3,623 research outputs found

    Efficient contact determination between geometric models

    Get PDF
    http://archive.org/details/efficientcontact00linmN

    Robustness of Boolean operations on subdivision-surface models

    Get PDF
    This work was presented in two parts at Dagstuhl seminar 08021. The two presentations described work in progress, including a ``backward bound\u27\u27 for a combined backward/forward error analysis for the problem mentioned in the title. We seek rigorous proofs that representations of computed sets, produced by algorithms to compute Boolean operations, are well formed, and that the algorithms are correct. Such proofs should eventually take account of the use of finite-precision arithmetic, although the proofs presented here do not. The representations studied are based on subdivision surfaces. Such representations are being used more and more frequently in place of trimmed NURBS representations, and the robustness analysis for these new representations is simpler than for trimmed NURBS. The particular subdivision-surface representation used is based on the Loop subdivision scheme. The analysis is broken into three parts. First, it is established that the input operands are well-formed two-dimensional manifolds without boundary. This can be done with existing methods. Secondly, we introduce the so-called ``limit mesh\u27\u27, and view the limit meshes corresponding to the input sets as defining an approximate problem in the sense of a backward error analysis. The presentations mentioned above described a proof of the corresponding error bound. The third part of the analysis corresponds to the ``forward bound\u27\u27: this remains to be done

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Visualization And Collision Detection Of Direct Metal Deposition

    Get PDF
    Direct metal deposition (DMD) is a manufacturing technique that manufactures solid metal parts from bottom to top using powdered metal and a focused laser. In this research, the swept volume technique was used as framework to develop a computer program to perform volumetric visualization of the deposition process as a pre-processor, before the actual metal deposition commences

    Reliable Solid Modelling Using Subdivision Surfaces

    Full text link
    Les surfaces de subdivision fournissent une méthode alternative prometteuse dans la modélisation géométrique, et ont des avantages sur la représentation classique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par morceaux. Dans ce mémoire, nous considérons le problème des opérations géométriques sur les surfaces de subdivision, avec l'exigence stricte de forme topologique correcte. Puisque ce problème peut être mal conditionné, nous proposons une approche pour la gestion de l'incertitude qui existe dans le calcul géométrique. Nous exigeons l'exactitude des informations topologiques lorsque l'on considère la nature de robustesse du problème des opérations géométriques sur les modèles de solides, et il devient clair que le problème peut être mal conditionné en présence de l'incertitude qui est omniprésente dans les données. Nous proposons donc une approche interactive de gestion de l'incertitude des opérations géométriques, dans le cadre d'un calcul basé sur la norme IEEE arithmétique et la modélisation en surfaces de subdivision. Un algorithme pour le problème planar-cut est alors présenté qui a comme but de satisfaire à l'exigence topologique mentionnée ci-dessus.Subdivision surfaces are a promising alternative method for geometric modelling, and have some important advantages over the classical representation of trimmed-NURBS, especially in modelling piecewise smooth surfaces. In this thesis, we consider the problem of geometric operations on subdivision surfaces with the strict requirement of correct topological form, and since this problem may be ill-conditioned, we propose an approach for managing uncertainty that exists inherently in geometric computation. We take into account the requirement of the correctness of topological information when considering the nature of robustness for the problem of geometric operations on solid models, and it becomes clear that the problem may be ill-conditioned in the presence of uncertainty that is ubiquitous in the data. Starting from this point, we propose an interactive approach of managing uncertainty of geometric operations, in the context of computation using the standard IEEE arithmetic and modelling using a subdivision-surface representation. An algorithm for the planar-cut problem is then presented, which has as its goal the satisfaction of the topological requirement mentioned above

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    Subdivide and Conquer: Adapting Non-Manifold Subdivision Surfaces to Surface-Based Representation and Reconstruction of Complex Geological Structures

    Get PDF
    Methods from the field of computer graphics are the foundation for the representation of geological structures in the form of geological models. However, as many of these methods have been developed for other types of applications, some of the requirements for the representation of geological features may not be considered, and the capacities and limitations of different algorithms are not always evident. In this work, we therefore review surface-based geological modelling methods from both a geological and computer graphics perspective. Specifically, we investigate the use of NURBS (non-uniform rational B-splines) and subdivision surfaces, as two main parametric surface-based modelling methods, and compare the strengths and weaknesses of the two approaches. Although NURBS surfaces have been used in geological modelling, subdivision surfaces as a standard method in the animation and gaming industries have so far received little attention—even if subdivision surfaces support arbitrary topologies and watertight boundary representation, two aspects that make them an appealing choice for complex geological modelling. It is worth mentioning that watertight models are an important basis for subsequent process simulations. Many complex geological structures require a combination of smooth and sharp edges. Investigating subdivision schemes with semi-sharp creases is therefore an important part of this paper, as semi-sharp creases characterise the resistance of a mesh structure to the subdivision procedure. Moreover, non-manifold topologies, as a challenging concept in complex geological and reservoir modelling, are explored, and the subdivision surface method, which is compatible with non-manifold topology, is described. Finally, solving inverse problems by fitting the smooth surfaces to complex geological structures is investigated with a case study. The fitted surfaces are watertight, controllable with control points, and topologically similar to the main geological structure. Also, the fitted model can reduce the cost of modelling and simulation by using a reduced number of vertices in comparison with the complex geological structure

    On the modelling of ultrasonic testing using boundary integral equation methods

    Get PDF
    Ultrasonic nondestructive testing has important applications in, for example, the nuclear power and aerospace industries, where it is used to inspect safety-critical parts for flaws. For safe and reliable testing, mathematical models of the ultrasonic measurement systems are invaluable tools. In this thesis such measurement models are developed for the ultrasonic testing for defects located near non-planar surfaces. The applications in mind are the testing of nuclear power plant components such as thick-walled pipes with diameter transitions, pipe connections, etc. The models use solution methods based on frequency domain boundary integral equation methods, with a focus on analytical approaches for the defects and regularized boundary element methods for the non-planar surfaces. A major benefit of the solution methods is the ability to provide accurate results both for low, intermediate and high frequencies. The solution methods are incorporated into a framework of transmitting probe models based on prescribing the traction underneath the probe and receiving probe models based on electromechanical reciprocity. Time traces are obtained by applying inverse temporal Fourier transforms, and it is also shown how calibration and effects of material damping can be included in the models
    • …
    corecore