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Abstract 

 In this paper we consider a periodic review order-up-to inventory system with 

capacitated replenishments, lost sales and zero lead time. We consider discrete demand. It is 

shown that the initial stock levels of the different review periods form a Markov chain and we 

determine the transition matrix. Furthermore we study for what probability mass functions of 

the review period demand the Markov chain has a unique stationary distribution. Finally we 

present a method to determine the fill rate. 
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1. Introduction 

 In several publications the fill rate is discussed for periodic review inventory systems 

with uncapacitated replenishment. For example Johnson et al. [1] study different fill rate 

expressions for inventory systems with backorders and normally distributed demand and 

compare these expressions experimentally via simulation experiments. The  fill rate of an 

uncapacitated periodic review inventory system with backorders and continuous period 

demand is also studied in [2], [3] and [4]. Sobel [2] discusses besides single-stage systems 

also multistage systems and similar as in [1] the lead time is assumed to be a multiple of the 

review period. This is not assumed in Zhang et al. [3] and Silver et al. [4]. In [2] and [3] 

general continuous demand and normal demand are considered, [1] and [4] focus on normal 

demand. Guijarro et al. [5] discuss fill rate definitions and expressions for uncapacitated 

periodic review inventory systems with lost sales and discrete demand. In this paper however, 

periodic review inventory systems with a limited replenishment capacity are studied. Unlike 

[1], [2], [3], [4] and [5], in this paper the lead time is assumed to be negligible. In a part of [2], 

capacity is also considered, but in the context of multistage systems with process limitations. 

In [6] and [7] finite horizon fill rates are considered and compared with the infinite horizon 

fill rate. 

 We consider a single-item inventory system that applies a periodic review order-up-to 

inventory policy with lost sales and zero lead time. Because of the lost sales assumption and 

the zero lead time assumption, the inventory position (number of products on hand minus 

number of products backlogged plus number of products on order) equals the stock level 

(number of products on hand). In such inventory policy the stock level is reviewed 

periodically and every review an order is placed to raise the stock level to a fixed level, the 

order-up-to level s (a positive integer). We assume the demand during one review period 

(period between two reviews) to be discrete with a given probability mass function. We 
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consider a review period to begin when the order is placed and to end just before the next 

order is placed. Following characteristics are assumed for the inventory system under study: 

(i) the order is placed immediately after review; (ii) the lead time is zero, i.e. the order arrives 

immediately after the order is placed; (iii) the demands during different review periods are 

independent and identical distributed; (iv) the demand during a particular review period is 

independent of every stock level at the beginning of a review period that precedes that review 

period or coincides with that review period; (v) unsatisfied demands result in lost sales; and 

(vi) replenishment is capacitated with capacity c (a positive integer), i.e. if more than c 

products are ordered, only c are delivered. 

 In this paper we determine the fill rate of a periodic review inventory system with 

capacitated replenishments. A similar problem was already studied by Mapes [8], who 

determined the service level of a capacitated periodic review inventory system approximately 

by simulation. In this paper a new method to determine the fill rate is presented which is exact 

given the used fill rate definition and the above stated six assumptions. Similarly as in [9], we 

define the fill rate of a periodic review inventory system as the proportion of the expected 

satisfied demand to the expected demand (see (23) for the exact formula). Another definition 

used in literature for the fill rate (e.g. in [2] and [3]) is the expectation of the proportion of the 

satisfied demand to the demand. According to [6] and [3], both definitions agree if an infinite 

horizon is considered. 

 

2. Determination of the fill rate 
 In this section we will determine the fill rate β of a periodic review order-up-to 

inventory system with order-up-to level s and replenishment capacity c. We assume c<s 

because when c is greater than or equal to s replenishment is not capacitated. Let Dt be the 

random variable associated with the demand during the review period t, It the random variable 

associated with the stock level at the beginning of review period t, fD the probability mass 

function of Dt (with the set of the integers as domain and value zero for negative integers) and 

fIt the probability mass function of It, for all t∈{1,2,...}. We assume the stock level at the 

beginning of the first review period to be c, c+1, ... or s. Because of the used inventory policy, 

the following holds: 
{ }{ }cDIsI ttt +−= −− 0,max,min 11 , for all t∈{2,3,...}.     (1) 

We continue by first proving four theorems and then presenting a method to find the fill rate 

based on these theorems. For (finite state) Markov chain theory we refer to [10], chapter 4. 

Theorem 1. I1,I2,I3,... is a Markov chain. 

Proof. For proving theorem 1, we need to proof the following: 

)()...( 11112211 −−−−−− ====∩∩=∩== tttttttttt iIiIPiIiIiIiIP , for all t∈{2,3,...} and 

for all i1,...,it∈{c,c+1,...,s} for which P(It-1=it-1∩...∩I1=i1)≠0 and P(It-1=it-1)≠0  (2) 

We start with the definition of conditional probability and (1) and then use assumption (iv). 

For all t∈{2,3,...} and for all i1,...,it∈{c,c+1,...,s} for which P(It-1=it-1∩...∩I1=i1)≠0 and  

P(It-1=it-1)≠0: 
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Similarly, for all t∈{2,3,...} and for all i1,...,it∈{c,c+1,...,s} for which P(It-1=it-1∩...∩I1=i1)≠0 

and P(It-1=it-1)≠0: 
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Combination of (5) and (8) yields (2), which completes the proof. � 

Theorem 2. The element at row i and column j of the transition matrix P of Markov chain 

I1,I2,I3,... with states c,c+1,...,s is: 

( ) { }{ }( )jcckicskfp
k

Dij −+−+−+−=∑
∞

=

10,1max,min
0

δ , for all i,j∈{1,2,...,s-c+1} (9) 

with δ(x)=1 if x=1 and δ(x)=0 if x≠1 for every integer x. 

Proof. For all i,j∈{1,2,...,s-c+1} and for all t∈{2,3,...} for which P(It-1=c-1+i)≠0: 

pij = ( )icIjcIP tt +−=+−= − 11 1        (10) 

 = { }{ } )10,1max,(min 1 jccDicsP t +−=+−+− −      (11) 

 = { }{ }( )jcckicskf
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0
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For getting (10) we applied the definition of transition matrix and for getting (11) we used (8). 

� 

Theorem 3.  
- If fD(c)≠1, then for the Markov chain I1,I2,I3,... the following matrix equation in the variable 

[fI(c) fI(c+1) ... fI(s)]
T
, with 0≤fI(c)≤1, 0≤fI(c+1)≤1, ... and 0≤fI(s)≤1, has a unique solution 
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and for these fI(c), fI(c+1), ... and fI(s) 

)()(lim ifif IIn
n

=
∞→

, for all i∈{c,c+1,...,s}.       (14) 

- If fD(c)=1, then fIt(i)=fI1(i) for all t∈{1,2,...} and for all i∈{c,c+1,...,s}. 

Proof. The transition matrix of the Markov chain is 

P = 
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Because of theorem 2, we get 
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, with m=s-c. (16) 

 Case 1: fD(c)≠1 and fD(x)=0 for all x∈{0,1,...,c-1}. 

By studying (16) we conclude that P is a lower triangular matrix and for every state the 

probability to go to state c in a number of steps is positive and the probability to go from state 

i to state j in a number steps is zero if i<j. Therefore state c is recurrent and the other states are 

transient. 

 Case 2: fD(c)≠1 and fD(x)=0 for all x∈{c+1,c+2,...}. 

By studying (16) we conclude that P is a upper triangular matrix and for every state the 

probability to go to state s in a number of steps is positive and the probability to go from state 

i to state j in a number steps is zero if j<i. Therefore state s is recurrent and the other states are 

transient. 

 Case 3: if fD(c)≠1 and fD(x)≠0 for at least one integer x smaller than c and fD(x)≠0 for 

at least one integer x larger than c. 

Similarly with case 1 and 2, for every state the probability to go to state c in a number of steps 

is positive and for every state the probability to go to state s in a number of steps is positive. 

Therefore s and c are in the same communication class and every state communicates with c 

or is a transient state. We conclude that also in this case there is one recurrent communication 

class and all other states are transient. 

 In case 1, 2 and 3 the recurrent communication class is aperiodic because in case 1 and 

3 the probability for going from state c to state c in one step is positive, and in case 2 and 3 

the probability for going from state s to state s in one step is positive. Application of theorem 

6A on page 118 of [10] yields the following two statements: 

- there is a unique left probability eigenvector of P with eigenvalue 1   (17) 

(this vector is called the stationary distribution of the Markov chain) 

- let [ ])(...)1()( sfcfcf III +  be this vector, then 
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(18) allows us to calculate the following limit, what results in the proof of (14). 

[ ])(...)1()(lim sfcfcf InInIn
n
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 = (lim
∞→n

[ ])(...)1()( 111 sfcfcf III + (P)
n
)   (19) 

     = [ ])(...)1()( sfcfcf III +    (20) 

It is equivalent with (17) that [ ]TIII sfcfcf )(...)1()( + the unique right probability 

eigenvector is of P
T
 with eigenvalue 1. Therefore the following matrix equation has a unique 

probability vector solution. 
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Considered as a system of linear equations, (21) contains s-c+2 equations. The first equation 

in this system of linear equations equals the opposite of the sum of the other equations except 

the last one, because for all i∈{1,2,...,s-c+1} 

∑
+−

=

=
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1
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k

ikp .           (22) 

Omitting the first equation in (21) therefore yields an equivalent matrix equation. With the 

first equation omitted and the last equation first we obtain matrix equation (13) which is 

equivalent with (21). 

 Case 4: if fD(c)=1. 

Then P is the (s-c+1)×(s-c+1) identity matrix. Therefore fIt(i)=fI1(i), for all t∈{1,2,...} and for 

all i∈{c,c+1,...,s}. � 
 Using the notation of this section the infinite horizon fill rate β of the periodic review 

inventory system under study is: 
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For getting (26) we used: 

)(lim
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with f a function from the natural numbers to the real numbers for which the sequence 

f(1),f(2),... converges. Furthermore, we used assumption (iii) for getting (25), (28) and (29) 

and assumption (iv) for getting (29). � 

 Theorems 1, 2, 3 and 4 put forward a method to determine the fill rate of the studied 

inventory system. First we construct the matrix P with the aid of theorem 2 or (16). 

Subsequently, if fD(c)≠1, we solve matrix equation (13). According to theorem 3, this matrix 

equation has a unique probability vector solution and this solution gives us limn→∞fIn(c), 

limn→∞fIn(c+1), ... and limn→∞fIn(s). Notice that limn→∞fIn(c), limn→∞fIn(c+1), ... and limn→∞fIn(s) 

do not depend on the stock level at the beginning of the first review period, if fD(c)≠1. If 

fD(c)=1 however, limn→∞fIn(i) equals fI1(i) for every state i. Finally we use these limits to 

calculate the fill rate of the inventory system with the aid of theorem 4. 

 

3. Conclusion and further research 
 We proved four theorems that allow us to determine the fill rate of every periodic 

review order-up-to inventory system with capacitated replenishments, lost sales and zero lead 

time, for any demand probability mass function. The method is exact given the used 

definitions and assumptions. Extensions of this research are the study of capacitated periodic 

review inventory systems with positive lead times and the study of a series of periodic review 

inventory systems with joint capacitated replenishments. Allowing the lead time to be positive 

increases the complexity. For example, if the positive lead time is smaller than the review 

period, the stock level at the beginning of review period t will depend on the stock level at the 

beginning of review period t-1, the demand during review period t-1 and the demand during 

review period t-1 before replenishment, for the zero lead time case, see (1), the stock level at 

the beginning of review period t depends only on the stock level at the beginning of review 

period t-1 and the demand during review period t-1. If the lead time is greater than the review 

period but not greater than two review periods, the stock level at the beginning of review 
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period t will depend also on the stock level at the beginning of review period t-2, therefore the 

Markov chain will have order 2, for the zero lead time case, the order is 1. 
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