41,874 research outputs found

    Structural Drift: The Population Dynamics of Sequential Learning

    Get PDF
    We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream teacher and then pass samples from the model to their downstream student. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.Comment: 15 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/sdrift.ht

    Are there new models of computation? Reply to Wegner and Eberbach

    Get PDF
    Wegner and Eberbach[Weg04b] have argued that there are fundamental limitations to Turing Machines as a foundation of computability and that these can be overcome by so-called superTuring models such as interaction machines, the [pi]calculus and the $-calculus. In this paper we contest Weger and Eberbach claims

    Counter Machines and Distributed Automata: A Story about Exchanging Space and Time

    Full text link
    We prove the equivalence of two classes of counter machines and one class of distributed automata. Our counter machines operate on finite words, which they read from left to right while incrementing or decrementing a fixed number of counters. The two classes differ in the extra features they offer: one allows to copy counter values, whereas the other allows to compute copyless sums of counters. Our distributed automata, on the other hand, operate on directed path graphs that represent words. All nodes of a path synchronously execute the same finite-state machine, whose state diagram must be acyclic except for self-loops, and each node receives as input the state of its direct predecessor. These devices form a subclass of linear-time one-way cellular automata.Comment: 15 pages (+ 13 pages of appendices), 5 figures; To appear in the proceedings of AUTOMATA 2018

    A Modular Formalization of Reversibility for Concurrent Models and Languages

    Full text link
    Causal-consistent reversibility is the reference notion of reversibility for concurrency. We introduce a modular framework for defining causal-consistent reversible extensions of concurrent models and languages. We show how our framework can be used to define reversible extensions of formalisms as different as CCS and concurrent X-machines. The generality of the approach allows for the reuse of theories and techniques in different settings.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Reversible Logic Elements with Memory and Their Universality

    Full text link
    Reversible computing is a paradigm of computation that reflects physical reversibility, one of the fundamental microscopic laws of Nature. In this survey, we discuss topics on reversible logic elements with memory (RLEM), which can be used to build reversible computing systems, and their universality. An RLEM is called universal, if any reversible sequential machine (RSM) can be realized as a circuit composed only of it. Since a finite-state control and a tape cell of a reversible Turing machine (RTM) are formalized as RSMs, any RTM can be constructed from a universal RLEM. Here, we investigate 2-state RLEMs, and show that infinitely many kinds of non-degenerate RLEMs are all universal besides only four exceptions. Non-universality of these exceptional RLEMs is also argued.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Number Sequence Prediction Problems for Evaluating Computational Powers of Neural Networks

    Full text link
    Inspired by number series tests to measure human intelligence, we suggest number sequence prediction tasks to assess neural network models' computational powers for solving algorithmic problems. We define the complexity and difficulty of a number sequence prediction task with the structure of the smallest automaton that can generate the sequence. We suggest two types of number sequence prediction problems: the number-level and the digit-level problems. The number-level problems format sequences as 2-dimensional grids of digits and the digit-level problems provide a single digit input per a time step. The complexity of a number-level sequence prediction can be defined with the depth of an equivalent combinatorial logic, and the complexity of a digit-level sequence prediction can be defined with an equivalent state automaton for the generation rule. Experiments with number-level sequences suggest that CNN models are capable of learning the compound operations of sequence generation rules, but the depths of the compound operations are limited. For the digit-level problems, simple GRU and LSTM models can solve some problems with the complexity of finite state automata. Memory augmented models such as Stack-RNN, Attention, and Neural Turing Machines can solve the reverse-order task which has the complexity of simple pushdown automaton. However, all of above cannot solve general Fibonacci, Arithmetic or Geometric sequence generation problems that represent the complexity of queue automata or Turing machines. The results show that our number sequence prediction problems effectively evaluate machine learning models' computational capabilities.Comment: Accepted to 2019 AAAI Conference on Artificial Intelligenc

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science
    • …
    corecore