ ≜ ∆Aρx + ρw + ∆Bρu and x̃k−N ≜ xk−N − x̂k−N .
Now we are ready to state the following main theorem, which summarizes the convergence
conditions of the estimation error obtained from the solution of the optimization problem 1.

Theorem 3.2

The estimation error ek−N given by the solution of MHE problem is exponentially bounded
according to Definition 2, with

a = a(µ) ≜ ρA

√√√√µ
(
1 + 1

ϵ1

)(
1 + ϵ3

)
δ

1+ϵ2 + µ
1+ϵ1

(3.103)

b = b(µ) ≜

 c2
1
ϵ2

+ c2 + 1+ϵ3
ϵ3
µσ2

δ
1+ϵ2 + µ

1+ϵ1

 1
1 − a

(3.104)

if µ is chosen such that a(µ) < 1.

Proof. Using (3.96) and (3.97), we get

(
δ

1 + ϵ2
+ µ

1 + ϵ1

)
|xt−N − x̂t−N |2 ≤ c2

1
ϵ2

+ c2 + µ
(
1 + 1

ϵ1

)
|xk−N − x̄k−N |k|2. (3.105)

Let us now focus on the term |xt−N − x̄k−N | in the r.h.s. of (3.105). It follows that:

|xk−N − x̄k−N | =
∣∣∣A(pk−N−1)xk−N−1 + wk−N−1 −A(p̂k−N−1) x̂k−N−1

+
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1

∣∣∣
=
∣∣∣(A(pk−N−1) −A(p̂k−N−1))xk−N−1 +A(p̂k−N−1) (xk−N−1 − x̂k−N−1)

+
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1 + wk−N−1

∣∣∣
≤ |(A(pk−N−1) −A(p̂k−N−1))xk−N−1| + |A(p̂k−N−1) (xk−N−1 − x̂k−N−1)|

+ |
(
B(pk−N−1) −B(p̂k−N−1)

)
uk−N−1| + |wk−N−1|.

Using Young’s inequality, we get

|xk−N − x̄k−N |2 ≤ 1 + ϵ3
ϵ3

(
∆Aρx + ρw + ∆Bρu

)2
+
(
1 + ϵ3

)
ρ2
A|xk−N−1 − x̂k−N−1|2 (3.106)

for all ϵ3 > 0, where
∆A := max

p1,p2∈P
|A (p1) −A (p2)| . (3.107)
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∆B := max
p1,p2∈P

|B (p1) −B (p2)| . (3.108)

By substituting (3.106) in (3.105), we finally obtain:

|x̃k−N |2 ≤
(
µ
(
1 + 1

ϵ1

)(
1 + ϵ3

)
δ

1+ϵ2 + µ
1+ϵ1

)
ρ2
A|x̃k−N−1|2 +

 c2
1
ϵ2

+ c2 + 1+ϵ3
ϵ3
µσ2

δ
1+ϵ2 + µ

1+ϵ1

 (3.109)

where σ ≜ ∆Aρx + ρw + ∆Bρu and x̃k−N ≜ xk−N − x̂k−N . □

Remark 3.4

If we take ϵi = 1, i = 1, 2, 3, then estimation error bound are simplified as follows:

a(µ) = 8µ
δ + µ

ρ2
A (3.110)

b(µ) = 2c2
1 + 2c2 + 4µσ2

(δ + µ)(1 − a) . (3.111)

Now let us focus on the stability analysis of the estimation error given by the solution of Prob-
lem 2.

Theorem 3.3

The estimation error ek−N given by the solution of Problem 2 is exponentially bounded
with the same definitions of a2(µ) in (3.103) and b2(µ) in (3.104) if µ is chosen such that
a2(µ) < 1.

Proof. The proof is straightforward, we follow the same procedures as in the proof of Theorem 2
using the cost function

J2
(
x̂kk−N |k

)
= J1

(
x̂kk−N |k, π̂

k
k−N |k

)
where π̂kk−N |k ∈ P is the maximizer of the right half side of (3.83) with the corresponding
definitions (Fk−N = F

(
πkk−N

)
, Hk−N = H

(
πkk−N

)
). □

Remark 3.5

It is important to note that the MHE is able to provide estimates of both system states and
unknown parameters, even when such parameters affect the system matrices nonlinearly.
Indeed, the matrices A, B and C in (3.70) may depend nonlinearly on the parameter pk.
Although owing to the boundedness of the parameters, it is always possible to avoid such
nonlinearities by introducing a new extended parameter vector, p̄k, with higher dimension
and rewrite A, B and C with a linear dependence on p̄k, this would increase the size of the
new parameter p̄k. If such a parameter increases significantly, it may happen also to lose
the detectability and stabilizability conditions when augmenting the size of the unknown
parameter vector as well as the infeasibility of LMI conditions ensuring the stability of the
estimation error for other alternative estimation methods for LPV systems. Moreover, LMI-
based techniques may require additional conservative conditions to guarantee the existence
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of an observer. This is the case of adaptive observers with strong equality constraints [191]
or unknown input observers with restrictive rank conditions based on singular systems
theory [192].

3.5 Conclusion
In this chapter, a brief overview of the optimization-based strategies for estimating the state of
linear and nonlinear systems has been reviewed. These methods can provide optimal estimators
for linear systems and stable estimators for constrained linear and finite-time observable nonlin-
ear systems. The use of moving horizon estimation (MHE) for state estimation is then presented
which provides an estimate at the current instant by solving an optimization problem based on
information from a fixed number of the latest measurements collected over a finite horizon. In
the second part of this chapter, the MHE was investigated for a class of nonlinear systems that
can be written under the form of quasi-LPV system to estimate jointly the system’s states and
the unknown parameters. The MHE is accomplished by minimizing a least-squares cost func-
tion with respect to both state and parameter variables. In the first approach, the unknown
parameters are regarded as state variables, hence minimizing with respect to both state and
parameter variables which is referred as the "optimistic" approach. In the second approach, the
unknown parameters are considered in the worst case, by solving a min-max problem referred
as the "pessimistic" approach. Sufficient conditions are drawn to guarantee the stability of the
estimation error.
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4.1 Introduction
Understanding biological systems is difficult as they are susceptible to adapt (their properties
evolve over time), or can be highly sensitive to a small change in their environment, it is, there-
fore, crucial to monitor such adapting biological processes. However, these biological models
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usually introduce some unknown parameters that must be estimated accurately and efficiently.
Hence, one central challenge in systems biology is the estimation of unknown model parameters
(e.g., rate constants), after which one can predict model dynamics. Parameter estimation re-
quires the knowledge of the system’s state variables, but due to technical limitations, only part
of the state variables can be measured in experiments due to a lack of sensors sometimes, these
sensors are expensive and requires high expertise and strong maintenance. Moreover, most of
the measurements are generally obtained offline, after laboratory analysis.
As most models for molecular biological systems are nonlinear with respect to both parameters
and system state variables, the estimation of parameters in these models from experimental
measurement data is thus a nonlinear estimation problem. In principle, all algorithms for non-
linear optimization can be used to deal with this problem, for example, the Gauss-Newton
iteration method and its variants. However, these methods do not take the special structures
of biological system models into account. When the number of states or parameters to be
determined increases, it will be challenging and computationally expensive to apply these con-
ventional methods. One way to obtain such variables consists of combining a priori knowledge
about these biological systems with experimental data to design observers which process the
incomplete and imperfect information to construct an estimate of these unknown parameters
and state variables.
In this chapter, the high-gain estimation techniques introduced in Chapter 2 and the moving
horizon estimation approach presented in Chapter 3 are investigated to estimate the unknown
state variables and parameters of three different biological plants. First, the applicability of the
high-gain observers based on the system state augmentation approach and HG/LMI technique
is verified on two biological applications, namely, a simple one-gene regulation dynamic process
involving end-product activation is explored to estimate the non-measured concentrations of
mRNA, small metabolites, and the involved protein, then a stage-structured SI epidemic model
with 2 infectious stages is considered to track the states of the epidemic model. Simulation
results are reported showing the superiority of our proposed observer in terms of sensitivity to
high-frequency measurement noise with respect to the standard high-gain observer in addition to
improving the transient response by preventing the peaking phenomenon which is typical of the
high-gain observer. Second, we have investigated both modeling and estimation of the planar
dynamics of Amnioserosa cells during dorsal closure. The model is described as a quasi-LPV
system, and the moving horizon estimator proposed in Chapter 3 is considered to estimate the
system’s states and the unknown parameters jointly. For simulation purposes, data from the
work published in [193] are used to evaluate the performance of the MHE which is compared
to the traditional extended Kalman filter (EKF). The comparative analysis revealed that not
only the MHE technique can achieve optimal state and parameter-estimation performances
comparable to the EKF, but also more robust to measurement and process noises.

4.2 Genetic regulatory network

Gene expression is a very complicated dynamical process that is regulated at a number of
stages during the synthesis of proteins [194]. Similar to many big cities, with heavy traffic,
biological cells host complicated traffic of biochemical signals at all levels. At the nanometer
scale, clusters of molecules in the form of proteins drive the dynamics of the cellular network
that schematically can be divided into four regulated parts: the DNA or genes, the transcribed
RNAs, the set of interacting proteins, and the metabolites [195]. During gene expression, an
enormous number of genes and proteins are either directly or indirectly interrelated with one
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another in living cells. The mechanisms which have progressed to control the expression of genes
are known as gene regulatory networks (GRNs). Gene Regulatory Networks (GRNs) describe
gene expression as a function of regulatory inputs specified by the interactions between proteins
and genes, that is, one gene can control another gene’s expression through its product proteins
called Transcriptional Factors [196]. Understanding GRNs has the potential to advance fields
ranging from basic science research to clinical practice and provides insights in evolution [197],
metabolism [198], DNA damage response [199], and cancer metastasis [200].
For the purpose of gene identification and medical diagnosis/treatment, biologists and biomedical
scientists are interested in knowing the exact states of GRNs [201]. However, due to unavoidable
complications such as transcription/translation delays and extrinsic/intrinsic noises, the avail-
able measurement outputs of GRNs might be different from their true states. As such, the state
estimation or filtering problem for GRNs has become an important topic of research that has
attracted many from the scientific community [202], [203], [201], [204], [205] and [206].
In this section, The applicability and performance of the high-gain observer techniques addressed
in the Chapter 2 are explored through a simple genetic regulatory network with a comparison
to the standard high-gain observer to clearly show the superiority of the proposed technique.

4.2.1 Mathematical modeling of genetic regulation process

Mathematical modeling has been applied to biological systems for decades, but with respect
to gene expression, too few molecular components have been known to build useful, predictive
models. New efforts have been greatly aided by much more extensive "parts lists" of DNA
sequences and proteins, as well as considerably enhanced computational power. These improve-
ments make possible the use of diverse mathematical modeling methods for different biological
problems. As more biologists venture into systems-level studies, a general understanding of vari-
ous modeling approaches related to gene expression is necessary to facilitate close collaborations
between experimentalists and modelers [207]. There are different classes of genetic regulatory
models, namely, thermodynamic, Boolean, Bayesian, and differential equation-based models. In
differential equation based-models, the regulatory networks can be represented by differential
equations, in which a set of molecules such as mRNAs and proteins interact by explicit rules
defined in terms of rate equations. These equations specify the levels of each protein or mRNA
as a function of the other components as the system evolves. These models usually include time
and/or space-dependent variables such as protein and mRNA concentrations, and parameters
such as production and degradation rates. A Regulatory relationship between two genes is de-
picted in Figure 4.1, where synthesis of gene 1 (G1) involves expression of mRNA (M1) and
translation of protein (P1), which regulates gene 2 (G2). Both mRNA and protein are subject
to turnover and protein are subject to diffusion, mRNA and protein synthesis, degradation, and
diffusion events are shown at left. This process can be modeled with reaction-diffusion equations
given in the figure and each molecular constituent is assigned such an equation.
The ordinary differential equation (ODE) formalism models the concentrations of mRNAs, pro-
teins, and other system elements by time-dependent variables with values contained in the set of
non-negative real numbers. Regulatory interactions take the form of functional and differential
relations between the concentration variables. More specifically, gene regulation is modeled by
reaction-rate equations expressing the rate of elements of the system in the following form:

dxi
dt

= fi(x), xi ≥ 0, 1 ≤ i ≤ n, (4.1)

where x is the vector of concentrations of proteins, mRNAs, or small metabolites, and fi is a usu-
ally nonlinear function. Then, by specifying the function f we get equations of the form 4.2 [208]:
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G2G1

M1 P1τ1

λp
1λm

1

dp
1

s1

dP1
dt = τ1M1 − λp

1P1 + dp
1∆P1

Figure 4.1: Differential equation model of gene expression.

{
dx1
dt = κ1nH(xn) − γ1x1, x1 ≥ 0,
dxi
dt = κi,i−1xi−1 − γixi, xi ≥ 0, 1 ≤ i ≤ n

(4.2)

The parameters κ1n, κ2n, · · ·κn,n−1 are all strictly positive and represent production constants
and γ1, · · · γn represent degradation constants and are also strictly positive. The reaction-rate
equations express a balance between the number of molecules appearing and disappearing per
unit of time. In the case of x1, the production term involves a nonlinear regulation function
H : R → R ranging from 0 to 1. A regulation function often found in the literature is the
so-called Hill curve depicted in Figure 4.2 with m > 0 as the steepness parameter.

Figure 4.2: Hill function H+.

In common use, the function H is given as

H+(xj , θij ,m) =
xmj

xmj + αmij
,

H−(xj , θij ,m) = 1 −
xmj

xmj + αmij
,
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corresponding to the activation and inhibition cases, respectively. The parameter α gives the
threshold for the regulatory influence of the concentration of the metabolite on the target gene,
whereas the steepness parameter m is a measure of the collective effect of groups of metabolite
molecules defining the shape of the Hill curve.

4.2.2 Simple gene regulation process

A simple example of a kinetic model for the genetic regulation process is given in Figure 4.3,
going back to the work by Goodwin [209] and [210]. The end-product of a metabolic pathway
co-inhibits the expression of a gene coding for an enzyme that catalyzes a reaction step in the
pathway. This gives rise to a negative feedback loop involving mRNA concentration x1, protein
concentration x2, and metabolic concentration x3.

gene a

mRNA

protein

metabolite K

A

AF F

CK

CK

C

Figure 4.3: An example of a genetic regulatory system involving end-product inhibition. A and
C represent proteins, F and K metabolites.

Let x1, x2 and x3 be the concentrations of the messenger RNA (mRNA) a, protein A and
metabolite K, respectively. Then, the corresponding Tysonâ€™s model [208] is written under
the form:

ΓGRN :


ẋ1 = κ1H(x3) − γ1x1
ẋ2 = κ2x1 − γ2x2
ẋ3 = κ3x2 − γ3x3
y = x3

(4.3)

κ1, κ2 and κ3 are production constants, γ1, γ2 and γ3 degradation constants, and H is the
nonlinear regulation function ranging from 0 to 1.
System (4.3) is considered to be a good model for the simplest type of allosteric regulation in
biochemistry, i.e., the inhibition or activation of an enzyme or protein by a small regulatory
molecule that interacts with the enzyme at a site (allosteric site) other than the active site at
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Table 4.1: Parameters of the GRN

Symbol Meaning Value(arb. units)
κ1 Production constant of mRNA 0.001
κ2 Production constant of protein 1.0
κ3 Production constant of metabolite 1.0
γ1 Degradation constant of mRNA 0.1
γ2 Degradation constant of protein 1.0
γ3 Degradation constant of metabolite 1.0
α Hill’s threshold parameter 1.0

which catalytic activity occurs. The interaction changes the shape of the enzyme, thus affecting
the active site of the standard catalysis. This change of shape of the enzyme is sufficient to
change its ability to catalyze a reaction in either a negative or positive way and enables a cell
to regulate needed metabolites. The allosteric regulation has the typical features of a feedback
loop in control theory if the regulatory protein acts on the enzyme in the pathway of its own
synthesis.
The model (4.3) has the following form: {

ẋ = f(x)
y = h(x) . (4.4)

Using an appropriate change of coordinate, the system is transformed into a triangular form as
given in (4.5): 

ξ̇ = F ′(ξ) =

 ξ̇1
ξ̇2
ξ̇3

 =

 ξ2
ξ3
φ(ξ)

 ,
y = Cξ =

[
1 0 0

]  ξ1
ξ2
ξ3


(4.5)

The standard high-gain observer and the observer based on a combination of HG/LMI technique
and system state augmentation approach presented in Chapter 2 are designed to estimate the
states of the system given by (4.5). For js = 1, we transform the system given by (4.5) of
dimension 3 to an augmented system of dimension 4 by adding an integrator to obtain this
fourth-dimensional system: 

ż1 = z2
ż2 = z3
ż3 = z4
ż4 = φ′(ξ)
y = z1

(4.6)

where φ′(.) is the new nonlinear function that does depend on the last component z4.

4.2.3 Simulation results

In order to carry out simulations, we have used the parameters given in Table 4.1 which are not
necessarily the experimental values but are consistent with the requirements of the model.
Following theorem 4 we have designed a standard high-gain observer for system4.5, then using
theorem 8 we have designed the observer proposed in this work for system 4.5. Note that in
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Table 4.2, the line of the first sub-table "Improved high-gain observer" with js = 0, js = 0 refers
to the worst case of our proposed observer which corresponds to the standard high-gain observer.
The two remaining lines correspond to the HG/LMI observer with a compromise index j0 = 1
and j0 = 2. For the second sub-table, we have the case of the augmented system to a dimension
4 (3 + js = 4) combined with the HG/LMI observer for three different values of the compromise
index j0 = 0, 1, 2.

Table 4.2: Comparison between the two high-gain observers for the GRN model.

Standard high-gain observer
nLMI θ K

1 24.23 8.87 15.79 7.91

Improved high-gain observer

js j0 nLMI θ
1

(1+js)(1+j0)
Γ KΓ

0 0 1 24.23 8.87 15.79 7.91
1 2 4.61 8.72 15.99 8.28
2 4 2.71 7.27 14.77 7.22

js j0 nLMI θ
1

(1+js)(1+j0)
Γ KΓ

1 0 1 7.55 8.72 18.59 18.06 7.27
1 2 2.53 8.94 19.27 18.91 7.81
2 4 1.89 9.18 20.02 19.93 8.43

Figure 4.4, depicts the behavior of the error dynamics xi − x̂i, i = 1, . . . , 3 using the standard
high-gain observer and our proposed observer obtained from the combination of the state aug-
mentation approach and the HG/LMI technique. Concerning our proposed observer, we have
picked three case studies:

- case 1 (js = 0, j0 = 1): corresponding to the HG/LMI observer with the compromise
index j0 = 1 but without augmenting the state of the original system.

- case 2 (js = 1, j0 = 0): corresponding to the observer based on the system state augmen-
tation approach with the compromise index js = 1 but without applying the HG/LMI
technique on the augmented system.

- case 3 (js = 1, j0 = 2): which corresponds to the case where we increase the dimension of
the system by 1 by augmenting the state combined with the HG/LMI technique with the
compromise index j0 = 2.

We denote x̂i,s, the system’s estimate using the standard high-gain observer which is depicted by
a solid blue line, x̂i,e(js=0,j0=1) the estimate for case 1 which is depicted by a red line, x̂i,e(js=1,j0=0)
the estimate for case 2 which is depicted by a green line and x̂i,e(js=1,j0=2) for case 3 which is
depicted by a purple line.
To further show the performance of the proposed observer, additional Gaussian disturbances
are applied to the output measurements at time t = 2s with zero mean and standard deviation
of 0.1. The simulation results are given in Figure 4.5 with a zoom of the plots between t = 3s
and t = 3.5s.
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Figure 4.4: Evolution of the observers’ error dynamics.
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Figure 4.5: Absolute values of estimation errors with additional measurement noise.
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4.3 SI epidemic model

The spatial spread of infectious diseases, following their introduction at distinct locations, has
always been a major concern for human populations due to their high death mortality in both
developed and developing countries. About 31.1 million to 43.9 million were living with HIV in
2017 [211], while seasonal influenza epidemics result in about 250,000 to 500,000 deaths world-
wide every year, according to the World Health Organization [212]. These examples highlight
the significant role of epidemiological models in analyzing the origins, dynamics, and spread of
such epidemics. These models provide notation, concepts, intuition, and disease-related factors
such as the infectious agent, mode of transmission, latent and infectious periods, susceptibility,
and resistance which can be used to capture features that are most influential in the spread
of diseases. Such models heavily rely on a good estimation of the epidemiological parameters
for simulating the outbreak trajectory and comparing the necessary vaccination levels for herd
immunity to make predictions of the disease progression and suggest possible control strategies.
Epidemiological constraints, such as delays in symptom appearance (due to incubation period)
and positive test confirmation (due to limited testing and detection resources), may limit the real-
time use of epidemiological models [213,214]. In order to overcome such constraints, mathemat-
ical modeling of infectious diseases was employed in epidemiology, as recognized by WHO [215]
and proven to be effective [216,217]. Compartmental modeling as a class of mathematical mod-
eling is often employed in studying the probable outbreak growth [218]. These models consist of
two parts: compartments and rules. The compartments divide the population into different pos-
sible states with respect to the disease. The rules specify the proportion of individuals moving
from one class to another.
Compared to the agent-based model, the compartmental model is simple and correlated to ob-
servation [219]. It involves a dynamic process based on how the population is divided into
different compartments to describe the transmission state [220]. The SIR (Susceptible, Infec-
tious, and Recovered) model introduced in [221] divides the population into the susceptible,
infectious, and recovered compartments to describe the state of disease spread, where people
who are susceptible to infection will possibly be infected, and the infected people will be recov-
ered with a certain rate. Different model extensions were developed in the recent past, mostly
by including additional compartments, such as the SEIR (Susceptible, Exposed, Infectious and
Recovered) model which introduces the exposed compartment into the SIR model to describe
the intermediate state between the susceptible and infected people.
Besides the various modeling assumptions underlying the derivation of these models, their prac-
tical use relies on two other assumptions: the model parameters are known and an appropriate
initial condition, i.e., the current state of the population is known [222]. The problem of es-
timating the model parameters is certainly important but will not be addressed in this work,
one can see for example [223], [224] and [225]. Once the model parameters are known, we can
identify the current population state. In most classical models the total population is conserved
and this yields an estimate of one of the compartments in terms of estimates of the remaining
ones.
Although the literature on the behaviors of epidemic models endowed with a treatment function
is vast, there are fewer works on these models from the point of view of observer or estimation the-
ory which allows to predict and control of the propagation of diseases and virus mutation [226].
Earlier work using observers in an epidemiological context dates back to the works in [227] and
since 2012 there was a growing interest in the literature such as the estimation of sequestered
infected erythrocytes in Plasmodium falciparum malaria patients in [228], parameters and states
estimation for an SI-SI Dengue epidemic model [229], interval observer for uncertain SIR and



4.3. SI epidemic model 99

SIIR-SI models [226], a state observer for a continuous and discrete time SEIR model whose
values are then used to implement a vaccination strategy [230].

4.3.1 Mathematical Modeling

The SI model splits the population into two groups, the susceptible individuals who may contract
the disease and the infected individuals who may spread the disease to the susceptible. Once
a susceptible becomes infected, he or she moves into the infected group, increasing the size
of the infected class and decreasing the size of the susceptible class as described in the flow
diagram depicted in Figure 4.6. In SI modeling some assumptions are made about the population
and disease, first, each person in the susceptible population is assumed to be equally likely to
transmit the disease through contact with an infected individual, and once a person is infected,
they cannot recover; they remain in the infected class forever [231]. Second, the length of the
disease outbreak is short compared with the average personâ€™s lifespan, so death is not a
factor [232]. Therefore, this model can be applied to diseases for which individuals never recover
and for which disease spread is relatively quick, such as herpes (HSV-1 or HSV-2) caused by
the virus Herpesviridae. During an epidemic, the population is divided into two compartments:
the healthy individuals likely to catch the disease and the infected ones, denoted by S and I,
respectively, and the total population is represented by N .

∆

µ0S

∑n
i=1βiIiφ(S)

µ1I1

γ1I1

µ2I2

γn−1In−1

µnIn

S InI1 I2

Figure 4.6: The transfer diagram for SI model.

Let us consider a class of stage-structured SI model with n infectious stages which is described
by the following dynamics:

Ṡ = Λ −
∑n

i=1
βiIiφ(S) − µ0S (4.7)

İ1 =
∑n

i=1
βiIiφ(S) − (µ1 + γ1) I1 (4.8)

İ2 = γ1I1 − (µ2 + γ2) I2 (4.9)
... (4.10)

İn−1 = γn−2In−2 − (µn−1 + γn−1) In−1 (4.11)
İn = γn−1In−1 − µnIn (4.12)

where ∆ is the recruitment and βi is the per capita contact in the compartment Ii. The function
φ is assumed to be continuous, positive, and increasing that models the exposure of susceptible
individuals to contacts with infectious ones, for instance, one can use φ(S) = Sp or φ(S) = S

1+aS
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(with a > 0) to take into account saturation effects. The parameter µ0 is the natural death rate
of the susceptible individuals and µi is the death rate of the infected individuals in stage i, in
general, µi = µ0 + di with di being the additional disease-induced mortality rate and γi is the
transition rate from stage i to i+ 1.
Let x(t) = (S(t), I1(t), . . . , In(t))T be the state vector of the system (4.7) and we suppose that
we can only measure the level of infection in the last stage, i.e., the measurable output of the
system is y(t) = In(t). The aim of this work is: knowing In(t)∀t ≥ 0, we need to derive estimates
Ŝ(t) and Îi(t) satisfying limt→∞ Ŝ(t) − S(t) = 0 and limt→∞ Î(t) − I(t) = 0 using the high-gain
observer techniques introduced in Chapter 2.

4.3.2 Two stage structure SI model

In this section, we consider the special case where compartment I is made up of two compart-
ments, namely: the infected in the first stage of the disease and the infected in the terminal
phase of the infection, denoted I1 and I2, respectively. The corresponding SI model is given as
follows,

Σ2 :


Ṡ = ∆ − (β1I1 + β2I2)S − µ0S,
İ1 = (β1I1 + β2I2)S − (µ1 + γ)I1,
İ2 = γI1 − µ2I2

(4.13)

where

- S, I1, I2 represent the compartments of susceptible, first-stage infected, and second-stage
infected, respectively.

- ∆, µ, α, 1/γ are recruitment, mortality rate, recovery rate, and time taken for an early-
stage infected to become in the final phase of infection, respectively.

Let x(t) = (S(t), I1(t), I2(t)) be the state vector of the system (4.13) and we suppose that we can
only measure the level of infection in the last stage, i.e., the measurable output of the system
is y = I2. The aim of this work is to derive estimates Ŝ(t) and Îi(t) using high-gain observer
techniques.
The model given by (4.13) has the following form:{

ẋ = f(x)
y = h(x) (4.14)

in which x ∈ R3, hence there is a "physical subset" Ω ⊂ R3 where the system lies. Let us
construct the jth time derivative of the output. This can be expressed using Lie differentiation
of the function h by the vector field f , Ljf (h)(x(t)) given as

L0
f (h)(x) = h(x),

Ljf (h)(x) = ∂

∂x
(Lj−1

f (h)(x))f(x). (4.15)

When (4.13) is observable, the map Ψ : x → Ψ(x) is a diffeomorphism and,

z = Ψ(x) =

 I2
γI1 − µ2I2

γ(β1I1 + β2I2)S − γ(µ1 + µ2 + γ)I1 + µ2
2I2

 , (4.16)
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its Jacobian is given as

∂Ψ
∂x

=

 0 0 1
0 γ −µ2

γ (β1I1 + β2I2) γ
(
β1S −m

)
γβ2S + µ2

2

 . (4.17)

The determinant of the Jacobian is equal to det
(
∂Ψ
∂x

)
= γ2(β1I1 + β2I2), which is positive in

the positively invariant open set Ω0 =
{
S > 0, I1 > 0, I2 > 0, S + I1 + I2 <

∆
µ0

}
, see [233].

With the change of variable z = Ψ(S, I1, I2), the expression of Ψ−1 is

Ψ−1 : z →



µ2 (µ1 + γ) z1 + (µ1 + µ2 + γ) z2 + z3
(µ2β1 + γβ2) z1 + β1z2

,

µ2
γ z1 + 1

γ z2

z1

(4.18)

Then, the system given by (4.13) is rewritten in the following triangular form:

ż = F ′(z) =

 ż1
ż2
ż3

 =

 z2
z3
φ(z)

 ,

y = Cz =
[

1 0 0
]  z1

z2
z3


(4.19)

where φ can be extended from Ω to the entire R3 by a C∞ function globally Lipschitz on R3 and
according to the expression of Ψ−1 we deduce φ(z) as given in (4.20).

φ(z) =
(

(β1µ2 + β2γ) z2 + β1z3
)µ2 (µ1 + γ) z1 + (µ1 + µ2 + γ) z2 + z3

(β1µ2 + β2γ) z1 + β1z2

+
(

(β1µ2 + β2γ) z1 + β1z2
)(

∆ − (µ1 + γ)µ2
γ

z1 − µ1 + µ2 + γ

γ
z2 − z3

γ

−µ0
µ2 (µ1 + γ) z1 + (µ1 + µ2 + γ) z2 + z3

(β1µ2 + β2γ) z1 + β1z2

)
− (µ1 + γ) z2 − (µ1 + µ2 + γ) z3 (4.20)

4.3.3 Simulation results

This latter form allows us to make use of the high-gain observer techniques presented in the
previous section to estimate the evolution of susceptible individuals S(t) and infected individuals
I(t). The parameters used in these simulations are given as follows: ∆ = 40, β1 = 0.01,
β2 = 0.15, µ0 = µ1 = 0.01, µ2 = 0.025 and γ = 0.02.
In order to test the efficiency of the proposed observer given in Chapter 2, we performed a batch
of numerical simulations to compare with the standard high-gain observer in a noise-free case
and in the presence of high-frequency sensor noise, numerically taken as Gaussian distributed
noise with zero mean and standard deviation of 0.1. First, we design a standard high-gain
observer for the system (4.19) following Theorem 4 to obtain the values of the gain K and the
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tuning parameter θ as given in Table 4.3. Next, following the design methodology described in
Chapter 2, we obtain the values of the corresponding gain KΓ and the new observer parameter θΓ
for different values of the indexes js and j0 as summarized in Table 4.3.

Table 4.3: Comparison between the high-gain observers for the SI epidemic model.

Standard high-gain observer
nLMI θ K

1 43.46 11.67 20.97 10.53

Enhanced high-gain observer

js j0 nLMI θ
1

(1+js)(1+j0)
Γ KΓ

0 0 1 43.46 11.67 20.97 10.53
1 2 8.09 12.49 26.60 23.24
2 4 6.75 17.53 61.13 98.10

Enhanced high-gain observer

js j0 nLMI θ
1

(1+js)(1+j0)
Γ KΓ

1 0 1 10.11 8.87 15.79 29.16 18.27
1 2 3.31 10.03 27.34 33.16 21.27
2 4 2.46 12.13 35.63 53.13 43.08

In Figure 4.7, the estimation error dynamics (xi − x̂i) are plotted for i = 1 . . . 3, where x̂i,s
denotes the state estimate using the standard high-gain observer which is represented in the
blue line, x̂i,e(js=0,j0=1) the state estimate using the HG/LMI technique which represented with a
red line, x̂i,e(js=1,j0=0) using the system state augmentation approach which is represented with a
green line, and x̂i,e(js=1,j0=2) using the combined HG/LMI and the state augmentation approach
represented by the purple line.

For robustness comparison, we have analyzed the behavior of the standard high-gain observer
and the new proposed observer for three different cases corresponding to (js = 0, j0 = 1),
(js = 1, j0 = 0) and (js = 1, j0 = 2) under noisy outputs measurements. The simulations are
done using an additive noise measurement at t = 2s, which is a Gaussian-distributed random
signal with zero mean and standard deviation of 0.1, the results are shown in Figure 4.8.
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Figure 4.7: Evolution of the observers’ error dynamics.
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Figure 4.8: Absolute values of estimation errors with additional measurement noise.
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4.4 Amnioserosa Cell Dynamics During Drosophila Dorsal Clo-
sure

The dynamic behavior of epithelial cell sheets plays a central role in morphogenesis, wound
healing, tumor growth, tissue engineering, and other biological processes. These processes occur
as a result of cell adhesion, migration, division, differentiation, and death, and involve multiple
processes acting at the cellular and molecular level [234].
The process of Dorsal Closure (DC) in Drosophila melanogaster represents a good model sys-
tem for the study of epithelial sheet morphogenesis which has long been of interest due to its
experimental accessibility [235–238]. It is a complex morphogenetic process that results in the
closing of a gap that exists halfway through embryogenesis in the dorsal epidermis [239]. During
the closure, lateral epidermal cells elongate along the dorsoventral axis and subsequently spread
dorsally to cover the embryonic dorsal surface [240], [241]. On the other hand, cell shape os-
cillations occur in the Amnioserosa cells on the dorsal surface as they contract and eventually
disappear inside the embryo so that the two opposing epithelial fuse at the dorsal midline to
establish epidermal continuity; thus, the increase in epidermal surface area is accommodated by
a reduction in the Amnioserosal surface area [236,242–244].
Aside from its biological significance, DC of Drosophila provides a fascinating example of tissue
morphogenesis that couples cell and tissue mechanics with intra- and intercellular structural
remodeling which made it the target of a number of mathematical models that seek to explain
and quantify the processes that underlie closure’s kinematics [245]. To this end, a variety
of different cell-based modeling approaches have been developed, which treat cells as individual
objects allowing the study of cellular processes such as motility, adhesion, mitosis, and apoptosis
and their effect on the dynamic behavior of epithelia (for a review, see [245]). The application of
these mathematical models is useful to provide a handy tool for estimating both the mechanical
and biochemical properties of epithelial morphogenesis in a non-invasive manner. They are also
necessary to determine the values of some physical parameters that are not measurable during
experiments such as moduli of diffusion or elasticity.
Considering that mechanical characteristics are very difficult to probe in vivo, most of the
biomechanical studies are performed in vitro, on single molecules [246], single cells [247], or
minimal systems such as in-vitro grown molecular networks [248]. Laser perturbations can also
provide valuable information [249, 250], although they can be very damaging to the studied
organism. In view of this, numerical studies and nonlinear estimation methods can be useful
to provide handy tools for estimating the mechanical properties of biological systems in a non-
invasive manner. In the past few years, several works focused on forces and deformations in live
tissues [251,252]; yet, none of them allows one to study the parameter variations over time, and
neither do they permit to assess the mechanical characteristics of a tissue.
In line with some previous work [193], the mechanical model of live Aamnioserosa cells during
Drosophila melanogaster’s dorsal closure will be investigated in this work by considering mass-
spring vertex model. Using such a model we will estimate the cellâ€™s vertex positions and the
parameter κ which stands from the spring constants between vertex-vertex and vertex-barycenter
connection in order to track the cell’s movements.

4.4.1 Amnioserosa cells oscillation model

The role of Amnioserosa cells (AS) in Dorsal Closure, and the mechanics of these cells, have been
the objects of several studies, in particular how their apical area oscillations influence closure.
Yet, no consensus arose from these studies to explain the role of AS cells. In this section, we
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investigate the mechanics behind the AS cell oscillations and build a dynamic model representing
these movements based on a mass-spring lattice model.
Amnioserosa cells are known to show a periodic oscillation of their apical area [253]. These
oscillations are due to the periodic variation of the concentration of non-muscular myosin II
at the center of the apical part of the cell. Myosin II is a molecular motor, binding to actin
fibers and generating a contractile force. Hence, a natural way to represent Amnioserosa cells’
movement is to consider them a set of autonomous oscillators interacting with each other. In
this work, we consider the vertices (junctions between three cells) to be focal points for forces
which gives rise to a lattice model whose nodes positions are the vertices. The Amnioserosa
cells are also capable to contract and expand radially in a periodic manner, hence, the cells’
barycenters are also included in the lattice as shown in figure 4.9.

: Cells barycenter

: Neighbor vertex

: Calculated vertex

Figure 4.9: Schematized cellular junctions.

In the case of the pure elastic model, the position of the central (green) vertex satisfies the
following equation (4.21):

q̈(t) = −Kvertex
m

nvertex∑
j=1

(qi − qj − l0,ij) (4.21)

where, l0,ij represents the resting length between vertex i and its neighbors j = 1, 2, 3, qi and qj
are the positions of the calculated vertex and its neighbors, respectively.

4.4.2 Mathematical modeling

To represent the cellular dynamics, we rely on a periodic hexagonal lattice model as depicted
in Figure 4.10. A lattice model is in general composed of n cells with nv vertices, which are
junctions connecting cells. Such vertices are regarded as the focal points of forces in the tissue
and are represented by point masses of cartesian 2D coordinates (with respect to a fixed frame)
denoted by qi(t) ∈ R2 at time t ≥ 0 and i = 1, 2, . . . nv with qi,j denoting the jth component of
the coordinate of the mass point i. We assume that the mass of each of such points is m and
the velocity of the mass point i at time t is denoted by q̇i(t) ∈ R2. The mechanical parameters
are divided into two distinct sets, which account for the radial and azimuthal contributions of
the cells. The mass points are assumed to be the same for every vertex. The model requires
the introduction of the cell barycenters, each of which is without mass and with coordinate
rj(t) ∈ R2 known upon measurements for all j = 1, 2, . . . , n. To complete the model, we need
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in general to introduce the set of neighbor vertices and barycenters of a given vertex i, which
will be denoted by Vi and Bi, respectively, then, using the Lagrangian approach with a specific
energy function, we will analyze the linear elastic model (LEM).

In the LEM, the total energy associated with the point mass i is:

LLEMi = 1
2mq̇i(t)

2 − Kv

2
∑

j∈V (i)
(qi(t) − qj(t) − l1,i,j)2

− Kb

2
∑

j∈B(i)
(qi(t) − rj(t) − l2,i,j)2 (4.22)

where Kv and Kb are the azimuthal (vertex-vertex connectivity) and radial (vertex-barycenter
connectivity) elastic moduli respectively, l1,i,j and l2,i,j the resting lengths of the springs between
vertex i and another vertex or barycenter j, respectively.

Based on (4.22), we obtain the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i,j

)
− ∂L

∂qi,j
= 0, i = 1, 2, . . . , nv, j = 1, 2 (4.23)

where L = ∑nv
i=1 LLEMi , is the Lagrangian.

The resulting 2nv equations can be written as follows:

q̈i(t) = Kv

m

∑
j∈V (i)

(qi(t) − qj(t) − l1,i,j) + Kb

m

∑
j∈B(i)

(qi(t) − rj(t) − l2,i,j) (4.24)

The cell barycenters rj ∈ ℜ2 are without mass and are known upon measurements for all
j = 1, 2, . . . n.
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Cell barycenter
Calculated vertex

vi

bi

Figure 4.10: Hexagonal periodic system of cells: blue and red nodes indicate cell vertices and
barycenters, respectively. Blue lines indicate apical junctions between adjacent cells.

To address the cellular dynamics during dorsal closure, we have selected one cell from the
system of cells depicted in Figure 4.10 and applied the LEM to study the cellular movement
and evolution over time. The cell is represented by six nodes (vertices) on the periphery and
one central node (barycenter), each vertex is connected to its neighboring vertex or barycenter
with an elastic latice which is represented by a spring of stiffness K as shown in Figure 4.11.

V (v1) = {v2, v7, v6}, V (v7) = {v1};
V (v2) = {v1, v3, v8}, V (v8) = {v2};
V (v3) = {v2, v4, v9}, V (v9) = {v3};
V (v4) = {v3, v5, v10}, V (v10) = {v4};
V (v5) = {v4, v6, v11}, V (v11) = {v5};
V (v6) = {v1, v5, v12}, V (v12) = {v6};

B(v1) = {b1, b6, b7}, B(v7) = {b6, b7};
B(v2) = {b1, b2, b7}, B(v8) = {b2, b7};
B(v3) = {b1, b2, b3}, B(v9) = {b2, b3};
B(v4) = {b1, b3, b4}, B(v10) = {b3, b4};
B(v5) = {b1, b4, b5}, B(v11) = {b4, b5};
B(v6) = {b1, b5, b6}, B(v12) = {b5, b6}.

vi and bi represent the vertices and barycenters, respectively.

Using equation (4.24), the dynamic equation of each vertex is written to get the following set of equations:
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Figure 4.11: (a) Lattice model representation of one single cell with its adjacent vertices and
barycenters. (b) Spring model representation: blue springs connect adjacent vertices (cortical
visco-elasticity) and red springs connect vertices and cell barycenters (medioapical array visco-
elasticity).

q̈1 = 3(Kv +Kb)
m

q1 − Kv

m
(q2 + q6 + q7) − Kb

m
(b1 + b6 + b7) (4.25a)

q̈2 = 3(Kv +Kb)
m

q2 − Kv

m
(q1 + q3 + q8) − Kb

m
(b1 + b2 + b7) (4.25b)

q̈3 = 3(Kv +Kb)
m

q3 − Kv

m
(q2 + q4 + q9) − Kb

m
(b1 + b2 + b3) (4.25c)

q̈4 = 3(Kv +Kb)
m

q4 − Kv

m
(q3 + q5 + q10) − Kb

m
(b1 + b3 + b4) (4.25d)

q̈5 = 3(Kv +Kb)
m

q5 − Kv

m
(q4 + q6 + q11) − Kb

m
(b1 + b4 + b5) (4.25e)

q̈6 = 3(Kv +Kb)
m

q6 − Kv

m
(q1 + q5 + q12) − Kb

m
(b1 + b5 + b6) (4.25f)

Note that for the sake of brevity, the terms l1,i,j and l2,i,j are deleted from (4.25) but are taken into
consideration in the simulation part.
Then, from (4.25) we get the following first order system
the dynamic equation of each vertex is written to get the following first-order system:

{
q̇i(k) = A(κ) qi(k) +B(κ)u(k)
y(k) = C q(k) (4.26)

where: κ =
[

Kv

m
Kb

m

]⊤, and the matrices A, B and C are given as follows:
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A =



A(1,1) A(1,2) . . . . . . A(1,11) A(1,12)
A(2,1) A(2,2) . . . . . . A(2,11) A(2,12)

...
... . . . . . . ...

...
...

... . . . . . . ...
...

A(11,1) A(11,2) . . . . . . A(11,11) A(11,12)
A(12,1) A(12,2) . . . . . . A(12,11) A(12,12)


(4.27)

where A(i,j) are block matrices with (i = 1, 2, . . . , 12) and (j = 1, 2, . . . , 12), given as follows:

Aij =



[
0 1
K 0

]
; for


i = j

K = 3(Kv+Kb)
m ; i = 1, . . . , 6

K = (Kv+2Kb)
m ; i = 7, . . . , 12

[
0 0

Kv

m 0

]
; for

{
|i− j| = 6

[
0 0

Kv

m 0

]
; for


i = 1, . . . , 6
|i− j| = 1
|i− j| = 5

[
0 0
0 0

]
; elsewhere

B =



b(1,1) b(1,2) . . . . . . b(1,6) b(1,7)
b(2,1) b(2,2) . . . . . . b(2,6) b(2,7)

...
... . . . . . . ...

...
...

... . . . . . . ...
...

b(23,1) b(11,2) . . . . . . b(23,6) b(24,7)
b(24,1) b(12,2) . . . . . . b(24,6) b(24,7)


(4.28)

with b(i,j) are defined as follows:

b(i,j) =



Kb

m ; for



i = 2; j = 1, 6, 7
i = 4; j = 1, 2, 7
i = 6, 8, 12; j = 1; i− 2j = 0, 2
i = 14; j = 6, 7
i = 16; j = 2, 7
i = 20, 22, 24; i− 2j = 12, 14

0; elsewhere

We assume that we can measure the coordinates of the vertices surrounding the cell i.e., q7, q8, q9, q10, q11, q12,
hence, the matrix C is defined as:
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C =



c(1,1) c(1,2) . . . . . . c(1,23) c(1,24)
c(2,1) c(2,2) . . . . . . c(2,23) c(2,24)

...
... . . . . . . ...

...
...

... . . . . . . ...
...

c(11,1) c(11,2) . . . . . . c(11,23) c(11,24)
c(12,1) c(12,2) . . . . . . c(12,23) c(12,24)


(4.29)

where c(i,j) are defined as:

c(i,j) =

1; for
{
i = 1, 3, 5, 7, 9, 11
j − i = 12

0; elsewhere

After forward Euler discretization of the system described by (4.26) and taking into consideration the
system and measurements disturbances (wt ∈ Rn) and (vt ∈ Rm) respectively, the following discrete-time
system is obtained: {

qt+1 = Ad(κt) qt +Bd(κt)ut + wt

yt = Cd qt + vt
(4.30)

with Ad = I + ∆A, Bd = ∆B and ∆ is the time discretization step.

4.4.3 Simultion results
In this section, we refer to the cell’s model described in section 4.4.2, and using the MHE and EKF,
we estimate the distance between the vertices v1, v2, v3, v4, v5, v6 and the barycenter b1 to track the cell
dynamics (contraction and retraction), together with the variable parameters Kv

m and Kb

m over a horizon
of 100 steps and a moving window of N = 10. The unknown parameters are randomly generated in the
interval [0, 1] initially and subjected to an additive, zero-mean Gaussian noise with variance 0.01, lower
or upper saturated in case it goes out of the interval [0, 1]. The result of a simulation run is depicted in
Figures 4.12, 4.16 and 4.13.
Figure 4.12 shows the evolution of the distances between vertices vi with i = 1, . . . , 6 and barycenter b1
with their corresponding estimates using both MHE and EKF. As we can see from the figure, the MHE
shows a better accuracy than the EKF which begins to diverge after t = 50.
Figure 4.13 depicts the actual and estimated values of the unknown parameters Kv

m and Kb

m . The re-
sults show that MHE provides better estimates than the EKF as it allows incorporation of the system
constraints.
In order to further show the performances of the MHE and the EKF, two criteria are supposed for
comparison between these two latters. The first criterion is the Root Mean Squared Error (RMSE), and
the second is the computational time representing the simulation execution time for each state estimation
method. The results of RMSE for both MHE and EKF are summarized in Table 4.4 and Figure 4.14
where it can be clearly seen that the minimum RMSE belongs to the MHE as it provides the fittest curves
with the smallest estimation error.

Estimator MSE (dv1) MSE (dv2) MSE (dv3) MSE (dv4) MSE (dv5) MSE (dv6)
MHE 0.1111 0.0888 0.1242 0.1107 0.1056 0.1896
EKF 0.4313 0.3645 0.3909 0.3375 0.2801 0.1311

Table 4.4: Medians of RMSEs of a single optimization round for the MHE and EKF.
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Figure 4.12: Distance between vertex vi and barycenter b1: (a) d(v1−b1); (b) d(v2−b1); (c) d(v3−b1);
(d) d(v4−b1); (e) d(v5−b1); and, (f) d(v6−b1).
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Figure 4.13: (a) Variable parameter Kv
m and its estimate obtained by MHE and EKF; (b) variable

parameter Kb
m and its estimate obtained by MHE and EKF.
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Figure 4.14: (a) boxplot of the RMSEs over 100 runs for the MHE; (b) boxplot of the RMSEs
over 100 runs for the EKF.

Figure 4.15 depicts the boxplots of the execution time for the MHE and EKF for one simulation run.
From the figure, we can see that MHE has a remarkable larger computational burden as compared to the
EKF. Indeed, the average execution time for the EKF to estimate the distances d(vi−b1) and the variable
parameters Kv

m and Kb

m is 0.2459s, whereas for the MHE the average execution time is 5.9842s which is
almost 15 times the time obtained with EKF.
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Figure 4.15: (a) Computational time for the MHE; (b) Computational time for the EKF.

Figure 4.16: Plots of the absolute value of the estimation errors |di − d̂i| where di corresponds
to the distance between vertex vi and barycenter b1 and d̂i is its estimate.



4.5. Conclusion 115

The absolute values of the estimation errors using MHE and EKF are depicted in Figure 4.16, we denote
by di the distance between vertex i and barycenter b1 and d̂i its corresponding estimate. According to
the obtained plots, it can be concluded that the MHE outperforms the EKF in terms of the stability of
the estimation error.

4.5 Conclusion
In this chapter, we have investigated three biological models to test the applicability and efficiency of
the nonlinear estimation techniques addressed in this thesis, namely, the high-gain observer techniques
developed in Chapter 2 and the moving horizon estimation approach presented in Chapter 3.
From the simulation results, we conclude the following points:

• Figures 4.4 and 4.7 from sections (4.2.3) and 4.3.3 respectively, show the remarkable improvements
of the new high-gain observer techniques presented in Chapter 2 in terms of peaking phenomenon
attenuation, especially for the states x2 and x3. This is due to the smaller value of the newly
obtained parameter θΓ which is significantly reduced to the power 1

(1+js)(1+j0) leading to a smaller
value for the observer gain LΓ as compared to the standard high-gain observer L.

• The results depicted by Figures 4.5 and 4.8 from sections (4.2.3) and 4.3.3 respectively, clearly
put forward the superiority of the new high-gain observer techniques presented in Chapter 2 in
terms of sensitivity to measurement noise as compared to the standard high-gain observer. Indeed,
this improved observer has the nice feature of reducing the effects of high-frequency measurement
noise and eliminating the so-called peaking phenomenon which is typical of the standard high-gain
observer.

• The obtained results can be improved by increasing the values of the index parameters js and j0,
but we can already see from Tables 4.2 and 4.3 that with an index js = 1 and j0 = 1 the results
are quite interesting. In fact, the value of the parameter θ is significantly reduced from 24.23 with
the standard high-gain observer to 2.71 with the improved high-gain observer in the case of the
genetic regulatory network and from 43.46 to 3.31 for the SI model.

• In the third and last part of this chapter, we have investigated both modeling and estimation of the
Amnioserosa cell mechanics during dorsal closure. The model is described as a quasi-LPV system,
and an MHE was considered to estimate the system’s states and the unknown parameters jointly.
The MHE is accomplished by minimizing a least-squares cost function with respect to both state
and parameter variables. The Simulations results depicted in Figures 4.12, 4.16 and 4.13 show the
superiority of the MHE as compared to the EKF, indeed, the two estimators are given the same
information, namely tuning parameters, model, and measurements; yet MHE consistently provides
better precision and robustness to uncertainties compared to the EKF. These benefits of MHE
stand for incorporating the physical state constraints into the optimization over a trajectory of
states and measurements. Indeed, constraints on the state and on the process and measurement
noises can be taken into account directly during the optimization. This can be useful in practice
when physical constraints are known

• From the simulation run of the MHE and EKF it is noticed that the MHE is more robust against
poor initialization and spurious measurements. This is due to the fact that the estimation is
done by optimizing a cost function that takes into account at the same time the initial error, the
process noise, and the difference between real measurements and predicted ones. However, the
main drawbacks of the MHE are due to its potentially high number of optimization variables.
This can lead to strong nonconvexities [177] and the MHE can have difficulties finding the optimal
solution. Moreover, large computation time can be induced which would prevent the use of the
MHE in real-time applications for systems with fast dynamics.
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Conclusions and perspectives

This thesis presented new results in the field of robust nonlinear state estimation with application to
biological plants. In the first part, we contributed to the analytic-based observer through the design of
new high-gain estimation techniques to address the issues associated with high-gain observer performance
degradation in the presence of measurement noise as well as improving its transient response. The second
part is mainly focused on optimization-based state estimation techniques through the moving horizon
estimator which is combined with the LPV paradigm, in which we estimate the states and the unknown
parameters of a system by explicitly including the unknown parameters in the estimation criterion.

State estimation of linear systems is performed using techniques based on well-established optimal linear
estimation theory. Due to the mathematical complexity of nonlinear models, nonlinear state estimation
is much less established and requires more analyzing tools. This led us in the first chapter to present
a few reminders of the main definitions relating to the stability and observability of nonlinear systems,
with much attention given to the notion of observability. The concept of universal inputs and uniform
observability is then introduced and a summary of the nonlinear estimation techniques available in the
literature closes the first chapter.

The purpose of Chapter 2 is to tackle the challenging performance issues that arise when implementing
high-gain observers. A novel methodology for the design of high-gain observers is introduced. It follows
the simple methodology of the standard high-gain observer and results in lower values of the observer
gain. Indeed, by using the system state augmentation approach, we can augment the dimension of the
systems giving rise to a new threshold on the observer parameter θ which gets smaller as the dimension
of the resulting augmented system becomes higher. Furthermore, by combining this design methodology
with the HG/LMI technique, a smaller value of θ is obtained making the observer gain even smaller. This
reflects in better transient performances (attenuation of the "peaking phenomenon") which is a typical
feature of high-gain observers and less sensitivity to noise in the measurements.

In Chapter 3, the estimation problem is addressed from a different perspective via an optimization-based
state estimation approach. The moving horizon estimator is proposed for a class of nonlinear systems
that can be written in the form of a quasi-LPV model in the presence of bounded noises affecting both the
system and the measurement equations. We have considered the moving-horizon estimator that results
from the minimization of a least-squares cost function defined on a sliding window. As compared with
the approaches reported in the literature on observers for LPV systems, we have formulated two different
approaches denoted "optimistic" and "pessimistic" which allow the inclusion of additional insight into the
system’s unknown parameters in the form of constraints.
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The lack of sensors and reliable procedures to online monitor biological and biomedical processes has
drawn our attention in the last chapter at improving and facilitating their operation by applying robust
estimation schemes. Towards this end, the nonlinear observation techniques investigated in this thesis are
used to estimate the states and parameters of three different models. In the first two sections of Chapter 4,
the high-gain estimations techniques presented in Chapter 2 are verified on a simple one-gene regulatory
network and a two-stage structured SI epidemic model. From the simulation results, one can note that
our proposed design methodologies provide satisfactory results as compared to the standard high-gain
observer in terms of sensitivity to high-frequency measurement noise and the peaking phenomenon. In
the third section of Chapter 4, we have investigated both modeling and estimation of the Amnioserosa
cell mechanics during dorsal closure. The model is described as a quasi-LPV system, and an MHE was
considered to jointly estimate the system’s states and the unknown parameters. The MHE is accom-
plished by minimizing a least-squares cost function with respect to both state and parameter variables.
Simulation results have been reported to demonstrate the effectiveness of the proposed approach including
comparisons with the standard EKF. The two estimators are given the same information, namely tuning
parameters, model, and measurements; yet MHE consistently provides better precision and robustness
to uncertainties compared to the EKF. These benefits of MHE stand for incorporating the physical state
and parameter constraints into the optimization over a trajectory of states and measurements.

Along with this research work, many research opportunities are open for more contributions to the topics
encompassed in this thesis. Some of the open problems are presented below :

• Solving observer-based output feedback stabilization problem by using the results on high-gain
observers obtained in Chapter 2 is one of the future works we aim to investigate in a deepening
way. All the robustness and performance issues related to output feedback control using the state
augmentation approach and the HG/LMI observer will be carefully investigated.

• We aim to extend the proposed techniques in Chapter 2 to other classes of nonlinear systems,
namely feed-forward systems and systems with time-varying delays in the output measurements.
Particular attention will be also given to the problem of real-time adaptation of the observer gain.

• The main advantages of the MHE scheme given in Chapter 3 are its ability to directly incorporate
the constraints on the system during the optimization. However, the computation time of the MHE
can be very lengthy due to its large number of decision variables. The future main focus involves
reducing the online computational complexity to reliably handle challenging large dimensional in
nonlinear applications.

• The MHE approach addressed in Chapter 3 uses a standard least-squares type cost function (with-
out an additional maxterm). Robust stability of such an estimator in the presence of bounded
disturbances has been observed in practice in many publications but has not been proven so far
for general nonlinear detectable systems. However, compared to the case including the additional
maxterm, the obtained disturbance gains depend on the estimation horizon N and no uniform
bound independent of N could be found. Establishing robust global asymptotic stability of a stan-
dard least square type estimator with uniform disturbance gains (i.e., which are valid independent
of N) is an interesting topic for future research.
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A

Linear Matrix Inequalities (LMIs)

Linear matrix inequalities (LMIs) were first applied in control system analysis by Yakubovich in the
1960s. Since 1990, the appearance of efficient numerical solvers, such as the ellipsoid method and the
interior point algorithm, accelerated the application of LMIs to various engineering problems. Nowadays,
it has become a standard numerical tool in control community. Although the LMIs used in some papers
may have a very large dimension and look quite complicated, the application of LMIs can make the
system analysis and controller design easier.

A.1 Definition of LMI and BMI
A linear matrix inequality (LMI) is a special semidefinite constraint that has the following form:

F (x) = F0 + x1F1 + · · · + xmFm ≤ 0 (A.1)

where x = (x1, . . . , xm)T with xi ∈ R denotes the collection of all the decision variables. Fi = FT
i , i =

0, 1, . . . ,m are fixed symmetric real matrices. The symbol "≤" represents a negative semidefinite con-
straint. Similarly, the positive semidefinite constraint can be defined by the symbol " ≥ ". From the
above definition, the two following properties for F (x) are obvious:

A. Each element in the matrix F (x) is an affine function of x;
B. F (x) is a symmetric matrix.

A bilinear matrix inequality is another special semidefinite constraint that has the following form:

F (x, y) = F0 +
m∑

i=1
xiFi +

n∑
j=1

yiGi +
m∑

i=1

n∑
j=1

xiyjFi,j ≤ 0 (A.2)

where x = (x1, . . . , xm)T
, y = (y1, . . . , yn)T with xi, yj ∈ R denote the collection of all the decision

variables. Fi = FT
i , Gi = GT

i , Fi,j = FT
i,j , i = 0, 1, . . . ,m, j = 1, . . . , n are all fixed symmetric real

matrices. Similar as the LMI, F (x, y) is a symmetric matrix. Different from the LMI, each element in
the matrix F (x, y) is a bi-affine function of x and y, which implies that the BMI degenerates to a LMI
in x for fixed y and a LMI in y for fixed x.

• Convexity

The semidefinite condition for F (x) is indeed a convex set for the x.
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Lemma A.1

If the LMI in Eq. (A.1) is feasible, all the feasible points constitute a convex set.

A.2 Congruence Transformation and Schur Complement
Congruence transformation and Schur complement are two frequently used methods that transfer a
BMI constraint to an equivalent LMI constraint. From matrix theory, it is known that the congruence
transformation does not change the number of positive, negative and zero eigenvalues of a symmetric
matrix. Therefore, an infinite number of equivalent LMIs can be derived.

Lemma A.2: Congruence Transformation

The semidefinite condition F (x) ≤ 0 in Eq. (A.1) or F (x, y) ≤ 0 is feasible if and only if its
congruence transformation is feasible.

MTF (x)M ≤ 0, NTF (x, y)N ≤ 0 (A.3)

where M and N are both non-singular real matrices.

Lemma A.3: Schur Complement

The real symmetric block matrix shown below is negative definite(
Q ST

S R

)
≺ 0 (A.4)

if and only if either of the following two sets of semidefinite constraints is feasible.

A. Q ≺ 0 and R− STQ−1S ≺ 0

B. R ≺ 0 and Q− SR−1ST ≺ 0

where the symbol ≺ represents a negative definite constraint.

A.3 Feasibility and Optimization
Generally, the application of LMIs in control can be classified into two categories: feasibility and opti-
mization problems.

A. Feasibility Problem: This aims at verifying whether there exists at least one point in the decision
parameter space such that the given LMI constraint in Eq. (A.1) is feasible. The search for the
candidate Lyapunov function for stability analysis is such an example.

B. Optimization Problem: This aims at minimizing a linear cost function of x with the LMI in
Eq. (A.1) as a constraint.

minimize cTx

subject to F (x) ≥ 0
Due to the convexity of the LMI constraint, this is indeed a convex optimization problem. The local
minimum is just the global minimum.
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B

Lipschitz constant Computation

Consider the nonlinear function f
f(x) : x ∈ Rn → Rn (B.1)

which is defined as follows

f(x) =
[
f1(x)T · · · fn(x)T

]T
, x =

[
xT

1 · · · xT
n

]T (B.2)

The zero-order Taylor series expansion with integral remainder of fi(x) around x̂ is

fi(x) − fi(x̂) =
∫ x1

x̂1

∂fi

∂x1
(t)dt+ . . .+

∫ xn

x̂n

∂fi

∂xn
(t)dt, i ∈ {1, . . . , n} (B.3)

Every function fi can be upper bounded as follows

|fi(x) − fi(x̂)| ≤
∫ x1

x̂1

∣∣∣∣ ∂f1

∂x1
(t)
∣∣∣∣ dt+ . . .+

∫ xn

x̂n

∣∣∣∣ ∂f1

∂xn
(t)
∣∣∣∣ dt (B.4)

Given
aij = max

t∈[xj

x̂j

] ∣∣∣∣ ∂fi

∂xj
(t)
∣∣∣∣ , i, j ∈ {1, .., n} (B.5)

In the case where the interval [xj x̂j ] is unknown, then aij is calculated for t ∈ R; we get

aij = max
t∈R

∣∣∣∣ ∂fi

∂xj
(t)
∣∣∣∣ (B.6)

Hence, from (B.4) we can write

|fi(x) − fi(x̂)| ≤ ai1 |x1 − x̂1| + . . .+ ain |xn − x̂n| (B.7)

By substituting this in f(x), we obtain

|f(x) − f(x̂)| ≤ J |x− x̂| (B.8)

where

J =

 a11 · · · a1n

... . . . ...
an1 · · · ann

 (B.9)

The Lipschitz constant of f(x) is given then by the maximum singular value of J .
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Abstract
Estimating the state of a dynamic system is an essential task for achieving important objectives such as
process monitoring, identification, and control. Unlike linear systems, no systematic method exists for
the design of observers for nonlinear systems. Although many researchers have devoted their attention to
these issues for more than 30 years, there are still many open questions. We envisage that estimation plays
a crucial role in biology because of the possibility of creating new avenues for biological studies and for the
development of diagnostic, management, and treatment tools. To this end, this thesis aims to address
two types of nonlinear estimation techniques, namely, the high-gain observer and the moving-horizon
estimator with application to three different biological plants.
After recalling basic definitions of stability and observability of dynamical systems and giving a bird’s-eye
survey of the available state estimation techniques, we are interested in the high-gain observers. These
observers may be used when the system dynamics can be expressed in specific a coordinate under the
so-called observability canonical form with the possibility to assign the rate of convergence arbitrarily by
acting on a single parameter called the high-gain parameter. Despite the evident benefits of this class
of observers, their use in real applications is questionable due to some drawbacks: numerical problems,
the peaking phenomenon, and high sensitivity to measurement noise. The first part of the thesis aims to
enrich the theory of high-gain observers with novel techniques to overcome or attenuate these challenging
performance issues that arise when implementing such observers. The validity and applicability of our
proposed techniques have been shown firstly on a simple one-gene regulatory network, and secondly on
an SI epidemic model.
The second part of the thesis studies the problem of state estimation using the moving horizon approach.
The main advantage of MHE is that information about the system can be explicitly considered in the
form of constraints and hence improve the estimates. In this work, we focus on estimation for nonlinear
plants that can be rewritten in the form of quasi-linear parameter-varying systems with bounded unknown
parameters. Moving-horizon estimators are proposed to estimate the state of such systems according to
two different formulations, i.e., "optimistic" and "pessimistic". In the former case, we perform estimation
by minimizing the least-squares moving-horizon cost with respect to both state variables and parameters
simultaneously. In the latter, we minimize such a cost with respect to the state variables after picking up
the maximum of the parameters. Under suitable assumptions, the stability of the estimation error given
by the exponential boundedness is proved in both scenarios.
Finally, the validity of our obtained results has been demonstrated through three different examples
from biological and biomedical fields, namely, an example of one gene regulatory network, a two-stage SI
epidemic model, and Amnioserosa cell’s mechanical behavior during Dorsal closure.

Keywords: nonlinear observers; high-gain observer, moving-horizon estimator (MHE); linear matrix in-
equalities (LMIs); Lyapunov stability; ISS stability; biological plants.

Résumé
L’estimation de l’état d’un système dynamique est une étape cruciale, que ce soit pour la synthèse
d’un contrôleur ou simplement pour l’identification ou la surveillance des processus. Une façon usuelle
de résoudre ce problème consiste à implémenter un algorithme, appelé observateur, dont le rôle est de
déduire une estimation fiable de l’état complet du système. Contrairement aux systèmes linéaires, aucune
méthode systématique n’existe pour la conception d’observateurs pour les systèmes non linéaires. Bien
que de nombreux chercheurs se soient penchés sur ces questions depuis plus de 30 ans, de nombreuses
questions restent ouvertes. Nous envisageons que l’estimation joue un rôle crucial en biologie en raison
de la possibilité de créer de nouvelles avenues pour les études biologiques et pour le développement
d’outils de diagnostic, de gestion et de traitement. À cette fin, cette thèse vise à aborder deux types de



techniques d’estimation non linéaires, à savoir l’observateur à grand gain et l’estimateur à horizon mobile
avec application à trois modèles biologiques.
Après avoir rappelé quelques concepts fondamentaux sur la stabilité et l’observabilité des systèmes dy-
namiques, puis passer en revue les principales techniques d’estimation d’état disponibles dans la littéra-
ture, nous nous intéressons aux observateurs à grand gain. Ces observateurs peuvent être utilisés lorsque
la dynamique du système peut être exprimée en coordonnée spécifique sous la forme canonique dite
d’observabilité avec la possibilité d’attribuer arbitrairement le taux de convergence en agissant sur un seul
paramètre appelé paramètre de gain élevé. Malgré les avantages évidents de cette classe d’observateurs,
leur utilisation dans des applications réelles est douteuse en raison de certains inconvénients : problèmes
numériques, le problème de peaking et sensibilité élevée au bruit de mesure. La première partie de la
thèse vise à enrichir la théorie des observateurs à grand gain avec de nouvelles techniques pour surmonter
ou atténuer ces problèmes de performances difficiles qui surviennent lors de la mise en œuvre de tels
observateurs.
La deuxième partie de la thèse étudie le problème de l’estimation d’état en utilisant l’approche d’estimation
à horizon glissant (MHE). Le principal avantage du MHE est que les informations sur le système peuvent
être explicitement considérées sous la forme de contraintes et donc améliorer les estimations. Dans ce
travail, nous nous concentrons sur l’estimation des modèles non-linéaires qui peuvent être réécrits sous la
forme de systèmes quasi-linéaires à paramètres variants dont des paramètres inconnus sont bornés. Des
estimateurs à horizon glissant sont proposés pour estimer l’état de tels systèmes selon deux formulations
différentes, à savoir "optimiste" et "pessimiste". Dans le premier cas, nous effectuons une estimation en
optimisant le coût au sens des moindres carrés par rapport aux variables d’état et aux paramètres simul-
tanément. Dans l’approche dite "pessimiste", on optimise un tel coût par rapport aux variables d’état
après avoir pris le maximum des paramètres. Sous des hypothèses appropriées, la stabilité de l’erreur
d’estimation donnée par la délimitation exponentielle est prouvée dans les deux scénarios.
Enfin, la validité de nos résultats obtenus a été démontrée à travers trois exemples différents issus des
domaines biologiques et biomédicaux, à savoir un exemple d’un réseau de régulation génétique, un modèle
épidémique de classe SI, et enfin le comportement mécanique des cellules Amniosereuse lors de la fermeture
dorsale.

Mots- clés : observateurs non linéaires ; observateur grand gain; estimation à horizon glissant; inégalités
matricielles linéaires (LMIs) ; stabilité de Lyapunov, stabilité ISS; modèles biologiques.

Sommario
La stima di uno stato di un sistema dinamico è un passaggio essenziale per ottenere obiettivi importanti
quali monitoraggio, identificazione e controllo del processo. Contrariamente ai sistemi lineari, non vi è
un metodo di sistema per la valutazione per gli osservatori di uno non lineare. Sebbene molti ricercatori
abbiano dedicato i loro studi a questi argomenti per più di 30 anni, ci sono tuttora molti punti da ap-
profondire. Prevediamo che questo studio giochi un ruolo cruciale sulla biologia a causa della possibilità
di creare nuove strade per gli studi sulla biologia e sullo sviluppo di diagnostica, management e attrez-
zatura di trattamento. Per concludere, questa tesi ha lo scopo di far emergere le tecniche di studio di
due sistemi non lineari, ossia per l’osservatorio ad alto guadagno e lo studio con l’orizzonte in movimento
con l’applicazione di tre differenti modelli biologici. Dopo aver riproposto le definizioni base di stabilità
e osservabilità di sistemi dinamici, e aver ripreso le tecniche sugli studi disponibili, ci siamo focalizzati
sugli osservatori ad alto guadagno. Questi osservatori possono essere impiegati quando i sistemi dinamici
possono essere espressi in una specifica coordinata sotto la canonica forma dell’osservabilità, con la possi-
bilità di assegnare la velocità di convergenza arbitrariamente agendo su un singolo parametro, chiamato,
appunto, osservatorio ad alto guadagno. Nonostante gli evidenti vantaggi di questa classe di osservatori,
il loro uso sulle applicazioni reali è questionabile a causa di alcuni inconvenienti: problemi numerici,
il fenomeno di picco e l’alta sensibilità a misurare il rumore. La prima parte della tesi ha lo scopo di
arricchire la teoria degli osservatori ad alto guadagno con nuove tecniche per superare o mitigare questi
cambiamenti di rendimento che si raggiungono quando si implementano questi osservatori. La validità e
l’applicazione delle nostre tecniche proposte sono state mostrate dapprima in un semplice lavoro di rete



su un singolo gene e successivamente su un modello epidemico SI. Il principale vantaggio di MHE è che
l’informazione sul sistema può essere esplicitamente considerato nella forma di vincoli e quindi migliorare
le stime. In questo lavoro ci focalizziamo sulla stima di modelli non lineari che possono essere riscritti
sotto forma di sistemi variabili parametrici quasi lineari con incognita limitata. I criteri dell’orizzonte
mobile sono proposti per valutare lo stato di tali sistemi in base a due diverse simulazioni, come ad esem-
pio "ottimistico" o "pessimistico". Nel primo caso eseguiamo la stima minimizzando il costo dell’orizzonte
mobile dei minimi quadrati contemporaneamente sia rispetto alle variabili di stato che ai parametri. Nel
secondo, invece, riduciamo al minimo tale costo rispetto alle variabili di stato dopo avere ottimizzato i
parametri stessi. Sotto opportune ipotesi, la stabilità dell’errore di stima, data dalla limitatezza esponen-
ziale, è dimostrata in entrambi gli scenari. Per concludere, la validità dei nostri risultati ottenuti è stata
dimostrata attraverso tre diversi esempi, dal campo biologico e biomedico, ossia un esempio di una rete
di regolazione genica, un modello epidemico SI a due stadi e il comportamento meccanico delle cellule di
Amnioserosa durante la chiusura dorsale.

Parole chiave : osservatori; osservatori ad alto guadagno; stima dell’orizzonte mobile; disuguaglianze di
matrici lineari (LMIs); stabilità di Lyapunov, stabilità ISS; modelli biologici.
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