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Abstract 

We consider a single-product inventory system that serves multiple demand 

classes, which differ in their shortage costs or service level requirements. We assume a 

critical-level control policy, and show the equivalence between this inventory system 

and a serial inventory system.  Based on this equivalence, we develop a model for cost 

evaluation and optimization, under the assumptions of Poisson demand, deterministic 

replenishment lead-time, and a continuous–review (Q, R) policy with rationing. We 

propose a computationally-efficient heuristic and develop a bound on its performance. 

We provide a numerical experiment to show the effectiveness of the heuristic and the 

value from a rationing policy.  Finally, we describe how to extend the model to permit 

service times, and to embed within a multi-echelon setting. 
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1. Introduction and Literature Review 

 In many inventory settings a supply firm wishes to provide different levels of 

service to different customers.  For instance, in a service parts network, a customer can 

choose amongst different contracts, each with a different cost and level of service. A 

“gold contract” might provide a 99% fill rate within twenty-four hours, while a “bronze 

contract” promises a 85% fill rate within two days. In other settings, a supplier 

segments its customers based on the delivery channel or the price they pay; the supplier 

recognizes some customers as deserving higher priority over other customers.  In other 

cases, a supplier provides price discounts for delivery flexibility, and then allows a 

customer to choose the delivery time when placing an order. 

 A common approach to such scenarios is to categorize the customers into a 

finite number of demand classes.  Customers within a demand class receive the same 

level of service.  The inventory challenge is then to determine how to meet the service 

level expectations for each demand class with the least amount of inventory.   

 In this paper we consider a single-item inventory system with stochastic 

demand and multiple demand classes. The key assumptions are Poisson demand, a 

deterministic lead-time, a continuous-review (Q, R) replenishment policy, and demand 

backordering. As is common in the literature, we assume a critical-level policy for 

rationing the inventory across the demand classes. 

 The key contribution of this paper is to show how to map this problem into a 

serial inventory system.  This mapping facilitates the characterization of the 

steady-state behavior of the inventory system. We then develop an approximate 

solution procedure to the so-called Service Level Problem; that is, we want to find the 

critical-level policy that meets specified fill-rate targets for each demand class with the 

least inventory.  We show with both bounds and a numerical experiment that this 

heuristic is quite robust and near optimal.  We also show how to extend the model to 

permit service times, whereby different demand classes have different service times by 

which their demand is to be met.  Finally, we describe how to use the single-item 

inventory system to characterize the inventories and backorders in a multi-echelon 

distribution system.  

We have organized the paper into seven sections. In the remainder of this 

section, we discuss the relevant literature. In the following section, we present our 

assumptions and a general framework to describe how we manage the inventory with a 
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stationary critical-level policy.  In section three, we show how to map this inventory 

system into a serial inventory system. In section four, based on this mapping, we 

develop a model for cost evaluation and optimization, under the assumptions of Poisson 

demand, deterministic replenishment lead-time, and a continuous–review (Q, R) policy 

with rationing. In section five, we pose the Service Level Problem, in which we 

minimize the expected inventory while satisfying a service level requirement for each 

demand class. Furthermore, we provide a heuristic solution approach for the Service 

Level Problem. In section six, we provide a numerical experiment both to compare our 

proposed heuristic with the optimal solution and to show the value from rationing. In 

the final section we discuss possible extensions and directions for future research. 

 

 Kleijn and Dekker (1998) give an overview of inventory systems with multiple 

demand classes and provide examples of managing inventory with multiple demand 

classes, ranging from airline service companies to petrochemical companies.  In Table 

1 we provide a high-level categorization of the literature.  Like much of the 

stochastic-demand inventory literature, we can divide the research based on the 

assumed control policy, periodic or continuous review, and on assumed treatment of 

shortages, lost sales or backorders. In addition, some of the key developments are 

restricted to or primarily focused on two demand classes, whereas other work is not.  

 

 Periodic-Review, 
Lost Sales 

Periodic-Review,
Backorders 

Continuous-Review, 
Lost Sales 

Continuous -Review, 
Backorders 

Two 
demand 
classes 

Evans (1968) Kaplan (1969) 
Frank et al. (2003) 

Melchiors et al. (2000) Nahmias and Demmy 
(1981) 
Moon and Kang (1998) 
Deshpande et al. (2003) 
Dekker et al. (1998) 

N 
demand 
classes 

Veinott (1965) 
Topkis (1968) 
 

Katircioglu and 
Atkins (1996) 

Melchiors (2001) 
Dekker et al. (2000) 

 

Table 1: Inventory Literature for Single-Product, Multiple Demand Classes 

Veinott (1965) analyzes an inventory model with several demand classes for a 

single product. He proposes to use critical inventory levels to ration the on-hand 

inventory among demand classes. Topkis (1968) subsequently analyzes the proposed 

critical-level policy for a periodic-review single-product inventory model with multiple 

demand classes.  

Kaplan (1969) and Evans (1968) study periodic-review models with only two 
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demand classes, similar to Topkis (1968). Recently, Katircioglu and Atkins (1996) and 

Frank et al. (2003) analyze periodic-review inventory systems with multiple stochastic 

demand classes. Katircioglu and Atkins (1996) require an associated service level for 

each demand class, which had not been analyzed in the previous literature. However, 

their model allows negative inventory allocations that are hard to explain and 

implement. Frank et al. (2003) apply rationing to avoid incurring high fixed ordering 

costs rather than saving inventory for high priority demand.  

Nahmias and Demmy (1981) study a continuous-review inventory policy with 

two demand classes. They assume an ( , )Q R  inventory replenishment policy, a 

critical-level policy, and at most one outstanding order at any time. This last 

assumption implies that whenever a reorder quantity is received, the inventory level 

and inventory position become identical. This allows them to calculate approximate 

expressions for expected backorders for both demand classes. Moon and Kang (1998) 

later extend this model to account for compound Poisson demand processes.  

Deshpande et al. (2003) analyze the same ( , )Q R  inventory rationing model 

with two demand classes as in Nahmias and Demmy (1981), but without the restriction 

on the number of outstanding orders.  They introduce the threshold clearing mechanism 

to fill backorders, which permits them to derive expressions for the expected number of 

backorders for both classes without restrictions on the number of orders outstanding.  

Based on these expressions, they develop algorithms to calculate the optimal ordering 

and rationing parameters. They demonstrate numerically the effectiveness of their 

model, by comparison to a priority-based backlog clearing mechanism, where high 

priority backorders are filled before low priority backorders.  

Melchiors et al. (2000) also analyze a ( , )Q R  inventory model with two demand 

classes. Unlike Nahmias and Demmy (1981) and Deshpande et al. (2003), they 

consider a lost sales environment so that demands from the low priority class are 

rejected whenever inventory level drops to the critical level. Melchiors (2001) extend 

the model in Melchiors et al. (2000) to multiple Poisson demand classes with stochastic 

replenishment lead-times. Moreover, he considers a non-stationary critical-level policy 

that provides a benchmark to evaluate the stationary critical-level policy employed by 

Nahmias and Demmy (1981), Melchiors et al. (2000), and Deshpande et al. (2003).  

Dekker et al. (1998) study an inventory model with two demand classes and 

one-for-one replenishment policy. The model is similar to the one in Nahmias and 
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Demmy (1981). They assume Poisson demand processes, a deterministic 

replenishment lead-time, backordering of unfilled demands, and a critical-level policy 

to ration the inventory. Dekker et al. (1998) explore how best to handle and allocate 

incoming replenishment orders, which remains an open question in the literature.  

Dekker et al. (2000) extends the model in Dekker et al. (1998) to multiple 

demand classes with stochastic replenishment lead-times, but switching to a lost sales 

environment rather than allowing backorders. They assume one-for-one replenishment 

policy and a critical-level policy to ration inventory among demand classes. In a lost 

sales environment, handling incoming replenishment orders is not a dilemma; each 

incoming replenishment order simply replenishes the inventory. They develop 

numerical solution methods to efficiently calculate the optimal base stock level and 

critical levels with or without service level constraints.  

Ha (1997a) considers a make-to-order production system with a single 

production facility and multiple demand classes for the end product. He assumes a lost 

sales environment, exponentially distributed production time, and Poisson demand for 

each demand class. He shows that a stationary critical level policy is optimal. Ha 

(1997b) extends the study in Ha (1997a) by allowing backorders to occur. Vericourt et 

al. (2000, 2002) consider the multiple-demand class extension of the two-demand class 

study in Ha (1997a). They develop a characterization of the optimal policy for the 

backorders case with zero set-up costs and exponential lead-times.  

2. General Framework 

  Our work is most closely related to that of Nahmias and Demmy (1981) and 

Deshpande et al. (2003).  However, whereas their work considers two demand classes, 

we have no restriction on the number of demand classes. We also develop the model in 

what we believe is a more transparent and natural way.  Indeed, as will be seen, this 

allows us to extend the model to permit service times and to analyze a multi-echelon 

system with multiple demand classes. 

We consider a facility that carries inventory for a single product to serve N 

customer classes. We differentiate customer classes based on their relative service level 

requirements or shortage costs.  For our analysis we require the following standard 

inventory assumptions: 

(i) We have a fixed replenishment lead-time L > 0; 
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(ii) The demand from class-i, { }, 1,iD i N∈ follows a stationary Poisson 

process with rate iλ that is independent of the demand from the other 

demand classes; 

(iii) We replenish inventory with a continuous-review (Q,R) policy; 

(iv) We backorder any demand that is not immediately satisfied from on-hand 

inventory. 

In addition to these assumptions, we need to describe how we will ration 

inventory across the demand classes.  We number the demand classes according to their 

relative priority, where class 1 has the highest priority.  As suggested by Veinott (1965), 

we use a critical-level policy given by { }{ }1 2 1 1 , , , 0  and N i i ic c c c Z c c+
− −= ∈ ∪ ≤c .  

We stop serving demand class-i once the on-hand inventory reaches or falls below the 

critical stock level 1;ic − by assumption, we then backorder all demand for class-i until 

the on-hand inventory is raised above 1ic − .  For class-1, we set its critical level c0 = 0; 

thus, we continue to fill class-1 demand until the on-hand inventory is completely 

depleted, at which point we backorder any subsequent class-1 demand. 

We define 1i i is c c −= −  for i=1,…N-1 to be the reserve stock for class-i, as it 

represents the quantity of stock that we protect or reserve for this demand class.  By the 

definition of the critical-level policy, each of these reserve stocks is non-negative.  For 

stage N, we define the reserve stock 1N Ns R c −= − , for which we require no assumptions 

about its sign.  

We also need an assumption with regard to how we allocate an inventory 

replenishment at the time it is received.  The primary issue is to decide how much of the 

replenishment we use to fill backorders versus use to re-build the reserve stock for 

higher-priority demand classes.  We defer until the next section the presentation and 

discussion of our allocation assumption, as it will be easier to explain in the context of 

the problem mapping to a serial inventory system. 

3. The Mapping to a Serial Inventory System 

The purpose of this section is to observe the equivalence between the 

single-product inventory system with N demand classes and a single-product inventory 

system with N serial stages. To ease the presentation, we denote the former as the DCS 

(demand-class system) and the latter as the SSS (serial stage system). 
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N N-1 12

ND 1ND − 2D 1D

Q
Nl 1Nl − 2l 1l

N N-1 12

ND 1ND − 2D 1D

Q
Nl 1Nl − 2l 1l

 

Figure 1: Serial Inventory System with Demand at Each Installation 

 

We consider an N-stage serial system (SSS), as shown in Figure 1, and assume 

that it operates as follows: 

(i) Each stage i, { }1, 1i N∈ −  operates with a one-for-one continuous review 

base-stock policy with non-negative base-stock level si., and is replenished 

by its upstream stage i+1 with replenishment lead time l=0.  

(ii) Stage N is replenished from an outside supplier with lead-time L > 0.  Stage 

N uses a continuous-review reorder-point, reorder-quantity policy with its 

reorder-quantity equal to Q and its reorder-point equal to 1N Ns R c −= − . 

(iii) Demand at stage 1 follows a stationary Poisson process with rate 1λ . Each 

stage i, { }2,i N∈ is subject to internal demand from stage i-1, as well as 

external demand; the external demand at stage i follows a stationary Poisson 

process with rate iλ .  The N external demand processes are independent. 

(iv) At each stage we backorder all internal and external demand that cannot be 

met from on-hand inventory.  

We contend that this SSS is equivalent to the DCS, as described in the prior 

section. To establish this equivalence, we will show the two systems behave the same (i) 

when a demand occurs; (ii) when each system places an order on its outside supplier; 

and (iii) when each system receives the order from the outside supplier. 

(i) When a demand occurs. Let IOH represent the on-hand inventory in either the SSS 

or DCS.  If IOH=0, then in both systems we backorder the demand from any class and 

the on-hand inventory remains at zero. 

Consider the DCS and suppose that 10 and j jIOH c IOH c−> < ≤  for 

some { }1,j N∈ . If the next demand were from class i, { }1,i j∈ , it is served and the 

on-hand inventory level IOH is reduced by one; if the next demand were from class i, 

{ }1,i j N∈ + , then it is backordered.   
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Now consider the SSS with 10 and j jIOH c IOH c−> < ≤ .  The on-hand 

inventory at each stage i, { }1, 1i j∈ −  equals its base stock si. For each stage i, 

{ }1,i j N∈ + , there is no on-hand inventory, while stage j has on-hand inventory equal 

to 1jIOH c −− .  If there were a demand for stage { }1,i j∈ , the serial system fills the 

demand, the on-hand inventory at each stage i, { }1, 1i j∈ −  remains at its base stock si, 

and the on-hand inventory at stage j  (as well as the IOH)  is depleted by one.  However, 

if there were a demand for stage i, { }1,i j N∈ + , this demand is not filled but is 

backordered by stage i.  The on-hand inventory IOH does not change.  Thus, the 

behavior is the same. 

(ii) When each system places an order on its outside supplier.  In the DCS, we place an 

order of size Q when the inventory position reaches the reorder point R, where the 

inventory position is the on-hand inventory, plus the on-order inventory, minus any 

backorders. 

In the SSS, stage N orders from an external supplier when its inventory position 

reaches a reorder point equal to 1N Ns R c −= − .  We note that the inventory position for 

each downstream stage { }1, 1i N∈ −  is always 1i i is c c −= − , due to the one-for-one 

replenishment policy. Thus, the SSS orders from its external supplier when the system 

inventory position is:
1

N

i
i

s R
=

=∑ .  Thus, the two systems behave the same. 

(iii) When each system receives the order from the outside supplier. Finally, we need to 

establish that both systems clear the backorders in identical fashion when a 

replenishment arrives. We will do this by first describing our assumptions for the SSS 

and then interpreting how these assumptions apply to the DCS. 

Consider the SSS with on-hand inventory IOH in the system at time t.  Suppose 

that 1j jc IOH c− < ≤  for some { }1,j N∈ . The on-hand inventory equals its base stock si 

for stage { }1, 1i j∈ − , is equal to 1jIOH c −−  for stage j, and is zero for stage 

{ }1,i j N∈ + . There are no backorders at each stage i, { }1,i j∈ .  Each stage i, 

{ }1,i j N∈ + , has backorders given by: 
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( ) ( ) ( ) ( )
1

, 1
1

,   and ,
i

ii i i i i k i
k

B t D t B t D tτ τ
−

−
=

= = ∑  

where ( ),iD s t is the external demand during time interval (s, t] at stage i; ( )iiB t  is the 

number of backorders at time t at stage i, due its external demand; ( ), 1i iB t− is the 

number of backorders at time t at stage i, due to internal demand from stage i-1; and τi  

is the most recent time at which stage i stocks out.  Stage i stocks out once the on-hand 

inventory reaches ci-1; thus, we determine iτ to be the most recent time epoch at which 

1iIOH c −= . 

Suppose stage N of the SSS receives a replenishment of Q at time t.  There are 

two cases to consider. 

( ) ( ), 1NN N NQ B t B t−≥ + : The replenishment quantity is sufficient to fill all backorders 

at stage N, as well as all downstream stages. Thus, this replenishment returns the 

on-hand inventory at each stage i, { }1, 1i N∈ −  to its base stock si; any remaining 

on-hand inventory is held at stage N. 

( ) ( ), 1NN N NQ B t B t−< + :  The replenishment quantity is not sufficient to fill all 

backorders at stage N, and we need to decide how to allocate the inventory between the 

two types of backorders.  We assume that we fill these backorders in the order of 

occurrence, with no differentiation between external and internal backorders. 

 In particular, we find the earliest time : Ns s tτ < <  such that ( )
1

,
N

k N
k

D s Qτ
=

=∑ .  

We set the replenishment quantities to be ( ) ( )
1

, 1
1

,   and ,
N

NN N N N N k N
k

Q D s Q D sτ τ
−

−
=

= = ∑ .  

Thus, after this allocation the remaining backorders at stage N 

are ( ) ( ) ( ) ( )
1

, 1
1

,   and ,
N

NN N N N k
k

B t D s t B t D s t
−

+ +
−

=

= = ∑ . 

We assume this process repeats at each downstream stage.  For instance, stage 

N-1 receives the replenishment of QN,N-1.  If it is sufficient to cover the backorders at 

stage N-1, then we fill these backorders and hold the remainder on hand.  If the 

replenishment is not sufficient to cover the backorders, then we allocate QN,N-1 to fill 

these backorders in their order of occurrence, as described above.  We repeat this 

allocation process at each downstream stage, until we reach a stage at which the stage’s 
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replenishment covers the backorders at the stage or we reach stage 1. 

We assume the same allocation process for the DCS.  Namely, we assume that 

we fill backorders in the order of occurrence, with no differentiation between external 

and internal backorders. 

We start with demand class N, and need to decide how to split the replenishment 

quantity between class-N backorders and the outstanding replenishment requests from 

stages i, { }1, 1i N∈ − . These outstanding replenishment requests can entail both 

customer backorders and replenishments to re-build the reserve stock at the 

higher-priority classes.  If the replenishment quantity is not sufficient, we will allocate 

it in the order of the demand occurrences that created the backorders or replenishment 

requests.  This process repeats with each demand class until we reach a class for which 

the replenishment covers the backorders at the class or we reach demand class 1. 

This allocation scheme is not optimal. However, it seems to be reasonable given 

that it allocates the inventory at each stage (or demand class) to the internal and external 

backorders at the stage in the order of occurrence. Thus, at each stage it tries to balance 

servicing external versus internal backorders, where the internal backorders include the 

re-building of a reserve stock at downstream stages (higher priority demand classes). 

This allocation process is effectively the same as the virtual allocation mechanism 

introduced in Graves (1996) for the analysis of a multi-echelon arborescent inventory 

system. As in Graves (1996), this scheme permits significant tractability in the analysis 

of the inventory system, as will be seen. 

This completes the discussion equating the DCS to an SSS. We find this 

equivalence to be helpful in visualizing the operation of the N-demand-class inventory 

system, and in developing an evaluation model of its performance, as described next. 

4. Model for N-Demand-Class Inventory System 

In this section we develop a model for evaluating the performance of an 

N-demand-class inventory system, based on the mapping to a serial system from the 

prior section.  We build this model using the terminology of the SSS, and draw upon the 

framework in Graves (1985). 

     We define additional notation to analyze the inventory dynamics in the serial 

inventory system, where { }1,i N∈ : 

( )iIL t = inventory level at time t at stage i; 
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( )iIP t = inventory position (inventory level plus inventory on order) at time t at stage i; 

( )iB t  = number of backorders at time t at stage i; 

We can characterize how the inventory level at each stage evolves over time 

using the following equations for the inventory dynamics for the SSS, where [ ⋅ ]+ 

denotes the positive part of the expression, li is the replenishment lead-time for stage i, 

and { }1,i N∈ : 

( ) ( ) ( ) ( )1,
1

,
i

i i t j i i i
j

IL t l IP t D t t l B t+
=

+ = − + −∑                   (1) 

( ) ( )i iB t IL t
+

= −⎡ ⎤⎣ ⎦                      (2) 

( ) ( ) ( ), 1i ii i iB t B t B t−= +                     (3) 

( ) ( )1,0 1,0; 0N NB t B t+= =                     (4) 

  The explanation for (1) parallels that in Graves (1985): at time t the outstanding 

orders for stage i are either in-process to stage i or are backordered at the immediate 

upstream stage i + 1. All items that were in-process at time t will arrive at stage i by 

time t + li, by the definition of the lead-time. However, none of the backorders at stage i 

+ 1 at time t can arrive to stage i by time t + li, again by the definition of the lead-time. 

Furthermore, stage i is subject to demand from its own external demand process, plus 

that for all downstream stages due to the one-for-one replenishment policy.  Any 

demand during the time interval (t, t + li] reduces its inventory level and cannot be 

replenished by time t + li.  Hence, the inventory level at time t + li at stage i equals its 

inventory position at time t net of its outstanding orders, namely the backorders at time 

t and all demand during the time interval (t, t + li]. 

In equation (2) we state the backorders to be the negative part of the inventory 

level.  In equation (3) we decompose the backorders at stage i into backorders created 

by the external demand at stage i and backorders from replenishment requests from the 

immediate downstream stage.  We stipulate boundary conditions on the model in 

equation (4), namely stage 1 serves no downstream stages and the outside supplier for 

stage N is reliable and meets any request within its lead-time lN = L. 

In the context of the DCS, the replenishment lead-time li = 0 for stages i, 

{ }1, 1i N∈ − .  Furthermore, due to the continuous-review one-for-one replenishment 

policy at stages i, { }1, 1i N∈ − , the inventory position for each stage always equals its 
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base-stock level si. For stage N, its lead-time is positive, lN = L.  The steady-state 

inventory position for stage N is uniformly distributed on the range[ ]1,N Ns s Q+ + , 

given the assumption of a reorder-point, reorder-quantity replenishment system with 

these parameters (Zipkin 2000, p. 193). 

We now use these observations to re-write the steady-state form for equations 

(1) – (4): 

1

N
L

N N i
i

IL IP D
=

= − ∑                      (5) 

1,      1, 2, -1i i i iIL s B for i N+= − =                     (6) 

[ ]i iB IL += −                       (7) 

, 1i ii i iB B B −= +                                  (8) 

1,0 0B =                                  (9) 

where L
iD is the random variable for the external demand at stage i over an interval of 

length L; thus, it represents a Poisson random variable with mean i Lλ . 

 We need to establish one more property before we can use equations (5) – (9) to 

determine the steady-state distribution of the inventory level at each stage. We intend to 

use (5) or (6) to find the distribution of the inventory level, and then (7) to get the 

distribution of the total backorders iB at a stage.  We then need to find the distribution 

of , 1i iB − , the backorders at stage i due to downstream demand.  To do this, we contend 

that the probability distribution of , 1i iB − , conditioned on a realization for iB , is a 

binomial. In particular, we have for { }0,  j n∈ that 

( ), 1Pr 1 n jj
i i i i i

n
B j B n p p

j
−

−

⎛ ⎞
⎡ ⎤= = = −⎜ ⎟⎣ ⎦

⎝ ⎠
      where 

1

1

1

i

j
j

i i

j
j

p
λ

λ

−

=

=

=
∑

∑
 .             (10) 

As explanation, we note that once stage i stocks out, backorders occur randomly 

according to the rates for the Poisson demand processes.  The backorders due to 

external demand at stage i occur at rate iλ ; backorders due to internal demand from 

stage i-1 occur at rate
1

1

i

j
j

λ
−

=
∑ . Thus, if n backorders occur, the number of backorders due 
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to internal demand is a binomial random variable with parameters ( ), in p .  

Furthermore, the allocation scheme for filling backorders, described in the prior section, 

preserves this random distribution of backorders, as it fills backorders in the order of 

their occurrence.  As a consequence, at any time t, if stage i has positive backorders, 

then ( ) ( )
1

,
i

i j
j

B t D s t
=

= ∑  for some value of s<t.  Due to the memory-less property and 

independence of the Poisson demand processes, the conditional distribution of , 1i iB −  is 

binomial.   

 We can now determine the steady-state distribution of the inventory levels, 

given the policy parameters ( ) ( )1 1,  and , , NQ R c c −… . The procedure starts from the 

most upstream stage N and moves iteratively to each downstream stage, as follows:   

 

Step 1: Set i = N. Determine the steady-state distribution of ILN.  We obtain the 

distribution of ILN from equation (5) by convolving the distribution of IPN with that for 

1

N
L
i

i

D
=
∑ .  The former is a uniform random variable on the interval [ ]1,N Ns s Q+ + ; the 

latter is a Poisson random variable with mean
1

N

i
i

L λ
=
∑ . 

Step 2: Obtain the steady-state distribution of [ ]i iB IL += − , backorders at stage i. 

Step 3: Determine the steady-state distribution of , 1i iB − .  We use the distribution 

for iB with (10) to get the un-conditioned distribution for , 1i iB − .  

Step 4: Set : 1i i= − .  Determine the steady-state distribution of iIL  from (6). 

Step 5: Stop if i =1. Otherwise go to Step 2. 

 

 With the steady-state distribution of the inventory level at each stage, we can 

compute relevant performance measures, such as the expected on-hand inventory, the 

expected backorders, and the fill rate for each demand class.  We can then pose an 

optimization problem to find the best choice for the control parameters, namely the 

reorder point R, reorder quantity Q, and the critical levels{ }: 1,..., 1ic i N= −  (or 

equivalently the reserve stocks{ }1 : 1,..., 1i i is c c i N−= − = − ).  In the next section, we 

illustrate one such optimization, in which we minimize the expected on-hand inventory 
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subject to constraints on the fill rates for each demand class. 

5. Service Level Problem 

 There are many ways to look at the tradeoff between holding inventory and 

achieving a high level of customer service. We consider one problem variant, in which 

we minimize the amount of inventory needed to satisfy a given fill rate target for each 

demand class.  In effect, we define the demand classes by their fill-rate targets; we 

would cluster customers into the demand classes according to their service promises or 

expectations, with demand class 1 corresponding to the highest level of service and so 

on.  We formulate this service level problem (SLP) for a DCS as follows: 

[ ]
1

      

. .                       1, ,
          0,                   1, , 1
          

N

i
i

i i

i

N

Min z E IL

s t Fillrate for i N
s integer for i N
s  integer

β

+

=

=

≥ =
≥ = −

∑
…
…

SLP

 

where 

 
( )

( )
1

Pr 0     0
1, , 1

    0

Pr 0  

i i
i

i i

N N

IL if s
Fillrate for i N

Fillrate if s

Fillrate IL
+

⎧ > > ⎫
= = −⎨ ⎬

=⎩ ⎭
= >

…
 

The objective is to minimize the expected on-hand inventory, which is the positive part 

of the inventory level.  The reserve stocks si are the decision variables, from which we 

can find both the critical levels ci  and the reorder point R.  To simplify the presentation 

we assume that the order quantity Q is not a decision variable, but has been 

pre-specified.  

 The constraints assure that we meet a fill-rate target βi for each demand class i.  

The computation of the fill rate depends on the reserve stock level of the demand class. 

If the reserve stock for the demand class is positive, then for Poisson demand the fill 

rate equals the probability that the inventory level is positive.  When the reserve stock 

for the demand class i is zero, then the fill rate for demand class i is the same as that for 

demand class i+1.  This is because when si = 0, there is no distinction in order 

fulfillment between a demand from class i and a demand from class i+1.  

 In formulating the SLP, we expect (although don’t require) that the 

higher-priority demand classes have larger fill-rate targets; that is, we 

expect 1 2 Nβ β β≥ ≥ ≥… . Indeed, the structure of the critical-level policy guarantees 
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that demand class i has a fill rate no worse than that for demand class i+1.  

 From the model (5) – (9), we see that the inventory level at demand class i, ILi, 

depends on its reserve stock and that for lower-ranked demand classes; that is, ILi is a 

function of ( ), ,i Ns s… . In the following, we will at times use the notation 

( ), ,i i NIL s s…  to make this dependence explicit. 

 

Solution Procedure for the Service Level Problem 

 In this section we state a sequential solution method, the Single-Pass-Algorithm 

(SPA), which provides us with a good feasible solution for the SLP. We then establish a 

bound on the gap between the SPA solution and the optimal solution to the SLP. 

 SPA uses the model given by (5) - (9) to find the reserve stock for each demand 

class sequentially, starting with stage N.  For each demand class i, SPA finds the 

minimum value for its reserve stock that satisfies its fill-rate target, given the 

previously-determined reserve stocks for demand classes i+1,…,N.  We state the 

algorithm as follows: 

1. Find reserve stock and fill rate for stage N: ( )( ){ }ˆ min : Pr 0N N Ns s IL s β= > ≥ ; 

and ( )( )ˆPr 0N N NFillrate IL s= > ; let i := N-1. 

2. Find reserve stock and fill rate for stage i : 

a. If 1 1ˆ:         0;  i i i i iFillrate s Fillrate Fillrateβ+ +≥ = =  

b. If ( )( ){ }1 1ˆ ˆ ˆ:         min : Pr , , , 0 ;i i i i i N iFillrate s s IL s s sβ β+ +< = > ≥… and       

                                           ( )( )1ˆ ˆ ˆPr , , , 0i i i i NFillrate IL s s s+= >…                                              

3. Stop if i:= 1.  Otherwise, let i := i-1 and repeat step 2. 

 

 The Single-Pass-Algorithm yields a feasible solution for the SLP by 

construction: at each iterative step, it sets the reserve stock for a demand class to satisfy 

the fill-rate constraint for this demand class. However, there is no guarantee that the 

solution is optimal; later in this section we provide an example that illustrates this.  

We contend that the solution for the SPA should be quite good. To develop this 

argument, it will be helpful to re-write the objective function of SLP as 

[ ] [ ]( )
1 1 1

1 .
2

N N N

i i ii i
i i i

Qz E IL s E B L λ+

= = =

+
= = + + −∑ ∑ ∑               (11) 
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We obtain this expression from substituting (5), (6) and (8) 

into [ ] [ ] [ ]i i iE IL E IL E B+ = + , with the observation that [ ] 1
2N N

QE IP s +
= + .  Thus, we 

observe that the objective function consists of the sum of the reserve stocks and the sum 

of the external backorders, plus a constant K:   

[ ]
1 1

N N

i ii
i i

z s E B K
= =

= + +∑ ∑ .                  (12) 

We will develop a bound on z by finding a lower bound on the sum of the reserve stocks, 

and then a lower bound on the sum of the external backorders. 

 We first show that moving one unit of reserve stock from class j to class j-1 

cannot decrease the inventory level at any of the higher-ranked classes, but can result in 

more backorders.  

Proposition 1: Consider two stocking policies ( ) ( )1 1 1 2 2 2
1 2 1 2,  and ,N Ns s s s s s, , , ,… …  

where for some j, 2 1 2 1 2 1
1 11, 1,  and , , 1j j j j i is s s s s s i j j− −= − = + = ∀ ≠ − . We have that: 

 (i) ( ) ( )2 2 1 1, , , ,    for 1, 2,... 1i i N i i NIL s s IL s s i j≥ = −… … , and 

(ii) ( ) ( )2 2 1 1

1 1
, , , ,

j j

ii i N ii i N
i i

B s s B s s
= =

≥∑ ∑… … . 

Proof. 

From (5) and (6) we find that ( ) ( ) ( )2 2 1 1 1 1 1
1, , 1, , , , , -1j j N j j j N j j NIL s s IL s s s IL s s+= − =… … … .  

Thus from (7) and (8), we obtain ( ) ( )2 2 1 1, , , , 1j j N j j NB s s B s s≤ +… …  

and ( ) ( )2 2 1 1
, 1 , 1, , , , 1j j j N j j j NB s s B s s− −≤ +… … .  We can now use this result in (6) to show 

that: 

( ) ( )
( ) ( )

2 2 2 2 2
1 1 1 , 1

1 1 1 1 1
1 , 1 1 1

, , , ,

                           1 , , 1 , ,

j j N j j j j N

j j j j N j j N

IL s s s B s s

s B s s IL s s

− − − −

− − − −

= −

≥ + − − =

… …

… …
 

From ( ) ( )2 2 1 1
1 1 1 1, , , ,j j N j j NIL s s IL s s− − − −≥… … and 2 1, 1, 2i is s i j= = −…  , we find 

that ( ) ( )2 2 1 1, , , ,    for 1,2,... 2i i N i i NIL s s IL s s i j≥ = −… … , which proves the first result. 

For the second result, we can make a sample path comparison.  Suppose at time 

t, we have ( ) 1
1,j j jB t s+ < ; then there are no backorders for either case: 

( ) ( )2 2 1 1

1 1
, , , , 0

j j

ii i N ii i N
i i

B t s s B t s s
= =

= =∑ ∑… … .  If ( ) 1
1,j j jB t s+ ≥ , then 
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( ) ( )2 2 1 1, , , , 1j j N j j NB t s s B t s s= +… …  and either ( ) ( )2 2 1 1, , , , 1jj j N jj j NB t s s B t s s= +… … or 

( ) ( )2 2 1 1
, 1 , 1, , , , 1j j j N j j j NB t s s B t s s− −= +… … . In the former case we have 

( ) ( )2 2 1 1

1 1
, , , , 1

j j

ii i N ii i N
i i

B t s s B t s s
= =

= +∑ ∑… … ; in the latter case we have 

( ) ( )2 2 1 1

1 1
, , , ,

j j

ii i N ii i N
i i

B t s s B t s s
= =

=∑ ∑… … . This proves the result.  

We now use these results to establish bounds on the optimal solution. We first 

show that the solution for the SPA provides a bound on the sum of the reserve stock. 

Proposition 2:  For all feasible solutions ( )1, , Ns s…  for the SLP, we have 

ˆ
N N

i i
i j i j

s s
= =

≥∑ ∑ for all j where ( )1̂ ˆ, , Ns s…  is the solution found by the SPA. 

Proof.  

Suppose we have a feasible solution ( )1 1 1
1 2, Ns s s, ,…  such that 1 ˆ

N N

i i
i j i j

s s
= =

<∑ ∑ .  We will 

iteratively construct a series of feasible solutions, which leads to a contradiction of the 

supposition. 

  In order for ( )1 1 1
1 2, Ns s s, ,…  to be a feasible solution, we must have 1 ˆN Ns s≥ ; 

otherwise the fill-rate constraint for class N is violated. If 1 ˆN Ns s=  then we must 

have 1
1 1ˆN Ns s− −≥  by the same logic. If both 1 1

1 1ˆ ˆ,  N N N Ns s s s− −= = , then we must 

have 1
2 2ˆN Ns s− −≥  and so on.  

Iterative Step:  Let k be the largest index such that 1 ˆk ks s> ; that 

is, 1 1 1
1 1ˆ ˆ ˆ, , ,  and N N k k k ks s s s s s+ += = >… .  If k ≤ j, we have a contradiction of the original 

supposition that 1 ˆ
N N

i i
i j i j

s s
= =

<∑ ∑ . If there does not exist an index k, then we must have 

( ) ( )1 1 1
1 2 1 2ˆ ˆ ˆ, ,N Ns s s s s s, , = , ,… … , which is also a contradiction of the original supposition.  

Given k > j, then we construct a new solution: 
2 1 2 1 2 1

1 11, 1,  and , , 1k k k k i is s s s s s i k k− −= − = + = ∀ ≠ − .  By application of proposition 1 (i), 

we can show that this new solution is feasible. Since k > j, we have that 

1 2 ˆ
N N N

i i i
i j i j i j

s s s
= = =

= <∑ ∑ ∑ . 
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We now use the new solution to repeat the Iterative Step.  At each step we move 

one unit of reserve stock from a higher-numbered class to a lower-numbered class to 

create a new feasible solution. The number of possible iterative steps is finite as each 

unit of reserve stock can be moved at most N-1 times.  Therefore, at some step n we 

have either ˆ  for , ,n
i is s i j N= = …  or ( ) ( )1 1ˆ ˆ ˆ and n n n

j j j N j Ns s s s s s+ +> , , = , ,… … , both of 

which are contradictions of the original supposition.  

As a special case of this proposition, we see that 
1

ˆ
N

i
i

s
=
∑ is a lower bound on the sum of 

the reserve stocks in the objective function of the SLP. We denote
1

ˆˆ
N

i
i

s R
=

=∑ , since the 

sum of the reserve stocks is the reorder point for the critical-level policy. 

Proposition 3:  Consider two stocking policies ( ) ( )1 1 1 2 2 2
1 2 1 2,  and ,N Ns s s s s s, , , ,… …  with 

1 2

1 1

 for 1, , 1
j j

i i
i i

s s j N
= =

≤ = −∑ ∑ …  and 1 2

1 1

N N

i i
i i

s s
= =

=∑ ∑ . Then we have 

( ) ( )1 1 2 2
1 1, , , ,N Nz s s z s s≤… … . 

Proof.  

From (12) and the assumption that 1 2

1 1

N N

i i
i i

s s
= =

=∑ ∑ , we need to show that 

( ) ( )1 1 2 2

1 1
, ,

N N

ii i N ii i N
i i

E B s s E B s s
= =

⎡ ⎤ ⎡ ⎤≤⎣ ⎦ ⎣ ⎦∑ ∑… … .  This result follows directly from 

application of proposition 1 (ii).  Starting with the stocking policy ( )2 2 2
1 2, Ns s s, ,… , we 

can construct a series of new policies in which we move one unit of reserve stock from 

class j-1 to class j, and eventually reach the stocking policy ( )1 1 1
1 2, Ns s s, ,… . From 

proposition 1 (ii), each such move reduces the external backorders in classes 1 ,2, … j, 

and has no impact on backorders at class j+1,…, N.  Thus we show that 

( ) ( )1 1 2 2

1 1

, ,
N N

ii i N ii i N
i i

B s s B s s
= =

≤∑ ∑… …  , and we get the desired result by taking 

expectations.  

From this proposition, we have a lower bound on the optimal objective function value 

of the SLP: 
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( )1 1
1

ˆ ˆ0, 0, 0,
N

ii i i N N
i

R E B s s s s R K+ −
=

⎡ ⎤+ = = = = +⎣ ⎦∑ …               (13) 

 Based on these propositions we conjecture that the solution for the SPA should 

be near optimal in most settings.  We see from the lower bound that any improvement 

to the SPA solution must come by means of a reduction in backorders.  As most settings 

have high service expectations, the fill-rate targets are such that any feasible solution 

will generate, at most, a modest amount of backorders.  As a consequence, we expect 

there to be minimal opportunity to improve upon the solution given by the SPA.  We 

explore this conjecture in the next section with a computational experiment. 

Example 

       The purpose of this example is to provide some insight into why the SPA 

solution need not be optimal, yet is likely to be close to optimal. 

We assume three demand classes with the Poisson demand rates 1 8λ =  

units/year, 2 12λ =  units/year, and 3 16λ =  units/year. The replenishment lead-time is 

0.25L = years (3 months), and the reorder quantity is 1Q = . The fill-rate targets are: β1 

= 0.99, β2 = 0.94, and β3 = 0.87.  

When we apply the SPA to this problem we get: 1 2 3ˆ ˆ ˆ2,  1,  12s s s= = =  with z = 

7.09. This translates into the critical level policy: 1 2
ˆˆ ˆ2,  3 and 15c c R= = = ;  we reorder 

when the inventory position reaches 15, we stop serving demand classes 3 and 2 once 

the on-hand inventory drops to 3 and to 2, respectively.  We can use (11) to break the 

objective value into its constituent parts: 

( ) [ ]
3 3

1 2 3
1 1 1

1ˆ ˆ ˆ ˆ, ,
2

                  15      0.09       1      9   7.09

N

i ii i
i i i

Qz s s s s E B L λ
= = =

+
= + + −

= + + − =

∑ ∑ ∑  

As the expected backorders are quite small, we know from Proposition 3 that this 

solution must be very close to optimal. Indeed, the lower bound from Proposition 3 is 

7.02. 

 The optimal solution (found by exhaustive search) is 1 2 31,  0,  14s s s= = =  with 

z = 7.08. The only difference between the optimal solution and the SPA solution is that 

one unit of reserve stock has been moved from demand class 1 and demand class 2 to 

demand class 3; this move reduces the backorders at demand class 3 without 

jeopardizing the fill-rate constraint for demand class 1 and for demand class 2.  The 
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move does reduce the fill rate for demand class 1, but it still is above 0.99. 

 To appreciate the benefit of differentiating the demand classes, suppose all 

customers were to get the highest service level, namely a fill rate of 0.99. Then we need 

to set the reorder point R = 17 and the expected on-hand inventory (z) is 9.00, which is 

27% higher than the optimal solution. 

 Suppose now that the fill-rate targets are β1 = 0.99, β2 = 0.93, and β3 = 0.70. The 

SPA finds the solution: 1 2 3ˆ ˆ ˆ2,  2,  10s s s= = =  with z = 6.24.  The expected backorders 

for the SPA solution is 0.24, and the lower bound on the expected backorders is 6.04.   

The optimal solution entails moving a unit of reserve stock from demand class 1 to 

demand class 3: 1 2 31,  2,  11s s s= = =  with z = 6.14. 

 In each of these two cases we see that the SPA generates a near-optimal solution. 

We are able to improve slightly the SPA solution by shifting a unit of reserve stock 

from a higher-ranked class to a lower-ranked class. The result of this shift is that we 

reduce some backorders at the lower-ranked demand class, yet still satisfy the fill-rate 

target at the higher-ranked class.   

6. Numerical Experiment: 

To test the effectiveness of the SPA on the SLP, we compare its solution to the 

optimal solution on two set of test problems in two experiments. For the first 

experiment, we examine the performance of SPA as we vary the reorder quantity, the 

lead time, the fill-rate targets and the demand rates.  For the second experiment, we 

vary the number of  demand classes. 

For each test problem in the first experiment, there are three demand classes.  

The reorder quantity takes on one of four values: Q = 1, 4, 9, or 18. The replenishment 

lead-time from the outside supplier is one of the three values: L = 1/24 year, ¼ year, ½ 

year. There are three possible values for the fill-rate target for each of the demand 

classes: 1 0.9,  0.95, or 0.99,β =  2 0.8,  0.9, or 0.95,β =  and 3 0.7,  0.8, or 0.9β = . We 

only consider combinations with either 1 2 3β β β> ≥  or 1 2 3β β β≥ > ; thus, we have 20 

combinations of fill-rates.  Finally, we have four possible settings for the demand 

rates: 1 2 3{ 8,  =12, 16},λ λ λ= =   1 2 3{ 16,  =12, 8},λ λ λ= =  1 2 3{ 1,  3, 8},λ λ λ= = =  and 

1 2 3{ 4,   4,  4}λ λ λ= = =  units/year.  

  We specify a test problem in the first experiment by setting the number of 



 21 

demand classes (1 candidate), the replenishment lead-time (3 candidates), the reorder 

quantity (4 candidates), the set of desired fill-rates (20 candidates), and the set of 

demand rates (4 candidates). This provides a total of 960 test problems. 

 For each test problem, we compute the SPA solution 1 2 3ˆ ˆ ˆ( ,  ,  )s s s  and its cost 

from equation (12); the lower bound from equation (13); and the optimal solution and 

its cost. We find the optimal solution by a search algorithm.  We first 

compute 1 2 3 1 2 3ˆ ˆ ˆ ( 0,  0,  1)z s s s s s s= = = + + + , which is a lower bound on the cost for 

any solution for the SLP with total reserve stock equal to 1 2 3ˆ ˆ ˆ 1s s s+ + + .  In all test 

problems, we find 1 2 3ˆ ˆ ˆ( ,  ,  )z s s s  to be less than 1 2 3 1 2 3ˆ ˆ ˆ( 0,  0,  1)z s s s s s s= = = + + + . 

This observation together with the results in Proposition 2 and Proposition 3 guarantee 

that the total reserve stock in the optimal solution must be 1 2 3ˆ ˆ ˆ s s s+ + . Next, we find the 

optimal solution by searching over the integer solutions in the space: 

3 3 2 3 2 3 1 2 3 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ; ;  and s s s s s s s s s s s s≥ + ≥ + + + = + + . 

 The results of this numerical experiment support our intuition  that the SPA is 

quite effective. The SPA finds the optimal solution in 274 problem instances or 29% of 

the cases. The cost of the SPA solution is on average 0.57% higher than the cost of the 

optimal solution and 1.28% higher than the lower bound. The maximum error for SPA 

is 3.24%.  

In Table 2, we examine how the relative performance of the SPA heuristic 

changes as we vary the problem parameters.  Each cell of the table provides the average 

cost increase for the SPA solution for all test problems with the single parameter fixed. 

For instance in the cell with L=1/24, we report the average performance of the SPA for 

the 320 test problems with lead time L=1/24.  For the fill-rate targets, we have divided 

the 20 combinations according to the spread between the fill-rate targets for class 1 and 

class 3 ( 1 3β β− ). There are six combinations and 288 test problems with 

1 30 05 0 15. .β β≤ − < , eight combinations (384 problems) with 1 30 15 0 25. .β β≤ − < , 

and six combinations (288 problems) with 1 30 25. β β≤ − . 

 The performance of the SPA seems quite insensitive to the settings for the 

reorder quantity, and the replenishment lead-time. However, the performance seems to 

depend on the distribution of demand rates and the spread in fill-rate targets.  The 

performance improves slightly when there is a higher percentage of demand in the 

higher-priority demand class (class 1). In addition, the SPA performs best when the 
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spread in service levels is smallest.  

For each test problem we also compute the cost for the optimal inventory policy 

in which we provide the highest fill-rate 1β  for each demand class. Admittedly this is a 

sub-optimal policy as there is no rationing of inventory between demand classes; 

nevertheless, we observe this policy in practice as it satisfies the service requirements 

and is easy to implement.  For this set of test problems, the cost of a no-rationing policy 

is on average 18% higher than the optimal critical-level policy.   

In the second experiment, we specify four test problems, one for each setting for 

the number of demand classes: N = 2, 3, 4, or 5.  We set the replenishment lead-time L 

= ¼ year and the reorder quantity Q = 4 for each test problem. In Table 3, we specify the 

fill-rate targets and the demand rates for each test problem. As with the first experiment, 

we compute the SPA solution and cost for each test problem, as well as the optimal 

solution and its cost. We report the results in Table 3. On this set of test problems, the 

relative performance of the SPA heuristic improves as the number of demand classes 

increases. This observation is consistent with our intuition that the SPA performs better 

when there are smaller differences between the fill-rate targets for consecutive demand 

classes.    

Lead Time L = 1/24 
0.52% 

L = ¼ 
0.66% 

L= ½ 
0.54% 

 

Reorder 
Quantity 

Q=1 
0.58% 

Q=4 
0.56% 

Q=9 
0.58% 

Q=18 
0.57% 

Demand Rates { 8,  12, 16}λ =
0.64% 

{ 16,  12, 8}λ =
0.46% 

{ 1,  3, 8}λ =  
0.65% 

{ 4,  4, 4}λ =  
0.53% 

Service Target 
Spread 

1 3005 015. .β β≤ − <

0.32% 
1 3015 025. .β β≤ − <

0.56% 
1 30 25. β β≤ −

0.84% 
 

Table 2: Average increase in SPA solution relative to optimal solution 

 

N Service Targets Demand Rates SPA 
Solution 

Optimal 
Solution 

Percent 
Difference 

2 { }0.99,  0.8β =  { }18,  18λ =  7.627 7.542 1.13% 

3 { }0.99,  0.9,  0.8β =  { }8,  12,  16λ =  6.646 6.583 0.96% 

4 { }0.99,  0.95,  0.9,  0.8β =  { }4,  6,  10,  16λ =  6.644 6.587 0.86% 

5 { }0.99,  0.95,  0.9,  0.85,  0.8β =  { }4,  6,  8,  8,  10λ = 6.628 6.591 0.56% 

Table 3: Test problems and results from second computational experiment 

7. Extensions 

In this paper we consider a single-product inventory system with multiple 
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demand classes.  We show how to map this system into an equivalent single-product 

serial inventory system.  We then apply a modeling framework for multi-echelon 

divergent systems to obtain a characterization of the steady-state performance of the 

N-demand-class inventory system for a critical-level policy.  To find the best 

critical-level policy, we pose an optimization problem to minimize the on-hand 

inventory subject to fill-rate constraints for each demand class.  We provide a 

computationally-efficient approximate procedure for solving this problem, and 

demonstrate its effectiveness on a set of test problems. In this section we first show how 

to incorporate service times into the model and how to use the model to characterize a 

multi-echelon system with multiple demand classes. We then discuss possible 

extensions to this research. 

 

Service Times.  In the presentation so far, we assume that the service time for each 

demand class is zero. That is, customers in each demand class expect their demand to 

be filled at the time of its occurrence. In many contexts, however, it is common to have 

non-zero service times, whereby a customer expects demand to be filled within some 

specified time window.  Indeed, this can be the basis for defining demand classes. 

Demand class 1 might be the customers, who, say, have a twenty-four-hour service 

time.  The other demand classes might have longer service times, say three days for 

class 2, one week for class 3, and so on.  For instance, for service parts inventory 

systems, these service times are part of the contract between the customer and the 

provider of the service parts.   Another example is where customers select the time of 

delivery, as is available from most e-tailers.  In this manner the customer defines (and 

pays for) a desired service time. 

We need to describe how the critical-level policy applies when service times are 

non-zero. Let wi be the service time for demand class i.  We assume each wi < L.  We 

say that a demand from class i that arrives at time t is due at time t + wi.  Let IOH 

represent the on-hand inventory in the system. Suppose that 1j jc IOH c− < ≤  for 

some { }1,j N∈ .  Then, if the next demand due were from class i, { }1,i j∈ , it is 

served and the inventory level IOH is reduced by one; if the next demand due were 

from class i, { }1,i j N∈ + , then it is backordered. 

This policy is not optimal as it ignores information about demand that is not yet 

due. Nevertheless, the policy would be relatively easy to implement and does allow for 
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stock rationing so as to protect the service to higher priority demand classes. 

We do assume that when a demand arrives from any demand class, the system 

inventory position is reduced by one, and a reorder is placed once the system inventory 

position reaches the reorder point. 

With these assumptions, we can re-state the steady-state equations analogous to 

(5) and (6): 

( )
1

N

N N i i
i

IL IP D L w
=

= − −∑                       (14) 

1,      1, 2, -1i i i iIL s B for i N+= − =                  (15) 

where ( )iD τ is the random variable for the external demand at stage i over an interval 

of length τ ; thus, it represents a Poisson random variable with mean iλτ . The equations 

(7), (8), (9) are the same. 

 As explanation, we refer to the operation of the N-stage serial inventory system.  

When a demand (either external or internal) occurs at time t at stage { }1,i N∈ with a 

due date of t + w, we assume that stage i does not fill this demand until its due date; if 

the stage cannot fill the demand on the due date, then the stage backorders the demand 

until it has inventory to fill it.  We also assume that at time t stage { }1, 1i N∈ −  initiates 

a one-for-one replenishment from its upstream supplier but with the due date of t + w.  

When a demand (either external or internal) occurs at time t at stage N with a due date 

of t + w, we assume that stage N reduces its inventory position by one; when its 

inventory position reaches a reorder-point equal to 1N Ns R c −= − , stage N orders on an 

external supplier. 

 The last step in developing the model for non-zero service times is to indicate 

the allocation scheme for filling backorders at each stage.  We assume that at each stage 

we fill the backorders in the order of their due dates, with no differentiation between 

external and internal backorders.  As a consequence, if ( ) 0iB t > for some stage i, then 

we can express the internal and external backorders as: 

( ) ( )
1

,
i

i j i i i
j

B t D w t wτ
=

= − −∑     

where τi < t is the most recent time at which stage i stocks out.  With this assumption we 

have that the probability distribution of internal backorders, conditioned on the total 
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backorders at a stage, is binomial, as given by (10).  

 We thus see that the model (5) – (9) extends directly to permit non-zero service 

times, with the same computational requirements. Nevertheless, there is an open 

question as to how effective is the (myopic) critical-level policy for this extension. 

 

Multi-Echelon Systems 

As a second extension, we describe how one might develop a model of a multi-echelon 

inventory system with multiple demand classes.  For instance, consider a service-parts 

distribution system in which there is a central warehouse that replenishes several local 

sites.  We assume each of the local sites is subject to Poisson demand from N classes, 

operates with a critical-level policy, and reorders on the central warehouse with an 

order quantity Q = 1.  We assume the central warehouse replenishes its inventory with a 

one-for-one replenishment from an external supplier with a deterministic lead-time, 

and fills order from the local sites on a first-come, first-served basis with a deterministic 

lead-time.  These assumptions are quite typical for low-volume, high-value service 

parts.  

 We can use the model (5) – (9) for each site, but with one modification.  When 

the central warehouse stocks out, replenishment requests from the local sites are 

delayed.  Thus, we need re-state equation (5) for the inventory at local site k as: 

, , , 0,
1

N
L

N k N k i k k
i

IL IP D B
=

= − −∑                   (16) 

where the second subscript refers to the local site, and where 0,kB denotes the 

backorders at the central warehouse that are due to local site k.  For Poisson demand we 

can use either the exact or approximate model in Graves (1985) to characterize the 

backorders at the central warehouse as a function of its base stock level.   

 Thus, we can model the performance of a multi-echelon system with N-demand 

classes for Poisson demand, one-for-one replenishment policies, and deterministic 

lead-times.  We can use this model to optimize the inventory parameters, namely the 

base stock at the central warehouse and the critical levels and reorder point at each of 

the local sites.  One approach would be to do a single-dimension search over possible 

settings for the base stock at the central warehouse. Given a base stock at the central 

warehouse, we can characterize the backorders to each of the local sites. We can then 

use (16) and (6) – (9) to optimize the inventory parameters at each local site, as 
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described in this paper.  

 

General Demand Process. We assume a Poisson demand process. The model (1) – (4) 

remains valid for demand processes with independent increments, e.g., compound 

Poisson demand. However, we would need to re-visit the next steps in the model 

development if demand were from a compound Poisson process. The distribution of the 

inventory position in equation (5), IPN, is no longer uniform, as it will depend on the 

compounding distribution.  Similarly, the conditional distribution of backorders for 

demand class i due to downstream demand is not binomial, as given by (10). The 

computation of fill rate at each demand class is also more complicated.  

 Alternatively, one might approximate the demand for each demand class by an 

independent Brownian motion process, i.e., ( ),iD s t is normally distributed with mean 

and standard deviation given by ( )  and i it s t sµ σ− − . As this process has independent 

increments, we can apply the model (1) – (4), but some care is needed in the subsequent 

analysis.  As with the case of compound Poisson demand, we would have to adapt the 

conditional distribution of , 1i iB −  in (10), as it is no longer binomial.  One would also 

need to examine how best to specify and measure service, when demand is 

approximated by a Brownian motion process. 

 

Allocation Process.  We assume that when the replenishment quantity Q is not 

sufficient to cover all backorders, we fill the backorders in the order of occurrence with 

no differentiation between external and internal backorders.  The intent is to allocate 

the replenishment quantity fairly between filling the backorders at lower-ranked 

demand classes and restoring the reserve stock for higher-ranked demand classes. 

Nevertheless, this process is independent of any objective function, and is not optimal. 

It would be of interest to understand better how this allocation scheme performs for 

various problem criteria. 

 

Lost Sales. The development of the model in this paper depends on the assumption that 

demand is backordered when it cannot be met from stock. We have not found an easy 

way to modify the current model to accommodate a lost sales assumption.  We leave 

this for future research. 
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Cost Minimization Problem. In the text we develop our analysis and solution procedure 

for one specification of the inventory problem, namely the Service Level Problem.  One 

might consider another problem specification whereby we minimize the total 

inventory-related costs, with no service-level constraints.  The objective function 

would include the expected inventory holding costs, plus the expected backorder costs.  

For instance, suppose we have an inventory holding cost of h per unit per unit time, and 

a backorder cost for demand class i of bi per unit per unit time, 

with { }1, 1, 1i ib b i N+≥ ∈ − . 

We suggest a single-pass algorithm for this problem, in which we solve a 

newsboy problem for each stage (demand class) in the serial inventory system, starting 

with stage N.  For each class i the overage cost for the newsboy problem is o
ic h= . We 

propose the following recursion for setting the underage cost: 

( )

1 1

1 1

1 1

1 1

where 

u

u ui i i
i i ii i

j j
j j

u
i

i u o
i i

c b

bc c

c
c c

λ λ β
λ λ

β

− −

= =

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − −
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
+

∑ ∑
 

As explanation, the underage cost needs to reflect the expected cost of both an external 

backorder as well as an internal backorder. The cost of an external backorder is the 

stage’s backorder cost bi.  The cost of an internal backorder is the underage cost at stage 

i-1 times the probability that stage i-1 is out of stock; we estimate this probability from 

the fill-rate βi-1 imputed from the newsboy problem at stage i-1. We get the underage 

cost at stage i from a demand-weighted average of the cost of an external and internal 

backorder. 

 We expect this algorithm to perform similarly to the SPA for the Service-Level 

Problem.  It should provide near-optimal solutions with a modest computational effort. 

Nevertheless, we leave it to future research to explore this. 
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