128 research outputs found

    A Miniature L-slot Microstrip Printed Antenna for RFID

    Get PDF
    This work presents a miniature microstrip antenna at 2.45 GHz by using the slots technique. This microstrip antenna is fed by a CPW technique and designed for RFID reader system on FR4 substrate. A size reduction equal to 66.6% has been obtained compared to the conventional rectangular microstrip antenna. The total area of the final circuit is 19x31 mm2. The validated antenna has good matching input impedance with a stable radiation pattern, a loss return of -40 dB, and a gain of 1.78 dBi, a prototype of the proposed antenna has been fabricated and measured

    A quarter-wave Y-shaped patch antenna with two unequal arms for wideband Ultra High Frequency Radio-frequency identification (UHF RFID) operations

    Get PDF
    The radio-frequency identification (RFID) system which has become pervasive in the auto identification technology has been noticed to have several limitations. These limitations can be broadly divided into two major areas namely; application specific problems and general RFID problems. Application specific problems are common to the environment in which RFID tags are deployed such as metal, aqueous and irradiation environments. Whilst, the general problem of RFID tags include low gain, regional specifications and so on. In this paper, a new antenna prototype has been design and stimulated. The proposed antenna showed tendency of exhibiting improved gain from the previous RFID UHF antenna which is 0-1 dBi to -3 dBi and impedance bandwidth of 140 MHz. The proposed antenna is Y shaped patch with unequal monopole arms which are responsible for the different frequencies that the antenna operates and a quarter wavelengths was adopted rather than the popular half wavelength for size reduction. The fractional return-loss bandwidth for S11<10 dB and radiation efficiency are about 95% was obtained

    Compact broadband circularly-polarised antenna with a backed cavity for UHF RFID applications

    Get PDF

    Design of Antennas for RFID Application

    Get PDF

    Miniaturized CSRR TAG Antennas for 60GHz Applications

    Get PDF
    In this paper, a novel approach to design an antenna for a transponder inradio frequency identification (RFID) is proposed. This approach is based onusing a slot-ring antenna with a coplanar waveguide excitation integratedantennas in silicon technology. The RFID frequency chosen is the worldwideavailable free 60-GHz band .The structure is simulated by using ComputerSimulation Technology (CST). The antenna size is 1.5 Ă— 1.3 mm2. Thisproposed antenna presents a gain about 3.82 dB which means a possibility toincrease the readable range.DOI:http://dx.doi.org/10.11591/ijece.v4i1.472

    Design of a planar wideband patch antenna for UHF RFID tag

    Get PDF
    In this article, a planar wideband microstrip patch antenna for ultrahigh frequency (UHF) radio identification (RFID) tag is presented. By incorporating two resonating C-shape patches, two resonances are excited close to each other to create wide impedance bandwidth to cover the entire operating frequency of UHF RFID system between 860 and 960 MHz for universal mental mountable tag. For complex impedance matching between the antenna input terminal and the references microchip whose impedance is Zchip = (31-j212) Ω, a small rectangular loop feed structure was utilized where both of the resonating patches are magnetically coupled. The antenna design and simulation were carried out using finite element method based software, Ansoft HFSS v13. The simulated and measured radiation patterns at operating frequency of 915 MHz are in good agreement. the simulated and measured impedance bandwidth (Return Loss >_3 dB) of 159 and 155 MHz were obtained that are well above the required 100 MHz bandwidth

    High Data-Rate, Battery-Free, Active Millimeter-Wave Identification Technologies for Future Integrated Sensing, Tracking, and Communication Systems-On-Chip

    Get PDF
    RÉSUMÉ Pour de nombreuses applications allant de la sécurité, le contrôle d'accès, la surveillance et la gestion de la chaîne d'approvisionnement aux applications biomédicales et d'imagerie parmi tant d'autres, l'identification par radiofréquence (RFID) a énormément influencé notre quotidien. Jusqu'à présent, cette technologie émergente a été la plupart du temps conçue et développé dans les basses fréquences (en dessous de 3 GHz). D’une part, pour des applications où de courte distances (quelques centimètres) et à faible taux de communications de données sont suffisantes (même préférables dans certains cas), la technologie RFID à couplage inductif qui fonctionne à basse fréquences (LF) ou à haute fréquences (HF) fonctionne très bien et elle est largement utilisée dans de nombreuses applications commerciales. D'autre part, afin d’augmenter la distance de communication (quelques mètres), le débit de données de communication, et ainsi minimiser la taille du tag, la technologie RFID fonctionnant dans la bande d’ultra-haute fréquence (UHF) et aux fréquences micro-ondes (par exemple, 2.4 GHz) a récemment attiré beaucoup d'attention dans le milieu de la recherche et le développement. Cependant, dans ces bandes de fréquences, une bande passante disponible restreinte avec la taille du tag assez large (principalement dominée par la taille d'antenne et de la batterie dans le cas d'un tag actif) sont les principaux facteurs qui ont toujours limité l'évolution de la technologie RFID actuelle. En effet, propulser la technologie RFID dans la bande de fréquences à ondes millimétriques briserait les barrières actuelles de la technologie RFID. La technologie d’identification aux fréquences à ondes millimétriques (MMID) offre plus de bande passante, et permet également la miniaturisation de la taille du tag, car à ces bandes de fréquences, la longueur d’onde est de l’ordre de quelques millimètres, une taille comparable à la taille d’un circuit intégré. L'antenne peut donc être soit intégré sur la même puce (antenne sur puce) ou soit encapsulé dans le même boitier que le circuit intégré. En dotant le tag la capacité de récolter sans fil son énergie à partir d'un signal aux fréquences à ondes millimétriques provenant du lecteur, lui fournissant ainsi l'autonomie énergétique (ainsi éliminant la nécessité d'une batterie et en même temps permettant la miniaturisation du tag), il devient alors possible d'intégrer entièrement tout le tag MMID sur une seule puce y compris les antennes, ce qui aboutira à la mise au point d’une nouvelle technologie miniature (μRFID) fonctionnant à la bande de fréquences à ondes millimétriques.----------ABSTRACT For countless applications ranging from security, access control, monitoring, and supply chain management to biomedical and imaging applications among many others, radio frequency identification (RFID) technology has tremendously impacted our daily life. So far, this ever-needed and emerging technology has been mostly designed and developed at low RF frequencies (below 3-GHz). For many practical applications where short-range (few centimeters) and low data-rate communications are sufficient and in some cases even preferable, inductively coupled RFID systems that operate over either low-frequency (LF) or high-frequency (HF) bands have performed quite well and have been widely used for practical and commercial applications. On the other hand, in the quest for a longer communication range (few meters), relatively high data-rate and smaller antenna size RFID systems operating over ultra-high frequency (UHF) and microwave frequency bands (e.g., 2.4-GHz) have recently attracted much attention in the research and development community. However, over these RF bands, a restricted available bandwidth together with an undesired tag size (mainly dominated by its off-chip antenna size and battery in the case of active tag) are the main factors that have been limiting the evolution of today’s RFID technology. Indeed, propelling RFID technology into millimeter-wave frequencies opens up new applications that cannot be made possible today.Millimeter-wave identification (MMID) technology is set out to exploit significantly larger bandwidth and smaller antenna size. Over these frequency bands, an effective wavelength is in the order of a few millimeters, hence close to a typical semiconductor (CMOS) die size. The antenna, therefore, may either be integrated on the same chip (antenna-on-chip – AoC) or embedded in the related package (antenna-in-package – AiP). In addition, by equipping the tag with the capability to wirelessly harvest its energy from an incoming millimeter-wave signal, thereby providing energy autonomy without the need of a battery and at the same time allowing miniaturization, it becomes possible to integrate the entire MMID tag circuitry on a single chip. Furthermore, the timely MMID concept is fully compatible with upcoming and future applications of millimeter-wave technology in wireless communications which are being discussed and developed worldwide in research and development communities, such as the internet of things (IoT), 5G, autonomous mobility, μSmart sensors, automotive RADAR technologies, etc

    Near Field Coupling in Wireless Systems for Identification, Sensing and Communication

    Get PDF
    Antennas for radio communication systems (e.g. radio links, cellular networks, WLAN, remote sensing) are designed giving a lot of attention to antenna gain, polarization, radiation pattern characteristics (e.g. half power beam width, front to back ratio, etc.). All above parameters are defined in the antenna far-field (FF) region, so they are suitable to characterize a communication system in which the transmitter and the receiver antennas are far enough. On the other hand, some applications exist that exploit antenna features in its near-field (NF) region. In this context, NF coupling between antennas has been studied since a long time and most researches have been focused on coupling effects in antenna arrays, field sensing for near-field antenna scanning systems, magnetic coupling between loops operating at LF-HF frequency bands. During his PhD course, the author designed and tested several antennas for Near-Field applications such as UHF RFID Desktop Reader. Moreover, he developed numerical codes to analyze a novel method to estimate the deep human tissues status with a near-field sensor, determining its prediction capability and determining critical parameters that affect its accuracy. Finally, he studied the mutual coupling effect between antennas integrated in commercial PV panels for wireless communication systems
    • …
    corecore