1,013 research outputs found

    Time-varying volume visualization

    Get PDF
    Volume rendering is a very active research field in Computer Graphics because of its wide range of applications in various sciences, from medicine to flow mechanics. In this report, we survey a state-of-the-art on time-varying volume rendering. We state several basic concepts and then we establish several criteria to classify the studied works: IVR versus DVR, 4D versus 3D+time, compression techniques, involved architectures, use of parallelism and image-space versus object-space coherence. We also address other related problems as transfer functions and 2D cross-sections computation of time-varying volume data. All the papers reviewed are classified into several tables based on the mentioned classification and, finally, several conclusions are presented.Preprin

    Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    Get PDF
    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency

    Lattice-Boltzmann simulations of cerebral blood flow

    Get PDF
    Computational haemodynamics play a central role in the understanding of blood behaviour in the cerebral vasculature, increasing our knowledge in the onset of vascular diseases and their progression, improving diagnosis and ultimately providing better patient prognosis. Computer simulations hold the potential of accurately characterising motion of blood and its interaction with the vessel wall, providing the capability to assess surgical treatments with no danger to the patient. These aspects considerably contribute to better understand of blood circulation processes as well as to augment pre-treatment planning. Existing software environments for treatment planning consist of several stages, each requiring significant user interaction and processing time, significantly limiting their use in clinical scenarios. The aim of this PhD is to provide clinicians and researchers with a tool to aid in the understanding of human cerebral haemodynamics. This tool employs a high performance fluid solver based on the lattice-Boltzmann method (coined HemeLB), high performance distributed computing and grid computing, and various advanced software applications useful to efficiently set up and run patient-specific simulations. A graphical tool is used to segment the vasculature from patient-specific CT or MR data and configure boundary conditions with ease, creating models of the vasculature in real time. Blood flow visualisation is done in real time using in situ rendering techniques implemented within the parallel fluid solver and aided by steering capabilities; these programming strategies allows the clinician to interactively display the simulation results on a local workstation. A separate software application is used to numerically compare simulation results carried out at different spatial resolutions, providing a strategy to approach numerical validation. This developed software and supporting computational infrastructure was used to study various patient-specific intracranial aneurysms with the collaborating interventionalists at the National Hospital for Neurology and Neuroscience (London), using three-dimensional rotational angiography data to define the patient-specific vasculature. Blood flow motion was depicted in detail by the visualisation capabilities, clearly showing vortex fluid ow features and stress distribution at the inner surface of the aneurysms and their surrounding vasculature. These investigations permitted the clinicians to rapidly assess the risk associated with the growth and rupture of each aneurysm. The ultimate goal of this work is to aid clinical practice with an efficient easy-to-use toolkit for real-time decision support

    Parallel rendering algorithms for distributed-memory multicomputers

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Ph. D.) -- Bilkent University, 1997.Includes bibliographical references leaves 166-176.Kurç, Tahsin MertefePh.D

    Direct volume rendering of unstructured grids

    Get PDF
    This paper investigates three categories of algorithms for direct volume rendering of unstructured grids, which are image-space, object-space, and hybrid methods. We propose three new algorithms. Cell Projection algorithm, which falls into object-space category, is capable of rendering non-convex meshes through a simple yet efficient sorting schema that exploits both image and object space coherencies. Existing hybrid methods use object-then-image traversal order that enforces the processing of each cell. Thus, these algorithms perform redundant operations and do not support early ray termination. We propose a hybrid method, called Span-Buffer Ray Casting (SBRC), that can support early ray termination discarding redundant operations by employing image-then-object traversal order. Another hybrid method, called Koyamada-SBRC (K-SBRC), is proposed with the motivation of refining image-space and hybrid methods to extract the best features of them. This method is developed by blending SBRC approach with Koyamada's algorithm, which is an efficient image-space algorithm. All proposed algorithms are capable of handling acyclic non-convex meshes and generating images of acceptable quality. SBRC and K-SBRC algorithms have the additional capabilities of rendering cyclic meshes and supporting early ray termination. The proposed algorithms and Koyamada's algorithm are implemented and experimented in a common framework for analyzing their relative performance. © 2003 Elsevier Science Ltd. All rights reserved

    Parallel direct volume rendering of unstructured grids based on object-space decomposition

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 62-65.Fındık, FeritM.S

    Image-space decomposition algorithms for sort-first parallel volume rendering of unstructured grids

    Get PDF
    Ankara : Department of Computer Engineering and Information Science and the Institute of Engineering and Science of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 96-100.Kutluca, HüseyinM.S

    Detection and Resolution of Interpenetrations of Woven Tows

    Get PDF
    Woven composite tows can be approximated by creating surfaces using the Virtual Textile Morphology Suite (VTMS) developed at the Air Force Research Lab (AFRL). These surfaces have interpenetrations between tow surface meshes which must be resolved in order to have strict, compatible mesh between all domains. A compatible mesh is desirable to reduce the complexity of the model and allow for a wider range of FEA tools to be used for analysis. To detect these interpenetrations, the surfaces were approximated using Non-Uniform Rational B-Spline (NURBS) surfaces with the SISL library from SINTEF. The interpenetration regions were then identified by B-Spline curves which, when included during the mesh generation process, allowed the surface interpenetrations to be removed and replaced with a compatible mesh between tows. The meshes are strictly tied together to investigate the effects of removing the thin slices of matrix from between tows in close proximity. These resulting meshes were subjected to a simple in-plane loading and compared to another method for removing interpenetrations that shrinks the tow cross-sections until they no longer penetrate. The predicted stresses show that the new method can create small regions of high magnitude stress in the tow local to the edge of the connected region between tows, and that high mesh refinement around these regions can increase the magnitude of these stress concentrations. In regions away from the boundary of the connected regions, both models predict similar stress responses. Also, the analysis predicts less matrix volume at high von Mises stress due to the lack of matrix between tows in the NURBS method meshes. While the analysis shows evidence of singularities, the size of the concentrations and the similar overall response as the previous method show that the new method has some merit, particularly when considering the potential use cases for compatible, connected regions between tow meshes
    corecore