46 research outputs found

    Estimating the effects of water-induced shallow landslides on soil erosion

    Get PDF
    Rainfall induced landslides and soil erosion are part of a complex system of multiple interacting processes, and both are capable of significantly affecting sediment budgets. These sediment mass movements also have the potential to significantly impact on a broad network of ecosystems health, functionality and the services they provide. To support the integrated assessment of these processes it is necessary to develop reliable modelling architectures. This paper proposes a semi-quantitative integrated methodology for a robust assessment of soil erosion rates in data poor regions affected by landslide activity. It combines heuristic, empirical and probabilistic approaches. This proposed methodology is based on the geospatial semantic array programming paradigm and has been implemented on a catchment scale methodology using Geographic Information Systems (GIS) spatial analysis tools and GNU Octave. The integrated data-transformation model relies on a modular architecture, where the information flow among modules is constrained by semantic checks. In order to improve computational reproducibility, the geospatial data transformations implemented in ESRI ArcGis are made available in the free software GRASS GIS. The proposed modelling architecture is flexible enough for future transdisciplinary scenario analysis to be more easily designed. In particular, the architecture might contribute as a novel component to simplify future integrated analyses of the potential impact of wildfires or vegetation types and distributions, on sediment transport from water induced landslides and erosion.Comment: 14 pages, 4 figures, 1 table, published in IEEE Earthzine 2014 Vol. 7 Issue 2, 910137+ 2nd quarter theme. Geospatial Semantic Array Programming. Available: http://www.earthzine.org/?p=91013

    Mind matters in mathematics and music

    Get PDF
    Mathematics and music in practice and performance, and in learning and teaching, share many characteristics, such as beauty and harmony, memory and intuition (as internal senses) and mind or intellect. These raise the principles of processing information in mathematics and music and, by implication, the role of an acquaintance with the essentials of perception, abstraction and affective connaturality in teacher education. This paper compares mathematics and music and considers the acquisition of knowledge and skills through the external and internal senses and emotions, utilizing the role of knowledge through multiple intelligences. In doing so it does not canvas the utilities of mathematics and music as fields of human endeavour so much as their role in the cultivation of serenity and knowledge in the cultured mind. This is a theoretical paper but it is based on nearly a century of teaching from the combined work of the two authors in the teaching of music and mathematics. The paper highlights the importance of inspiration in teaching, inspiration built on a thorough basis of the foundations of anthropology to include the emotions as well as the intellect. While teacher education programs rightly concern themselves with knowledge of the field of study, knowledge of pedagogy, they do not always consider the ability to inspire which is at the heart of managing and mentoring people

    Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Get PDF
    [Excerpt] Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty. This is characteristic of science-based support for environmental policy at European scale, and key aspects have also long been investigated by European Commission transnational research. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making. In WSTMe, the characteristic heterogeneity of available spatial information and complexity of the required data-transformation modelling (D-TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility. This challenging shift toward open data and reproducible research (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors within the impressively growing interconnection among domain-specific computational models and frameworks. Concise array-based mathematical formulation and implementation (with array programming tools) have proved helpful in supporting and mitigating the complexity of WSTMe when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) where semantic transparency also implies free software use (although black-boxes - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP exploits the joint semantics provided by SemAP and geospatial tools to split a complex D-TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks. GeoSemAP allows intermediate data and information layers to be more easily and formally semantically described so as to increase fault-tolerance, transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often diffcult to transfer from technical WSTMe to the science-policy interface. [...

    Free and Open Source Software underpinning the European Forest Data Centre

    Get PDF
    Worldwide, governments are growingly focusing on free and open source software (FOSS) as a move toward transparency and the freedom to run, copy, study, change and improve the software. The European Commission (EC) is also supporting the development of FOSS [...]. In addition to the financial savings, FOSS contributes to scientific knowledge freedom in computational science (CS) and is increasingly rewarded in the science-policy interface within the emerging paradigm of open science. Since complex computational science applications may be affected by software uncertainty, FOSS may help to mitigate part of the impact of software errors by CS community- driven open review, correction and evolution of scientific code. The continental scale of EC science-based policy support implies wide networks of scientific collaboration. Thematic information systems also may benefit from this approach within reproducible integrated modelling. This is supported by the EC strategy on FOSS: "for the development of new information systems, where deployment is foreseen by parties outside of the EC infrastructure, [F]OSS will be the preferred choice and in any case used whenever possible". The aim of this contribution is to highlight how a continental scale information system may exploit and integrate FOSS technologies within the transdisciplinary research underpinning such a complex system. A European example is discussed where FOSS innervates both the structure of the information system itself and the inherent transdisciplinary research for modelling the data and information which constitute the system content. [...

    Architecture of a pan-European framework for Integrated Soil Water Erosion Assessment

    Get PDF
    Soil erosion implications on future food security are gaining global attention because in many areas worldwide there is an imbalance between soil loss and its subsequent deposition. Soil erosion is a complex phenomenon affected by many factors such as climate, topography and land cover (in particular forest resources, natural vegetation and agriculture) while directly influencing water sediment transport, the quality of water resources and water storage loss. A modeling architecture, based on the Revised Universal Soil Loss Equation, is proposed and applied to evaluate and validate at regional scale potential and actual soil water erosion, enabling it to be linked to other involved natural resources. The methodology benefits from the array programming paradigm with semantic constraints (lightweight array behavioural contracts provided by the Mastrave library) to concisely implement models as composition of interoperable modules and to process heterogeneous data.JRC.H.3-Forest Resources and Climat

    Semantic Array Programming for Environmental Modelling: Application of the Mastrave Library

    Get PDF
    Environmental datasets grow in size and specialization while models designed for local scale are often unsuitable at regional/continental scale. At regional scale, data are usually available as georeferenced collections of spatially distributed despite semantically atomic information. Complex data intrinsically impose modellers to manipulate nontrivial information structures. For example, multi-dimensional arrays of time series may be composed by slices of raster spatial matrices for each time step, whilst heterogeneous collections of uneven arrays are common when dealing with data analogous to precipitation events, and these structures may ask for integration at several spatial scales, projections and temporal extents. Interestingly, it might be far more difficult to practically implement such a complexity rather than conceptually describe it: a subset of modelling generalizations may deal more with abstraction rather than with the explosion of lines of code. Many environmental modelling algorithms are composed by chains of data-transformations or trees of domain specific sub-algorithms. Concisely expressing them without the need for paying attention on the enormous set of spatio-temporal details, is a highly recommendable practice in both mathematical formulation and implementation. The use of semantic array programming paradigm is here exemplified as a powerful conceptual and practical (with the free software library Mastrave) tool for easing scalability and semantic integration in environmental modelling. Array programming, AP, is widely used for its computational effectiveness but often underexploited in reducing the gap between mathematical notation and algorithm implementations, i.e. by promoting arrays (vectors, matrices, tensors) as atomic quantities with extremely compact manipulating operators. Coherent array-based mathematical description of models can simplify complex algorithm prototyping while moving mathematical reasoning directly into the source code – because of its substantial size reduction – where the mathematical description is actually expressed in a completely formalized and reproducible way. The proposed paradigm suggests to complement the characteristic AP weak typing with semantics, both by composing generalized modular sub-models and via array oriented – thus concise – constraints. The Mastrave library use is exemplified with a regional scale benchmark application to local-average invariant (LAI) downscaling of climate raster data. Unnecessary errors frequently introduced by non-LAI upsampling are shown to be easily detected and removed when the scientific modelling practice is terse enough to let mathematical reasoning and model coding merge together.JRC.H.3-Forest Resources and Climat

    Bricolage in a hybrid digital lutherie context: a workshop study

    Get PDF
    Interaction design research typically differentiates processes involving hardware and software tools as being led by tinkering and play, versus engineering and conceptualisation. Increasingly however, embedded maker tools and platforms require hybridisation of these processes. In the domain of digital musical instrument (DMI) design, we were motivated to explore the tensions of such a hybrid process. We designed a workshop where groups of DMI designers were given the same partly-finished instrument consisting of four microphones exciting four vibrating string models. Their task was to refine this simple instrument to their liking for one hour using Pure Data software. All groups sought to use the microphone signals to control the instrument’s behaviour in rich and complex ways, but found even apparently simple mappings difficult to realise within the time constraint. We describe the difficulties they encountered and discuss emergent issues with tinkering in and with software. We conclude with further questions and suggestions for designers and technologists regarding embedded DMI design processes and tools
    corecore