
 Baldwin, J. F., Lawry, J., & Martin, T. P. (1997). Mass assignment fuzzy ID3
with applications. In In Fuzzy logic - applications and future directions
(Unicom Seminars). (pp. 278 - 294)

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/mass-assignment-fuzzy-id3-with-applications(568cac89-4700-4a97-81a6-403ee599a169).html
http://research-information.bristol.ac.uk/en/publications/mass-assignment-fuzzy-id3-with-applications(568cac89-4700-4a97-81a6-403ee599a169).html

 Mass Assignment Fuzzy ID3 with Applications

 J.F. Baldwin, J.Lawry* and T.P. Martin

 A.I. Group,
 Department of Engineering Mathematics,
 University of Bristol, Bristol BS8 1TR
 United Kingdom

Abstract
A mass assignment based ID3 algorithm for learning probabilistic fuzzy decision trees is introduced. Fuzzy
partitions are used to discretise continuous feature universes and to reduce complexity when universes are
discrete but with large cardinalities. Furthermore, the fuzzy partitioning of classification universes facilitates
the use of these decision trees in function approximation problems. The potential of this approach is then
illustrated by its application to a number of test and real world problems.

Keywords: mass assignment, fuzzy partition, fuzzy probabilistic decision tree.

1 Introduction

Over the last few decades there has been a wide spread tendency throughout society to
collect large amounts of data relating to almost any issue for which some form of quantitative
analysis is possible. Implicit in such data is information on patterns and relationships holding
between the particular measured features which needs to be extracted if this wealth of
material is to be fully exploited. The objective then is to develop methods for generating
rules which express this information.

The ID3 algorithm introduced by Quinlan [15] has proved to be an effective and popular
method for finding decision tree rules to express information contained implicitly in discrete
valued data sets. There are, however, a number of well known difficulties associated with the
application of this method to real world problems. For instance, the decision tree generated is
equivalent to a set of first order logic conditionals each of which is true for every element of
the data set. In other words, if we generate classification rules relating a set of classes to
values of some set of attributes then correct classification is guaranteed for each element in
the training set. A natural consequence of this property is that classical ID3 is inappropriate
for databases containing significant noise since the generated rules will then fit the noise and
this may lead to a high error rate when classifying unseen cases. Furthermore, often in
practice classification problems have continuous attribute values associated with them
necessitating the partitioning of relevant universes if ID3 is to be applied. This is essentially
the approach adopted in the C4.5 algorithm [17], a successor to ID3 where the universe of a
continuous attribute A is partitioned by the two sets A > α and A ≤ α for some parameter
α . The use of crisp partitions in this case can be problematic since sudden and inappropriate
changes to the assigned class may result from small changes in attribute values. Clearly such
behaviour will reduce the generalisation capabilities of the system. A further limitation is the
inability to utilise or classify data points where some of the attribute values have not been
specified although in the C4.5 algorithm this problem is partially overcome by exploring all
possible branches of the tree consistent with this point and then combining the results.
Finally, the requirement that the set of classification values be finite and mutually exclusive
means that classical ID3 and C4.5 cannot be applied to more general problems such as

* Supported by an E.P.S.R.C research assistantship

function approximation or the generation of rules to summarise information stored in large
databases.

The use of fuzzy sets to partition universes can have significant advantages over more
traditional approaches and when combined with classical decision tree induction methods
can help to address many of the difficulties discussed above. In particular, fuzzy decision
rules tend to be more robust and less sensitive to small changes in attribute values near
partition boundaries. Also such rules will tend to have greater generalisation capabilities than
their crisp counterparts since the requirement of one hundred percent correct classification of
the training set has been relaxed. The concept of fuzzy partition (see [18]) allows us to
incorporate both overlapping classification and attribute classes into our induction model in a
coherent way. This can have advantages in terms of tree complexity since empirical evidence
suggests that this less restrictive notion of partition enables fewer attribute classes to be used.
In addition, many problems can best be expressed using concepts most naturally
corresponding to overlapping classes and hence in this sense fuzzy partitions can facilitate
the generation of rules more easily understood by humans. Of course, there is another way in
which the incorporation of fuzzy sets can produce more ‘human’ decision rules since they are
able to model vague concepts such as those found in natural language. This is particularly
useful in the case of continuous variables where it can be helpful to give linguistic labels to
the fuzzy sets such as, for example, high, medium and low. A further advantage in fuzzy
partitions is that the inherent interpolation properties of smooth fuzzy sets enables the
decision tree to be used, in conjunction with a defuzzification method, for function
approximation.

In the sequel we describe a method for generating probabilistic decision trees with fuzzy
attribute and classification values. The decision trees generated are probabilistic classifiers
analogous to those suggested by Quinlan in [16] where the probabilities are calculated
according to the mass assignment semantics for fuzzy sets developed by Baldwin (see [3]
and [4]). This algorithm has been implemented in Fril [1] which is a logic programming style
language with built in capabilities for processing both probabilistic and fuzzy uncertainty.
The decision trees can be represented in terms of Fril extended rules the syntax and
semantics of which will be described in a later section.

2 The Notion of Fuzzy Partitions

In this section we introduce the basic idea of a fuzzy partition and describe how such
partitions are utilised in the fuzzy ID3 algorithm. The notion of a partition of a universe has
been extended to fuzzy sets by Ruspini [18] as follows:

Definition 2.1
The set of fuzzy sets

f1 ,L , fn{ } form a fuzzy partition of the universe Ω iff

 ∀x ∈Ω χ fi
x()

i=1

n
∑ = 1

The essential requirement, then, is that the sum of the membership values for an element of
the universe across the partition is one. Furthermore, notice that if

f1 ,L , fn are restricted to

crisp sets then this corresponds to the standard definition for a partition of Ω .

Figure 1 shows an example of a fuzzy partition of [0, 1] consisting of triangular fuzzy sets
where each member of the partition can be viewed as a fuzzy or imprecise value for an
attribute. In fact such simple fuzzy sets have been found to be extremely effective in many
applications.

The need to partition universes introduces a new problem into decision tree induction;
namely how to decide on the exact form of a partition for any given variable. In the current
context this problem is naturally divided in two distinct sub-problems. These are the
partitioning of universes of classification values and the partitioning of attribute universes.
For classification universes we use an algorithm originally developed for the Fril data
browser [5] based on the heuristic that the classification values generated by the data set
should be evenly distributed across the partition sets. A number of partition points are
selected on this basis each of which forms the apex of a triangular fuzzy set constructed so
that together they form a fuzzy partition in accordance with definition 2.0.1. Notice that
some user involvement is still required, however, since the number of fuzzy sets in the
partition must be specified.

 Figure 1

1

10.50.25 0.75

ab_0 ab_0.25 ab_0.5 ab_0.75 ab_1

a

1-a

Attribute Values

m
e
m
b
e
r
s
h
i
p
s

With regard to partitioning attribute universes we have, for the test cases presented in the
following sections, adopted a fairly simple minded approach and used fuzzy partitions
consisting of evenly spaced triangular fuzzy sets, again where the actual number of sets
required is specified by the user. There are of course many more sophisticated partitioning
techniques that could be considered here and in particular the use of clustering techniques to
generate apex points for triangular partitions might seem worthy of consideration. Empirical
testing has suggested, however, that such approaches rarely improve on results obtained with
a uniform partition and in certain cases can even lead to a deterioration in performance.

3 Matching Fuzzy Sets

In order to generate the probability values required for the decision tree induction a method
is required for determining the level at which two fuzzy sets match. In particular, to

determine the level of support afforded to a fuzzy clause or statement of the form A is f ,
where A is an attribute and f is a fuzzy value of A, by a data object, say o, we need to be
able to evaluate a conditional probability (or support) for f given o , the object’s value for
A.

A

The notion of semantic unification developed for the programming language Fril [1] provides
just such a mechanism. Semantic unification is based on an alternative definition of the
conditional probability of fuzzy sets extending Zadeh’s original definition of the probability
of fuzzy set (see [20]).

Definition 3.1

General Case:
Let f and g be fuzzy subsets of Ω and P be a probability distribution on Ω then

ProbP (f| g)=

P f y∩ gs()
P gs()0

1
∫

0

1
∫ dsdy

provided this integral exists and is undefined otherwise.

Discrete Case:
When Ω is finite the above definition can be expressed in terms of mass assignments as
follows:

 ProbP f g()= P Fi Gj

 Gj

∑
Fi
∑ m f Fi()mg Gj

where m and m are the mass assignment and set of focal elements for f , Fi{ }i g , Gi{ }i
f

and g respectively. See [3] for an introduction to mass assignment theory and for more
details regarding the probability of fuzzy events see [4], [6], [7] and [20].

In order to illustrate this concept consider the elementary dice example below:

Example 3.2
Consider a fair six sided dice so that the probability distribution on {1, 2, 3, 4, 5, 6} is given

by

P 1() =L= P 6() =

1
6

. Now suppose we know that the outcome of a throw of the dice is a

small_ value where small_ value =1 / 1 + 2/ 0.7 + 3 / 0.3 and we want to know the
probability that the outcome is about _ two where about _ two =1/ 0.5 + 2 / 1+ 3 / 0 .5 .
Clearly then we must calculate ProbP about_ two small_ value(). Now

msmall_value = 1,2 ,3{ }:0 .3 , 1,2{ }:0 .4 , 1{ }:0.3

 about and m _two = 1,2 ,3{ }:0.5, 2{ }:0 .5 so

that the value for ProbP about_ two small_ value() can be determined with the aid of the
following tableau.

{1,2,3}:0.3 {1.2}:0.4 {1}:0.3

{1,2,3}:0.5

{2}:0.5

P 1,2,3{ } 1,2,3{ }()=1 P 1,2,3{ } 1,2{ }()=1

0 .5 × 0.4 = 0.2

P 1,2,3{ } 1{}()= 1

0 .5 × 0.3 = 0.15

P 2{ } 1,2,3{ }()=
1
3

0 .5 × 0.3 = 0.15

0 .5 × 0.3 = 0.15

P 2{ } 1 , 2{ }()=
1
2

0 .5 × 0.4 = 0.2

P 2{ } 1{ }() = 0

0 .5 × 0.3 = 0.15

mabout _two

msmall_value

From this we obtain

 ProbP about_ two small_ value()=1 0.15()+1 0 .2()+1 0.15()+
1
3

0 .15()+
1
2

0.2() = 0.65

4 Fuzzy Probabilistic Decision Trees

We are now able to utilise the above ideas in order to develop a method to generate fuzzy
decision trees from data. The trees induced will be probabilistic classifiers similar to those
discussed in [16] although the method for obtaining the necessary probabilities is clearly
quite different. The nodes will consist of attributes and each emergent branch will correspond
to a fuzzy restriction on that attribute taken from a predefined fuzzy partition of its universe.
In addition, the possibility of fuzzy classifications necessitates the incorporation of some
form of defuzzification procedure into our system. In this section we shall describe the
induction algorithm together with methods for classifying unseen cases in some detail.

Initially fuzzy partitions of all attribute universes with infinite or large cardinality are
formed. For the attribute representing classification values the method described in section 2
is used to form a partition of triangular fuzzy sets over which there is a uniform spread of
data classification values. Again as stated in section 2 the independent attributes are
partitioned using evenly spaced triangular fuzzy sets although more sophisticated methods
could be used here. In both cases the user is required to specify the number of fuzzy sets in
the partitions.

Here and in the sequel we consider databases of the form

D = oi = oi,1 ,L ,oi,n i =1,L, N

where either o is a value of the attribute A (i.e. oi, j j i, j ∈Ω j where Ω j is the universe of

) or o is a fuzzy value of the attribute A (i.e. oAj i, j j i, j ⊆ f Ωj). Note that by allowing

fuzzy values for attributes we are able to represent examples where some of the attribute
values are unspecified, imprecisely specified, or vaguely specified. Now suppose that the

fuzzy partition of Ω is P for j j j =1,L ,n

≡ Ai1

is

 then D naturally generates a support for any

compound statement of the form B f i1
∧L∧Aik

is fik
 for k ≤ n and ,

proportional to the sum of products w B

fir

∈Pi r

() = ProbUirr=1

k
∏ f ir

ot,ir

 t=1

N
∑ where Uj denotes the

uniform measure on Ω . Statements of the above form characterise branches of fuzzy

decision trees and hence we can utilise these supports in the learning process. In particular, to
evaluate the conditional probability of A

j

 i1
is f i1 i2

is given A f i2
∧L∧Aik

is fik
 we

multiply w by an appropriate normalising constant. More specifically B()

Ai1
is

1
Ai2

is f i2
L∧Aik

is f ik

 =

w Ai1
is f i1

∧L is f∧Aik ik

w Ai1
is

f ∈Pi1

∑

fik

 f ik

is∧L∧A

I A B I A is f ∧ B()Prob A is f B()
f ∈PA

∑

Prob Class = − is f B()log Prob Class
f

 is f B())

 Prob isClass f B()

 Prob Class is f B()

I A B()

∧ A∗is f()

 Prob

f i ∧

A more detailed exposition of this method of calculating conditional probabilities from a
database can be found in [9].

Conditional probabilities of the above form enable us to determine the expected information
gain from evaluating an attribute given a particular branch B. The attribute which maximises
this gain can then be select to extend the tree along B. In practice, we need only evaluate the
expected entropy for each candidate attribute since the attribute with the lowest expected
entropy will maximise the information gain. The expected entropy from evaluating attribute
A, not appearing in B, is given by
 ()=

where for any branch B

I B()
∈PClass

∑ (

The general algorithm for generating a fuzzy probabilistic decision tree from D given a set of
fuzzy partitions and stopping thresholds is, therefore, as follows:

 (1) For each branch B determine the maximum value of for

. If this is greater than a predefined threshold or B contains all available attributes
then terminate B and quantify this branch with the distribution
 f ∈PClass

.
Otherwise go to (2)
 (2) For every attribute A not occurring in B evaluate and select the attribute

with the smallest value . A∗

 (3) Extend the tree by generating the new branches B for every

and go to (1).

f ∈P

A∗

Example 4.1
Consider a game played by between 1 and 8 people which simply involves each participant
throwing a dice the winner being the individual with the highest score. In the case where
more than one person has the highest score then each of them records a joint win. Suppose

the game has been played repeatedly over an evening and the results of a single individual
have been recorded in the following database where the attributes are, from left to right,
Outcome and Score and number of players.

 D={<lose, 1/1+2/0.3, 8> ,
 <joint_win, 4, 5 >,
 <win, 6, 3>,
 <win, 6/1 +5/0.6 +4/0.2, 4>
 <lose, 4, 6>
 <lose, 3/1+4/0.6, 2>
 <joint_win, 5, 6>
 <joint_win, 6, 4>}

We now partition the outcome universe {win, joint_win, lose} by success =win/1 +joint_win
/0.6 , failure = lose/1 +joint_win/0.4, the score universe {1, 2, 3, 4, 5, 6} by high_score =
6/1 +5/0.8+4/0.3 and low_score = 1/1 +2/1 +3/1 +4/0.7 +5/0.2 and the player universe {1, 2,
3, 4, 5, 6, 7, 8} by many = 8/1 +7/1 +6/1 +5/0.5 +4/0.2 and few = 1/1 +2/1 +3/1 +4/0.8
+5/0.5. Suppose then we want to generate a decision tree to classify Outcome in terms of
Score and Players. To make the initial choice of attributes we must first calculate the
conditional distributions Prob Outcome Score() and Prob Outcome Players(). The latter, for
example, can be determined by summing the product
Prob Outcome oOutcome()Prob Players oPlayers() for the data points and then normalising across

. Outcome

 Outcome many Outcome few
 success failure success failure
 (0)(1) =0 (1)(1) =1 (0)(0) =0 (1)(0) =0
 (0.6)(0.5) =0.3 (0.4)(0.5) =0.2 (0.6)(0.5) =0.3 (0.4)(0.5) =0.2
 (1)(0) =0 (0)(0) =0 (1)(1) =1 (0)(1) =0
 (1)(0.2)..=0.2 (0)(0.2) =0 (1)(0.8) =0.8 (0)(0.8) =0
 (0)(1) =0 (1)(1) =1 (0)(0) =0 (1)(0) =0
 (0)(0) =0 (1)(0) =0 (0)(1) =0 (1)(1) =1
 (0.6)(1)..=0.6 (0.4)(1) =0.4 (0.6)(0) =0 (0.6)(0) =0
 (0.6)(0.2) =0.12 (0.4)(0.2) =0.08 (0.6)(0.8) =0.48 (0.4)(0.8) =0.32
 -------- ------- -------- -------
 1.22 w1 = w2 =2.68 w1 = 2.58 w 1.52 2 =

 Prob success many()=0.3128 Prob success few()=0.6293
 Prob failure many()=0.6872 Prob failure few()=0.3707

Also it is found that Prob few()=0.5125 and Prob many()=0.4875
Hence we obtain
 I Players() = 0 .5125 −0.6293log2 0 .6293− 0 .3707log2 0.3707()
 +0.4875 −0.3128log2 0.3128− 0 .6872 log2 0 .6872()=0.924849

Similarly we find the relevant probabilities for Score to be
 Prob success high_ score()= 0.7198, Prob failure high_score()= 0 .2802,
 Prob success low_score()= 0.1773, Prob failure low_ score()= 0 .8227,
 and Prob high_ score()= 0 .54875 Prob low_ score() = 0.45125 giving

 I Score() = 0.773548

Hence the attribute Score is selected to generate the following sub-tree:

:0 .7198

:0.2802

:0 .1773

:0.8227

Score

high_score low_score

sucess sucess
failure failure

Now setting the stopping threshold to 0.9 both branches fail to satisfy this criterion and hence
we evaluate the remaining attribute Players to give:

high_score

few fewmany many

success :0 .8297

failure :0.1703

success :0 .5033

failure :0.4967

success :0. 2309

failure :0.7691

success :0 .1542

failure :0.8458

Score

Players Players

low_score

For any decision tree of the form described above the branches correspond to a set of
mutually exclusive and exhaustive events. This observation enables us to use probabilistic
updating methods to determine the probability that a previously unseen example belongs to a
particular class. More specifically, given a decision tree with branches B

 1
,L ,BT and test

example o

= o1 ,L ,on an updated value for the probability of each classification can be

found using Jeffrey’s rule (see [13]) as follows:

 Prob

Class is f o()= Prob Class is f Bi()
i=1

T
∑ Prob Bi o()

Here the conditional probabilities

Prob Class is f Bi() are specified in the decision tree and

 Prob B o()= ProbUir

Air
is f ir

oir

 r=1

k
∏ where B

≡ Ai1

is f i1
∧L∧Aik

is fik

In this way we find a support for each class and classify the example as having the class with
highest support.

Notice that if each attribute universe Ω j is partitioned using m j

= o

 fuzzy sets then there is an

upper bound of branches to any decision tree suggesting that the above calculation

could be extremely computationally expensive. This is partially avoided, however, since
because only triangular fuzzy sets are used a value has non zero membership only in two
adjacent fuzzy sets. This means that for any attribute tuple o

m jj=1

n−1
∏

 1 ,L ,on , Prob B o() is

non zero for at most 2 branches B. Precisely which branches these are can easily be
determined so that unnecessary calculation may be avoided.

n−1

In many cases where we have formed a fuzzy partition of the classification space a method is
required for defuzzifying from fuzzy sets to precise values. This is especially important for
function approximation problems. More, precisely then we need a method by which when
given a knowledge base of the form
 Prob for i

A is fi()= α i = 1,L, n

we can infer a value for A where it is supposed here that the universe of A is some interval of
the real numbers.
Now given a fuzzy restriction of the form

A is fi() a standard defuzzification procedure is

to take the average, assuming a uniform prior, of the values with membership 1 in fi . We
adopt this method here (see [3]) to obtain a set of n defuzzified values each with associated
probability αi . A single defuzzification value is then obtained simply by taking the expected

value of these relative to the given probability distribution. In other words, if (A is fi) is

defuzzified to v the final output value is given by vi = αivii=1

n
∑

5 Fril Extended Rule Representations of Fuzzy Decision Trees

In some contexts it is desirable to have rule representations of Decision trees. For classical
discrete decision trees first order logic conditionals will suffice but for probabilistic
classifiers clearly these are inappropriate. The extended Fril rule provides an ideal way of
representing decision trees with associated probability values within the unified uncertainty
framework of Fril. The syntax of the extended rule is as follows;

 (h if ()):b1 ,L,b n
u1 ,v1()L un ,vn()

where h represents a head of the form (<pred> arguments) and b represents a list or

conjunction of goals (c
i

 1 ,L,c m) where c is of the form (<pred> arguments). In addition, i
ui ,vi[] is an interval containing Prob h bi() where the list of goals b is interpreted as a

disjunction of goals. In the case where b corresponds to a crisp event then it is assumed that

the set of events

i

i

bi i = 1,L, n{ } are mutually exclusive and exhaustive. If on the other hand

 corresponds to a fuzzy event of the form bi
∧ j=1

m Aj is fi,j

 for i = 1,L, n then it is

required that is a fuzzy partition of
 i =

n
U × j

m

1
=1 fi,j × j=1

m Ω j where Ω j is the universe of A

and the fuzzy cross product is defined using the product conjunction. Given supports for the
body terms

j

bi for i = 1,L, n the support for h is evaluated using an interval version of
Jeffrey’s rule corresponding to Jeffrey’s rule in the case of point supports. (See [3] for details
)
 . Clearly then by the properties of fuzzy partitions we may represent a fuzzy probabilistic
decision tree as a set of extended rules where each rule corresponds to a particular
classification. For instance, the decision tree from example 4.1 can be represented by the
rule;

 if Outcome is success()((
 Score is high_ score() and Players is few()()
 or Score is high_ score() and Players is many()()

 or Score is high_ score() and Players is few()()
 or Score is high_ score() and Players is many()()
)) : 0 .8297 0 .8297() 0 .5033 0 .5033()(0 .2309 0.2309() 0.1542 0.1542())

6 The Application of Fuzzy Probabilistic Decision Trees to Function
Approximation and Classification Problems

We shall now discuss the performance of the above fuzzy ID3 algorithm with respect to four
test problems. The first three of these are model problems of a strongly non linear nature and
the third is a real world problem from the field of vision.

Example 6.1
Consider the problem of classifying points in [as legal if they lie within the

ellipse y and illegal otherwise given a database of triples

−1.5,1.5 2]
2 + 2x2 =1 CLASS,X,Y .

legal

illegal

 Figure 2

Here the database D consists of 126 triples generated by selecting random points from

−1.5,1.5[2] and labelling them with their classification value.
The X and Y universes are partitioned into 5 evenly spaced triangular fuzzy sets ;

 about _-1.5 =[-1.5:1 -0.75:0]
 about_ -0.75 =[-1.5:0 -0.75:1 0:0]
 about_ 0 = [-0.75:0 0:1 0.75:0]
 about_ 0.75 = [0:0 0.75:1 1.5:0]
 about_ 1.5 =[0.75:0 1.5:1]

Using the fuzzy ID3 algorithm we obtain the following decision tree

L:0 I:1

L:0.0092 I:0.9908
L:0.3506 I:0.6494
L:0.5090 I:0.4910
L:0.3455 I:0.6545
L:0.0131 I:0.9869

L:0.1352 I:0.8648
L:0.8131 I:0.1869
L:1 I:0
L:0.8178 I:0.1822
L:0.1327 I:0.8673

L:0.0109 I:0.9891
L:0.3629 I:0.6371
L:0.5090 I:0.5910
L:0.3455 I:0.6545
L:0.0131 I:0.9869

X

Y

Y

Y

L:0 I:1

about _ −1.5

about _ −0 .75

about _0

about _0 .75

about _1.5

about _1.5

about _1.5

about _1.5

about _0 .75

about _0 .75

about _0 .75

about _0

about _0

about _0

about _ −0 .75

about _ −0 .75

about _ −0 .75

about _ −1.5

about _ −1.5

about _ −1.5

Note that since this is a binary problem only one rule is given and the probabilities for illegal
can be calculated trivially.

These decision rules correctly classified 100% of the training data set D and 99.168% of a

test database consisting of 960 points forming a regular grid on −1.5,1.5[2] . The decision
surface for the positive quadrant is given in figure 4 below.

 Figure 3

As mentioned before the incorporation of fuzzy sets into decision rules facilitates their use
in function approximation problems. The following two examples demonstrate their potential
in this area.

Example 6.2
In this problem a figure eight shape was generated according to the parametric equation
x = 2−0.5 sin2t − sin t() , y = 2−0.5 sin2t + sin t() where t ∈ 0 ,2π[]

6]2

. Points in [] are
classified as legal if they lie within the figure and illegal if they lie outside. The database
consisted of a 960 points from a regular grid on [. Initially a legal / illegal
intersection region was established by finding the intersection of the smallest two
dimensional interval containing all the legal points and the smallest interval containing all
the illegal points. In this case the intersection region contains all the legal points in the data
base.

−1.5,1.5 2

−1.6,1.

I

I I

I

L

L

legal/illegal intersection region
 Figure 4

All points outside the intersection region are therefore classified as illegal. For the
intersection region the X and Y universes where evenly partitioned into 6 triangular fuzzy
sets respectively and a fuzzy ID3 tree with 36 branches was generated on this region. The
tree classified 95% of from a regular grid of test points correctly and the decision surface is
given below.

-1.5

-1

-0.5

0

0.5

1

1.5
Y

 V
al

ue
s

-1
.5 -1

-0
.5 0

0.
5 1

1.
5

X Values

 Figure 5

Example 6.3

In this example we consider a function approximation problem involving a complex
continuous function. Here the database consists of 528 triples X ,Y, sinXY where the pairs

X ,Y form a regular grid on [. Due to the complexity of the function on this occasion
10 equally spaced triangular fuzzy sets are used to partition the independent variable domain

. These are;

0 ,3]2

0 ,3[]

 about_ 0 = [0:1 0.333333:0]
 about_0.3333 = [0:0 0.333333:1 0.666667:0]
 about_ 0.6667 = [0.333333:0 0.666667:1 1:0]
 about _ 1 = [0.666667:0 1:1 1.33333:0]
 about_ 1.333 = [1:0 1.33333:1 1.66667:0]
 about_1.667 = [1.33333:0 1.66667:1 2:0]
 about _ 2 = [1.66667:0 2:1 2.33333:0]
 about _2.333 = [2:0 2.33333:1 2.66667:0]
 about _ 2.6667 = [2.33333:0 2.66667:1 3:0]
 about _ 3 = [2.66667:0 3:1]

As in the previous example the dependent variable domain [-1, 1] is partitioned according to
the algorithm described in section 2 into 5 fuzzy classes;

 class_ 1 = [-1:1 0:0]
 class _2 = [-1:0 0:1 0.380647:0]

 class_ 3 = [0:0 0.380647:1 0.822602:0]
 class_4 = [0.380647:0 0.822602:1 1:0]
 class_5 = [0.822602:0 1:1]

The fuzzy ID3 algorithm is used to generate a decision tree with 100 branches. The
percentage error on a regular test database of 1024 points was 4.22427% and the decision
surface together with true values is given below in figure 6 .

sinxy

control surface

 Figure 6

This result compares favorably with many other fuzzy engineering approaches applied to the
problem . For example, a direct application of the Fril data browser (See [5]) to form Fril
conditional rules leads to considerable decomposition errors as can be seen form the control
surface shown below. It should be noted, however, that for problems of such complexity the
Data browser gives much better results if used in conjunction with a clustering algorithm
such as Kohonen [14]

sinxy

Data browser
control surface

Example 6. 4

The following example is motivated by a project to construct a system for the automatic
classification of outdoor scenes (see [11]) given a set of eight measured features. The
database consists of 3751 vectors corresponding to the feature values from distinct segments
of about 200 images together with their classification class. Each segment of an image is to
be classified as one of the following 11 classes.

 1. “Cloud / Mist”
 2. “Vegetation”
 3. “Road Marking”
 4. “Road Surface”
 5. “Road Border”
 6. “Building”
 7. “Bounding Object”
 8. “Road Sign”
 9. “Signs / Poles”
 10. “Shadow”
 11. “Mobile Objects”

Classification is to be based on one of the following 8 features all of which are scaled so that
their value lies in the interval [0, 1].

 A1 Intensity
 A2 Red - Green
 A3 Yellow - Blue
 A4 Size
 A5 X co-ordinate
 A6 Y co-ordinate
 A7 Vertical orientation

 A8 Horizontal orientation

Initially each of the attribute universes was partitioned into 7 fuzzy sets and the tree
generated to a maximum depth of 4 from the training set. The entropy criterion selected the
attributes Intensity, Red-Green, Yellow-Blue, X co-ordinate, Y co-ordinate to appear in a
decision tree with 291 branches. Testing on the training set the latter classified correctly
69.0482% of the training set and 67.2064% of a test set of 7535 points. These results
compare favourably with direct neural network and fuzzy cross product methods (see [10]).

7 Conclusions

The extension of ID3 to allow fuzzy sets as attribute values and classification classes has
been shown to resolve many of the traditional difficulties associated with applying decision
tree methods to real word problems. In particular, this approach allows for a more natural
and robust treatment of continuous valued attributes. Furthermore, the use of fuzzy
classification values together with a suitable defuzzification procedure means that fuzzy ID3
can successfully be applied to function approximation problems.

8 References

[1] J.F. Baldwin, T.P. Martin, B.W. Pilsworth, “FRIL Manual (Version 4.0)”, FRIL Systems
Ltd, Bristol Business Centre, Maggs House, Queens Road, Bristol BS8 1QX, UK, 1988.
[2] J.F. Baldwin, “Computational Models of Uncertainty Reasoning in Expert Systems”,
Computers Math. Applic. Vol. 19, No. 11 pp105-119, 1990.
[3] J.F. Baldwin, T.P. Martin, B.W. Pilsworth, “FRIL -Fuzzy and Evidential Reasoning in
A.I”, Research Studies Press, John Wiley, 1995.
[4] J.F. Baldwin, J. Lawry, T.P. Martin, “A Mass Assignment Theory of the Probability of
Fuzzy Events”, Fuzzy Sets and Systems, Vol. 83 pp353-367, 1996.
[5] J.F. Baldwin, T.P. Martin, “A Fuzzy Data Browser in Fril”, Fuzzy Logic (Ed J.F.
Baldwin), John Wiley & Sons Ltd, 1996.
[6] J.F.Baldwin, J.Lawry, T.P.Martin, “A Note on the Conditional Probability of Fuzzy
Subsets of a Continuous Domain”, to appear in Fuzzy Sets and Systems, 1996
[7] J.F.Baldwin, J.Lawry, T.P.Martin, “A Note on Probability / Possibility Consistency for
Fuzzy Events”, Proceedings of IPMU 96 Vol. 1 pp521-526, 1996.
[8] J.F. Baldwin, J.Lawry, T.P. Martin, “A Mass Assignment Theory Approach to Fuzzy
Rule Generation”, ITRC report, 1996.
[9] J.F. Baldwin, J.Lawry, T.P. Martin, “A Mass Assignment Based ID3 Algorithm for
Decision Tree Induction”, to appear in the International Journal of Intelligent Systems (1997)
[10] J.F. Baldwin, T.P. Martin, J.G. Shanahan, “Fuzzy Logic Methods in Vision
Recognition”, Fuzzy Logic: Applications and Future Directions, 1997
[11] N.W. Campbell, W.P.J. Mackeown, B.T. Thomas, T. Troscianko, “Interpreting Image
Databases by Region Classification”, to appear in Pattern Recognition, 1997
[12] U.Fayyad, K.B.Irani, “On the Handling of Continuous-Valued Attributes in Decision
Tree Generation”, Machine Learning 8, 87-102, 1992.
[13] R.C.Jeffrey, “The Logic of Decision”, Gordon & Breach Inc., New York, 1965.
[14] T.Kohonen, “Self-organizing Formation of Topologically Correct Feature Maps”,
Biological Cybernetics 43 Vol. 1, pp59-69, 1982.
[15] J.R.Quinlan, “Induction of Decision Trees”, Machine Learning 1 pp81-106, 1986.
[16] J.R.Quinlan, “Decision Trees as Probabilistic Classifiers”, Proceedings of the fourth
International Workshop on Machine Learning, 1987.

[17] J.R.Quinlan, “C4.5: Programs for Machine Learning”, San Mateo: Morgan Kaufmann,
1993.
[18] E.H.Ruspini, “A New Approach to Clustering”, Information and Control 15 pp22-32,
1969.
[19] M.Umano, H.Okamoto, I.Hatono, H.Tamura, F.Kawachi, S.Umedzu, J.Kinoshita,
“Fuzzy Decision Trees by a Fuzzy ID3 Algorithm and its Application to Diagnosis Systems”,
Proceedings of the third IEEE International Conference on Fuzzy Systems pp2113-2118,
1994.
[20] L.A. Zadeh, “Probability Measures of Fuzzy Events”, Journal of Mathematical Analysis
and Applications 23, pp421-427, 1968.
[21] J.Zeidler, M.Schlosser, “Continuous - Valued Attributes in Fuzzy Decision Trees”,
Proceedings IPMU 96 Vol. 1 pp395-400, 1996.

