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Abstract 
A mass assignment based ID3 algorithm for learning probabilistic fuzzy decision trees is introduced. Fuzzy 
partitions are used to discretise continuous feature universes and to reduce complexity when universes are 
discrete but with large cardinalities. Furthermore, the fuzzy partitioning of classification universes facilitates 
the use of these decision trees in function approximation problems. The potential of this approach is then 
illustrated by its application to a number of test and real world problems. 
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1 Introduction 
 
Over the last few decades there has been a wide spread tendency throughout society to 
collect large amounts of data relating to almost any issue for which some form of quantitative 
analysis is possible. Implicit in such data is information on patterns and relationships holding 
between the particular measured features which needs to be extracted if this wealth of 
material is to be fully exploited. The objective then is to develop methods for generating 
rules which express this information.  
 
The ID3 algorithm introduced by Quinlan [15] has proved to be an effective and popular 
method for finding decision tree rules to express information contained implicitly in discrete 
valued data sets. There are, however, a number of well known difficulties associated with the 
application of this method to real world problems. For instance, the decision tree generated is 
equivalent to a set of first order logic conditionals each of which is true for every element of 
the data set. In other words, if we generate classification rules relating a set of classes to 
values of some set of attributes then correct classification is guaranteed for each element in 
the training set. A natural consequence of this property is that classical ID3 is inappropriate 
for databases containing significant noise since the generated rules will then fit the noise and 
this may lead to a high error rate when classifying unseen cases. Furthermore, often in 
practice classification problems have continuous  attribute values associated with them 
necessitating the partitioning of relevant universes if ID3 is to be applied. This is essentially 
the approach adopted in the C4.5 algorithm [17], a successor to ID3 where the universe of a 
continuous attribute A  is partitioned by the two sets  A > α  and A ≤ α   for some parameter 
α . The use of crisp partitions in this case can be problematic since sudden and inappropriate 
changes to the assigned class may result from small changes in attribute values. Clearly such 
behaviour will reduce the generalisation capabilities of the system. A further limitation is the 
inability to utilise or classify data points where some of the attribute values have not been 
specified although in the C4.5 algorithm this problem is partially overcome by exploring all 
possible branches of the tree consistent with this point and then combining the results. 
Finally, the requirement that the set of classification values be finite and mutually exclusive 
means that classical ID3 and C4.5 cannot be applied to more general problems such as 
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function approximation or the generation of rules to summarise information stored in large 
databases. 
 
The use of fuzzy sets to partition universes can have significant advantages over more 
traditional approaches and when combined with classical decision tree induction methods 
can help to address many of the difficulties discussed above. In particular, fuzzy decision 
rules tend to be more robust and less sensitive to small changes in attribute values  near 
partition boundaries. Also such rules will tend to have greater generalisation capabilities than 
their crisp counterparts since the requirement of one hundred percent correct classification of 
the training set has been relaxed. The concept of fuzzy partition (see [18]) allows us to 
incorporate both overlapping classification and attribute classes into our induction model in a 
coherent way. This can have advantages in terms of tree complexity since empirical evidence 
suggests that this less restrictive notion of partition enables fewer attribute classes to be used. 
In addition, many problems can best be expressed using concepts  most naturally 
corresponding to overlapping classes and hence in this sense fuzzy partitions can facilitate 
the generation of rules more easily understood by humans. Of course, there is another way in 
which the incorporation of fuzzy sets can produce more ‘human’ decision rules since they are 
able to model vague concepts such as those found in natural language. This is particularly 
useful in the case of continuous variables where it can be helpful to give linguistic labels to 
the fuzzy sets such as, for example, high, medium and low. A further advantage in fuzzy 
partitions is that the inherent interpolation properties of smooth fuzzy sets enables the 
decision tree to be used, in conjunction with a defuzzification method, for function 
approximation.  
 
In the sequel we describe a method for generating probabilistic decision trees with fuzzy 
attribute and classification values. The decision trees generated are probabilistic classifiers 
analogous to those suggested by Quinlan in [16] where the probabilities are calculated 
according to the mass assignment semantics for fuzzy sets developed by Baldwin (see [3] 
and [4]). This algorithm has been implemented in Fril [1] which is a logic programming style 
language with built in capabilities for processing both probabilistic and fuzzy uncertainty. 
The decision trees can be represented in terms of Fril extended rules the syntax and 
semantics of which will be described in a later section.  
 
2 The Notion of Fuzzy Partitions 
 
In this section we introduce the basic idea of a fuzzy partition and describe how such 
partitions are utilised in the fuzzy ID3 algorithm. The notion of a partition of a universe has 
been extended to fuzzy sets by Ruspini [18] as follows: 
 
Definition 2.1  
The set of fuzzy sets 

  
f1 ,L , fn{ } form a fuzzy partition of the universe Ω  iff 

 ∀x ∈Ω χ fi
x( )

i=1

n
∑ = 1

 
The essential requirement, then, is that the sum of the membership values for an element of 
the universe across the partition is one. Furthermore, notice that if 

 
f1 ,L , fn  are restricted to 

crisp sets then this corresponds to the standard definition for a partition of Ω .  
 



Figure 1 shows an example of a fuzzy partition of [0, 1] consisting of triangular fuzzy sets 
where each member of the partition can be viewed as a fuzzy or imprecise value for an 
attribute. In fact such simple fuzzy sets have been found to be extremely effective in many 
applications.  
 
The need to partition universes introduces a new problem into decision tree induction; 
namely how to decide on the exact form of a partition for any given variable. In the current 
context this problem is naturally divided in two distinct sub-problems. These are the 
partitioning of universes of classification values and the partitioning of attribute universes. 
For classification universes we use an algorithm originally developed for the Fril data 
browser [5] based on the heuristic that the classification values generated by the data set 
should be evenly distributed across the partition sets. A number of partition points are 
selected on this basis each of which forms the apex of a triangular fuzzy set constructed so 
that together they form a fuzzy partition in accordance with definition 2.0.1. Notice that 
some user involvement is still required, however, since the number of fuzzy sets in the 
partition must be specified.  
 
                                                             Figure 1 
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With regard to partitioning attribute universes we have, for the test cases presented in the 
following sections, adopted a fairly simple minded approach and used fuzzy partitions 
consisting of evenly spaced triangular fuzzy sets, again where the actual number of sets 
required is specified by the user. There are of course many more sophisticated partitioning 
techniques that could be considered here and in particular the use of clustering techniques to 
generate apex points for triangular partitions might seem worthy of consideration. Empirical 
testing has suggested, however, that such approaches rarely improve on results obtained with 
a uniform partition and in certain cases can even lead to a deterioration in performance.  
 
 
3 Matching Fuzzy Sets 
 
In order to generate the probability values required for the decision tree induction a method 
is required for determining the level at which two fuzzy sets match. In particular, to 



determine the level of support afforded to a fuzzy clause or statement of the form   A is f  , 
where A is an attribute and f  is a fuzzy value of A, by a data object, say o, we need to be 
able to evaluate a conditional probability (or support ) for f  given o , the object’s value for 
A. 

A

The notion of semantic unification developed for the programming language Fril [1] provides 
just such a mechanism. Semantic unification is based on an alternative definition of the 
conditional probability of fuzzy sets extending Zadeh’s original definition of the probability 
of fuzzy set (see [20] ).  
 
Definition 3.1 
 
General Case: 
Let f  and  g   be fuzzy subsets of Ω   and P   be a probability distribution on Ω   then 

                                     
 
ProbP ( f| g)=

 

P f y∩ gs( )
P gs( )0

1
∫

0

1
∫  dsdy    

provided this integral exists and is undefined otherwise. 
 
Discrete Case:  
When Ω  is finite the above definition can be expressed in terms of mass assignments as 
follows: 

                              ProbP f g( )= P Fi Gj
 
 

 
 Gj

∑
Fi
∑ m f Fi( )mg Gj

 
 

 
  

where m  and m  are the mass assignment and set of focal elements for f , Fi{ }i g , Gi{ }i
f  

and g   respectively. See [3] for an introduction to mass assignment theory and for more 
details  regarding the probability of fuzzy events see [4], [6], [7] and [20]. 
 
In order to illustrate this concept consider the elementary dice example below: 
 
 
Example 3.2 
Consider a fair six sided dice so that the probability distribution on {1, 2, 3, 4, 5, 6} is given 

by 
  
P 1( ) =L= P 6( ) =

1
6

. Now suppose we know that the outcome of a throw of the dice is a 

small_ value  where   small_ value =1 / 1 + 2/ 0.7 + 3 / 0.3 and we want to know the 
probability that the outcome is about _ two   where about _ two =1/ 0.5 + 2 / 1+ 3 / 0 .5 . 
Clearly then we must calculate ProbP about_ two small_ value( ). Now 

  
msmall_value = 1,2 ,3{ }:0 .3 , 1,2{ }:0 .4 , 1{ }:0.3

 about  and m _two = 1,2 ,3{ }:0.5, 2{ }:0 .5 so 

that the value for ProbP about_ two small_ value( ) can be determined with the aid of the 
following tableau.  
 



{1,2,3}:0.3 {1.2}:0.4 {1}:0.3

{1,2,3}:0.5

{2}:0.5

P 1,2,3{ } 1,2,3{ }( )=1 P 1,2,3{ } 1,2{ }( )=1

0 .5 × 0.4 = 0.2

P 1,2,3{ } 1{}( )= 1

0 .5 × 0.3 = 0.15

P 2{ } 1,2,3{ }( )=
1
3

0 .5 × 0.3 = 0.15

0 .5 × 0.3 = 0.15

P 2{ } 1 , 2{ }( )=
1
2

0 .5 × 0.4 = 0.2

P 2{ } 1{ }( ) = 0

0 .5 × 0.3 = 0.15

mabout _two

msmall_value

 
 
From this we obtain  

   ProbP about_ two small_ value( )=1 0.15( )+1 0 .2( )+1 0.15( )+
1
3

0 .15( )+
1
2

0.2( ) = 0.65 

 
 
4 Fuzzy Probabilistic Decision Trees 
 
We are now able to utilise the above ideas in order to develop a method to generate fuzzy 
decision trees from data. The trees induced will be probabilistic classifiers similar to those 
discussed in [16] although the method for obtaining the necessary probabilities is clearly 
quite different. The nodes will consist of attributes and each emergent branch will correspond 
to a fuzzy restriction on that attribute taken from a predefined fuzzy partition of its universe. 
In addition, the possibility of fuzzy classifications necessitates the incorporation of some 
form of defuzzification procedure into our system. In this section we shall describe the 
induction algorithm together with methods for classifying unseen cases in some detail.  
 
Initially fuzzy partitions of all attribute universes with infinite or large cardinality are 
formed. For the attribute representing classification values the method described in section 2 
is used to form a partition of triangular fuzzy sets over which there is a uniform spread of 
data classification values. Again as stated in section 2 the independent attributes are 
partitioned using evenly spaced triangular fuzzy sets although more sophisticated methods 
could be used here. In both cases the user is required to specify the number of fuzzy sets in 
the partitions.  
 
Here and in the sequel we consider databases of the form  

                                           
  
D = oi = oi,1 ,L ,oi,n i =1,L, N 

 
 

 
 
 

  

where either o  is a value of the attribute A  (i.e. oi, j j i, j ∈Ω j where  Ω j is the universe of 

) or o  is a fuzzy value of the attribute A   (i.e. oAj i, j j i, j ⊆ f Ωj ). Note that by allowing 

fuzzy values for attributes we are able to represent examples where some of the attribute 
values  are unspecified, imprecisely specified, or vaguely specified. Now suppose that the 



fuzzy partition of Ω  is P  for   j   j j =1,L ,n

    
≡ Ai1

is

 then D naturally generates a support for any 

compound statement of the form B f i1
∧L∧Aik

is fik
  for k ≤ n   and , 

proportional to the sum of products w B

  
fir

∈Pi r

( ) = ProbUirr=1

k
∏ f ir

ot,ir

 
 

 
 t=1

N
∑   where Uj  denotes the 

uniform measure on Ω . Statements of the above form characterise branches of fuzzy 

decision trees and hence we can utilise these supports in the learning process. In particular, to 
evaluate the conditional probability of A

j

 i1
is f i1   i2

is given A f i2
∧L∧Aik

is fik
 we 

multiply w  by an appropriate normalising constant. More specifically B( )

Ai1
is 

1
Ai2

is f i2
L∧Aik

is f ik

 
 =

w Ai1
is f i1 

 

∧L is f∧Aik ik

 
 

w Ai1
is 

 
f ∈Pi1

∑

 
 

fik
 
  f ik

is∧L∧A  

  

I A B I A is f ∧ B( )Prob A is f B( )
f ∈PA

∑

Prob Class = − is f B( )log Prob Class
f

 is f B( ))

 Prob  isClass f B( )

 Prob Class is f B( )

I A B( )

∧ A∗is f( )

    Prob

      

f i ∧  

A more detailed exposition of this method of calculating conditional probabilities from a 
database can be found in [9]. 
 
Conditional probabilities of the above form enable us to determine the expected information 
gain from evaluating an attribute given a particular branch B. The attribute which maximises 
this gain can then be select to extend the tree along B. In practice, we need only evaluate the 
expected entropy for each candidate attribute since the attribute with the lowest expected 
entropy will maximise the information gain. The expected entropy from evaluating attribute 
A, not appearing in B, is given by 
                                     ( )=  

where for any branch B  
                        

    

I B( )
∈PClass

∑ (  

 
The general algorithm for generating a fuzzy probabilistic decision tree from D given a set of 
fuzzy partitions and stopping thresholds is, therefore, as follows: 
 
             (1) For each branch B determine the maximum value of  for 

. If this is greater than a predefined threshold or B contains all available attributes 
then terminate B and quantify this branch with the distribution 
  f ∈PClass

. 
Otherwise go to (2) 
             (2) For every attribute A not occurring in B evaluate  and select the attribute 

with the smallest value . A∗

             (3) Extend the tree by generating the new branches B  for every  

and go to (1). 
  
f ∈P

A∗

 
Example 4.1 
Consider a game played by between 1 and 8 people which simply involves each participant 
throwing a dice the winner being the individual with the highest score. In the case where 
more than one person has the highest score then each of them records a joint win. Suppose 



the game has been played repeatedly over an evening and the results of a single individual 
have been recorded in the following database where the attributes are, from left to right, 
Outcome and Score and number of players. 
 
                                   D={<lose, 1/1+2/0.3, 8> ,  
                                          <joint_win, 4, 5 >, 
                                          <win, 6, 3>, 
                                          <win, 6/1 +5/0.6 +4/0.2, 4> 
                                          <lose, 4, 6> 
                                          <lose, 3/1+4/0.6, 2> 
                                          <joint_win, 5, 6> 
                                          <joint_win, 6, 4>} 
 
We now partition the outcome universe {win, joint_win, lose} by success =win/1 +joint_win 
/0.6 , failure  = lose/1 +joint_win/0.4, the score universe {1, 2, 3, 4, 5, 6} by high_score = 
6/1 +5/0.8+4/0.3 and low_score  = 1/1 +2/1 +3/1 +4/0.7 +5/0.2 and the player universe {1, 2, 
3, 4, 5, 6, 7, 8} by many  = 8/1 +7/1 +6/1 +5/0.5 +4/0.2 and few  = 1/1 +2/1 +3/1 +4/0.8 
+5/0.5. Suppose then we want to generate a decision tree to classify Outcome in terms of 
Score and Players. To make the initial choice of attributes we must first calculate the 
conditional distributions Prob Outcome Score( ) and Prob Outcome Players( ). The latter, for 
example, can be determined by summing the product 
Prob Outcome oOutcome( )Prob Players oPlayers( )  for the data points and then normalising across 

. Outcome



 
                       Outcome many                                                        Outcome few  
               success                      failure                             success                      failure   
                (0)(1)  =0                    (1)(1)  =1                       (0)(0)  =0                    (1)(0)  =0 
          (0.6)(0.5)  =0.3           (0.4)(0.5)  =0.2              (0.6)(0.5)  =0.3           (0.4)(0.5)  =0.2 
                (1)(0)  =0                    (0)(0)  =0                       (1)(1)  =1                    (0)(1)  =0 
             (1)(0.2)..=0.2              (0)(0.2)  =0                    (1)(0.8)  =0.8              (0)(0.8)  =0 
                (0)(1)  =0                    (1)(1)  =1                       (0)(0)  =0                    (1)(0)  =0 
                (0)(0)  =0                    (1)(0)  =0                       (0)(1)  =0                    (1)(1)  =1 
             (0.6)(1)..=0.6              (0.4)(1)  =0.4                 (0.6)(0)  =0                 (0.6)(0)  =0 
          (0.6)(0.2)  =0.12         (0.4)(0.2)  =0.08            (0.6)(0.8)  =0.48         (0.4)(0.8)  =0.32 
                           --------                         -------                              --------                         ------- 
                      1.22               w1 = w2 =2.68                          w1 =  2.58              w  1.52 2 =

                     Prob success many( )=0.3128                           Prob success few( )=0.6293  
                     Prob failure many( )=0.6872                            Prob failure few( )=0.3707 
 
Also it is found that Prob few( )=0.5125 and Prob many( )=0.4875 
Hence we obtain 
              I Players( ) = 0 .5125 −0.6293log2 0 .6293− 0 .3707log2 0.3707( ) 
                                +0.4875 −0.3128log2 0.3128− 0 .6872 log2 0 .6872( )=0.924849 

Similarly we find the relevant probabilities for Score  to be  
         Prob success high_ score( )= 0.7198, Prob failure high_score( )= 0 .2802,  
         Prob success low_score( )= 0.1773, Prob failure low_ score( )= 0 .8227,  
          and Prob high_ score( )= 0 .54875 Prob low_ score( ) = 0.45125  giving 

 I Score( ) = 0.773548
 
Hence the attribute Score  is selected to generate the following sub-tree: 

                                  

 
 

:0 .7198
 
 

:0.2802
 
 

:0 .1773
 
 

:0.8227

Score

high_score low_score

sucess sucess
failure failure

 
Now setting the stopping threshold to 0.9 both branches fail to satisfy this criterion and hence 
we evaluate the remaining attribute Players to give: 
 



           

high_score

few fewmany many

 
 

success :0 .8297
 
 

failure :0.1703
 
 

success :0 .5033
 
 

failure :0.4967
 
 

success :0. 2309
 
 

failure :0.7691
 
 

success :0 .1542
 
 

failure :0.8458

Score

Players Players

low_score

 
 
 
For any decision tree of the form described above the branches correspond to a set of 
mutually exclusive and exhaustive events. This observation enables us to use probabilistic 
updating methods to determine the probability that a previously unseen example belongs to a 
particular class. More specifically, given a decision tree with branches B

 1
,L ,BT  and test 

example o
  

= o1 ,L ,on  an updated value for the probability of each classification can be 

found using Jeffrey’s rule (see [13] ) as follows: 

                      Prob
  

Class is f o( )= Prob Class is f Bi( )
i=1

T
∑ Prob Bi o( ) 

Here the conditional probabilities 
  
Prob Class is f Bi( ) are specified in the decision tree and  

           Prob B o( )= ProbUir

Air
is f ir

oir

 
 

 
 r=1

k
∏  where B

  
≡ Ai1

is f i1
∧L∧Aik

is fik
 

 
In this way we find a support for each class and classify the example as having the class with 
highest support. 
 
Notice that if each attribute universe Ω j is partitioned using m j

= o

 fuzzy sets then there is an 

upper bound of   branches to any decision tree suggesting that the above calculation 

could be extremely computationally expensive. This is partially avoided, however, since 
because only triangular fuzzy sets are used a value has non zero membership only in two 
adjacent fuzzy sets. This means that for any attribute tuple o

m jj=1

n−1
∏

 1 ,L ,on  , Prob B o( ) is 

non zero for at most 2   branches B. Precisely which branches these are can easily be 
determined so that unnecessary calculation may be avoided.  

n−1

 



In many cases where we have formed a fuzzy partition of the classification space a method is 
required for defuzzifying from fuzzy sets to precise values. This is especially important for 
function approximation problems. More, precisely then we need a method by which when 
given a knowledge base of the form 
                                      Prob  for i

  
A is fi( )= α i  = 1,L, n 

 
we can infer a value for A where it is supposed here that the universe of A is some interval of 
the real numbers.  
Now given a fuzzy restriction of the form 

 
A is fi( ) a standard defuzzification procedure is 

to take the average, assuming a uniform prior, of the values with membership 1 in fi . We 
adopt this method here (see [3]) to obtain a set of n defuzzified values each with associated 
probability αi . A single defuzzification value is then obtained simply by taking the expected 

value of these relative to the given probability distribution. In other words, if (  A is fi) is 

defuzzified to v  the final output value is given by vi = αivii=1

n
∑  

 
 
5 Fril Extended Rule Representations of Fuzzy Decision Trees 
 
In some contexts it is desirable to have rule representations of Decision trees. For classical 
discrete decision trees first order logic conditionals will suffice but for probabilistic 
classifiers clearly these are inappropriate. The extended Fril rule provides an ideal way of 
representing decision trees with associated probability values within the unified uncertainty 
framework of Fril. The syntax of the extended rule is as follows; 

                        (h if  (  )):b1 ,L,b n   
u1 ,v1( )L un ,vn( )  

   

where h represents a head of the form (<pred> arguments) and b  represents a list or 

conjunction of goals (c
i

 1 ,L,c m ) where c  is of the form (<pred> arguments). In addition, i
ui ,vi[ ] is an interval containing Prob h bi( ) where the list of goals b  is interpreted as a 

disjunction of goals. In the case where b  corresponds to a crisp event then it is assumed that 

the set of events 

i

i

  
bi i = 1,L, n{ } are mutually exclusive and exhaustive. If on the other hand 

 corresponds to a fuzzy event of the form bi  
∧ j=1

m Aj is fi,j   
 

 
  for i = 1,L, n then it is 

required that  is a fuzzy partition of 
  i =

n
U × j

m

1
=1 fi,j × j=1

m Ω j where Ω j is the universe of A  

and the fuzzy cross product is defined using the product conjunction. Given supports for the 
body terms 

j

bi   for   i = 1,L, n the support for h is evaluated using an interval version of 
Jeffrey’s rule corresponding to Jeffrey’s rule in the case of point supports. (See [3] for details 
)  
      . Clearly then by the properties of fuzzy partitions we may represent a fuzzy probabilistic 
decision tree as a set of extended rules where each rule corresponds to a particular 
classification. For instance, the decision tree from example 4.1 can be represented by the 
rule; 



 
 
                           if Outcome is success( )( (  
                                 Score is high_ score( ) and Players is few( )( ) 
                           or   Score is high_ score( ) and Players is many( )( ) 

                           or   Score is high_ score( ) and Players is few( )( ) 
                           or   Score is high_ score( ) and Players is many( )( ) 
                               ))  : 0 .8297  0 .8297( ) 0 .5033 0 .5033( )(  0 .2309  0.2309( ) 0.1542  0.1542( )) 
 
 
6 The Application of Fuzzy Probabilistic Decision Trees to Function 
Approximation and Classification Problems 
 
We shall now discuss the performance of the above fuzzy ID3 algorithm with respect to four 
test problems. The first three of these are model problems of a strongly non linear nature and 
the third is a real world problem from the field of vision.  
 
Example 6.1 
Consider the problem of classifying points in [  as legal if they lie within the 

ellipse y  and illegal otherwise given a database of triples 

−1.5,1.5 2]
2 + 2x2 =1 CLASS,X,Y  .  

                                         

legal

illegal

 
                                                              Figure 2 
 
Here the database D consists of 126 triples generated by selecting random points from 

−1.5,1.5[ 2]   and labelling them with their classification value. 
The X and Y universes are partitioned into 5 evenly spaced triangular fuzzy sets ; 
 
                                about _-1.5 =[-1.5:1 -0.75:0] 
                              about_ -0.75 =[-1.5:0 -0.75:1 0:0]  
                                    about_ 0 = [-0.75:0 0:1 0.75:0]  
                               about_ 0.75 = [0:0 0.75:1 1.5:0]  
                                  about_ 1.5 =[0.75:0 1.5:1]  
 
Using the fuzzy ID3 algorithm we obtain the following decision tree 



L:0 I:1

L:0.0092 I:0.9908
L:0.3506 I:0.6494
L:0.5090 I:0.4910
L:0.3455 I:0.6545
L:0.0131 I:0.9869

L:0.1352 I:0.8648
L:0.8131 I:0.1869
L:1 I:0
L:0.8178 I:0.1822
L:0.1327 I:0.8673

L:0.0109 I:0.9891
L:0.3629 I:0.6371
L:0.5090 I:0.5910
L:0.3455 I:0.6545
L:0.0131 I:0.9869

X

Y

Y

Y

L:0 I:1

about _ −1.5

about _ −0 .75

about _0

about _0 .75

about _1.5

about _1.5

about _1.5

about _1.5

about _0 .75

about _0 .75

about _0 .75

about _0

about _0

about _0

about _ −0 .75

about _ −0 .75

about _ −0 .75
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about _ −1.5

about _ −1.5

 
Note that since this is a binary problem only one rule is given and the probabilities for illegal 
can be calculated trivially. 
 
These decision rules correctly classified 100% of the training data set D and 99.168% of a 

test database consisting of 960 points forming a regular grid on −1.5,1.5[ 2] . The decision 
surface for the positive quadrant is given in figure 4 below. 
 

                



                                                            Figure 3 
 
As mentioned before the  incorporation of fuzzy sets into decision rules facilitates their use 
in function approximation problems. The following two examples demonstrate their potential 
in this area.  
 
Example 6.2 
In this problem a figure eight shape was generated according to the parametric equation 
x = 2−0.5 sin2t − sin t( ) , y = 2−0.5 sin2t + sin t( ) where t ∈ 0 ,2π[ ]

6]2

. Points in [ ]  are 
classified as legal if they lie within the figure and illegal if they lie outside. The database 
consisted of a 960 points from a regular grid on [ . Initially a legal / illegal 
intersection region was established by finding the intersection of the smallest two 
dimensional interval containing all the legal points and the smallest interval containing all 
the illegal points. In this case the intersection region contains all the legal points in the data 
base. 

−1.5,1.5 2

−1.6,1.

 
 

                        

I

I I

I

L

L

legal/illegal intersection region  
                                                                 Figure 4 
 
All points outside the intersection region are therefore classified as illegal. For the 
intersection region the X and Y universes where evenly partitioned into 6 triangular fuzzy 
sets respectively and a fuzzy ID3 tree with 36 branches was generated on this region. The 
tree classified 95% of from a regular grid of test points correctly and the decision surface is 
given below.  
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                                                                 Figure 5 
 
Example 6.3  
 
In this example we consider a function approximation problem involving a complex 
continuous function. Here the database consists of 528 triples X ,Y, sinXY  where the pairs 

X ,Y  form a regular grid on [ . Due to the complexity of the function on this occasion 
10 equally spaced triangular fuzzy sets are used to partition the independent variable domain 

. These are; 

0 ,3]2

0 ,3[ ]
 
                     about_ 0 = [0:1 0.333333:0 ]  
                     about_0.3333 = [0:0 0.333333:1 0.666667:0]  
                     about_ 0.6667 = [0.333333:0 0.666667:1 1:0]  
                     about _ 1 =  [0.666667:0 1:1 1.33333:0]  
                     about_ 1.333 = [1:0 1.33333:1 1.66667:0]  
                     about_1.667 = [1.33333:0 1.66667:1 2:0]  
                     about _ 2 =  [1.66667:0 2:1 2.33333:0] 
                     about _2.333 = [2:0 2.33333:1 2.66667:0]  
                     about _ 2.6667 =  [2.33333:0 2.66667:1 3:0]  
                     about _ 3 = [2.66667:0 3:1 ] 
 
As in the previous example the dependent variable domain [-1, 1] is partitioned according to 
the algorithm described in section 2 into 5 fuzzy classes; 
 
                           class_ 1 = [-1:1 0:0] 
                           class _2 = [-1:0 0:1 0.380647:0] 



                           class_ 3 = [0:0 0.380647:1 0.822602:0] 
                           class_4 = [0.380647:0 0.822602:1 1:0] 
                           class_5 = [0.822602:0 1:1] 
 
The fuzzy ID3 algorithm is used to generate a decision tree with 100 branches. The 
percentage error on a regular test database of 1024 points was 4.22427% and the decision 
surface together with true values is given below in figure 6 . 

                  

sinxy

control surface

 
                                                          Figure 6 
 
This result compares favorably with many other fuzzy engineering approaches applied to the 
problem . For example, a direct application of the Fril data browser (See [5] ) to form Fril 
conditional rules leads to considerable decomposition errors as can be seen form the control 
surface shown below. It should be noted, however, that for problems of such complexity the 
Data browser gives much better results if used in conjunction with a clustering algorithm 
such as Kohonen [14] 
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Example 6. 4 
 
The following example is motivated by a project to construct a system for the automatic 
classification of outdoor scenes (see [11] ) given a set of eight measured features. The 
database consists of 3751 vectors corresponding to the feature values from distinct segments 
of about 200 images together with their classification class. Each segment of an image is to 
be classified as one of the following 11 classes. 
 
                                           1. “Cloud / Mist” 
                                           2. “Vegetation” 
                                           3. “Road Marking” 
                                           4. “Road Surface” 
                                           5. “Road Border” 
                                           6. “Building” 
                                           7. “Bounding Object” 
                                           8. “Road Sign” 
                                           9. “Signs / Poles” 
                                         10. “Shadow” 
                                         11. “Mobile Objects” 
 
Classification is to be based on one of the following 8 features all of which are scaled so that 
their value lies in the interval [0, 1].  
 
                                         A1 Intensity 
                                         A2 Red - Green 
                                         A3 Yellow - Blue 
                                         A4 Size 
                                         A5 X co-ordinate 
                                         A6 Y co-ordinate 
                                         A7 Vertical orientation 



                                         A8 Horizontal orientation 
 
Initially each of the attribute universes was partitioned into 7 fuzzy sets and the tree 
generated to a maximum depth of 4 from the training set. The entropy criterion selected the 
attributes Intensity, Red-Green, Yellow-Blue,  X co-ordinate, Y co-ordinate to appear in a 
decision tree with 291 branches. Testing on the training set the latter classified correctly 
69.0482% of the training set and 67.2064% of a test set of 7535 points. These results 
compare favourably with direct neural network and fuzzy cross product methods (see [10]).  
 
7 Conclusions 
 
The extension of ID3 to allow fuzzy sets as attribute values and classification classes has 
been shown to resolve many of the traditional difficulties associated with applying decision 
tree methods to real word problems. In particular, this approach allows for a more natural 
and robust treatment of continuous valued attributes. Furthermore, the use of fuzzy 
classification values together with a suitable defuzzification procedure means that fuzzy ID3 
can successfully be applied to function approximation problems.  
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