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Abstract10

11

Rainfall induced landslides and soil erosion are part of a complex system of multiple
interacting processes, and both are capable of significantly affecting sediment budgets.
This may potentially impact on a broad network of ecosystems, also altering the services
they provide. To support the integrated assessment of these processes it is necessary
to develop reliable modelling architectures. This paper proposes a semi-quantitative
integrated methodology for a robust assessment of soil erosion rates in data poor
regions affected by landslide activity. It combines heuristic, empirical and probabilistic
approaches. This proposed methodology is based on the geospatial semantic array
programming paradigm and has been implemented on a catchment scale methodology
using GIS spatial analysis tools and GNU Octave. The integrated data-transformation
model relies on a modular architecture, where the information flow among modules is
constrained by semantic checks. In order to improve computational reproducibility, the
geospatial data transformations implemented in ESRI ArcGis are made available in
the free software GRASS GIS. The proposed modelling architecture is flexible enough
for future transdisciplinary scenario-analysis to be more easily designed. In particular,
the architecture might contribute as a novel component to simplify future integrated
analyses of the potential interaction landslide/erosion by water to be performed not
only for current land-cover but also exploring ecological disturbances such as wildfires
and plant pest outbreaks.

1 Introduction12

Hillslope processes can be envisaged as a cascade where surface erosion and mass movements13

are visible expressions of critical instabilities in a complex system of interacting processes that14
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control the downslope movement of material [1] in [2]. Field observations, modelling simulations15

and experimental studies have shown that soil erosion can vary considerably due to the changes16

in soil properties, vegetation cover and topography occurring after a landslide (e.g. [3, 4, 5]).17

Following landslide events the changes in soil erosion rates can be strong enough to deliver18

significant cascading impacts on ecosystems, for example due to an increased sediment yield19

to a stream network. This may potentially be of ecological and economical relevance not only20

locally (possibly driving complex changes even at the landscape-scale [6, 7]) but also off-site,21

whenever ecosystem services are important for service benefit areas connected through service22

connecting areas [8] (e.g. stream networks).23

As natural resources are intrinsically entangled in complex networks there is a growing awareness24

of the importance of these cascades. This, in turn is driving the development of integrated risk25

assessment and multi-purpose use optimization of different resources to develop appropriate26

management policies that can reliably model the potential influence of climate change on these27

process cascades, and assess the resultant economic and societal consequences.28

Landslide events will result in changes in topography and vegetation cover which in turn will29

alter surface erosion rates and sediment yields. There are a number of relevant models that30

use an integrated approach to soil erosion and landslide processes, including SHETRAN [9],31

TOPOG [10, 11], PSIAC [12] or SIBERIA [13]. WEPP-SLIP (Water Erosion Prediction project32

Shallow Landslide Integrated Prediction) [3] is a model that explicitly considers post-failure33

sediment yield. This model integrates the physical basis of the WEPP model [14], with the34

infinite slope stability model of Skempton and DeLory [15]. WEPP-SLIP is able to consider the35

post-failure changes in soil erosion rate through the changes in topography and land cover.36

Physically based models use a dynamic hydrological approach and local terrain characteristics37

for estimating spatial and temporal landslide probability [16]. The main limits of physically38

based models are that they are often optimised for small catchments and local conditions, and39

that these require in depth knowledge of local soil and climatological parameters [17]. Empirical40

methods are mainly based on the estimation of thresholds related to precipitation patterns which41

result in landslide occurrence [16]. This approach generally requires high temporal resolution42

rainfall data, which is not often available, and does not necessarily model the right processes.43

In addition it is limited to being applicable to only the same conditions under which it was44

developed [18, 17]. However, there is still room to improve the modelling of the interactions45

of these processes, for example through assessments of the changes in surface area made more46

susceptible to soil erosion following landslide events.47

To quantify the potential changes in soil erosion due to landslide occurrence it is necessary to48

know where and when on the slope a landslide initiates and how it evolves. This paper aims to49

present a new modelling approach for data-poor regions in an attempt to improve the estimation50

of sediment budgets derived from rainfall induced landsliding and soil erosion. A statistical51

approach is proposed that is based on incorporating the frequency-area landslide distribution52

model of Malamud et al. [19] within the framework of a spatially distributed empirical soil53

erosion model.54

2 the study area55

The study area (Fig.1) is situated in southern Italy in the Daunia Appennines of the Puglia region,56

within the municipal territory of Rocchetta Sant’Antonio. It covers an area of almost 10 km2.57

This area is highly susceptible to landslide activity [20, 21] with a consequent negative impact on58

the local economy [22]. The area neighbouring to the north-west of the Rocchetta Sant’Antonio59

territory presents a landslide frequency exceeding 20% for the overall area [23, 24, 22, 25]. Soil60

erosion is also widespread and the severity is largely determined by the combination of tillage61
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Figure 1: The study area (Rocchetta Sant’Antonio, Italy). Google Earth, c©2013 Google.

practices and the high erodibility of the clay-rich flysch units from which some of the local soils62

are derived [26]. Within the catchment it is possible to distinguish four major classes of land use63

(agricultural soils, woodland, pastures and grassland) and three dominant lithologies (limestone,64

sandstone and clay). Slope angles are on average approximately 10 degrees with peak slope65

angles rarely exceeding 25 to 30 degrees. An ephemeral drainage network is fed by precipitation66

during the autumn-winter period when some 600 to 750 mm of rainfall is common [22]. The67

area is characterized by a Mediterranean sub-humid climate.68

3 A new architecture for coupling of the effects of rainfall-69

induced shallow landslides and soil erosion70

3.1 geospatial semantic array programming71

Array programming is an approach for simplifying complex algorithm prototyping with an72

accurate and compact mathematical description. It originates as a means for reducing the gap73

between mathematical notation and its implementation within the model’s algorithms in a74

formalised and reproducible way. As stated by Iverson [27]: “the advantages of executability and75

universality found in programming languages can be effectively combined, in a single coherent76

language, with the advantages offered by mathematical notation”. Array programming has been77

used for building the architecture for our modelling approach. For mitigating the complexity78

of trans-disciplinary modelling and the inconsistencies between input data, parameters and79

output, semantic checks on the processed information and a modularisation of the key parts80

of the model were introduced following the semantic array programming paradigm (SemAP)81

[28, 29, 30]. The proposed architecture (Fig. 2) exploits the geospatial capacities of Geographic82

Information Systems (GIS) in order to estimate soil erosion yield (e-RUSLE model). In our83

approach we integrated SemAP and geospatial tools (ArcGis and GRASS GIS) through the84

Geospatial Semantic Array Programming paradigm (GeoSemAP). GeoSemAP exploits geospatial85

tools and Semantic Array Programming for splitting a complex data-transformation-model86
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Figure 2: Flowchart of the model. The semantic aspects of the data-transformations among
model components are highlighted within the workflow.

(D-TM) into logical blocks whose reliability can more easily be checked by applying geospatial87

and mathematical constraints.88

Semantic checks are exemplified in the following paragraphs with the notation ::constraint::.89

The semantic constraints were implemented within the code with a specialised module [31] of90

the Mastrave modelling library. A hyperlink to the corresponding online description is provided.91

3.2 applied techniques92

The pre- and post-failure soil loss rate was calculated by applying the low data demanding93

model e-RUSLE [32]. This model retains all the equations of its predecessor (RUSLE, [33]) and94

implements an extra factor to account for the effects of soil stoniness on soil erosion. Due to the95

flexibility of the modelling architecture that e-RUSLE is based on, it is possible to calibrate96

the model for application at different scales [32]. e-RUSLE was implemented using the ArcGIS97

software to first estimate the ::nonnegative::1 ::matrix::2 representing the soil erosion rates98

within the catchment without considering the influence of mass movement. The scripts applied99

for calculating the soil erosion losses can also be easily carried out using an Open Source Free100

Software such as GRASS GIS or Quantum GIS.101

1http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
2http://mastrave.org/doc/mtv_m/check_is#SAP_matrix
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Figure 3: Comparison between the Moore and Burch [41] relation and the Nearing’s [39] formula
applied for calculating the S factor of the e-RUSLE model.

To determine the slope length factor required in e-RUSLE, the D-infinity (D∞) algorithm of102

Tarboton [34] was first used to calculate the flow direction and then the flow length. Due to103

the geomorphological characteristics of the study area, a multiple-neighbour flow algorithm was104

required with the D∞ algorithm being one of the most suitable [35, 36, 37]. In GRASS GIS it is105

possible to apply a multiple-flow approach using the tool ’r.watershed’ [38]. The slope steepness106

factor was also slightly modified in comparison to the application of the e-RUSLE presented107

in Bosco et al. [32]. This was based on the Nearing’s [39] equation which performs best for108

higher slopes [40, 32]. However the Moore and Burch [41] formula is more appropriate for slopes109

lower than 12.73 degrees because it gives the correct limiting value of zero in absence of any110

steepness. A comparison of both formulas is presented in Fig. 3, where a close matching trend111

is observed between 0 and 12.73 degrees (or 0 - 0.22 rad). Consequently a merged formula can112

be obtained by using the Moore and Burch equation for slopes less than 12.73 degrees and then113

the Nearing formula for higher slopes. To calculate the slope steepness factor of the model, the114

tool r.slope.aspect [42] of GRASS can be used. The majority of the equations that e-RUSLE is115

based up have been applied using the ArcGis tool ’Map Algebra’ that in GRASS corresponds to116

’r.mapcalc’ [43].117

For quantifying the effect of size, position and number of landslides affecting this catchment the118

frequency-size distribution model proposed by Malamud et al. [19] was adopted. They found119

that landslide data from three quite different locations around the world (Italy, Guatemala and120

the USA) could be described quite well with the inverse gamma distribution121

p(AL, ρ, a, s) =
1

aΓ(ρ)

[
a

AL − s

]ρ+1

exp

[
− a

AL − s

]
(1)

In (1), p = probability density (km−2), Γ is the gamma function, AL = the landslide area (km2),122

ρ (-) is a parameter which controls the power law decay for medium and large landslide areas, a123

(km2) determines the position of the maximum in the probability distribution and s (km2) is a124

parameter which fits the exponential decay behaviour for small landslide areas. Parameter values125
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of ρ = 1.4, a = 1.28 10−3 km2 and s = -1.32 10−4 km2 were shown to provide a good fit to the126

measured data. A dataset of more than 400 reported landslides that affected the catchment127

in 2006 was made available and published by Dr Janusz Wasowski of CNR-IRPI, Bari [22, 25].128

For obtaining the landslide inventory, high resolution IKONOS satellite imagery was used. To129

make the interpretation easier, the satellite images were orthorectified and pansharpened. This130

dataset is not freely available but the IFFI database [44] is a valuable alternative to apply our131

modelling approach whenever enough data are available.132

Overall a reasonable correlation between the inverse-gamma distribution of Malamud et al. [19]133

with the above parameter values and the frequency-size distribution of the landslide database134

was found (Fig. 4). The fit is very good for landslide areas greater than or equal to the peak135

in the distribution. For smaller landslide areas to the left of the peak the agreement is not136

as good, though modifications to parameters a and s could be made to improve this section.137

However the distribution of Malamud et al. [19] and parameter values they used, were shown138

to work over a wide range of landslide sizes from various countries around the world. It was139

found that these same parameter values also provided a similar fit to the data from our field140

site suggesting the possibility of universality in the parameter values and therefore removing141

the need for calibrating the distribution for local applications. On this basis we wanted to see142

how well this would perform against data from the Rocchetta catchment and kept the original143

Malamud parameter values. The data for the smaller landslides does have a greater degree of144

uncertainty as its collection could easily have led to either an over or underestimation of the145

landslide number. This could occur through either medium landslides being classified as smaller146

due to being covered by larger landslides, or though the smaller landslides being covered by147

larger ones and therefore missed completely. The main point of this exercise wasn’t to match148

exactly the landslide-area probability distribution, but to have a physically realistic distribution149

on which to base our modelling. To predict when and where a landslide will occur is one of150

the main challenges for calculating post-failure soil loss in data-poor regions. We exploited the151

correlation between the measured data and Malamud’s distribution through combination with152

Monte Carlo simulation to analyse the effects of mass movements on soil erosion by water.153

Assuming the validity of the proposed inverse-gamma function for calculating the probability154

distribution of landslide areas we implemented a simple script (based on SemAP) in the155

MATLAB language. Starting from a ::scalar positive::3 number to represent the number of156

landslides that occurred in the catchment, we then calculate the number of landslides δNL(h)157

in the h-th class of landslides. Each class is a ::categorical-interval::4 which includes all158

the landslides with an area from AL(h) to AL(h + 1). The classes thus form a partition of159

::contiguous interval::5 s in [0, AL(hmax)] whose values are found from:160

δNL(h) =

∫ AL(h+1)

AL(h)

p(AL) dAL (2)

In order to evaluate the effect of the post-failure changes on the soil erosion rates in the161

catchment, we applied the Monte Carlo method twice. Once to randomly determine the location162

of a landslide and a second time to sample the Malamud distribution to assign its size. The163

Monte Carlo simulation was also implemented in the MATLAB language following the SemAP164

paradigm and exploiting the potentiality offered by the Mastrave Library [29] whose tools were165

largely used within the code.166

3http://mastrave.org/doc/mtv_m/check_is#SAP_scalar_positive
4http://mastrave.org/doc/mtv_m/check_is#SAP_categorical-interval
5http://mastrave.org/doc/mtv_m/check_is#SAP_contiguous_interval
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Figure 4: Dependence of the landslide probability densities on landslide area for the measured
set of data (blue) and for Malamud’s distribution (green). The probability density is given on
logarithmic and semi-logarithmic scale. A bootstrap analysis was performed for assessing the
uncertainty of the measured data.

To be more explicit: considering Y as a random variable distributed according to a given167

probability distribution, it is possible to generate n pseudo-random instances Y1,..., Yn with the168

same distribution . This may be accomplished with a classical Monte Carlo extraction. Let us169

define f(·) as a certain function of Y which is implemented, within the SemAP paradigm, as a170

D-TM transforming an instance of Y into the desired output data. Suppose we are interested in171

computing the integral A of f(·) over a given domain . This implies considering the probability172

density function π(·) of Y over :173

A =

∫
Ω

f(Y ) · π(Y ) dY,

Y ∈ Ω
Y ∼ Φ
π(Y ) density function of Φ in Y

such that

∫
Ω

π(Y ) dY = 1

(3)

Numerically, it is possible to approximately estimate A by exploiting the n Monte Carlo instances174

Y1,..., Yn as175

A ≈ Ân =
1

n

n∑
run=1

f(Yrun), ∀ run, Yrun ∼ Φ (4)

where Yrun is the run-th instance of Y corresponding to the run-th Monte Carlo iteration. From176

the law of large numbers, if n⇒∞, Ân ⇒ A. In our particular application, Ân is the average177

over n runs of simulated landslides; in each of them the total erosion by water f(·) is computed178

for the particular array of landslides Yrun . The n arrays of simulated landslides are the basis for179

f(·) to estimate the corresponding post-landslide soil erosion. Each landslide occurring in the180
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run-th simulation has an area distributed according to p̄(·). This defines π(·) as the probability181

density function with which each run-th array of landslides is distributed.182

The Monte Carlo simulation was iterated 1000 times. For each of the iterations the post-failure183

changes in soil erosion were calculated and compared with the pre-failure estimates.184

The ::matrix::6 representing the cover management factor of the e-RUSLE model was calculated185

using a 5x5 metres resolution land cover map of the study site, produced by CNR-IRPI of186

Bari using ASTER satellite multi-spectral imagery and published in [22]. The map is not187

freely available but the CLC [45] is a valid open access alternative. The post-failure changes in188

vegetation cover were used within the model for estimating the effect of mass movement on soil189

erosion. Because of the modular modelling architecture (Fig. 2), the module that calculates the190

pre-failure C factor can be used as a link among our model and other approaches for measuring191

different land disturbance effects, in order to measure their effects on soil erosion.192

The post-failure vegetation cover results were only partially altered by the slow mass movements193

that characterize this catchment (see fig. 1). As locally the slide surface may also remain194

unchanged, we introduced into the model a value representing the post-failure percentage of bare195

soil. By analysing the landslide dataset, the available pictures, satellite images and accounting196

for all the information collected during a field survey carried out within the study area, the197

percentage of the post-failure bare soil cover was estimated to be not less than 20% of the198

landslide area. For each of the pixels of the modelled landslides in each of the 1000 Monte199

Carlo iterations, the ::scalar positive::7 ::proportion::8 of bare soil was therefore randomly200

determined in the range 0.2 - 1.201

4 Results and discussion202

Table 1 shows the results of the Monte Carlo simulations. We replaced the mean values obtained203

by applying equation 4, with the median, because it is more stable in that it is only marginally204

affected by extreme values. By analysing the median on 1000 simulations of the cumulated205

pre-failure and post-failure soil erosion, an increase of 20% of the total soil loss was estimated.206

The post-failure soil erosion rate in areas where landslides occurred is, on average, around 3.5207

times the pre-failure value.208

A bootstrap analysis, based on 10,000 runs, was performed for assessing uncertainty. The209

analysis of the changes in the rate of soil erosion due to landslide occurrence shows post-failure210

increases in soil loss of approximately 1700 tons per year (bootstrap p ≤ 0.05). This corresponds211

to an increase of around 22% of the total soil erosion. We also analysed the extension of the212

area affected by slope instability. The bootstrap analysis shows that in each simulation at least213

76 hectares, corresponding to around 8.5% of the catchment, is affected by landslide activity214

(bootstrap p ≤ 0.05). By comparing this value with the area that presented slope instability215

in 2006 (around 55 hectares), the applied methodology seems to slightly overestimate. The216

graph in figure 3 shows that Malamud’s distribution seems to underestimate the number of217

small landslides (< 300 m2). Nevertheless, the probability density distribution for the Rocchetta218

landslides from 2006 is in line with those reported by Malamud et al. [19] for precipitation219

triggered landslides that took place in Guatemala in 1998. The model is in its early developmental220

phase and fine tuning the fit of the Malamud distribution to small landslides should help to221

improve the model predictions. However, for better evaluating the limits or the robustness of the222

proposed inverse-gamma distribution or of a modified version, further data would be necessary.223

The bootstrap analysis, with 10000 runs, performed on the measured data (Fig. 4) shows the224

6http://mastrave.org/doc/mtv_m/check_is#SAP_matrix
7http://mastrave.org/doc/mtv_m/check_is#SAP_scalar_positive
8http://mastrave.org/doc/mtv_m/check_is#SAP_proportion
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Table 1: Bootstrap analysis of the modelling results. The bootstrap analysis, based on 10000
runs, shows the bootstrap cumulated distribution of the pre-and post-failure soil erosion within
the area affected by landslide activity.

Quantile Pre-failure
soil loss (t)

Post-failure
soil loss (t)

Estimated landslide
activity area (ha)

5% 744.7 2530.3 76.6 (8.4%)
25% 799.2 2762.3 84.4 (9.2%)
50% 828.7 2773.3 85.5 (9.4%)
75% 843.4 2896 87.1 (9.6%)
95% 854.6 3005 88.9 (9.8%)

uncertainty associated with a single year landslide dataset is too high for extrapolating different225

parameter values. A more detailed analysis based on datasets covering a longer time interval226

would help in improving the applied methodology. An additional source of error contributing227

to the predictions that needs further investigation, arises from the selection of the model for228

estimating soil erosion and its running with limited data, thus there is considerable scope for229

errors in prediction to be strongly linked to this simplification.230

Because the capacity to estimate the changes in soil erosion from landslide activity is largely231

dependent on the quality of the available datasets, the applied methodology broadens the232

possibility of a quantitative assessment of these effects in data-poor regions. The obtained233

results, even considering a possible overestimation, confirm the important role of mass movements234

on soil erosion and the consequent necessity to better integrate these processes into soil erosion235

modelling.236

5 Conclusions237

A new method for empirically estimating the importance and extent of landslides on soil238

erosion losses in data-poor regions has been developed. This has been achieved by sampling239

the frequency-size landslide distribution proposed by Malamud et al. [19], and stochastically240

distributing the landslide location across the catchment. Given the increasing threat of soil241

erosion all over the world and the implications this has on future food security and soil and water242

quality, an in-depth understanding of the rate and extent of soil erosion processes is crucial.243

Each year, on average, between 8.5 and 10% of the catchment shows evidence of landslide244

activity that is responsible for a mean increase in the total soil erosion rate between 22 and 26%245

over the pre-failure estimate. These results confirm the potential importance of integrating the246

landslide contribution into soil erosion modelling. While this approach clearly has limitations247

the proposed approach can be seen as a first attempt to assess the landslide-erosion interaction248

in areas with limited data.249

The proposed modelling approach is also suitable to be applied in applications having a wider250

spatial extent and to be potentially implemented in a transdisciplinary context. For example, the251

relevant effect of wildfires on soil erosion and landslide susceptibility [46, 47] could be modelled252

with a higher reliability integrating the proposed approach. As stated in de Rigo et al. [47],253

wildfires can considerably increase soil erosion by water and landslide susceptibility. The changes254

in landslide susceptibility may in turn affect soil erosion. In general, considering the modelling255
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architecture (Fig. 2), if the module that calculates the pre-failure C factor value would provide256

the layer altered by a different disturbance (e.g. wildfires or pests outbreak), the presented257

modelling architecture could be applied for estimating the indirect effect of these disturbances258

on soil erosion, provided a new landslide susceptibility map, that considers the altered vegetation259

cover, is produced .260

Although the preliminary results are promising, further research is required before this method261

can be applied by the scientific community and relevant authorities with any level of confidence.262

Consideration of, and integrating within the model, post-failure changes in topography and soil263

characteristics (e.g. soil armouring [48]) is fundamental for increasing the predictive capacity of264

the model. Also a better estimation of the bare soil exposed within a landslide is fundamental for265

improving our model. It would also be worthwhile to improve the fit of the Malamud distribution266

to the data that, at the present, it is not possible due to the limited availability of measured267

data. For obtaining more reliable results, and more robust estimates of the effects of landslides268

on soil and vegetation cover, it will be also necessary to focus attention on producing a less269

uncertain zonation of the spatial probability of the landslide susceptibility in areas characterized270

by low data availability [49].271
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