4,301 research outputs found

    A High Performance Fuzzy Logic Architecture for UAV Decision Making

    Get PDF
    The majority of Unmanned Aerial Vehicles (UAVs) in operation today are not truly autonomous, but are instead reliant on a remote human pilot. A high degree of autonomy can provide many advantages in terms of cost, operational resources and safety. However, one of the challenges involved in achieving autonomy is that of replicating the reasoning and decision making capabilities of a human pilot. One candidate method for providing this decision making capability is fuzzy logic. In this role, the fuzzy system must satisfy real-time constraints, process large quantities of data and relate to large knowledge bases. Consequently, there is a need for a generic, high performance fuzzy computation platform for UAV applications. Based on Lees’ [1] original work, a high performance fuzzy processing architecture, implemented in Field Programmable Gate Arrays (FPGAs), has been developed and is shown to outclass the performance of existing fuzzy processors

    Development of accident prediction model by using artificial neural network (ANN)

    Get PDF
    Statistical or crash prediction model have frequently been used in highway safety studies. They can be used in identify major contributing factors or establish relationship between crashes and explanatory accident variables. The measurements to prevent accident are from the speed reduction, widening the roads, speed enforcement, or construct the road divider, or other else. Therefore, the purpose of this study is to develop an accident prediction model at federal road FT 050 Batu Pahat to Kluang. The study process involves the identification of accident blackspot locations, establishment of general patterns of accident, analysis of the factors involved, site studies, and development of accident prediction model using Artificial Neural Network (ANN) applied software which named NeuroShell2. The significant of the variables that are selected from these accident factors are checked to ensure the developed model can give a good prediction results. The performance of neural network is evaluated by using the Mean Absolute Percentage Error (MAPE). The study result showed that the best neural network for accident prediction model at federal road FT 050 is 4-10-1 with 0.1 learning rate and 0.2 momentum rate. This network model contains the lowest value of MAPE and highest value of linear correlation, r which is 0.8986. This study has established the accident point weightage as the rank of the blackspot section by kilometer along the FT 050 road (km 1 – km 103). Several main accident factors also have been determined along this road, and after all the data gained, it has successfully analyzed by using artificial neural network

    Pembangunan dan penilaian modul berbantukan komputer bagi subjek pemasaran : Politeknik Port Dickson

    Get PDF
    Kajian ini bertujuan membangunkan Modul Berbantukan Komputer (MBK) bagi subjek Pemasaran. MBK ini dibangunkan dengan menggunakan pensian AutoPlay Media dan Flash MX. Sampel kajian ini terdiri daripada 30 orang pelajar Diploma Pemasaran di Politeknik Port Dickson. Data dikumpulkan melalui kaedah soal selidik dan dianalisis berdasarkan kekerpan, peratusan dan skor min dengan menggunakan perisian Statistical Package For Social Sciene (SPSS) versi 11.0. Dapatan kajian menunjukkan penilaian terhadap pembagunan MBK di dalam proses P&P adalah tinggi. Ini bermakna MBK ini sesuai digunakan di Politeknik Port Dickson di dalam proses P&P

    Adaptive defuzzification for fuzzy systems modeling

    Get PDF
    We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line

    Artificial Counselor System for Stock Investment

    Full text link
    This paper proposes a novel trading system which plays the role of an artificial counselor for stock investment. In this paper, the stock future prices (technical features) are predicted using Support Vector Regression. Thereafter, the predicted prices are used to recommend which portions of the budget an investor should invest in different existing stocks to have an optimum expected profit considering their level of risk tolerance. Two different methods are used for suggesting best portions, which are Markowitz portfolio theory and fuzzy investment counselor. The first approach is an optimization-based method which considers merely technical features, while the second approach is based on Fuzzy Logic taking into account both technical and fundamental features of the stock market. The experimental results on New York Stock Exchange (NYSE) show the effectiveness of the proposed system.Comment: 7 pages, 8 figures, 1 tabl

    Biplots of fuzzy coded data

    Get PDF
    A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.defuzzification, fuzzy coding, indicator matrix, measure of fit, multivariate data, multiple correspondence analysis, principal component analysis.
    corecore