36,671 research outputs found

    Periodic review base-stock replenishment policy with endogenous lead times.

    Get PDF
    In this paper, we consider a two stage supply chain where the retailer's inventory is controlled by the periodic review, base-stock level (R,S) replenishment policy and the replenishment lead times are endogenously generated by the manufacturer's production system with finite capacity. We extend the work of Benjaafar and Kim (2004) who study the effect of demand variability in a continuously reviewed base-stock policy with single unit demands. In our analysis, we allow for demand in batches of variable size, which is a common setting in supply chains. A procedure is developed using matrix analytic methods to provide an exact calculation of the lead time distribution, which enables the computation of the distribution of lead time demand and consequently the safety stock in an exact way instead of using approximations. Treating the lead time as an endogenous stochastic variable has a substantial impact on safety stock. We numerically show that the exogenous lead time assumption may dramatically degrade customer service.Production/inventory systems; Base-stock replenishment policy; endogenous lead times; Safety stock; Phase-type distribution; Matrix-analytical methods;

    Stock allocation in general multi-echelon distribution systems with (R, S) order-up-to-policies

    Get PDF
    In this paper we analyze stock allocation policies in general N-echelon distribution systems, where it is allowed to hold stock at all levels in the network. The goal is to achieve differentiated target customer service levels (fill rates). Various allocation rules and accompanying numerical methods that have already been developed for smaller networks are extended and compared in an extensive numerical experiment. We conclude that the extension of Balanced Stock rationing (see Van der Heijden (1996)) is the most accurate method, in particular in cases of relatively high imbalance. If the imbalance is not too high, the extension of Consistent Appropriate Share rationing (see De Kok et al., 1994; Verrijdt and De Kok, 1996) performs good as well

    A numerical study of expressions for fill rate for single stage inventory system with periodic review.

    Get PDF
    Fill rate is one of the most important measurements for inventory systems in the supply chain management. The primary goal of this thesis is to give a comprehensive review of existing analytical expressions for the system fill rate, and provide numerical comparison for all relevant expressions in terms of their accuracy against (simulated) fill rate from the Monte Carlo simulation. We prove relationships between several expressions. Although majority of the expressions discussed herein are designed for standard periodic review system, we conduct numerical simulations for the general periodic review system. Under this general periodic review setting, numerical results indicate that all else being equal, replenishment lead time has larger effect on the system\u27s fill rate than does the review interval. In addition, numerical comparison suggests that Johnson et al.\u27s approach, Zhang and Zhang\u27s approach, Hadley and Whitin\u27s approach dominate the traditional approach, exponential approximation and Silver\u27s modified approach. The dominance is especially true for cases with high demand variability. For general periodic review system, our numerical results indicate that scaling is necessary for Silver\u27s modified, Johnson et al.\u27s and Johnson et al.\u27s modified approaches

    Performance Evaluation of Stochastic Multi-Echelon Inventory Systems: A Survey

    Get PDF
    Globalization, product proliferation, and fast product innovation have significantly increased the complexities of supply chains in many industries. One of the most important advancements of supply chain management in recent years is the development of models and methodologies for controlling inventory in general supply networks under uncertainty and their widefspread applications to industry. These developments are based on three generic methods: the queueing-inventory method, the lead-time demand method and the flow-unit method. In this paper, we compare and contrast these methods by discussing their strengths and weaknesses, their differences and connections, and showing how to apply them systematically to characterize and evaluate various supply networks with different supply processes, inventory policies, and demand processes. Our objective is to forge links among research strands on different methods and various network topologies so as to develop unified methodologies.Masdar Institute of Science and TechnologyNational Science Foundation (U.S.) (NSF Contract CMMI-0758069)National Science Foundation (U.S.) (Career Award CMMI-0747779)Bayer Business ServicesSAP A

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    A Single-Product Inventory Model for Multiple Demand Classes

    Get PDF
    We consider a single-product inventory system that serves multiple demand classes, which differ in their shortage costs or service level requirements. We assume a critical-level control policy, and show the equivalence between this inventory system and a serial inventory system. Based on this equivalence, we develop a model for cost evaluation and optimization, under the assumptions of Poisson demand, deterministic replenishment lead-time, and a continuous-review (Q, R) policy with rationing. We propose a computationally-efficient heuristic and develop a bound on its performance. We provide a numerical experiment to show the effectiveness of the heuristic and the value from a rationing policy. Finally, we describe how to extend the model to permit service times, and to embed within a multi-echelon setting
    corecore