
Bricolage in a hybrid digital lutherie context: a
workshop study

Jack Armitage
Centre for Digital Music

Queen Mary University of London
London, UK

j.d.k.armitage@qmul.ac.uk

Andrew McPherson
Centre for Digital Music

Queen Mary University of London
London, UK

a.mcpherson@qmul.ac.uk

ABSTRACT
Interaction design research typically differentiates processes
involving hardware and software tools as being led by tin-
kering and play, versus engineering and conceptualisation.
Increasingly however, embedded maker tools and platforms
require hybridisation of these processes. In the domain of
digital musical instrument (DMI) design, we were motivated
to explore the tensions of such a hybrid process. We designed
a workshop where groups of DMI designers were given the
same partly-finished instrument consisting of four micro-
phones exciting four vibrating string models. Their task was
to refine this simple instrument to their liking for one hour
using Pure Data software. All groups sought to use the mi-
crophone signals to control the instrument’s behaviour in
rich and complex ways, but found even apparently simple
mappings difficult to realise within the time constraint. We
describe the difficulties they encountered and discuss emer-
gent issues with tinkering in and with software. We con-
clude with further questions and suggestions for designers
and technologists regarding embedded DMI design processes
and tools.

CCS CONCEPTS
• Applied computing → Sound and music computing;
Performing arts; • Human-centered computing → User
interface programming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
AM’19, September 18–20, 2019, Nottingham, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7297-8/19/09. . . $15.00
https://doi.org/10.1145/3356590.3356604

KEYWORDS
digital musical instruments, musical instrument design, dataflow
programming, liveness, embedded systems
ACM Reference Format:
Jack Armitage and Andrew McPherson. 2019. Bricolage in a hybrid
digital lutherie context: a workshop study. In Audio Mostly (AM’19),
September 18–20, 2019, Nottingham, United Kingdom. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3356590.3356604

1 INTRODUCTION
In discourse on interaction design, design processes are often
differentiated based on whether the media involved are phys-
ical or hardware, versus graphical or software based [14, 22].
Hardware processes are typified as being led by tinkering, or
what Vallgårda and Fernaeus refer to as “bricolage practice”
[22], and software processes by more conceptual approaches
[14]. Digital musical instrument (DMI) designers increas-
ingly engage with hybrid approaches [4, 21], where varied
processes take place concurrently, or where the aforemen-
tioned distinctions break down. It is important to understand
how tensions between tinkering and engineering are nav-
igated in digital lutherie, in order to inform the design of
tools and media suited for hybrid craft [8].

To investigate these issues, we propose comparing across
DMI design activities with similar scenarios and differing
processes. Following workshop studies where DMI designers
physically sculpted DMIs using crafting materials [1, 13], we
were motivated to run the same activity where software
was instead the main focus. Software design workflows for
embeddedDMIs are in the early stages of development [3, 15],
and while new software tools are frequently proposed, little
data exists to guide them forward.
This work presents the outcomes of a workshop where

groups of three DMI designers worked with a partly-finished
instrument by manipulating its Pure Data (Pd) [18] software
patch. Like in any implementation process, the designers
confronted issues, bugs and apparent dead-ends. In the paper
we delve into these issues in detail. The next section of this
paper discusses Vallgårda and Fernaeus’ use of Levi-Strauss’
bricolage to describe interaction design practice [11, 22],
and how this relates to concepts of tinkering in and with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/227587309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3356590.3356604
https://doi.org/10.1145/3356590.3356604

AM’19, September 18–20, 2019, Nottingham, United Kingdom Jack Armitage and Andrew McPherson

programming systems [23, 24]. Following this the workshop
design and outcome themes are described and reflected on.

2 BACKGROUND
Interaction design as a bricolage practice
Vallgårda and Fernaeus propose that Levi-Strauss’ notion
of bricolage, elaborated from its essential usage to describe
tinkering and building to encapsulate a practice that “fa-
vors making connections between the tools and materials at
hand”, can be a useful resource for interaction design prac-
tice [11, 22]. Bricolage complements conceptual design by
facilitating in-situ structuring of events non-hierarchically,
and it is suggested that this way of thinking is naturally
occurring and should be formally recognised in the interac-
tion designer’s toolbelt. Levi-Strauss uses the term treasury
to describe the bricoleur’s set of “signs” and “heterogenous
objects” that are used to generate solutions to encountered is-
sues. The bricoleur continuously strives to “renew or enrich”
their treasury “with the remains of previous constructions
or deconstructions” [11].

Vallgårda and Fernaeus note that bricolage process enables
the advantageous use of the “impreciseness of our physical
world”, imperfections which are characteristic of “tangible
and material computing”. For them, graphical user interfaces
(GUI) rarely present “imperfections or unpredictable events”
and behaviour is more “prescribed”. A similar distinction
between GUIs and non-GUIs is present in McPherson et al
[14] where exploration of an unpredictable hardware device
through tinkering is described in a “cautious random walk”
style. They argue that “software interfaces show a distinctly
different pattern” which is more top-down in nature because
“there is typically no cost to moving a control across its entire
range”, whereas with physical or hardware exploration “time
and effort scale with the complexity of the change, and the
lack of undo raises the cost of a false move” [14].
Increasingly however, interaction designers confront hy-

brid practices where there is either an intimate co-mingling
of hardware and software processes, or such boundaries
become difficult to distinguish at all [4, 21]. Tracing the influ-
ence on design of the various “push and pull” effects [7] of the
hardware and software tools in these scenarios becomes chal-
lenging. As researchers seeking to facilitate hybrid craft in a
digital lutherie context [8], we are interested to understand
more about the tensions and interplay between conceptual
and bricolage ways of thinking.

Tinkering in and with programming systems
In critiquing the design of spaces and tools for hybrid craft,
Victor relates the idea of a spectrum of thinking styles span-
ning tinkering to conceptual understanding to discovery

of scientific knowledge, all of which should ideally be sup-
ported by the craft environment [24]. In Victor’s description,
tinkering is the starting point where something seems to
work, but the underlying principles are not understood. This
is contrasted with conceptual understanding reliant on for-
malised models, and the discovery of new understanding
enabled by scientific ways of thinking and “seeing tools”.
This spectrum of ways of thinking from tinkering through
to engineering through to science are regarded as naturally
co-occuring and mutually reinforcing, as in Vallgårda and
Fernaeus’ work [22]. However Victor does not tie tinkering
to hardware and conceptual understanding to software, in-
stead arguing more generally that tools should be designed
to support a variety of useful thinking styles, using the most
approrpriate representations.

A programming system, consisting of an environment “in-
stalled on the computer” and a language “installed in the
programmer’s head” [23], is one such tool that ideally would
support diverse thinking styles including tinkering. The ex-
tent to which existing programming systems and GUI soft-
ware built with them support tinkering is a subject of debate,
as highlighted in the previous section. Tinkering processes
necessarily utilise under-specified, contradictory and impos-
sible ideas, which are thought of as being difficult to repre-
sent as or in computer programs based on discrete symbolic
underlying representations [6, 12]. The “materials at hand”
aspect of tinkering could be related to the notion of liveness
in programming systems, defined by Tanimoto simply as
“the ability to modify a running program” [19], but in prac-
tice existing in a variety of forms and levels of sophistication.
Nash suggests that the types of representations used in a
programming system and its liveness level are aspects that
co-construct programming practice [16].
It is increasingly feasible for digital musical instrument

(DMI) designers to work in hybrid design contexts using
integrated and embedded DMI platforms [15]. It is however
unclear what balance of ways of thinking - tinkering, engi-
neering, science or otherwise - are required by digital luthiers
in these contexts, and in turn how well existing tools and
infrastructure support them to create the right balance. In
this workshop we wanted to explore this issue by observing
digital luthiers working together in a hybrid context.

3 WORKSHOP DESIGN
Workshop activity & environment
A one hour workshop activity was designed where groups of
three DMI designers respond to a probe called the Unfinished
Instrument (Figure 1a), which is deliberately simple and re-
quires creative and technical intervention to make it more
playable and interesting. The instrument and workshop en-
vironment are depicted in Figure 1. The goal of the activity

Bricolage in a hybrid digital lutherie context: a workshop study AM’19, September 18–20, 2019, Nottingham, United Kingdom

(a) Top view of Unfinished Instrument. (b) Instrument and software tools in situ.

adc~ 3

s~ s1

r~ s1

mtoms 60

hip~ 50 remove low freq

mic 1

feedback

gain [1-10]

MIDI note [1-128]

damping [100-20k]

decay [0-0.999]

delay-line

*~ 0.99

lop~ 10000

remove below threshold

*~ 7.5

gate 0.2

(c) Pd patch detail of mic-to-string al-
gorithm with visual outline for refer-
ence.

Debug

1

Out

2 3 4

(d) Visual overview of Pd patch with four mic-to-
string algorithms, audio output and Bela IDE in
grey and debugging utilities in blue.

Figure 1: Above: instrument and workshop environment. Below: Pd patch mic-to-string detail and visual overview.

is to facilitate open ended exploration of the instrument and
development of its character towards the aesthetic inclina-
tions of the designers. Our motivation in facilitating this is to
gain insight into how the different elements of the material
environment - the physical instrument, sensors, electronics
and software described in more detail in the next section -
affect design idea generation, exploration, decision making
and development. Towards the end of the one hour activity,
participants were asked to summarise and demonstrate the
results of their work. Afterwards they filled in a brief survey,
and were debriefed about the research project.

The instrument was previously deployed in a NIME 2017
workshop facilitating crafting with physical materials [1, 13],

and as such it is based on a simple modular physical structure.
In contrast, in this workshop a separate set of participants
were given the same physical instrument but instead they
work with a Pd patch for one hour. Pd offers a visual dataflow
programming environment where objects and connections
are represented by text boxes and lines between their inputs
and outputs [18]. The specific Pd patch is described in the
next section.

Instrument design
Physically, the Unfinished Instrument is constructed from
simple laser cut, modular parts which enable many possibili-
ties for arranging its overall form and the positioning of the

AM’19, September 18–20, 2019, Nottingham, United Kingdom Jack Armitage and Andrew McPherson

inputs (Figure 1a). Four low cost microphone capsules are
housed inside rubber grommets, which are connected to a
Bela device running a Pd patch (Figure 1b). When the player
taps or otherwise interacts with the mics, the signal is used
to excite four Karplus-Strong [9] vibrating string models. In
the Pd patch, each mic signal is pre-processed with a high
pass filter, gate and gain factor (Figure 1c). The mics are
clearly visible so that the designer is aware of what kind of
sensor they are working with and how they should approach
it [17]. The patch mixes the four string sounds together, and
in addition provides debugging facilities for printing and vi-
sualising via the Bela platform’s browser-based oscilloscope
(Figure 1d).

Pd does not feature a formal spatial syntax, meaning the
spatialisation of objects and connections are left to the author
as a secondary notation [12]. Perhaps moreso than textual
code comments, the layout of a Pd patch can communicate a
great deal about the patch and its author(s). In this workshop,
it was desirable that the patch be as transparent as possible to
a broad range of experience levels, and that it be modifiable
without too much concern for encapsulation, duplication
and deduplication. At a high level, the patch was separated
into six distinct blocks, which were connected via send and
receive objects rather than graphical connections to highlight
their separation. Four of these were mic-to-string algorithms,
duplicated left-to-right to mimic the physical design of the
instrument, and the two other blocks were for audio outputs
and debugging tools. The mic-to-string algorithm can be
visually broken down into mic processing, MIDI note to
pitch input, and feedback input.

Instrument editing workflow
When referring to Tanimoto’s liveness levels [19], Pd can
be described as having Level 4 properties (a live editable
flowchart where program data is continuously displayed and
ismanipulable). Objects and connections can be added, edited
or removed while the program is running, with the caveat is
that there can be glitches when the signal graph changes. As
a result one might elect not to make graph changes during
an artistic performance, however during design iteration
graph changes are usually frequent. Pd also support graphical
user interface (GUI) elements such as sliders, buttons and
plots, for direct manipulation of program data. In this case
however the Pd patch was running on a remote device, Bela,
so the workflow for editing the patch differed to the regular
live editing workflow. While the patch is edited live in the
standard desktop application, edits are not reflected on the
instrument in real-time, neither are changes to program data
via graphical interface elements such as sliders. Instead, the
update procedure, which was measured to take around seven
seconds for the given patch, is as follows:

(1) The user edits the patch using the desktop PureData appli-
cation.

(2) When they want to update the instrument, they save the
patch.

(3) The instrument stops running while the patch is automati-
cally copied to the embedded device and recompiled.

(4) Once the patch has been recompiled, the user can continue
to interact with the instrument.

Participants, grouping and data collection
Participants responded to an open call published on mailing
lists and social media. They were required to have at least
some experience with at least one sound and music com-
puting language. Participants were matched into groups to
balance out experience, such that every group had at least
one participant with some PureData or Max/MSP experience.
In total 15 participants were grouped into five groups of
three.
Participants self-reported their experience before the ac-

tivity and were grouped in threes into two more experi-
enced groups (G1-2) and three less experienced groups (G3-5).
Workshop sessions were documented with video and audio
recordings. Each patch update was automatically version
controlled, and the final patches were visually annotated
based on object movement, editing, deletion and addition.
Each participant completed a brief post-activity survey cov-
ering their impressions and reflections on the activity, and
the collected data was thematically analysed by the authors
[2].

4 OUTCOMES
This section presents observations made about the work-
shop in an approximately chronological way, beginning with
familiarisation and ideation, implementation patterns, evalu-
ation and iteration, and finally demonstration of outcomes
by the groups. The topic headings suggest discrete transi-
tions from one type of activity to the next, but the actual
activity was fluid across them. Some groups were already
ideating while familiarising, and some skipped discussion
of ideas and went straight to experimenting with implemen-
tation. Some groups stuck to implementing a few key ideas
generated early on, while others continued to broaden their
exploration throughout.

Familiarisation and ideation
After being introduced to the workshop brief and materials,
the groups showed little hesitation in accepting their task and
assessing the possibilities available. The initial activity across
the groups involved exploring the instrument’s responses
to different gestural interactions with the mics, which in-
cluded tapping, hitting, rubbing and scratching. From this

Bricolage in a hybrid digital lutherie context: a workshop study AM’19, September 18–20, 2019, Nottingham, United Kingdom

delay-line delay-line

*~

clip~ 0.95

s~ s1

string 1 string 2

(a) G1 A: Audio multiply
String 1 & 2.

delay-line

delwrite~ del 1000

delread~ del 200

*~ 0.8

+~

*~ 0.2

*~ 0.5

s~ s1

(b) G1 B: Delaying a
string.

delay-line

lop~ 10000

s~ s1

r~ s1

gate 0.01

(c) G3 A: Gating string
feedback.

delay-line

mtoms 60

adc~ 3 mic 1

hip~ 50

*~ 7.5

delay-line

*~ 6

high pass

MIDI note to delay

string 1 & duplicate

mtoms 72

(d) G3 B: Duplicating in
unison (1oct).

Figure 2: PureData mappings across mics and strings (laid
out and commented by the research author).

the groups perceived the mic response to be lacking sen-
sitivity, and accordingly they adjusted the mic processing
parameters to alter the response. Having made these adjust-
ments, the groups also became familiarised with the proce-
dure for editing the Pd patch and updating the instrument.
They concluded overall that the Pd patch and thus the overall
instrument was “minimal” (G4), “basic” (G4), “limited” (G2),
“simple, essential” (G3) and while not necessarily “inspiring”
(G3), it showed “potential” (G4) as a “blank canvas of possi-
bilities” (G1) and a “good starting point” (G4). Subsequently
the groups engaged briefly in ideation through discussion,
referencing gestures they were making with the instrument,
making comparisons to their own experiences and seeking
out common frames of reference.

Implementation patterns
Mappings across the Pd patch. Rather than accepting the Pd
patch structure as a given and working within it, in most
cases the groups took advantage of its flexibility and ex-
plored making new connections across the structure. Here
we describe four specific example mappings (Figure 2) and
then reflect on their use of the patch as an ideas canvas. Two
examples come from Group 1 (G1 A & G1 B), a more experi-
enced group, and two examples come from Group 3 (G3 A &
G3 B), a less experienced group.

In example G1 A (Figure 2a), G1 multiplied the outputs of
String 1 & 2 together. Theymentioned that this approach was
referencing frequency modulation, where one string could
act as a carrier and another a modulator. In example G1 B
(Figure 2b), G1 inspected the ‘delay-line’ abstraction, and
added a similar extra delay to a string. Adding further delays
to other strings, they created implicit relationships between
them by giving them different delay times.

In example G3 A (Figure 2c), G3 took the ‘gate’ abstraction
used to eliminate background noise from the mic inputs, and
inserted it in place of the decay parameter of a string. This
reduced the feedback signal much more rapidly than the
decay parameter, creating a much more percussive envelope.
In example G3 B (Figure 2c), G3 duplicated String 1 and
connected Mic 1 to its input, decreasing the input gain of the
mic and increasing the string pitch by one octave, creating a
unison effect. With this move they were proving the concept
of triggering chords or harmonies from a single input.

Audio signal-based control structures. Each group attempted
at least once to use the mic input audio signal in or as a
control structure (Figure 3). This could have been motivated
by the lack of real-time patch editing capabilities and the
lack of additional physical inputs, but equally also by extra-
neous factors. What was observed in each case was that the
participants did not find this process intuitive, regardless of
their level of experience. In this section we highlight three
examples of difficulties they faced and discuss their impact
on the groups’ design progress.

G2 filtered and scaled the outputs of String 2 & 3 to control
the decay and pitch inputs of String 1 (Figure 3a). They
wanted Mic 2 & 3 to modulate String 1 such that the player
would need to excite three inputs simultaneously. They chose
to use the string outputs rather than the direct or processed
mic inputs. Their approach was to low pass filter, scale and
translate the string signals, trying parameter values ranging
over a number of orders of magnitude. They were somewhat
satisfied with their result but could not compensate for the
low mic sensitivity.

G4 used relational operators based on discrete samples of
Mic 4 to control the pitch inputs of String 3 & 4 (Figure 3b).
They originally wanted to control the pitches using a hori-
zontal slider object in Pd, but realising this was not possible
with the non-real time workflow, they tried to implement
a control structure that would allow pitch to vary based on
Mic 4 input. The figure shows their working implementation,
but prior to this their patch spent some time in a state where
zeroes were being sent to the string pitch input, causing a
repetitive clicking sound which they assumed was occurring
in time with their metronome. Their initial threshold val-
ues were several orders of magnitude too large, which they

AM’19, September 18–20, 2019, Nottingham, United Kingdom Jack Armitage and Andrew McPherson

delay-line

delay-line

s~ s1

r~ s1

*~

lop~ 10000

*~ 0.99

lop~ 100

*~ 5000

+~ 1

*~ 100

osc~

sig~ 1

+~

delay-line

lop~ 100

*~ 5000

+~ 1

*~ 100

*~ 20

string 1

low pass

low pass

oscillator
cosine wave

number to
audio

audio out

string 3 & 2

(a) G2: String 2 & 3 to String 1 decay &
pitch.

loadbang

metro 10

snapshot~

abs

< 0.0005

sel 1

67.3 0 12

+ $1

adc~ 6

mtoms $1

hip~ 50

delay-line

sel 1

0 12

+ $1

mtoms $1

delay-line

>= 0.0005

72.7

MIDI note

string 3 string 4

select

metronome

mic 4

absolute value

high pass signal
to number

(b) G4: Mic 4 to String 3 & 4 pitch select.

adc~ 6

lop~ 10

abs~

*~ 100

clip~ 100 10000

delay-line

vcf~ 10

mic 4string 1
low pass

absolute value

voltage-controlled
bandpass filter

constrain

(c) G5 (PM): String 1 to filter input, Mic 4
to filter centre frequency.

Figure 3: PureData patch excerpts of signal to control structures (laid out and commented by author).

discovered after converting the control signal back into an
audio signal and visualising it on the oscilloscope.

G5 processed String 1 with a voltage-controlled bandpass
filter, with a filtered and scaled Mic 4 as the centre frequency
(Figure 3c). They wanted to use Mic 4 as a breath controller
for String 1. Unlike other groups, they started by visualising
the Mic 4 signal on the oscilloscope. They were able to create
an audible effect but were not completely satisfied with the
level of control.

In each of these caseswe could summarise these approaches,
which were recalled from memory rather than discovered
for the first time, as having memorable ingredients, but for-
gettable recipes. The elements required to turn a signal into
a control (filter, scale, etc) were not difficult to remember, but
we did not observe an effective and repeatable approach to
devising their ordering and parameterisation for a less than
ideal sensor. Such a recipe might have included more exten-
sive and consistent use of debugging tools, which was only
observed to a degree. Overall these difficulties impacted the
pace of design progression in the groups and led to some frus-
tration, as these tasks were perceived to be simple stepping
stones to the more sophisticated ideas they were attempting
to realise.

Evaluation, iteration and final demo
Opportunities to evaluate the instrument came at regular
intervals due to the nature of the software update process.
At these intervals, the groups would typically play, listen,
consider and discuss before deciding what to do next. There
were various evaluation outcomes and decision making at
each stage.

Firstly regarding evaluation, the groups decided that either
the implementation was working as planned or not, that in
either case the result itself was interesting or not, and if any

surprising outcomes occurred that were worth considering.
Secondly decisions had to be made as to what to do next. If
an idea was working and interesting, they could go forward
and refine, reimplement or add extra features, and if not
they had to decide whether it was worth persevering. In an
idea was working but uninteresting, or not worth pursuing
further, they could go back to older ideas or propose new
ones.

In all but a few cases where discarded ideas were deleted
from the patch, the groups scattered their ideas across the
Pd patch. Some used different mic-to-string algorithms to
trial different ideas. In this way, multiple ideas were often
representated simultaneously either explicitly or implicitly
in the patch (through orphaned objects for example), like
in a sketchbook. The final patches represented a snapshot
of their process in some cases, as much as a specific design
intent.
The groups were asked briefly at the end to summarise

their activity. G1 commented on the time limit as a stringent
constraint: “it feels like you would need a lot of time [...] even
a day would be good [...] you could even plan it a bit”. G2
made a cogent reflection about their process: “realising the
limitations of the inputs and then scale the design to match
something that could be interesting with those inputs”. G3
described that initially they “analysed the system and we
outlined its parts and then we decided on which part to focus
our work”, although the outcomes did not follow the plan
they formed. G4 felt their attention was drawn to timbre: “we
had to stick to the more timbral qualities of each individual
sound. Because that was the avenue of real-time-ness if that
makes sense”. G5 appreciated that the hybrid design context
“kind of brings a reality because the sound produced in the
end is a result of a physical system”.

Bricolage in a hybrid digital lutherie context: a workshop study AM’19, September 18–20, 2019, Nottingham, United Kingdom

5 DISCUSSION
Bricolage and tinkering in a hybrid craft context
Vallgårda and Fernaeus’ bricolage explicitly encapsulates the
non-digital aspects of interaction design [22], nevertheless
this hybrid workshop’s outcomes follow her descriptions
of bricolage practice. Similarly, tinkering approaches with
physical DMIs have been described as sharply contrasting
with software-based explorations [14], and yet we also iden-
tify certain similarities. We believe these processes share a
situated exploration of the design patterns and changes that
are most immediately reachable, regardless of whether the
tinkering is occuring with physical or digital tools.
It is from one perspective common sense that any com-

plex process must be composed of simpler steps, and that
the simpler steps are by definition one step away from the
previous step. However at each step the materials being used
- in this case mostly Pd - exert a creative pull [7], and in these
workshop outcomes we saw design patterns reappearing
frequently that hint at this influence. Frequently the par-
ticipants’ design moves were composed of individual steps,
as part of an iterative process where a step was taken, re-
evaluated and new steps were chosen. The programming
system’s representations seemed to highlight or encourage
connecting disparate parts of the Pd patch experimentally,
inspiring a tinkering approach which previous work has
argued is more exclusive to hardware-based processes.

Another aspect of bricolage that we felt was present was
the growing of a treasury or inventory of design ideas and
implementation experiences. Examples of contents in the
groups’ treasuries included interaction gestures, interaction
ideas, their shared Pd vocabulary, and the disconnected Pd
patch parts that were kept rather than deleted. Frequently
the treasury was indeed returned to when deciding how to
iterate based on particular evaluations. Although the “signs”
Levi-Strauss referred to were conceived as half-way points
between concrete images and abstract concepts [11], it could
be considered how programming environments can aid users
in building, tracking and recomposing their treasuries.

Diverging human and machine representations
For the given activity and time constraint of this workshop,
and the complexity level of the ideas the participants wanted
to tinker with, it appears that the level of abstraction of Pd
was perhaps too low. The consistency across groups of at-
tempting audio-signal based control by filtering and scaling,
and the struggle they faced in achieving this, might suggest
a latent set of primitives for audio-rate sensing oriented em-
bedded DMI design platforms. These primitives would con-
dition audio-rate signals into control signals, smooth them
out and scale them into desirable numerical ranges, perhaps
offering different interpolation methods. In some sense they

would encode the recently accumulated knowledge of dig-
ital luthiers over the past two or three decades regarding
effective mapping methods, and instantiate that knowledge
similar to how animation tools instantiate Disney’s twelve
basic principles of animation [20].
Victor argues that a programming environment should

enable an author to “create by abstracting – start concrete,
then generalize” [23]. In our workshop we did not witness
anyone creating their own abstractions explicitly, although
it could be argued that copying and pasting small programs
they created could be considered as a form of implicit and
weak abstraction. We did not poll participants about abstrac-
tions, so we can only speculate that the available methods for
composing and decomposing abstractions were too costly
in time, labour and cognitive overhead to be worthwhile
in this context. In turn, we suggest the need for methods
of abstracting to become more responsive and contextually
aware to facilitate rapid and commonplace usage.

Workflow liveness and iteration time
Recalling Tanimoto’s liveness levels described in Section 2,
the update procedure in this workshop, which was measured
to be approximately seven seconds in duration from saving
to hearing the patch again estimates how long each group
waited for compilation), shifted Pd from liveness Level 3 (or
4 if using GUI objects) to 2 - a non-live executable flowchart.
The positive outcome of this trade is the increased level of
performance and integration of the resulting instrument,
which can run standalone, at low latency, and with high-
bandwidth sensing, such that the designer or performer can
evaluate the instrument holistically and in-situ [15].
In trading off liveness for integration, the digital luthiers

gains certain advantages. For example, once they became
familiar with the mics’ physical responses, they used them
to rapidly and holistically evaluate changes. They used their
musical and tactile skills to quickly feel out the behaviour
of the instrument, internalise it, and reconcile their expecta-
tions of the program’s behaviour with the actual behaviour
they observed. Based on this, we suggest that the availabil-
ity of high levels of integration during the design process
affords the digial luthier the ability to engage directly with
instrumentality which Hardjowirogo defines as “that which
defines a musical instrument as such”, “the essence of the
musical instrument”, and “specific instrumental quality” [5].
Equally, there were a number of disadvantages to the de-

creased liveness level of the workflow. The seven second
save-upload-recompile-run stage, which replaced live pro-
gram editing, felt costly (“It was slow to develop the digital
audio part of the instrument so it mainly was left unchanged”
- G5) to the groups. Any change, no matter how large or triv-
ial, required the same amount of effort to experience, which
required an entirely different approach than the participants

AM’19, September 18–20, 2019, Nottingham, United Kingdom Jack Armitage and Andrew McPherson

were familiar with. Based on these outcomes, we suggest
that when workflow liveness in DMI design contexts is de-
creased, the impact on design thinking is both quantitative
and qualitative: less design moves are possible in the same
window of time, entire categories of ideas are rejected, and
other categories are not thought about at all.
One of the more experienced participants from G2 com-

mented that they would rather work offline without the
instrument in order to reverse the tradeoff of liveness and
integration (“What I would normally do here is just work
with not with that controller for a bit but just in Pd normally
just listening to it in real-time”). For this participant, and per-
haps others who noted the workflow speed, seeking liveness
instead of integration would have been worthwhile.

Reflections on the workshop design
Far from being passive observers, we acknowledge that we
were present in the research throughout, no less than in the
way our backgrounds as both researchers and designers influ-
enced the workshop design, instrument kit and Pd patch. The
time constraint of one hour, the essentially open-ended brief,
and using the same kit as the physical crafting workshop
[1, 13] (without iterating on its faults to facilitate comparison
in later work) all impacted the outcomes. Indeed it seems
that in this time constraint, Pd as a programming system
was only able to facilitate tinkering, a point which deserves
future scrutiny. The group context may have introduced a
social pressure not to monopolise the activity by chasing
complex ideas through intermediate implementations steps
that do not work. The backgrounds and experience levels of
the participants also impacted on which ideas were shared
and pursued. We invited this richness deliberately, but cor-
respondingly we advise caution regarding our interpretative
statements based on our observations, and acknowledge that
our biases will be present equally in the discussion as they
were in the workshop itself [2, 10].

ACKNOWLEDGMENTS
Research supported by EPSRCEP/G03723X/1 and EP/L01632X/1.
Thanks to Augmented Instruments Lab members for work-
shop design contributions.

REFERENCES
[1] Jack Armitage and Andrew McPherson. 2018. Crafting Digital Musical

Instruments: An Exploratory Workshop Study. In Proc. New Interfaces
for Musical Expression. Blacksburg, Virginia, USA.

[2] Jessica T. DeCuir-Gunby, Patricia L. Marshall, and Allison W. McCul-
loch. 2011. Developing and Using a Codebook for the Analysis of
Interview Data: An Example from a Professional Development Re-
search Project. Field methods 23, 2 (2011), 136–155.

[3] LiamDonovan, S. M. Astrid Bin, Jack Armitage, and Andrew P.McPher-
son. 2017. Building an IDE for an Embedded System Using Web Tech-
nologies. In Proc. Web Audio Conference. London, United Kingdom.

[4] Connie Golsteijn, Elise van den Hoven, David Frohlich, and Abigail
Sellen. 2014. Hybrid Crafting: Towards an Integrated Practice of Craft-
ing with Physical and Digital Components. Personal and ubiquitous
computing 18, 3 (2014), 593–611.

[5] Sarah-Indriyati Hardjowirogo. 2017. Instrumentality. On the Construc-
tion of Instrumental Identity. InMusical Instruments in the 21st Century,
Till Bovermann, Alberto de Campo, Hauke Egermann, Sarah-Indriyati
Hardjowirogo, and Stefan Weinzierl (Eds.). Springer, 9–24.

[6] Kenneth E. Iverson. 2007. Notation as a Tool of Thought. ACM SIGAPL
APL Quote Quad 35, 1-2 (2007), 2–31.

[7] Robert Jack and Andrew McPherson. 2017. Rich Gesture, Reduced
Control: The Influence of Constrained Mappings on Performance Tech-
nique. In Proc. International Conference on Movement and Computing.

[8] Sergi Jorda. 2005. Digital Lutherie: Crafting Musical Computers for New
Musics’ Performance and Improvisation. Ph.D. Dissertation. Universitat
Pompeu Fabra.

[9] Kevin Karplus and Alex Strong. 1983. Digital Synthesis of Plucked-
String and Drum Timbres. Computer Music Journal 7, 2 (1983), 43–55.

[10] Giacomo Lepri and Andrew McPherson. 2019. Making up Instruments:
Design Fiction for Value Discovery in Communities of Musical Practice.
In Proc. ACM Designing Interactive Systems. 13.

[11] Claude Levi-Strauss. 1966. The Savage Mind. University of Chicago
Press.

[12] Alex McLean. 2011. Artist-Programmers and Programming Languages
for the Arts. Ph.D. Dissertation. Goldsmiths University of London,
London, United Kingdom.

[13] Andrew McPherson, Jack Armitage, S. Astrid Bin, Fabio Morreale, and
Robert Jack. 2017. NIMEcraft Workshop: Exploring the Subtleties of
Digital Lutherie. In Proc. New Interfaces for Musical Expression.

[14] Andrew P. McPherson, Alan Chamberlain, Adrian Hazzard, Sean Mc-
Grath, and Steve Benford. 2016. Designing for Exploratory Play with
a Hackable Digital Musical Instrument. In Proc. ACM Designing Inter-
active Systems. ACM, 1233–1245.

[15] Giulio Moro, S. Astrid Bin, Robert H. Jack, Christian Heinrichs, and
Andrew McPherson. 2016. Making High-Performance Embedded In-
struments with Bela and Pure Data. In Proc. Live Interfaces. University
of Sussex.

[16] Chris Nash and Alan Blackwell. 2012. Liveness and Flow in Notation
Use. In Proc. New Interfaces for Musical Expression.

[17] Jon Pigrem and Andrew P. McPherson. 2018. Do We Speak Sensor?
Cultural Constraints of Embodied Interaction. In Proc. New Interfaces
for Musical Expression. Blacksburg, Virginia, USA.

[18] Miller Puckette et al. 1996. Pure Data: Another Integrated Computer
Music Environment. Proceedings of the Second Intercollege Computer
Music Concerts (1996), 37–41.

[19] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live
Programming. In International Workshop on Live Programming.

[20] Frank Thomas, Ollie Johnston, and Frank Thomas. 1995. The Illusion
of Life: Disney Animation. Hyperion New York.

[21] Vasiliki Tsaknaki, Ylva Fernaeus, Emma Rapp, and Jordi Solsona Be-
lenguer. 2017. Articulating Challenges of Hybrid Crafting for the
Case of Interactive Silversmith Practice. In Proceedings ACM Designing
Interactive Systems. ACM, 1187–1200.

[22] Anna Vallgårda and Ylva Fernaeus. 2015. Interaction Design as a
Bricolage Practice. In Proceedings of the Ninth International Conference
on Tangible, Embedded, and Embodied Interaction. ACM, 173–180.

[23] Bret Victor. 2012. Learnable Programming: Design-
ing a Programming System for Understanding Programs.
http://worrydream.com/LearnableProgramming/.

[24] Bret Victor. 2014. Seeing Spaces.
http://worrydream.com/SeeingSpaces/.

	Abstract
	1 Introduction
	2 Background
	Interaction design as a bricolage practice
	Tinkering in and with programming systems

	3 Workshop design
	Workshop activity & environment
	Instrument design
	Instrument editing workflow
	Participants, grouping and data collection

	4 Outcomes
	Familiarisation and ideation
	Implementation patterns
	Evaluation, iteration and final demo

	5 Discussion
	Bricolage and tinkering in a hybrid craft context
	Diverging human and machine representations
	Workflow liveness and iteration time
	Reflections on the workshop design

	Acknowledgments
	References

