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ABSTRACT 

 

Sufyan S.D. Fehe. VISUALIZATION AND COLLISION DETECTION OF DIRECT 

METAL DEPOSITION. (Major Professor: Dr. Shih-Liang Wang), North Carolina 

Agricultural and Technical State University. 

 

Direct metal deposition (DMD) is a manufacturing technique that manufactures 

solid metal parts from bottom to top using powdered metal and a focused laser. In this 

research, the swept volume technique was used as framework to develop a computer 

program to perform volumetric visualization of the deposition process as a pre-processor, 

before the actual metal deposition commences. The program extracts coordinate values 

from a G-code; these extracted values constitute a point.  These points are then defined as 

a swept path using VPython extrusion object library. A cross section is then swept 

through these points to perform the volumetric visualization of the deposition process. 

In a DMD system computer numerical control (CNC) machine components can 

collide during deposition, a computer program can be used to facilitate collision detection 

if components within the build perimeter collide. In this research, open source oriented 

bounding boxes (OBB) intersection and open source octree implementation were used to 

develop a computer program, to detect the collision between CAD models of two components 

within a graphic scene. The collision detection test is performed by holding one CAD 

model fixed while the other model is set into translation. The CAD models will collide, if 

the line distance from the center between their OBBs is equal to the sum of their 

projected radii onto the reference axis of approach. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Direct Metal Deposition   

Direct metal deposition (DMD) is a technique used to manufacture or build solid 

metal parts from bottom to top using powdered metal and a focused laser. There are many 

different DMD systems which are commercially available or are currently being 

developed. Each system may use different materials, different G-codes and different 

techniques for the build process. Below are the pre-processing stages for DMD. 

I. Create a 3D computer aided design (CAD) model 

II. Convert CAD model into Standard Tessellation  language (STL) model  

III. Slice STL model into layers 

IV. Generate the tool path for each sliced layer  

Volumetric visualization of the deposition process starts at stage IV before actual 

deposition commences. A lot of research has been done in this field and many techniques 

and algorithms have been proposed for DMD visualization. Visualization processes 

before actual execution of work finds its application in medical fields, oil and gas fields, 

NASA space programs and many more diverse engineering applications. POM Group is a 

company in Michigan that has done a lot of work in this field and has manufactured 

DMD machines for sale with visualization and collision detection capabilities. Missouri S 

& T University has done extensive work in this area too. Figure 1.1(Ch. Sweta Dhaveji, 

2011) below is a DMD process at Missouri S&T University laboratory. Some of the 
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techniques used for volumetric visualization processes are voxel-based, swept volumes, 

octrees etc. The choice of technique to use for the visualization process is determined by 

the nature of the problem and the desired output. 

Collision detection starts after stage IV when deposition has to commence. The 

deposition or build process poses possible collision between stationary or dynamic 

computer numerical control (CNC) machine components. A lot of research work has 

been done in this area and new techniques have been developed to solve and improve 

current algorithms. Collision detection is widely used and applied in the game industry, 

robotics and in CNC machining. There are many different techniques used in collision 

detection. Examples of bounding volumes techniques are; hierarchical bounding volumes 

(HBV), axis aligned bounding box (AABB), oriented bounding box (OBB), k-planes 

discrete oriented polytopes (K-DOPs), convex hulls, ray-triangle etc.  

 

1.2 Problem Statement 

Below are problems during a deposition process that necessitated the research:  

I. Parts are either completely built, or sample deposition is performed for user to 

determine the accurateness of the part built from the generated G-code. This may 

lead to material wastage if it is realized the deposition will not build the part to its 

required specifications.  

II. In a DMD system, stationary or moving CNC machine components within the 

build perimeter can collide into each other during the deposition process. This can 

cause damage to the nozzle assembly, work piece etc. 
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Figure 1.1. Laser Metal Deposition Process  

 

 

 

1.3 Research Objectives 

The main objectives of this research are outlined below: 

I. Use the swept volume technique to develop a computer program to be used as a 

pre-processor, for volumetric visualization of the deposition process before actual 

deposition commences.  

II. Use open source oriented bounding box (OBB) intersection technique (Gomez, 

1999) and open source octree implementation (Kenwright, 2002) as framework to 

develop a computer program, to detect the collision between CAD models of two 

colliding components in a graphic scene.  

 

1.4 Thesis Layout 

This thesis has been organized into four chapters. Chapter 1 is dedicated to 

introduction of the subject matter and the specific objective of the research work. Chapter 
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2 is solely dedicated to DMD visualization, literature review, methodology, algorithms, 

mathematical concepts, and the computer programming language used to develop the 

program. Chapter 3 focuses on collision detection during deposition, literature review, 

methodology, algorithms, mathematical concepts, and the computer programming 

language used to develop the program. Chapter 4 discusses the methods and algorithms 

used. Other ensuing difficulties encountered are discussed and recommendations are 

made for future work. Figure 1.2 modified (Ren et al., 2010) below is a hybrid direct 

metal deposition (DMD) manufacturing system. This system builds solid parts from 

bottom to top and performs the surface finishing on the same system. Figure 1.3 (Ren, et 

al., 2010) below is a DMD process. 

 

 
Figure 1.2. Hybrid manufacturing system in Missouri S&T LAMP Laboratory 
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Figure 1.3. Direct metal deposition process with part rotated through orientations 

(a), (b), (c) and (d) to complete the process 
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CHAPTER 2  

  VISUALIZATION OF THE DEPOSITION PROCESS USING SWEPT VOLUME 

 

2.1 Literature Review 

Thatipalli in his master’s project work used the voxel-based technique to perform 

visualization of 5-axis direct metal deposition (DMD) process (Thatipalli, 2011). His 

visualization program sequentially places voxel size of 0.1 in x 0.1 in at the center of the 

3D trajectory (X, Y, and Z) of the G-code to visualize the deposition process. Because 

voxels are sequentially placed by insertion, voxels placed on curved path lines will have 

to be rotated again to give a smooth rendered surface. This technique works well if the G-

codes are discretely generated to fill every space. The technique is inefficient if the G-

codes are made of line segments.  

 An octree approach that is used for simulation and visualization of multi-axis 

additive manufacturing (AM) system was presented (Dhaveji et al., 2011; Don, 1991). 

The algorithm uses octree technique to simulate and visualize the deposition of the part 

geometry and its progressive changes. The concept of this algorithm is in three folds; i.e. 

a 3D object is generated, an octree document is created and the AM process is then 

implemented. A general overview on voxel-based visualization techniques used in AM 

processes was catalogued (Chandru et al., 1995). In their paper, they presented various 

technical issues that borders on memory requirements and rendering complexities when 

using voxel algorithm for visualization of AM process. They also indicated in their paper 



7 

the development of software called “G-WoRP” that will in future solve many of the 

voxel-based techniques problems in AM processes. 

3D printing is one out of the many techniques used in AM. The process planning 

is similar to that of DMD. The difference between the two manufacturing processes is 

DMD uses either an electron beam or laser beam as the source of energy to melt metal 

powder as deposits to build the part, while 3D printing traditionally uses an ultra violet 

(UV) light to cure extruded resin. 

Direct placement primitive technique (DPP) (Jee et al., 2000; Sachs et al., 1990) 

was also researched. The algorithm presented in their paper is only restricted to the part 

geometry of the object being deposited using DPP. The size of a resulting DPP 

corresponds to the powder-binder agglomerate formed by a single droplet. The DPPs are 

successively deposited to form the virtual shape of the actual object. The resolution of the 

virtual object depends on the size of the DPP. 

 

2.2 Selection of the Computer Programming Language  

Python programming language, its visual module Vpython and the extrusion 

object library was chosen as the platform to develop the computer program. Python was 

chosen over other programming languages like C++ and Computational Geometry 

Algorithms Libraries (CGAL) because, Python is a high level programming language that 

is far easy to learn and implement with very fast OpenGL rendering graphics in a short 

time. Python is also cross-platform for Windows, Mac and Linux and can be converted to 

C++ as well. Overview of VPython is provided in Appendix A. 
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2.3 Importance of G-codes in the Visualization Process 

The single most important data required for visualization of the deposition 

process is the G-code text file. Most G-codes are generated from computer aided 

manufacturing (CAM) software or other special stand-alone software. Geometric and 

volumetric information for the actual deposition process is extracted from the G-code. 

Similarly extracted data from G-codes are used for the volumetric visualization of DMD. 

G-code instructs a DMD machine nozzle/tool what type of action to take at a 

given point in time. In DMD, G01 code means linear interpolation, it is the common 

workhorse for material deposition. M-codes are ignored because the program seeks to 

perform a real time volumetric visualization of DMD where M-codes are not required. A 

sample G-code text file with zigzag path used in this research to perform the visualization 

test is provided in Appendix E. 

 

2.4 Extraction of the Coordinate Values from the G-codes 

The program matches G-code lines starting with letters G, X, Y, and Z, 

characters. The corresponding coordinate values of X, Y and Z represents a 3D trajectory 

or a point. Coordinate values of X, Y, and Z constitute the path which a cross section will 

be swept through. Each parsed G-code line is given a line name and stored by the 

program in sequence from the first G-code line to the last G-code line.  Instructions to 

install and run the program are found in Appendix B. The algorithm for parsing the G-

code lines to extract the required coordinate values is provided in Figure 2.1. 
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Figure 2.1. Algorithm for parsing G-codes 

 

Below is an example of a three G-code line to be parsed:  

M108 R3.146 

G1 X28.63 Y28.64 Z0.15 F1080.0 

G1 X28.63 Y-28.64 Z0.15 F1080.0 

After parsing the G-code above, the information below is extracted for the DMD 

visualization process. 

 ('G1', {'Y': 28.64, 'X': 28.63, 'Z': 0.15}),  

 ('G1', {'Y': -28.64, 'X': 28.63, 'Z': 0.15}),  

 

ALGORITHM FOR PARSING G-CODE: 

1. Import G-code as a text file 

2. Match letters X, Y, Z and G-code  in text  file 

3. Match floating points in text  file 

4. Match spaces in text  file 

5. Check G-code line for validity 

6. Lines with X,Y,Z and characters G constitute a valid line: else line is invalid 

7. Set line number= 0 

8. Start parsing the G-code text file 

9. Line number = line number +1 (naming the parsed lines) 

10. Elements = X,Y,Z coordinate values in line (9) 

11. For all non zero elements: store X,Y,Z values in a string format 

12. Define Ret =[]  

13. Append Ret (elements) 

14. Return Ret (return all the coordinate values for every line parsed in sequence) 
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2.5 Swept Volume Procedure 

The extrusion object library of Vpython is used to define all the 3D trajectories or 

points of the G-code as a swept path. Sweep is performed by sweeping a cross section 

through a defined swept path; the volume created through the sweep process is called the 

swept volume. The paths are defined by the 3D trajectories or points (X, Y, Z) extracted 

from the G-codes. The path starts from the first G-code point (X1, Y1, Z1) to the last G-

code point (Xn, Yn, Zn) in sequence.  The process of sweeping the cross section in real 

time forms the basis for the volumetric visualization of the deposition process. The 

rendered model should then look the same as the original 3D CAD model but a little 

bigger because of overlap during the sweeping process. Figure 2.2 below shows examples 

of a cross section swept along different paths. 

 

 
Figure 2.2. A cross-sectional shape swept along a straight and a curve path. 
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The extrusion object library is used to define the 3D trajectories or points for the sweep 

process. A line segment is defined by two successive points. If the angle between two 

line segments is greater than 90˚ as shown in Figure 2.3 below, the extrusion object 

library generates unwanted spikes when performing the sweep at the corner points. This 

problem is resolved by performing a piecewise extrusion when the angle is greater than 

90˚. In performing the piecewise extrusion, the extrusion object stops at the corner point 

where the angle is greater 90˚ and extrudes from that current point to the next point, 

hence the artificial spikes are not generated. This makes the sweep process and the 

rendered model look smoother. Figure 2.4 is the sweep implementation algorithm; it 

shows also extrusions with and without spikes. In the visualization program, 

“AnimatedPath.py” is the program compiler that defines all the points extracted from the 

G-code for the sweep process. 

 

 
Figure 2.3. Angle measured between two line segments 

 

AB

BC

θ > 90o
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Figure 2.4. Sweep algorithm and extrusion with and without spikes 

 

 

 

2.6 Cross Section Overlap  

The track width used in the actual deposition process is taken into account when 

performing the sweep. The deposition track width becomes the width of the cross section 

for the sweep process. Solidness of the rendered model is a function of the cross section 

width and the extent to which the cross section will overlap. Experiments shows that the 

track width is close to the laser spot diameter, which is approximately 2.54·10
–3 

m 

 

 

THE SWEEP ALGORITHM:  

1. Point ( X,Y,Z) = lines parsed from G -code 

2. Point (X,Y,Z) = 0  

3. Point = point +1  

4. Sweeping path is defined by VPython extrusion object library 

5. Swept path = first point of G -code to last point of G -code 

6. If  angle between two line segments is  > 9 0˚ (u- turns) extrusion generates spikes 

7. If angle  > 90˚ perform the sweep piece-wise  

8. Do sweep from current point to next poin t 

9. Define shape and size of cross section  to sweep  

10. Sweep (extrusion) = sweep the cross section (line 9) through the swept path (line 5) 

11. Output rendering on screen  
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(0.1in/2.54 mm) with overlap of 50% at a nozzle standoff distance of 1.27·10
–2

 m (Lie et 

al., 2009; Ren, et al., 2010). Figure 2.5 below shows a 3D and 2D view of an overlapping 

cross section. The experimental parameters above are used for the visualization of the 

deposition process in this research unless otherwise stated. Figure 2.6 is the flow chart for 

visualization of the deposition process. 

 

 
Figure 2.5. (a) is 3D view of a cross section swept with 50% width overlap, (b) 2D 

top view showing the overlaps 

 

 

 

The cross section width and the percent overlap used in this research are based on 

actual deposition experiments performed at Missouri S&T University. The G-code used 

in this research to test the program was generated with a track width of 2.5 mm and 

center line spacing of 1.25 mm based on 50% track width overlap. The track width and 

the spacing between center lines in DMD are determined by the type of material (metal 

powder).   
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Figure 2.6. Flow chart for visualization of the deposition process 

 

 

 

2.7 Direct Metal deposition Visualization Results 

The program was tested using data from Missouri S &T University. The G-code 

text files can be found in the Appendix E. Data from Missouri S &T University includes 

a 3D CAD model, photo of the actual deposited part and the G-code used for the actual 

deposition. Figure 2.7 below shows the 3D CAD model and picture of the deposited part.   

 

Stop 

Output rendering 

Sweep cross section through extrusion path 

Input cross section width 

Extract and store coordinate values 

Yes  

Discard line 
No  

Check if lines are valid 

Read G-code text line by line 

 

 

Start 

Input G-code text file 

Parse next line 

Extrusion path=extracted coordinate values 
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The G-code is generated for Fadal CNC machine (model VMC3016) as shown in section 

1.4 Figure 1.2. Instructions to run the visualization program are in Appendix B. 

 

 
Figure 2.7. (a) 3D CAD model, (b) Actual deposited part from MST 

 

 

 

 The program was used to test and visualize the deposition process using the first 

G-code generated for the model. The visualization results as indicated in Figure 2.8 

shows inaccurate G-code path that will not build the part to its actual geometry or 

specifications. This pre-process visualization result indicates to the user to check, correct 

or regenerate a new G-code for the deposition process because of inaccuracies with the 

first attempt. For every generated G-code, pre-process verification is performed until the 

correct G-code is generated to build a solid part to look like the actual model. 
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Figure 2.8. (a) Inccurate toolpath, (b) Desired toolpath 

 

 

 

The rendered model should always retain the geometric features of the actual 3D 

CAD model and it must be solid along the build path without unwanted voids. The 

exactness of the rendered model geometry to that of the actual 3D CAD model depends 

on the width of the cross section, the extent of the cross section overlap within the center 

lines and the shape of the cross section. The cross section width used is normally the 

track width used in the actual deposition process. As indicated in section 2.6, the 

experimental parameters of 2.5 mm cross section width and 50% cross section overlap 

renders a part that is solid without voids. The rendered model will always come out solid 

when the cross section width overlaps within the center lines or when the cross section 

width is greater than 1.25 mm. Figure 2.9 (a) is a 2.0 mm cross-sectional width 

visualization result without voids, while Figure 2.9 (b) is a 0.8 mm cross-sectional width 

visualization result with voids because 0.8 mm is less than the 1.25 mm centerline 

spacing.  
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Figure 2.9. (a)  a 2.0 mm cross-sectional width, (b) a 0.8 mm cross-sectional width 

visualization results 

 

 

 

2.8 Comparison with Previous Work 

The G-code generated for the LAMP logo of Missouri S&T University is tested 

using voxel placement (insertion) technique (Thatipalli, 2011) and swept volume 

technique used in this research. Whereas voxel placement needs further rotation of the 

placed voxel to get smooth surface the swept volume technique does not and it gives 

better surface smoothness. Figure 2.10 below shows the visualization results of the two 

techniques compared.  

 

 
Figure 2.10. (a) Voxel placement result, (b) Swept volume result. 
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2.9 Observations and Conclusions 

I. When models with changing geometry or slope sides are animated, the surface of 

the rendered model around those sides comes out uneven (stair case effect). 

II.  The program sometimes runs slowly during real time animation of bigger models 

with massive G-codes.  

Computer program for real time visualization of DMD process has been 

developed and implemented. The program is robust and capable of visualizing G-codes 

during the deposition process. The program is designed to output a one-time rendering or 

mimic the steady deposition process in real time. Users can pause the visualization 

process, zoom in or out for closer view. Users can also rotate and pan during the 

visualization process for different angle of views. The program is capable of visualizing 

any DMD process when the G-code format is the same as the one used in this research. 

The program can also be tweaked to parse other characters from the G-code other than X, 

Y, Z and G characters.     
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CHAPTER 3  

COLLISION DETECTION OF THE DEPOSITION PROCESS USING OCTREE 

AND ORIENTED BOUNDING BOX  

 

 

 

3.1 Literature Review 

 Literature review on some of the techniques used for collision detection in 5-axis 

CNC manufacturing was presented (Tang et al., 2007). Their collision detection 

algorithm was base on a sweep plane approach, where octree of bounding sphere 

algorithm is used. The colliding bounding spheres are further checked with the sweep 

plane algorithm to ensure false collision or interference is not reported. The algorithm 

presented in their paper is capable of performing collision detections between tool and 

work piece as well as between other parts of the CNC machine. 

The method based on hierarchical orientated bounding box (OBB) and octree 

space partition for the global interference detection was also presented in 5-axis NC 

machining (Ding et al., 2004). In this algorithm, the cutter and cutter holder are modeled 

by a hierarchical OBB structure, whereas the work piece surfaces are approximated by an 

octree. The interference detection is conducted between the tool OBBs and the gray 

octants of the surface octree with the separating axis theorem. They summarized and 

classified the various collision techniques into the following broad form i.e. Vector based 

methods, convex hull based methods, bounding volume methods, C-space based 

methods, Analytical methods, Swept volume methods and Space partition methods.  

An algorithm for rapidly detecting, and correcting collision between a manually 

predefined tool and an arbitrary work piece was presented (Balasubramaniam et al., 2002; 
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Balasubramaniam et al., 2003). The tool is modeled by using implicit equations and the 

work piece is modeled as a cloud of points. The algorithm is based on hierarchical 

bounding boxes, called k-DOPs, for both tool and work piece. The tool and work piece 

are preprocessed to form their respective hierarchical bounding boxes. The collision 

detection algorithm returns the points of the object that are in collision with the tool. 

However, the point-cloud representation for the work piece tends to lose efficiency as the 

number of sampled points is increased in order to obtain a good approximation for the 

machined part. Configuration space (C-space) approach to tool path generation that 

provides gouge-free and collision-free tool paths was also presented (Choi et al., 1997). 

However, the proposed approach is limited to three-axis machining. Jun et al proposed a 

searching method in the machining C-space to find the optimal tool orientation by 

considering the local gouging, rear gouging and global tool collision in five-axis 

machining (Jun et al., 2003). 

 In conducting collision check and collision avoidance, tool path generation 

module, post processing and machine simulations are integrated into one system 

(Lauwers et al., 2003). The algorithm is use to detect collisions between the tool and 

work piece, the machine and part, the tool and machine or among moving machine 

components. However, this algorithm cannot be applied for a general form of the tool 

since a cylindrical approximation was assumed. Moreover, the change of the work piece 

geometry was not taken into account. 

 Classification of collision detection base on their systematic solving 

characteristics was presented (Jiménez et al., 2001). The reason is that most collision 
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detection techniques are tailored to particular applications, others stem from theoretical 

concerns and their diverse origins and aims often hide their common ground which they 

all originate from. They broadly classified collision detection techniques as spatio-

temporal intersection, swept volume interference, multiple interface detection and 

trajectory parameterization. 

GAMMA research group of University of North Carolina (UNC) have compiled 

many open source collision detection libraries on their website.  “V-COLLIDE” 

(Jonathan D. Cohen, 1998) is a collision detection library for large dynamic 

environments, and unite the N-body processing algorithm of I-COLLIDE with the pair 

processing algorithm of RAPID. Consequently, it is designed to operate on large numbers 

of static or moving polygonal objects, and the models may be unstructured.  

“SOLID” ("SOLID 3.5," 2007) is an open source library for interference detection 

of multiple 3D polygonal objects undergoing rigid motion. The shapes used by SOLID 

are polygon soups. The library exploits frame coherence by maintaining a set of pairs of 

proximate objects using incremental sweep and pruning on hierarchies of axis-aligned 

bounding boxes. Though slower for close proximity scenarios, its performance is 

comparable to that of V-COLLIDE in other cases.  

“SWIFT++” (Ming Lin, 2001) from the GAMMA group is an open source library 

for collision detection approximation, exact distance computation, and contact 

determination between closed and bounded polyhedral models. It decomposes the 

boundary of each polyhedra into convex patches and pre-computes a hierarchy of convex 
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polytopes. It uses the SWIFT library to perform the underlying computations between the 

bounding volumes.  

“PIVOT2D” (Kenneth E. Hoff III, 2001) from the GAMMA group is an open 

source software for collision detection. It computes generalized proximity information 

between arbitrary objects using graphics hardware. It uses multi-pass rendering 

techniques and accelerated distance computation, and provides an approximate solution 

for different proximity queries. These include collision detection, distance computation, 

local penetration depth, contact region and normals, etc. It involves no preprocessing and 

can handle deformable models. 

“DeformCD” (Min Tang, 2007 ) from the GAMMA group is a fast collision 

detection library designed to accelerate calculation for deforming objects. Deforming 

objects, whose vertices are vibrating, an AABB refitting solution is used for collision 

detection. The efficiency of the AABB-refitting schema is compared with OBB-rebuild 

and AABB-rebuild schemas with timing. They achieved 5-10 times of speed up.  

Currently the library supports only windows platforms. 

 

3.2 Selection of the Computer Programming Language 

C++ programming language was considered first because most of the open source 

collision detection libraries (SWIFT++ and SOLID) are implemented using C++. C++ 

was not chosen because more time is required for its mastery. PyOpenGL module which 

is built on Python was chosen so that the computer programs for visualization and 

collision detection will have the same platform. Open source Oriented Bounding Box 
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(OBB) intersection (Gomez, 1999) and open source Octree implementation (Kenwright, 

2002) libraries are used as a framework to develop the collision detection program. Over 

view of PyOpenGL is in Appendix A. 

 

3.3 Octree Data Structure 

Octree is a hierarchical data structure that describes how the objects in a scene are 

distributed throughout the three dimensional space occupied by the scene (Trung Thanh 

et al., 2007). Octrees as shown in figure 3.1 (Ding, et al., 2004) below are created by 

recursive subdivision of a cube representing the parent node into eight smaller cubes 

called children; each child is then divided further into eight octants. Subdivision can 

proceed to any desired level of accuracy determined by the type of application and 

intended results. The level of subdivision is termed depth in this research. Blank octants 

are empty (0), grey octants (1) are partially full and black octants (2) are full. Octrees can 

therefore be used to represent a solid 3D part to its near-net shape. 

 

 
Figure 3.1. (a) 3D Structure of an octree and index codes of octants, (b) the tree 

structure of an octree 
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3.4 Creation and Split of the Octree Boxes 

The algorithm for creating the octree is based on (Kenwright, 2002) open source 

octree implementation algorithm. A bounding box is created to enclose the entire 3D 

CAD model; the bounding box is then split with three evenly divided planes to create 

eight child boxes within the top box.  The procedure is repeated on each child until the 

desired depth is reached. The bounding boxes are represented in two ways in the 

program. When the box is axis-aligned then it is represented by two diagonal points, one 

at the corner of the box with the lowest coordinate values i.e. C1, and the other one with 

the highest coordinate values i.e. C2 as shown in Figure 3.2.  

 

 
Figure 3.2. A simplified 2D axis aligned bounding box 

 

 

 

Splitting of the boxes is performed in axis-aligned boxes. This is because, first the 

tree is built and then they are rotated along with the mesh. The box in figure 3.2 above is 

defined by the coordinates C1=(X1, Y1, Z1) and C2=(X2, Y2, Z2). The coordinates in C1 

are lower than the ones in C2 i.e. X1<X2, Y1<Y2 and Z1<Z2. 

The center of the box is: 

    
        

 
 

(3.1) 

Dimension of the box is:  
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           (3.2) 

The distance between the two boxes from the center is: 

                  (3.3) 

To split the box into two, there are three possibilities, left to right, front to back, 

or top to bottom. Suppose the x-axis is the one that goes horizontally, so if we are 

splitting the box defined by C1 and C2 into a right and left halves, the two new boxes (a 

and b) upper and lower coordinates will be given as: C1a = C1, C1b = ((X1+X2)/2, Y2, Z2) 

and that of the second box will be C2a = ((X1+X2)/2, Y1, Z1) and C2b = C2 as shown in 

Figure 3.3 below. 

 

 
Figure 3.3. Simplified 2D axis aligned bounding box split into two axis aligned 

bounding boxes   

 

 

 

The coordinate information of the octree boxes, equations 3.1, 3.2 and 3.3 above 

are used to develop and implement the collision detection program. In the collision 

detection program, “splitBox” is a function in “octree.py” compiler; this is the method 

that does the actual splitting of the box into two. In the program, “OctreeBoxIter” is a 

function in “octree.py” compiler; this is an iterator that gives the coordinates of the eight 

cells that would result from splitting a single box into eight sub-cells. That is, applying all 

three cuts: X, Y and Z at a time.  
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Each of those 8 cells is checked to see if it is fully occupied by the object, fully 

empty, or partially occupied. In the program, that value is stored in the occupancy list in 

“octree.py”, which stores an “int” for each of the eight cells. If the box content is 0, it 

means it is empty. When it is 1 means intersecting or partially full and when it is 2 means 

the box is fully enclosing its object. The idea is to leave one of the halves fully empty or 

fully contained if possible. For example, if it was 2D, then there would be two possible 

cuts: left-right, or top-bottom. Suppose a box as shown in Figure 3.4 below had the 4 sub-

cells with occupancy values 0 2 and 1 1 .Here the program will choose to perform the 

splitting leaving one of the quarters fully empty (just the 0) and the other quarter fully 

occupied (2). The bottom quarters will be partially filled with occupancy values of 1.   

 

 
Figure 3.4. A partitioned box showing it’s occupancy values 

 

 

 

In “octree.py”, the occupancy list contains 8 values, one for each sub-cell. The list 

"test_box_indices" in octree.py tells the program which cells lie on the same half with 

respect to a given axis. For example: ((0, 2, 4, 6), 2) means, in axis 2 (z), cells 0, 2, 4 and 

6 lie on the same side. In other words, if occupancy [0], occupancy [2], occupancy [4] 

and occupancy [6] are all 0 (empty) or all 2 (full), then the box should be cut slicing axis 

Z. Now, once a box is split into two, one half would be union of the 4 cells that were 
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tested that lied in that half, and the other half would be the other 4 cells. For example, if 

one half would be the union of cells (0,2,4,6), the other half would contain (1,3,5,7).  

The number of partition required determines how close the octree structure will 

represent the 3D CAD model to its near- net shape. The algorithm used in this research 

sets the portioning depth to 9 so as to free up some computer graphic memory. Figure 3.5 

below is an example of an octree representation of a 3D CAD model. It shows a 9 and 15 

depth of partitioning of the 3D model and its octant occupancy. The 9 depth portioning as 

can be seen shows partially filled grids along the slant side of the model; hence the OBBs 

are not tightly fitting the model. The 15 depth of portioning as can be seen shows the 

OBBs are tightly fitting the model along its slant sides. This is so because, during the 15 

depth partitioning all partially filled grids are further refined by splitting. This makes the 

OBBs of the model fit tightly along the slant sides having partially filled grids. Figure 3.6 

is the algorithm for creating octree-OBBs of the CAD models. The Python compiler that 

creates the octrees is “octree.py” in Appendix C, it also references “cube.py” and 

“intersections.py” compilers. 

 

 
Figure 3.5. Octree representation of a 3D CAD model showing (a) 9 depth 

partitioning, (b) 15 depth partitioning 
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Figure 3.6. Algorithm for creating Octree-OBB of the CAD models 

 

 

 

3.5 Oriented Bounding Box Collision Detection Test and Results 

 The separating axis theorem as illustrated in Figures 3.7  (Gomez, 1999) and 

Figure 3.8 (Gottschalk et al., 1996) are used to implement the collision test between 

OBBs of the 3D CAD models. Splitting of the 3D CAD model using octrees as outlined 

in section 3.4 effectively represents the actual 3D model to a certain resolution. The 

octrees are rotated with their objects so are the bounding boxes too. Hence, the axis 

aligned boxes of the octants behave as oriented bounding boxes (OBB) rotating with their 

local coordinates. The collision detection is performed at the local point where the two 

CAD models make contact. The contacting OBBs at that point are checked for collision. 

Interference occurs when there is an overlap along the local maximum and minimum 

OCTREE CREATION ALGORITHM 

1. Input 3D CAD in STL ASCII format 

2. Extract min and max X,Y,Z coordinates of the CAD model 

3. Create the bounding box to contain the CAD model 

4. C1 = min lower end of bounding box coordinates (X1,Y1,Z1) 

5. C2 = max upper end of bounding box coordinates (X2,Y2,Z2) 

6. Center of box =( C1 + C2)/2 

7. Size of box = C2 – C1 

8. Split the bounding box into eight octants using three planes (top-down, front-back, right-left) 

9. Check split boxes occupancy: empty=0, partially full=1,full =2 

10. If octants in (9) are partially full further split octants into eight children 

11. For created octants in step 10, update the bounding box coordinates of the octants 

12. Perform octant splitting nine times (depth =9) 

13. Create OBB-Octrees of  CAD model 
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coordinate axis x, y, z of the contacting OBBs. If the line distance between two OBBs is 

greater than the sum of the two radii then the OBBs do not intersect. L is the reference 

axis of approach to project the radii of the two OBBs onto. T is the vector from one OBB 

center to another. A
1
, A

2
, B

1
 and B

2
 are the local coordinate axis of boxes A and B. 

Figures 3.7 and Figure 3.8 below explain the principle where L is a unit vector. a1, a2 and 

a3 are half-widths (or radii) of box A. 

 

 
Figure 3.7. Oriented bounding box (OBB) with local axis  

  

 

 

 
Figure 3.8. The vector L forms a separating axis  

 

 

 

The radius of the projection of box A onto L is  

        
            

            
       (3.5) 

The same is true for B, and L forms a separating axis if  
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            (3.6) 

Note that L does not have to be a unit vector for this test to work. The boxes A and B are 

disjoint if none of the 6 principal local axes and their 9 cross products forms a separating 

axis (Gomez, 1999). Figure 3.9 below is the algorithm for collision detection base on the 

separating axis theorem, Python compiler “intsersections.py” in Appendix C performs the 

collision detection which also references “linear.py”. Figure 3.10 below is a case where 

two OBBs will collide when |T.L| = ra + rb.  

 

 
Figure 3.9. Algorithm for separating axis collision detection 

 

 

 

 
Figure 3.10. Two sets of OBBs in collision 

 

COLLISION DETECTION ALGORITHM: 

1. From separating axis theorem  

2. Check collision between any two OBBs of CAD models within proximity 

3. ra and rb define the projected radiuses of two bounding boxes(OBB) 

4. T is the line distance between the two bounding boxes 

5. If |T.L| > ra +rb no collision between boxes 

6. If  |T.L| < ra +rb will intersect 

7. If  |T.L| = ra + rb the boxes will collide 

8.  If step (7) is satisfied 

9. Report collision =  true 

10. Else report collision =  false 
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 In the program, “boxBoxOverlap” is a function in “intersections.py” compiler that 

performs the collision detection between any two contacting OBBs in the graphic scene. 

When the two OBBs collide then the line distance between the centers of the touching 

OBBs is equal to the sum of the projected radii of the two contacting OBBs. If we were 

interested in the intersection of the contacting OBBs, the sum of the two contacting 

OBBs radii will have to be greater than the line distance between the OBBs centers. It 

also means the OBBs are overlapping along all six coordinate axis of x, y and z. Figure 

3.11 is the flow chart for the OBB collision detection based on the separating axis 

theorem, refer to “intersections.py” which also references “linear.py” in Appendix C. 

Figure 3.12 is the flow chart for the creation of octrees, “Octree.py” which also 

references “cube.py” and “intsersections.py” in Appendix C performs the octree creation 

of the CAD models. In Appendix D are instructions on how to input or change the CAD 

models. The collision detection test starts with an input of the 3D CAD models, the 

octree representation of the CAD model is then created with each octant or child placed 

in its OBB. Base on the separating axis theorem, the CAD models are translated within 

the graphic scene to test for collision. If the sum of the projected radii and the line 

distance between two contacting OBBs are equal then the OBBs are colliding which also 

means the two components are colliding at that point. At the point where the OBBs make 

contact, the program performs a routine operation to determine if other octants within 

proximity are also colliding. If any two OBBs of the CAD models at the point of contact 

satisfy the condition of the separating axis theorem, the program will detect collision or 

the translation of the movable component comes to a halt. 
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  The collision detection program was used to perform rigid body collision 

detection test between a 3D CAD STL model of a workpiece and a 3D CAD STL model 

of a cutting tool in a graphic scene. The CAD model of the workpiece was design to have 

an already built component I. Figure 3.13 (a) and (b) shows a build process where 

component II is to be built. As can be seen, the nozzle does not collide with component I 

and will build component II without the nozzle colliding with component I. Figure 3.14 

(a) and (b) also shows a built process where the nozzle collides with component I as it 

builds component II to its middle section. Instructions to run the collision detection 

program are in Appendix C. 
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Start 

 
Input OBB-Octree of CAD models 

T=distance between two OBBs 

ra+rb= sum radiuses of two OBBs 

Set dynamic scene=translate objects 

Check collision between 2 OBBs within proximity 

If |T.L| = ra +rb 

Report collision 

Report separated 

No else 

muted 

Stop 

Yes 

Figure 3.11. Flow chart for OBB collision detection 
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Figure 3.12. Flow chart for Octree creation 

 

 

Else  

 

If depth=9 

Stop recursive division 

 

Full = 2 Check box occupancy 

 

Partially full = 1 

Create octree of the CAD model 

Else if 

 

Stop recursive division 

 

If 

 

Empty = 0 

Recursively divide octants into eight octants 

Recursively divide box into eight octants 

Create CAD bounding box with max and min values 

Start 

Extract max and min coordinate values 

 

 

Input 3D CAD model 

Stop 
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Figure 3.13. (a) No collision between component I and nozzle, (b) Octree 

representation of the model 

 

 

  

 
Figure 3.14. (a) Nozzle collides with component I, (b) Octree representation of the 

model 

 

 

 

3.6 Comparison with Previous Work 

The octree based collision detection program in this research was compared with 

AABB collision detection (Thatipalli, 2011) by testing. In Figure 3.15 the two techniques 

(a) and (b) are used to perform a collision detection test between a CAD model of a 

workpiece and a CAD model of a nozzle. The nozzle target point is to the top middle of 

component II. In Figure 3.15 (b), the octree-OBB collision detection technique represents 
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the CAD models better with the OBBs tightly fitting the CAD models; collision between 

the CAD models is more realistic since the models are closely touching. In Figure 3.15 

(b), the single AABB technique and its representation of the CAD models are very 

conservative. Collision between CAD models bounded by a single AABB is not very 

realistic since the models are not closely touching. The AABB technique leaves a lot of 

space between the CAD model and its bounding box. 

 

 

Figure 3.15. (a) Single axis aligned bounding box collision test, (b) Octree oriented 

bounding box collision detection test 

 

 

 

3.7 Observations and Conclusions 

I. For the octree to represent a CAD model with tightly fitting OBBs, the splitting 

process requires higher depth of partitioning this makes the program run slow. 

The program sometimes runs slow when the CAD models to be partitioned have 

quadratic surfaces.  

II. The program is ideal for rigid body collision detection where the CAD model is 

decomposed to plan the build sequence before deposition commences. 
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Computer program for collision detection has been developed and implemented 

using octree-OBBs. The program can detect the collision between CAD models of two 

components within a graphic scene; the program used octrees to represent the CAD 

models to their near-net shapes for enhanced collision detection tests using higher dept of 

partitioning. Users can pan and rotate the models within the graphic scene for different 

angle of views, perform zoom in and out operations. Users can also toggle between STL 

mesh surfaces and octree-OBB boxes, or have the STL mesh lines and octree-OBB boxes 

removed. 

 



38 

CHAPTER 4  

DISCUSSION AND RECOMMENDATION  

 

4.1 Summary and Discussion 

Swept volume technique has been used to develop and implement computer 

program for visualization of the deposition process in this research. The program extracts 

coordinate information from G-codes and uses them as swept path. Users can pause the 

active visualization process, zoom in and out for closer view. Users can rotate and pan 

during the visualization process for different angle of views during the sweep process.  

Octree-OBBs have been used to develop and implement computer program, to 

detect collision between CAD models of two components within a graphic scene. The 

CAD models of the components are well represented to their near-net shapes by the 

octrees for enhanced collision detection. Users can rotate the models in the graphic scene 

for different angle of views. Users can choose which model to translate at any time and 

flip between octrees boxes and STL meshes. 

 “SWIFT++” is open source collision detection library software developed by 

GAMMA group at University of North Carolina at Chapel Hill. It is a robust program 

that can perform collision detection tests such as exact distance computation, contact 

determination and tolerance. This program could not be used because there are bugs 

which needed to be fixed. “SOLID” is another open source collision detection software 

considered, the bugs were fairly easy to fix. The program is version 3.5.6 developed with 

a single axis aligned bounding box. SOLID reports objects penetration depth, it does not 
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use hierarchies of bounding boxes which makes it not very suitable for contact collision 

detection. 

 

4.2. Recommendation and Future Work 

The stair case effect that makes the surface of rendered models uneven due to 

change of object geometry or slope sides should be looked at and made finer. 

Optimization of the program to speed up the visualization process of models with 

massive G-code data should also be looked at. 

Collision detection with octree should look at growth of the part being deposited. 

This requires updating the oriented bounding boxes (OBBs) as the part geometry 

changes. OBB-Rebuild can solve this problem or hierarchies of axis aligned bounding 

boxes (AABB).  “DeformCD” is an open source collision detection library used for 

collision detection of deformable objects. It uses the OBB-Rebuild technique for collision 

detection test. This program shows great promise for future work of DMD collision 

detection because it accounts for part changes or deformity during the deposition process.  

Future work should also be geared towards transitioning the collision detection 

program to follow the tool path during deposition. One way to do this is to develop a 

python script compiler that will extract and update the coordinate values from the G-code 

for the translation of the CAD models. This will effectively eliminate the manual 

keyboard manipulation used to translate the models to perform collision detection.   
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APPENDIX A 

 

VYPYTHON, NUMPY AND PYOGENGL OVERVIEW 

VPYTHON: 

 
VPython is the Python programming language plus a 3D graphics module called "Visual". 

VPython is a simple rendering tool for 3D objects and graphs. VPython allows users to create 

objects such as spheres and cones in 3D space and displays these objects in a window. Real-

time, navigable 3D animations are generated as a side effect of computations. 

(http://www.vpython.org/index.html). 
 

VPython is still being developed with a lot of contributions and modifications coming from 

independent contributors. The visualization program developed in this thesis made use of some of 

the latest additions to VPyhon library. The research program was developed using the new 

extrusion object library of VPython aided by the shape and path libraries. These libraries 

constituted the main frame of the research. The program was designed and implemented on 

windows 7 platform. How to install VPython on windows is in Appendix B.  

 

PYOPENGL: 
 

 PyOpenGL is the cross platform Python binding to OpenGL and related APIs.  The binding is 

created using the standard Python 2.5 ctypes library, and is provided under an extremely liberal 

BSD-style Open-Source license. PyOpenGL includes support for OpenGL v1.1 through 3.2, 

GLU, GLUT v3.7 (and FreeGLUT), and GLE 3.  It also includes support for hundreds of 

OpenGL extensions (http://pyopengl.sourceforge.net/ ). 

PyOpenGL was chosen as the platform to develop the collision detection program in this research 

because of prior experience with OpenGL. NeHe Productions 

(http://nehe.gamedev.net/tutorial/lessons_01__05/22004/) has a lot of tutorials on various 3D 

topics in OpenGL. This made the use and learning of PyOpenGL fairly easy because of free 

available tutorials with source codes. PyOpenGL was mainly used to handle the graphic aspect of 

the collision detection program. The OpenGL graphic library does the rendering when STL CAD 

files are imported and displayed in the window. Most of PyOpenGL dependencies come with the 

installation of Python-2.7. How to install PyOpenGL is provided in Appendix C or from 

(http://www.lfd.uci.edu/~gohlke/pythonlibs/). 

NUMPY: 
Numpy is an extension of the Python programming language. It adds support for large, multi-

dimensional arrays and matrices, along with a large library of high-level mathematical functions 

to operate of these arrays and matrices. The Numpy libraries are used in this research to perform 

the matrix and vector computations when translating or rotating the CAD models. How to install 

Numpy is provided in Appendix C or from (http://www.lfd.uci.edu/~gohlke/pythonlibs/) 

 

http://www.vpython.org/index.html
http://pyopengl.sourceforge.net/
http://nehe.gamedev.net/tutorial/lessons_01__05/22004/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
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APPENDIX B 

 

INSTRUCTIONS TO INSTALL AND RUN VISUALIZATION PROGRAM ON 

WINDOWS 

 

 INSTAL PYTHON AND ITS EXTENSIONS TO RUN THE PROGRAM: 

1. Install “Python-2.7” from this link 

(http://www.vpython.org/contents/download_windows.html).  

. When the page is displayed scroll down the screen till you get to this portion of 

the screen shown below, click “python-2.7” in oval to install. 

 
  

2. Follow this link to download and install “VPython and python 2.7” from:  

 (VPython-Win-Py2.7-5.73) this page is direct link to download  VPython 

and Python 

 

3. Or from (http://www.vpython.org/contents/download_windows.html). This will 

install Python 2.7 and VPython 5.7 simultaneously. When the page is displayed 

scroll down the screen till you get to this portion of the screen shown below, click 

“VPython-Py-2.7-5.72” in oval to install: 

 
This last stage completes the installation to run the visualization program. 

 

http://www.vpython.org/contents/download_windows.html
http://www.vpython.org/contents/download/VPython-Win-Py2.7-5.73.exe
http://www.vpython.org/contents/download_windows.html
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HOW TO RUN THE VISUALIZATION PROGRAM: 

1. Unzip folder “visualization” extract and save all the files into one folder. All G-

codes are text files and have (.txt) extension. All Python files have (.py) 

extension. The files in the folder appear on screen like this below when extracted: 

            
   

 File  “gparser.py” is a python script compiler for extracting X,Y and Z 

coordinate values 

 File  “AnimatedPath.py” is a python script compiler for defining the 

swept path 

 File “main.py” is the main python script used to run the visualization 

program, it references compilers “gparser.py” and “AnimatedPath.py” 

 Files “todcode, lamplogo, gkn,trial” are G-code text files from MST 

 Files “sculp, hairgel, cone, 3Dprinting” are G-code text files generated 

using open source 3D printing G-code generator called ReplicatorG to 

test the program. 

      

2. To run the program execute: “main.py”. Right click “main” and then click (Edit 

with Idle) this opens the python script in the idle. See snap shot below 
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When this operation is performed, the window shown below will be 

displayed on the screen. This is the first seventeen command lines of the 

python script. 

 
 When the window above appears press key “F5” on the keyboard to run 

the animation/simulation. Or from the task bar click ‘run’ click “Run 

Module with F5” see snap shot below. 
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This will run the animation/simulation process with “todcode” as input G-

code text file. While the animation/simulation is running the following 

operations can be performed i.e. lines 4 to 9 

3. Pressing space key on the keyboard will toggle play/pause 

4.  Pressing “+” (plus sign)  and “-“ (minus sign) keys will make animation faster 

or slower 
5.  Left/Right arrow keys will play animation forward/backwards 

6.  Home/End keys seek begin/end of animation 

7.  Pressing “0” key moves to begin,  pressing “9” key moves to the end 

8. Right click mouse, hold and move will give different angle of views 

9. Simultaneously right and left click mouse and hold, drag back and forth to 

zoom in and zoom out  

To change the cross section width (track width), G-code text file, screen size and 

animation time close current visualization window and repeat stage 2 above and follow 

lines 10 to 14 below. 
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10. Command line argument "-t 30" will set the speed to play the animation. The time 

is based on the feed rate. Current animation time is set to 750 seconds based on 

the feed rate of the input G-code. 

  
 

11. Command line argument “args=["todcode.txt"]” inputs or changes G-code text 

file. Current G-code file name is green “todcode” 

  
12. Command line argument "-w width" sets the cross section width. Current cross 

section width is set to 2.5. 

  
13. Command line argument "-n nsides" sets the shape of the cross section. Current 

cross section shape is 4 (square). 0 to 2 will sweep a circular shape. 

  
14. Command line argument "-f" toggles full-screen. Current setting is “False” to get 

a full screen change to “True” 
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APPENDIX C 

 

INSTRUCTIONS TO INSTALL AND RUN COLLISION DETECTION 

PROGRAM ON WINDOWS 

 

INSTALL THE EXTENSIONS: NUMPY 2.7 AND PYOPENGL 

1. Install Python 2.7 if not already installed. Follow step 1 in Appendix B to install 

Python 2.7. 

2. Follow link (http://www.lfd.uci.edu/~gohlke/pythonlibs/ ) to download and install 

(numpy-MKL-1.6.1.-win32-py2.7.exe). When the page is displayed scroll down 

the screen till you get to this portion of the screen shown below, click name in 

oval to install numpy.  

 
 

3. Follow link (http://www.lfd.uci.edu/~gohlke/pythonlibs/ ) to download and install 

(PyOpenGL-3.0.1.win32-py2.7.exe). When the page is displayed scroll down the 

screen till you get to this portion of the screen shown below, click name in oval to 

PyOpenGL: 

 
This last stage completes the installation process to successfully run the collision 

detection program. 

 

 

 

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
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HOW TO RUN THE COLLISION DETECTION PROGRAM: 

1. Unzip folder “Octree-OBB” and save all the files into one folder. The files in the 

folder appear on screen like this below: 

 
 Folder “fehe” contains list of ASCII CAD STL files 

 File “linear.py” is a python script compiler for setting (computing) the 

translations and rotations of the CAD object in the scene. 

 File “arcball.py” is a python script compiler that sets the scene dimension 

based on the size of the CAD and to allow mouse interactions and 

rotations. It can be downloaded from 

(http://nehe.gamedev.net/tutorial/arcball_rotation/19003/) 

 File “grid.py” is a python script compiler that divides the scene into grids.  

 File “Intersections.py” is a python script compiler that uses OBBs to 

perform the collision detection test. It can be downloaded from 

(http://www.gamasutra.com/view/feature/131790/simple_intersection_test

s_for_games.php?page=5) 

 File “Mouseinteractions.py” is a python script compiler used to perform   

zoom, pan and rotations operations.  

 File “scene.py” is a python script compiler keep records of the models, 

and allows interactions with grids, octrees, translation and rotation of the  

CAD models.  

 File “cube.py” is a python compiler that creates OBBs of the CAD 

models. 

 File “mesh.py” is a python script compiler that represents the vertexes, 

points and faces of the CAD models.  

 File “stl.py” is a python script that imports the 3D CAD file in stl formats.  

 File “octree.py” is a python script that creates the octree of the CAD 

models. It can be downloaded  from. 

(http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php) 

http://nehe.gamedev.net/tutorial/arcball_rotation/19003/
http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5
http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5
http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php
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 File “scene.ini” is for changing the CAD models and their relative 

distances and depth of partitioning. 

 File “main” is the main python script use to run the collision detection 

program.  

 Below is the Program Compilers Dependency 

 

 

 
 

 To run program execute “main.py”. Right click file “main” and then 

click (Edit with Idle) this opens the python script in the idle. 

 
 The first sixteen command lines of the python script in idle appears on the screen as 

shown below: 

 

STL.py 

Grid.py Scene.py 

Main.py 

Octree.py 

Intersections.py Cube.py Mesh.py 

Archball.py 

Linear.py 

Mouse Interaction.py 

Fehe 

Scene.ini 
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 Press key “F5” on the keyboard to run the simulation. Or from the task 

bar click “run” and click “Run Module with F5” as shown below. 

 
 While the animation/simulation is still active, the following operations can 

be performed i.e. lines 2 to 10 

 

2. F1 – will toggle octree leaves 

3. F2 – will toggle mesh lines 

4. F3 – will toggle transparency 

5. Left click the mouse and move to rotate the scene around (different angle of 

views).  

6. Press CONTROL and hold, left click and hold mouse, move around to pan the 

view.  

7. Press and hold down SHIFT key, drag mouse back and forth, to zoom in or zoom 

out of the scene. 

8. To select which object to move, press number 0 on keyboard to translate the 

first object while holding the second object fixed. Press number 1 on keyboard to 

reverse the process. 

9. To move the object around, use the arrows, HOME and END keys.  

10. To rotate the object, press CONTROL and use the arrows, HOME and END 

keys. 
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APPENDIX D 

 

HOW TO INPUT OR CHANGE THE CAD MODLES AND THEIR RELATIVE 

POSITIONS. 

 

 

1. Use SolidWorks to Create CAD STL files. Create the CAD object, go to file from 

task bar and choose save as. 

 
 Click on Save As a new window below will show up. Click on save as 

type 

 
 When save as type is clicked, the window below will show up 

 

 
 

 Click on STL (*.stl) to save the CAD object to a chosen folder or “fehe”. 
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2. To change the CAD models, set the depth of partitioning and the positions of the 

CAD models in the scene follow lines 2 to 3 below. 

3. The 3D STL CAD files are in folder “fehe” right click and open the folder 

 
Below in the oval are the CAD files in the folder “fehe” 

 
4. To input or change the 3D CAD models (STL ASCII format), depth of 

partitioning and positioning of the CAD models: open file “scene.ini” in 

WordPad and make the changes by typing the file name of the CAD model from 

folder “fehe” 
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 When “scene.ini” is open the WordPad window below will show up. In 

oval user can change CAD files by choosing from the folder “fehe”. 

“pos” is the relative position of the CAD models in the scene. “Color” 

will give the CAD model its color. “depth” will set the number of times 

to split a CAD model. Save the file after the changes are made. To run the 

animation repeat procedure in Appendix C. 
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APPENDIX E 

 

G-CODE TEXT FILE 

 

Below is a truncated sample G-code (todcode). “todcode” can be found in the zipped 

visualization program folder. 

  
0 0 M64 

0 12 G90 

900 12 G4P20000 

0 12 F750.0 

900 12 G1X 8.4951 Y 0.135 Z 0.0 

0 12 M65 

900 12 G4P50 

0 12 G1X 10.4263 Y 0.135 Z 0.0 

900 12 G1X 12.6851 Y 1.4553 Z 0.0 

0 12 G1X 6.8531 Y 1.385 Z 0.0 

900 12 G1X 6.3717 Y 2.635 Z 0.0 

0 12 G1X 15.5004 Y 2.635 Z 0.0 

900 12 G1X 16.4491 Y 3.885 Z 0.0 

0 12 G1X 6.4343 Y 3.885 Z 0.0 

900 12 G1X 7.0835 Y 5.135 Z 0.0 

0 12 G1X 16.9854 Y 5.135 Z 0.0 

900 12 G1X 17.7818 Y 6.385 Z 0.0 

0 12 G1X 11.098 Y 6.3696 Z 0.0 

900 12 G1X 13.3519 Y 7.635 Z 0.0 

0 12 G1X 18.6918 Y 7.635 Z 0.0 

900 12 G1X 20.0562 Y 8.885 Z 0.0 

0 12 G1X 14.5672 Y 8.885 Z 0.0 

900 12 G1X 15.3469 Y 10.135 Z 0.0 

0 12 G1X 23.5652 Y 10.135 Z 0.0 

900 12 G1X 26.8813 Y 11.385 Z 0.0 

0 12 G1X 15.8331 Y 11.385 Z 0.0 

900 12 G1X 16.0977 Y 12.635 Z 0.0 

0 12 G1X 27.7038 Y 12.635 Z 0.0 

900 12 G1X 28.0823 Y 13.885 Z 0.0 

0 12 G1X 16.3181 Y 13.885 Z 0.0 

900 12 G1X 16.5385 Y 15.13 

Where, F is the feed rate specifications in mm/min or in/min, G1 is linear motion mode, 

M64/M65 are on and off, respectively, of the optional M-code, G90 is absolute 

coordinate mode, G4 is a dwell cycle and X,Y,Z all refer to coordinate values. 
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APPENDIX F 

 

VISUALIZATION PROGRAM MODULES 
main.py 

#!/usr/bin/python 

# -*- coding: utf-8 -*- 

#Main Program: Will load the file specified on the command line and animate it on the screen 

from visual import display, color, arrow, vector, shapes, extrusion, mag, math, box 

import gparser 

import time 

import optparse 

import AnimatedPath 

 

#Parse command line arguments 

parser = optparse.OptionParser() 

parser.add_option("-t", "--time", default=50, 

                  action="store", type="float", dest="animation_duration",  

                  help=u"How many seconds the animation should last", metavar="SECONDS") 

parser.add_option("-n", "--nsides", default=4, 

                  action="store", type="int", dest="extrusion_ngon",  

                  help=u"How many facets on the extrusion", metavar="NSIDES") 

parser.add_option("-w", "--width", default=2, 

                  action="store", type="int", dest="extrusion_width",  

                  help=u"Width of the extrusion", metavar="WIDTH") 

parser.add_option("-f", "--full", "--full-screen", default=False, 

                  action="store_true", dest="fullscreen",  

                  help=u"Full screen mode") 

(options, args) = parser.parse_args() 

print " KEYBOARD FUNCTIONS" 

print "--press space bar : to pause/play animation" 

print "--press + and -   : to speed/slow animation" 

print "--press arrow keys: to play animation back and forth" 

print "--press 0 and 9   : move to begining and end of animation" 

print "--left and right click mouse and hold: drag to zoom in and out" 

print "-- right click mouse and hold, move to get diffrent angle views" 

 

#User can specify a single file to open. If none is specified, we open a default file 

if len(args) == 0: 

    args=["hairgel.txt"] 

if len(args) != 1: 

    parser.error("incorrect number of arguments, you should specify ONE G-code file") 

 

#Initializes extrusion shape. 

AnimatedPath.extrusionShapeWidth = options.extrusion_width 

if options.extrusion_ngon >= 3: 

    AnimatedPath.extrusionShape = 

shapes.rectangle(width=options.extrusion_width,height=options.extrusion_width,roundness=0) 

else: 

    AnimatedPath.extrusionShape = shapes.circle(radius=options.extrusion_width) 

 

#Creates the scene object 

scene=display( 

    title="simulation", 
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    width=650,height=400, 

    fullscreen=options.fullscreen, 

    autocenter=False, 

    autoscale=False, 

    background=color.black, 

    forward=vector(1,1,-1), 

    up=(0,0,1) 

) 

 

fileContents        = gparser.parseFile(args[0]) #Parsed G-Code file 

unrecognized_instrs = set()                      #Set if unrecognized intructions, to warn after the parsing is done 

totalDistance = 0                                #Total distance the printer will have to move. Used as time key during animation 

on            = True                             #Printer defaults to "On" 

currentPos    = vector(0,0,0)                    #Current position of the printer header 

range_min     = currentPos                       #Range of coordinates, used to center and zoom the scene properly 

range_max     = currentPos 

 

animated_paths      = []                   #List of the AnimatedPaths printed 

current_path_points = []                   #List of tuples (time, point) of the current path being drawn 

head_path           = [ (0,currentPos)  ]  #List of tuples (time, point) where the head has passed 

 

 

#"Executes" each instruction in the file 

for instr in fileContents: 

    instrType = instr[0]     #Type of the instruction: G1, M64, etc 

    instrArgs = instr[1]     #Instruction parameters: X,Y,Z,etc 

 

    #I'm not sure about instructions M101, M102, M103 and M108, but it seems to be working OK this way     

    if False: #To make a regular identation  

        pass 

 

    #Instructions to set the printing "ON" 

    elif instrType=="M101" or instrType=="M108" or instrType=="M103" or instrType=="M65" : 

        on=True 

    #Instructions to set the printing "OFF" 

    elif instrType=="M102" or instrType=="M64"  : 

        on=False 

        #If there is pending set of points, add a new AnimatedPath for them   

        if len(current_path_points): 

            animated_paths.append( AnimatedPath.AnimatedPath(current_path_points) ) 

            current_path_points=[] 

 

    #Instruction to move the printer header. The most import instruction! 

    elif instrType=="G1": 

        #new position is in the arguments 

        pos=vector(instrArgs['X'],instrArgs['Y'],instrArgs['Z']) 

        #Updates total distance travelled and scene ranges 

        totalDistance += mag(pos-currentPos) 

        range_min = vector(min(range_min[0], pos[0]), min(range_min[1], pos[1]), min(range_min[2], pos[2])) 

        range_max = vector(max(range_max[0], pos[0]), max(range_max[1], pos[1]), max(range_max[2], pos[2])) 

         

        #Add the new point to the header path animation 

        head_path.append( (totalDistance, pos) ) 

        if on: 

            #If on, add the new point to the current path being drawn 

            current_path_points.append( (totalDistance, pos) )                   
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        #Updates current position 

        currentPos=pos  

         

    #Instruction not recognied. Add to warning list 

    else: 

        unrecognized_instrs.add(instrType) 

           

           

#If there is pending set of points adter EOF, add a new AnimatedPath for them   

if len(current_path_points): 

    animated_paths.append( AnimatedPath.AnimatedPath(current_path_points) ) 

    current_path_points=[] 

 

#Display "Finished" message, with some useful information    

if len(unrecognized_instrs): 

    print "Warn: G-Codes not recognized: "+ ", ".join(unrecognized_instrs) 

print "Parse completed. Segments:" + str(len(animated_paths)) + ", Length:"+str(totalDistance)              

 

#sets the scene center/size 

range_min = vector(  

             range_min[0]-options.extrusion_width,  

             range_min[1]-options.extrusion_width,  

             range_min[2]-options.extrusion_width ) 

range_max = vector(  

             range_max[0]+options.extrusion_width,  

             range_max[1]+options.extrusion_width,  

             range_max[2]+options.extrusion_width + 5*options.extrusion_width) 

scene_radius = mag(range_max-range_min) + options.extrusion_width 

scene.center = (range_min+range_max)/2 

scene.range  = scene_radius*vector(1,1,1) 

 

#Printer header - A cone pointing to the current position of the printer header 

printer_head_height=1*options.extrusion_width 

printer_head = arrow(pos=(0,0,-options.extrusion_width), axis=(0,0,-printer_head_height), 

shaftwidth=printer_head_height/3, color=color.red) 

 

#deposition platform 

box_padding=scene_radius/20 

floor_center = vector( (range_min[0]+range_max[0])/2, (range_min[1]+range_max[1])/2, range_min[2]) 

floor_size = (range_max-range_min) + (2*box_padding, 2*box_padding, 0) 

floor = box(pos=floor_center, length=floor_size[0] , height=floor_size[1], width=options.extrusion_width/10, color= 

color.blue ) 

 

#Draw a wired box around the scene 

 

box_vertexes = [ ] 

for z in ( range_min[2], range_max[2]+box_padding ): 

    for y in ( range_min[1]-box_padding, range_max[1]+box_padding ): 

        for x in ( range_min[0]-box_padding, range_max[0]+box_padding ): 

            box_vertexes.append( (x,y,z) ) 

 

box_edges = [ #(0,1),  (1,3),  (3,2),  (2,0), 

#              (0,4),  (1,5),  (2,6),  (3,7), 

#              (4,5),  (5,7),  (7,6),  (6,4)  

]  

for x in box_edges: 
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    extrusion( pos=[ box_vertexes[x[0]], box_vertexes[x[1]] ], shape=shapes.ngon(np=4, radius=0.5), color=(.2,.5,1))# 

actual deposition 

 

#Runs the animation 

lastNow = time.time() 

animation_time = 0 

speed = totalDistance / options.animation_duration 

running=True 

while True: 

    now = time.time() 

    delta_time = now -lastNow 

    lastNow = now 

     

    # Handle keyboard events 

    while scene.kb.keys:  

        s = scene.kb.getkey() # get keyboard info 

        #print "Key typed: '" + s + "'" 

         

        #Space: toggle running/not running 

        if s == ' ': 

            running = not running 

            if running: 

                start = time.time() - animation_time 

                 

        #Home/End/Numbers - Move to absolute position 

        if s == 'home': 

            animation_time = 0 

        if s == 'end': 

            animation_time = totalDistance 

        if len(s)==1 and s >= "0" and s<="9": 

            animation_time = int(s) / 9.0 * totalDistance 

              

        #Right/Left - Rogle moving forward/backward 

        if s == 'right': 

            speed = abs(speed) 

        if s == 'left': 

            speed = -abs(speed) 

        #+/- Faster/Slower 

        if s == '+': 

            speed = speed*1.3 

        if s == '-': 

            speed = speed/1.3 

             

    #If running, move the animation one step 

    if running: 

        animation_time += delta_time * speed 

    #animation_time is bound to the interval [0, totalDistance] 

    animation_time = max(0, min(totalDistance, animation_time)) 

     

    #Updates printer header position and extruded paths accordingly to the current time 

    printer_head.pos = AnimatedPath.interpolatePath(head_path, animation_time) - printer_head.axis + 

(0,0,options.extrusion_width) 

    for p in animated_paths: 

        p.setTime(animation_time) 
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AnimatedPath.py 
 

# -*- coding: utf-8 -*- 

from visual import extrusion, color, vector 

import math 

 

#Will be initialized on the main method 

extrusionShape = None 

extrusionShapeWidth = 0 

 

#An animated path is a 3D object which will display incrementally based on the time, creating an animation  

class AnimatedPath: 

     

    #Creates the path from a list of tuples from parsed g-code lines 

    def __init__(self, points, color=color.white): 

        self.extrusion=extrusion(pos=[], shape=extrusionShape, color=color,visible=False)# actual deposition 

        self.points = points 

        self.firstTime = points[            0][0] 

        self.lastTime  = points[len(points)-1][0] 

        self.now = self.firstTime  

         

    def setTime(self, time): 

        #Don't do any modification if not needed 

        if time == self.lastTime: 

            return 

        if time <= self.firstTime and self.now <= self.firstTime: 

            return  

        if time >= self.lastTime and self.now >= self.lastTime: 

            return 

        self.now = time 

                  

        newpos=[] 

        prev=None 

        for p in self.points: 

            if p[0] < time: 

                newpos.append(p[1]) 

            else: #The current segment is still being created, will interpolate this (last) point to create the animation 

                if prev: 

                    alpha = (time-prev[0]) / (p[0]-prev[0]) 

                    newpos.append(alpha*p[1] + (1-alpha)*prev[1] )  

                break; 

            prev = p  

    

        i=1 

        while i < len(newpos): 

            prev = newpos[i-1] 

            cur  = newpos[i  ] 

             

            if (cur-prev).mag < extrusionShapeWidth/10.0: 

                newpos.pop(i) 

                continue 

            i=i+1 

             

        #Post-processing step 2 - If we have U turnrs,i.e anngle >90 the extrusion library generates unpleasing glitches. 

        #workaround.     
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        i=1 

        while i < len(newpos)-1: 

            #An angle is defined by 3 points: Current, previous and next 

            p_prev = newpos[i-1] 

            p_cur  = newpos[i  ] 

            p_next = newpos[i+1] 

                         

            #Gets length and direction of the segments prev<->current and current<->next 

            dist1 = (p_cur -p_prev).mag 

            dist2 = (p_next-p_cur ).mag 

            dir1  = (p_cur -p_prev).norm() 

            dir2  = (p_next-p_cur ).norm() 

            

            #If the angle between the segments is too big (ang>90 == U-turn), we will break this corner in two 

            ang = math.degrees( vector.diff_angle(dir1, dir2)) 

            if ang > 90:  

                #Distance betwen the new endpoint to cur.  

                #Should be approx extrusionShapeRadius to look good, and must be smaller than dist1 and dist2  

                d = min(dist1/30, dist2/30, extrusionShapeWidth) 

             

                #Uses linear interpolation to find the new endpoints 

                alpha1 = d/dist1 

                alpha2 = d/dist2 

                p1=alpha1*p_prev + (1-alpha1)*p_cur 

                p2=alpha2*p_next + (1-alpha2)*p_cur 

                 

                #Replaces the old endpoint with the new values  

                newpos[i] = p1 

                newpos.insert(i+1, p2) 

                i=i+1 

            i=i+1 

         

        if len(newpos) == 0:         # We can optimize a little if the list is empty  

            self.extrusion.visible=False 

        else:                        # Updates the extrusion object with new values  

            self.extrusion.pos=newpos 

            self.extrusion.visible=True 

         

def interpolatePath(points, time): 

    prev=None 

    for p in points: 

        if p[0] > time: 

            if prev: 

                alpha = (time-prev[0]) / (p[0]-prev[0]) 

                return alpha*p[1] + (1-alpha)*prev[1]  

            else: 

                return p[1] 

        prev = p 

    return prev[1] 
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gparse.py 

# -*- coding: utf-8 -*- 

import re 

 

#This will parse a G-Codes file into a list of instructions. 

#The first element in the G-Code indentifies the instruction. This is kept as the "key" of each element 

#The remaining elements are stored in a dictionary 

#Invalid lines are ignores 

# 

# e.g. 

#    ;M113 S1.0 

#    M108 R3.146 

#    (<surroundingLoop>) 

#    (<loop> outer ) 

#    G1 X28.63 Y28.64 Z0.15 F1080.0 

#    G1 X28.63 Y-28.64 Z0.15 F1080.0 

#    G1 X-28.41 Y-28.64 Z0.15 F1080.0 

#    M108 R35.0 

#    M102 

#    G1 X-28.63 Y-28.64 Z0. 

# 

# Becomes 

# [ 

#    ('M108', {'R': 3.146}),  

#    ('G1', {'Y': 28.64, 'X': 28.63, 'Z': 0.15, 'F': 1080.0}),  

#    ('G1', {'Y': -28.64, 'X': 28.63, 'Z': 0.15, 'F': 1080.0}),  

#    ('G1', {'Y': -28.64, 'X': -28.41, 'Z': 0.15, 'F': 1080.0}),  

#    ('M108', {'R': 35.0}),  

#    ('M102', {}),  

#    ('G1', {'Y': -28.64, 'X': -28.63, 'Z': 0.0}) 

# ] 

def parse(infile): 

    linenum=0 

     

    letter_re="[A-Z]"          #Regular expression to match the letter 

    double_re="[-+]?\d*\.?\d+" #Regular expression to match floating point numbers 

    space_re="\s*"             #Regular expression to match spaces, if present 

     

    #Regular expression to match each pair Letter+Nubmer in the G_codes. 

    #May not be the best way, but seems to be working 

    regexp_element=re.compile("(" + letter_re + ")" + space_re + "(" + double_re + ")") 

     

    #Regular expression to check if line is valid.  

    #It will be valid if it starts with a capital letter (GOOD) or a number (A problema with the TOD sample?) 

    regexp_validLine=re.compile(space_re + "(" + letter_re + "|" + double_re + ")") 

    ret=[] 

     

    while True: 

        linenum=linenum+1 

        line = infile.readline() 

        if not line: 

            break 

        if not regexp_validLine.match(line): 

            #print "Ignoring " + line 

            continue 
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        elements = regexp_element.findall(line) 

        if len(elements) == 0: 

            continue 

        firstElement=None 

        values={} 

        for e in elements: 

            if firstElement is None: 

                firstElement = e[0]+e[1] 

            else: 

                values[e[0]] = float(e[1]) 

        ret.append( (firstElement, values) ) 

        #print str(firstElement) + "  -  " + str(values) 

    return ret 

 

#Same as Parse, but receives a file path instead of a file object 

def parseFile(path): 

    infile = open(path, "r") 

    ret = parse(infile) 

    infile.close() 

    return ret 

 

if __name__ == "__main__": 

    f = open("objects/cone.txt","r") 

    print parseFile("objects/cone.txt") 
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APPENDIX G 

 

COLLISION DETECTION PROGRAM MODULES 

 

main.py 
 

from OpenGL.GL import * 

from OpenGL.GLUT import * 

from OpenGL.GLU import * 

 

import ConfigParser 

from scene import Scene 

from octree import Octree 

from grid import Grid 

from stl import loadSTL 

from linear import * 

 

from mouseinteraction import MouseInteraction 

 

scene = None 

action = None 

click_pos = None 

 

WINDOW_WIDTH = 1500 

WINDOW_HEIGHT = 1000 

 

mouse_interaction = MouseInteraction(WINDOW_WIDTH, WINDOW_HEIGHT) 

 

# this function gets called by GLUT when the sceene needs to be redrawn, for example: 

#  - when the viewport is first created 

#  - after whe viewport changes (window resize) 

#  - when glutPostRedisplay is called 

print "--KEYBOARD FUNCTIONS--" 

print "--left click mouse and hold, move to get diff angle of views" 

print "--Press 0 key to activate first object to translate, press 1 will activate second object" 

print "--use arrows,HOME and END keys to translate the selected object around" 

print "--Press CTRL key and hold : use arrows, HOME and END keys to rotate object" 

print "--Press and hold SHIFT key: left click and hold mouse, drag mouse back and forth to Zoom in and out" 

print "--press and hold CTRL key: left click and mouse, move mouse around to pan scene" 

print "--Press F1 to show only octree boxes" 

print "--Press F2 to show only STL mesh lines" 

print "--press F3 will make the CAD models transparent" 

 

def DrawScene(): 

 # clear the viewport and the depth buffer (z-buffer) 

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

 

 # set up the position of the camera 

 glLoadIdentity(); 
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 glTranslatef(0,0,-200.0) 

 

 mouse_interaction.applyTransform() 

 scene.draw() 

 

 # tell GLUT to swap the front and back buffers 

 try: 

  # sometimes this fails (bug in pyopengl?)  

  # if that happens (program seems to freeze), try resizing the viewport 

  glutSwapBuffers(); 

 except: 

  pass 

 

def InitOpenGL(Width, Height):     

 glShadeModel(GL_FLAT)     

 # color we want to use when clearing the viewport 

 glClearColor(0.0, 0.0, 0.0, 0.0) 

    

 # enable the z-buffer (so objects get occluded correctly) 

 glEnable(GL_DEPTH_TEST) 

 

 # enable lights in general, and in particular light #0 

 glEnable (GL_LIGHT0) 

 glEnable (GL_LIGHTING) 

 

 # tell OpenGL it should use the color we assign to the object as the diffuse component 

 # (makes specifying the color of the object easier) 

 glEnable (GL_COLOR_MATERIAL) 

 

 # make sure normals are always normalized, even if we change the scale of things 

 glEnable (GL_NORMALIZE); 

  

# this function gets called by GLUT when the viewport is first created and when 

# the viewport is resized. 

def onResize(w, h): 

 if h <= 2: h = 2 

 if w <= 2: w = 2 

 

 glViewport(0, 0, w, h) 

  

 # select the projection matrix (to set up the perspective projection) 

 glMatrixMode(GL_PROJECTION) 

 

 glLoadIdentity() 

 # view frustum angle set to 45 degrees, viewport aspect ratio, near plane, far plane 

 gluPerspective(45.0, float(w)/float(h), 1, 1000.0) 

 

 # select the modelview matrix now 

 glMatrixMode (GL_MODELVIEW); 

 glLoadIdentity (); 

 

 mouse_interaction.vpResize(w,h) 

 return 

 

 

# this function gets called by GLUT when a key is pressed 
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def onKeyPressed(key, x, y): 

 global scene 

 

 if key == chr(27):  # 27 is the ascii value of the ESC key 

  sys.exit(0) 

 

 if  key >= '0' and key <= '9': 

  scene.selectObject(ord(key) - ord('0')) 

 

def onSpecialKeyPressed(key, x, y): 

 

 

 if key in 

(GLUT_KEY_LEFT,GLUT_KEY_RIGHT,GLUT_KEY_UP,GLUT_KEY_DOWN,GLUT_KEY_END,GLUT_KEY_

HOME): 

  scene.storeTransform() 

 

  if glutGetModifiers() & GLUT_ACTIVE_CTRL: 

   # pressing control + arrow makes the object rotate 

   if key == GLUT_KEY_LEFT: scene.rotate(Vector3f(-1,0,0),10) 

   elif key == GLUT_KEY_RIGHT: scene.rotate(Vector3f(1,0,0),10) 

   elif key == GLUT_KEY_UP: scene.rotate(Vector3f(0,1,0),10) 

   elif key == GLUT_KEY_DOWN: scene.rotate(Vector3f(0,-1,0),10) 

   elif key == GLUT_KEY_END: scene.rotate(Vector3f(0,0,-1),10) 

   elif key == GLUT_KEY_HOME: scene.rotate(Vector3f(0,0,1),10) 

  else: 

   # pressing control + arrow makes the object move 

   if key == GLUT_KEY_LEFT: scene.translate(Vector3f(-1,0,0)) 

   elif key == GLUT_KEY_RIGHT: scene.translate(Vector3f(1,0,0)) 

   elif key == GLUT_KEY_UP: scene.translate(Vector3f(0,1,0)) 

   elif key == GLUT_KEY_DOWN: scene.translate(Vector3f(0,-1,0)) 

   elif key == GLUT_KEY_END: scene.translate(Vector3f(0,0,-1)) 

   elif key == GLUT_KEY_HOME: scene.translate(Vector3f(0,0,1)) 

 

  if scene.checkCollisions(): 

   scene.restoreTransform() 

 

 elif key == GLUT_KEY_F1: 

  scene.toggleHelperGroup("octree") 

 elif key == GLUT_KEY_F2: 

  scene.toggleFaceEdges() 

 elif key == GLUT_KEY_F3: 

  scene.toggleTranslucent() 

 

 glutPostRedisplay() 

 

def onClick(button, state, x, y): 

 if state == GLUT_DOWN: 

  if glutGetModifiers() & GLUT_ACTIVE_CTRL: 

   action = mouse_interaction.PAN_ACTION 

  elif glutGetModifiers() & GLUT_ACTIVE_SHIFT: 

   action = mouse_interaction.ZOOM_ACTION 

  else: 

   action = mouse_interaction.ROTATE_ACTION 

  mouse_interaction.click(x,y, action) 

 elif state == GLUT_UP: 
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  mouse_interaction.release() 

def onDrag(x, y): 

 mouse_interaction.drag(x,y) 

 glutPostRedisplay(); 

 

def loadScene(): 

 # split a vector represented as a string into float components 

 def asVector(txt): 

  return map(lambda a:float(a.strip()), txt.split(',')) 

 

 scene = Scene() 

 

 config = ConfigParser.SafeConfigParser() 

 

 config.read("scene.ini") 

 

 for s_name in config.sections(): 

  print s_name 

  if s_name.lower().startswith("object."): 

 

   objname = s_name[7:] 

   filename = config.get(s_name,'file') 

    

   if filename is not None: 

    print "Loading file %s"%filename 

 

    if config.has_option(s_name,'pos'): 

     position = asVector(config.get(s_name,'pos')) 

    else: 

     position = Vector3f() 

 

    if config.has_option(s_name,'color'): 

     color = asVector(config.get(s_name, 'color')) 

    else: 

     color = None 

 

    mesh = loadSTL(filename) 

 

    if config.has_option(s_name,'depth'): 

     depth = int(config.get(s_name,'depth')) 

    else: 

     depth = 9 

 

    mesh.setPosition(position) 

    mesh.setName(objname or "object") 

    mesh.setColor(color or (0.5,0.5,0.5)) 

 

    scene.addInteractive(mesh) 

 

    oct = Octree(mesh, max_depth = depth) 

 

    scene.addHelper(oct,"octree") 

 

 scene.addHelper(Grid(200, 20),"grid") 

 

 return scene 
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def main(): 

 global scene 

 

 # boilerplate GLUT initialization code 

 glutInit(sys.argv) 

 

 # tell glut we need a viewport with: 

 # - truecolor capabilities with alpha channel (transparency) 

 # - double buffer (to avoid flicker when drawing) 

 # - depth buffer (to have correct occlusion of objects) 

 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH) 

 glutInitWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT) 

 

 # open the window 

 window = glutCreateWindow("") 

 

 # register some callbacks that will call GLUT when something happens (key pressed, mouse move, etc) 

 glutReshapeFunc(onResize) 

 glutKeyboardFunc(onKeyPressed) 

 glutSpecialFunc(onSpecialKeyPressed) 

 

 glutDisplayFunc(DrawScene) 

 

 # load everything 

 scene = loadScene() 

 

 #glutIdleFunc(Draw) 

 glutMouseFunc (onClick) 

 glutMotionFunc (onDrag) 

 

 # initialize openGL 

 InitOpenGL(WINDOW_WIDTH, WINDOW_HEIGHT) 

 

 glutMainLoop() 

 

 

if __name__=="__main__": 

 main() 

 

 

intersections.py 
 

import numpy as N 

from linear import * 

 

# returns (t,u,v) where 

# t - distance along the ray where intersects the triangle 

# u,v - barycentric coordinates on the triangle 

 

def lineno(): 

 import inspect 

 """Returns the current line number in our program.""" 

 return inspect.currentframe().f_back.f_lineno 

 

def rayTriangleIntersection(ray_origin, ray_direction, triverts): 
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 e1 = triverts[1]-triverts[0] 

 e2 = triverts[2]-triverts[0] 

 

 pvec = N.cross(ray_direction, e2) 

 det = N.dot(e1, pvec) 

 

 if det > -EPSILON and det < EPSILON: 

  return None 

 

 inv_det = 1.0 / det 

 

 tvec = ray_origin - triverts[0] 

 

 u = N.dot(tvec,pvec) * inv_det 

 if u < 0.0 or u > 1.0: 

  return None 

 

 qvec = N.cross(tvec, e1) 

 

 v = N.dot(ray_direction, qvec) * inv_det 

 if v < 0.0 or (u+v) > 1.0: 

  return None 

 

 t = N.dot(e2, qvec) * inv_det 

 

 return t,u,v 

 

# The following code is based on code by Tomas Akenine-Moller 

# http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/ 

 

def planeBoxOverlap(normal, vert, maxbox): 

 vmin = Vector3f() 

 vmax = Vector3f() 

 

 for coord in (0,1,2): 

  v = vert[coord] 

  if normal[coord] > 0.0: 

   vmin[coord] = -maxbox[coord] - v 

   vmax[coord] =  maxbox[coord] - v 

  else: 

   vmin[coord] =  maxbox[coord] - v 

   vmax[coord] = -maxbox[coord] - v 

  

 if N.dot(normal, vmin) > 0.0: 

  return False 

 

 if N.dot(normal, vmax) >= 0.0: 

  return True 

 

 return False 

 

def triangleBoxOverlap(box_center, box_half_size, triverts): 

 """ 

 Use separating axis theorem to test overlap between triangle and box 

 need to test for overlap in these directions: 

 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
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    we do not even need to test these) 

 2) normal of the triangle 

 3) crossproduct(edge from tri, {x,y,z}-directin) 

    this gives 3x3=9 more tests 

 """ 

 # test the triangle against a box centered at the origin 

 v0 = triverts[0] - box_center 

 v1 = triverts[1] - box_center 

 v2 = triverts[2] - box_center 

 

 #======================== X-tests ======================== 

 

 def axisTestX01(a, b, fa, fb): 

  p0 = a * v0[1] - b*v0[2] 

  p2 = a * v2[1] - b*v2[2] 

 

  if p0 < p2: 

   min_val = p0 

   max_val = p2 

  else: 

   min_val = p2 

   max_val = p0 

 

  rad = fa * box_half_size[1] + fb * box_half_size[2] 

 

  return  min_val > rad or max_val < -rad 

 

 def axisTestX2(a, b, fa, fb): 

  p0 = a * v0[1] - b*v0[2] 

  p1 = a * v1[1] - b*v1[2] 

 

  if p0 < p1: 

   min_val = p0 

   max_val = p1 

  else: 

   min_val = p1 

   max_val = p0 

 

  rad = fa * box_half_size[1] + fb * box_half_size[2] 

 

  return  min_val > rad or max_val < -rad 

 

 #======================== Y-tests ======================== 

 def axisTestY02(a, b, fa, fb): 

  p0 = -a * v0[0] + b*v0[2] 

  p2 = -a * v2[0] + b*v2[2] 

 

  if p0 < p2: 

   min_val = p0 

   max_val = p2 

  else: 

   min_val = p2 

   max_val = p0 

 

  rad = fa * box_half_size[0] + fb * box_half_size[2] 
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  return  min_val > rad or max_val < -rad 

 

 def axisTestY1(a, b, fa, fb): 

  p0 = -a * v0[0] + b*v0[2] 

  p1 = -a * v1[0] + b*v1[2] 

 

  if p0 < p1: 

   min_val = p0 

   max_val = p1 

  else: 

   min_val = p1 

   max_val = p0 

 

  rad = fa * box_half_size[0] + fb * box_half_size[2] 

 

  return  min_val > rad or max_val < -rad 

 

 #======================== Z-tests ======================== 

 

 def axisTestZ12(a, b, fa, fb): 

  p1 = a * v1[0] - b*v1[1] 

  p2 = a * v2[0] - b*v2[1] 

 

  if p2 < p1: 

   min_val = p2 

   max_val = p1 

  else: 

   min_val = p1 

   max_val = p 

  rad = fa * box_half_size[0] + fb * box_half_size[1] 

 

  return  min_val > rad or max_val < -rad 

 

 def axisTestZ0(a, b, fa, fb): 

  p0 = a * v0[0] - b*v0[1] 

  p1 = a * v1[0] - b*v1[1] 

 

  if p0 < p1: 

   min_val = p0 

   max_val = p1 

  else: 

   min_val = p1 

   max_val = p0 

 

  rad = fa * box_half_size[0] + fb * box_half_size[1] 

 

  return  min_val > rad or max_val < -rad 

 

 # edges 

 

 e0 = v1-v0 

 e1 = v2-v1 

 e2 = v0-v2 

 

 # TEST 1 

 fex = abs(e0[0]) 
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 fey = abs(e0[1]) 

 fez = abs(e0[2]) 

 

 if (axisTestX01(e0[2], e0[1], fez, fey) or 

     axisTestY02(e0[2], e0[0], fez, fex) or 

     axisTestZ12(e0[1], e0[0], fey, fex)): 

    return False 

 

 fex = abs(e1[0]) 

 fey = abs(e1[1]) 

 fez = abs(e1[2]) 

 

 if (axisTestX01(e1[2], e1[1], fez, fey) or 

     axisTestY02(e1[2], e1[0], fez, fex) or 

     axisTestZ0( e1[1], e1[0], fey, fex)): 

    return False 

 

 fex = abs(e2[0]) 

 fey = abs(e2[1]) 

 fez = abs(e2[2]) 

 

 if (axisTestX2( e2[2], e2[1], fez, fey) or 

     axisTestY1( e2[2], e2[0], fez, fex) or 

     axisTestZ12(e2[1], e2[0], fey, fex)): 

    return False 

 

 # TEST 2 

 # first test overlap in the {x,y,z}-directions 

 # find min, max of the triangle each direction, and test for overlap in 

 # that direction -- this is equivalent to testing a minimal AABB around 

 # the triangle against the AABB 

 

 # test in X 

 if (min(v0[0], v1[0], v2[0]) > box_half_size[0] or 

    max(v0[0], v1[0], v2[0]) < -box_half_size[0]): 

    return False 

  

 # test in Y 

 if( min(v0[1], v1[1], v2[1]) > box_half_size[1] or 

    max(v0[1], v1[1], v2[1]) < -box_half_size[1]): 

    return False 

 

 # test in Z 

 if (min(v0[2], v1[2], v2[2]) > box_half_size[2] or 

    max(v0[2], v1[2], v2[2]) < -box_half_size[2]): 

    return False 

  

 # TEST 3 

 # test if the box intersects the plane of the triangle 

 # compute plane equation of triangle: normal*x+d=0 

 

 normal = N.cross(e0,e1) 

 

 if not planeBoxOverlap(normal,v0,box_half_size): 

  return False 

 



74 

 return True # box and triangle overlap 

# The following is code based on code by Miguel Gomez 

# http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5 

 

# box_frame_1, box_frame_2 must be of type numpy.matrix 

 

def boxBoxOverlap(box_center_1, box_half_size_1, box_frame_1, box_center_2, box_half_size_2, box_frame_2, 

R=None): 

 if R is None: 

  R = box_frame_1 * box_frame_2.T 

 

 v = (box_center_2 - box_center_1) 

 T =  N.dot(box_frame_1, v.T) # T is column vector 

 

 three = (0,1,2) 

  

 a = box_half_size_1 

 b = box_half_size_2 

 

 Rabs = N.abs(R) 

 

 for i in three: 

  rb = N.dot(b, Rabs[i].T) 

  t = abs(T[i]) 

  if t > a[i] + rb: 

   return False 

 

 for i in three: 

  ra = N.dot(a, Rabs[:,i]) 

  t = abs(N.dot(R[:,i].T,T)) 

  if t > box_half_size_2[i] + ra: 

   return False 

  

 # L = A0 x B0 

  

 ra = a[1]*abs(R[2,0]) + a[2]*abs(R[1,0]) 

 rb = b[1]*abs(R[0,2]) + b[2]*abs(R[0,1]) 

 

 t = abs(T[2]*R[1,0] - T[1]*R[2,0]) 

 if t > ra+rb: 

  return False 

 # L = A0 x B1 

 

 ra = a[1]*abs(R[2,1]) + a[2]*abs(R[1,1]) 

 rb = b[0]*abs(R[0,2]) + b[2]*abs(R[0,0]) 

 

 t = abs(T[2]*R[1,1] - T[1]*R[2,1]) 

 if t > ra+rb: 

  return False 

 

 # L = A0 x B2 

 

 ra = a[1]*abs(R[2,2]) + a[2]*abs(R[1,2]) 

 rb = b[0]*abs(R[0,1]) + b[1]*abs(R[0,0]) 

 

 t = abs(T[2]*R[1,2] - T[1]*R[2,2]) 
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 if t > ra+rb: 

  return False 

 

 # L = A1 x B0 

  

 ra = a[0]*abs(R[2,0]) + a[2]*abs(R[0,0]) 

 rb = b[1]*abs(R[1,2]) + b[2]*abs(R[1,1]) 

 

 t = abs(T[0]*R[2,0] - T[2]*R[0,0]) 

 if t > ra+rb: 

  return False 

 

 # L = A1 x B1 

 

 ra = a[0]*abs(R[2,1]) + a[2]*abs(R[0,1]) 

 rb = b[0]*abs(R[1,2]) + b[2]*abs(R[1,0]) 

 

 t = abs(T[0]*R[2,1] - T[2]*R[0,1]) 

 if t > ra+rb: 

  return False 

 

 # L = A1 x B2 

 

 ra = a[0]*abs(R[2,2]) + a[2]*abs(R[0,2]) 

 rb = b[0]*abs(R[1,1]) + b[1]*abs(R[1,0]) 

 

 t = abs(T[0]*R[2,2] - T[2]*R[0,2]) 

 if t > ra+rb: 

  return False 

 

 # L = A2 x B0 

  

 ra = a[0]*abs(R[1,0]) + a[1]*abs(R[0,0]) 

 rb = b[1]*abs(R[2,2]) + b[2]*abs(R[2,1]) 

 

 t = abs(T[1]*R[0,0] - T[0]*R[1,0]) 

 if t > ra+rb: 

  return False 

 

 # L = A2 x B1 

 

 ra = a[0]*abs(R[1,1]) + a[1]*abs(R[0,1]) 

 rb = b[0]*abs(R[2,2]) + b[2]*abs(R[2,0]) 

 

 t = abs(T[1]*R[0,1] - T[0]*R[1,1]) 

 if t > ra+rb: 

  return False 

 

 # L = A2 x B2 

 

 ra = a[0]*abs(R[1,2]) + a[1]*abs(R[0,2]) 

 rb = b[0]*abs(R[2,1]) + b[1]*abs(R[2,0]) 

 

 t = abs(T[1]*R[0,2] - T[0]*R[1,2]) 

 if t > ra+rb: 

  return False 
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 return True 

 

octree.py 
 

 

from OpenGL.GL import * 

from OpenGL.GLUT import * 

from OpenGL.GLU import * 

 

from linear import * 

from cube import drawCube 

 

from intersections import boxBoxOverlap 

" ideas from http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php" 

 

class Octree: 

 class OctreeLeaf: 

  def __init__(self, box): 

   self.center = (box[0] + box[1]) * 0.5 

   self.size_2 = (box[1] - box[0]) * 0.5 

   # this is so it can  

   self.is_leaf = True 

   # this is so it can get inserted in the to_test_queue (in the Octree.intersects method) 

   self.cells = [self] 

 

 class OctreeNode: 

 

  def largestAxis(self): 

   size = self.bounds[1] - self.bounds[0] 

 

   axis = 0 

   d = size[0] 

 

   if size[1] > d: 

    axis = 1 

    d = size[1] 

 

   if size[2] > d: 

    axis = 2 

    d = size[2] 

 

   return axis 

 

  def KDboxIter(self): 

   axis = self.largestAxis() 

   return self.splitBox(axis) 

 

  def intersects(self, node, c1, t1, c2, t2, R): 

   return boxBoxOverlap(self.center*t1 + c1, self.size_2, t1, node.center*t2 + c2, 

node.size_2, t2, R) 

 

  # split the bounds of this OctreeNode into 8 boxes 

  def octreeBoxIter(self): 

   size_2 = self.size_2 

   pos = Vector3f() 
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   pos[0] = self.bounds[0][0] 

   for x in (0,1): 

    pos[1] = self.bounds[0][1] 

    for y in (0,1): 

     # unroll the z loop 

     pos[2] = self.bounds[0][2] 

     yield (pos.copy(), pos+size_2) 

     pos[2] += size_2[2] 

     yield (pos.copy(), pos+size_2) 

     pos[1] += size_2[1] 

    pos[0] += size_2[0] 

    

  # list of boxes contained in a given half (with respect to a given axis). 

  # for example, for axis 0 (X), boxes 0,1,2 and 3 lie on the "left" half, while 

  # boxes 4,5,6 and 7 lie on the "right" half 

  test_box_indices =[ 

     ((0,2,4,6),2), 

     ((1,3,5,7),2), 

     ((0,1,4,5),1), 

     ((2,3,6,7),1), 

     ((0,1,2,3),0), 

     ((4,5,6,7),0), 

     ] 

  def splitBox(self, axis): 

   size = self.bounds[1] - self.bounds[0] 

   d2 = size[axis] * 0.5 

   pos = self.bounds[0].copy() 

 

   if axis == 0: 

    corner = (d2, size[1], size[2]) 

    boxes = [(pos.copy(), pos + corner), None] 

    pos[0] += d2 

    boxes[1] = (pos.copy(), pos + corner) 

 

   elif axis == 1: 

    corner = (size[0], d2, size[2]) 

    boxes = [(pos.copy(), pos + corner), None] 

    pos[1] += d2 

    boxes[1] = (pos.copy(), pos + corner) 

 

   elif axis == 2: 

    corner = (size[0], size[1], d2) 

    boxes = [(pos.copy(), pos + corner), None] 

    pos[2] += d2 

    boxes[1] = (pos.copy(), pos + corner) 

 

   return boxes 

 

  def __init__(self, mesh, bounds, max_depth, max_error): 

   # check if all the boxes listed in box_indices taken from the occupancy list 

   # are either empty (code returned by mesh.intersectsAABB is 0) or 

   # full (code == 2). 

   def checkBoxesStatus(occupancy, box_indices): 

    empty_test_passes = True 

    full_test_passes = True 
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    for box_num in box_indices: 

     if occupancy[box_num] != 0: empty_test_passes = False 

     if occupancy[box_num] != 2: full_test_passes = False 

    return empty_test_passes, full_test_passes 

 

   self.is_leaf = False 

   self.bounds = N.array(bounds,"f") 

 

   size = bounds[1] - bounds[0] 

   self.size_2 = size * 0.5 

   self.center = (bounds[0] + bounds[1])*0.5 

 

   occupancy = [] 

   boxes = [] 

 

   for box in self.octreeBoxIter(): 

    occupancy.append( mesh.intersectsAABB(box) ) 

    boxes.append(box) 

 

   if max_depth <= 0 or max(size) < max_error: 

    # if we're at the max depth, then just store true (if contains any portion of the 

mesh) 

    # or false at the cells 

    self.cells = [ oc != 0 for oc in occupancy ] 

    self.boxes = boxes 

   else: 

    # otherwise, pick a good axis to split the cell in two. If possible, choose 

    # an axis that leaves one half either completely full or completely empty 

    # if such axis doesn't exist, then pick the largest one 

    split_axis = None 

    for test, axis in self.test_box_indices: 

 

     empty_test_passes, full_test_passes = checkBoxesStatus(occupancy, 

test) 

     if empty_test_passes or full_test_passes: 

      split_axis = axis 

      break 

 

    if split_axis is None: 

     # no half is either full empty or completely full 

     split_axis = self.largestAxis() 

     self.boxes = self.splitBox(split_axis) 

     self.cells = [ 

       Octree.OctreeNode(mesh, self.boxes[0], 

max_depth-1, max_error), 

       Octree.OctreeNode(mesh, self.boxes[1], 

max_depth-1, max_error) 

      ] 

    else: 

     # one (or both) of the halves is completely empty or completely full 

 

     # complementary test (the other boxes not in test) 

     ctest = [x for x in range(8) if x not in test]  

 

     passed_test_boxes = [box for box_num,box in enumerate(boxes) if 

box_num in test] 
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     other_test_boxes  = [box for box_num,box in enumerate(boxes) if 

box_num in ctest] 

 

     # the min/max of the first/last box in "test" and "ctest" are actually 

the corners of the 

     # combined boxes in each group. 

     self.boxes = [(passed_test_boxes[0][0],passed_test_boxes[-1][1] ), 

          

(other_test_boxes[0][0],other_test_boxes[-1][1] )] 

 

 

     # full_test_passes and empty_test_passes refer to the contents of 

self.boxes[0],  

     # that is to the boxes in passed_test_boxes 

     self.cells = [full_test_passes, None] 

 

     # now check the occupancy of boxes -not- in test (those in ctest) 

     empty_test_passes, full_test_passes = checkBoxesStatus(occupancy, 

ctest) 

 

     if empty_test_passes or full_test_passes: 

      self.cells[1] = full_test_passes 

     else: 

      self.cells[1] = Octree.OctreeNode(mesh, self.boxes[1], 

max_depth-1, max_error) 

 

 

  def draw(self, level=0): 

   bounds = self.bounds 

   size_2 = self.size_2 

   cells = self.cells 

   i = 0 

 

   for cell, box in zip(self.cells, self.boxes): 

    if cell is False: 

     continue 

    if cell is True: 

     glColor4f(0.0,1.0,0.0,0.5) 

     drawCube(box[0], box[1]) 

    else: 

     cell.draw(level+1) 

 

   glColor4f(1.0,1.0,1.0,0.1) 

   drawCube(self.bounds[0], self.bounds[1]) 

    

 

 def __init__(self, mesh, max_depth = 9, max_error = 0.1): 

  print "Building octree (max depth=%s)"%max_depth 

 

  self.mesh = mesh 

  mesh.octree = self 

 

  bounds = (mesh.bounds[0], mesh.bounds[1]) 

 

  self.root = Octree.OctreeNode(mesh, bounds, max_depth, max_error) 
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 def intersects(self, octree): 

  # tranlsation part 

  c1 = self.mesh.transform[3,0:3] 

  c2 = octree.mesh.transform[3,0:3] 

 

  # rotation part 

  t1 = self.mesh.transform[0:3,0:3] 

  t2 = octree.mesh.transform[0:3,0:3] 

 

  # mapping from one orientation to the other 

  R = t1 * t2.T 

 

  if not boxBoxOverlap(self.root.center * t1 + c1, self.root.size_2, t1, 

        octree.root.center*t2 + c2, octree.root.size_2, t2, 

R): 

   return False 

 

  #inter = self.root.intersects(octree.root, c1,t1,c2,t2,R) 

  #if inter == False: 

  # return False 

 

  to_test_queue = [ (self.root, octree.root) ] 

 

  while len(to_test_queue)>0: 

   g1,g2 = to_test_queue.pop(0) 

 

   # we put this cycle here so we don't do the tests and instantiation of OctreeLeaf 

   # many times inside the cycle of i,cell 

   cell2_list = [] 

   for j,cell2 in enumerate(g2.cells): 

    if cell2 == False: continue 

    if cell2 == True: 

     cell2 = self.OctreeLeaf(g2.boxes[j]) 

    cell2_list.append(cell2) 

 

   # check all the cells in the first group against all the cells in the second group 

   for i,cell1 in enumerate(g1.cells): 

    if cell1 == False: continue 

    if cell1 == True: 

     cell1 = self.OctreeLeaf(g1.boxes[i]) 

    for cell2 in cell2_list: 

     if not boxBoxOverlap(cell1.center * t1 + c1, cell1.size_2, t1, 

cell2.center*t2 + c2, cell2.size_2, t2, R): 

      continue 

 

     if not (cell1.is_leaf and cell2.is_leaf): 

      to_test_queue.append( (cell1,cell2) ) 

     else: 

      return True 

 

  return False 

 

 def draw(self): 

   glPushMatrix() 

   glMultMatrixf(self.mesh.transform) 
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   glEnable(GL_BLEND) 

   glBlendFunc(GL_SRC_ALPHA, GL_ONE) 

   if self.mesh.getTranslucent(): 

    glDisable(GL_DEPTH_TEST) 

   self.root.draw() 

   if self.mesh.getTranslucent(): 

    glEnable(GL_DEPTH_TEST) 

   glDisable(GL_BLEND) 

   glPopMatrix() 

 

linear.py 
 

import numpy as N 

 

#inspired by code from NeHe 

 

EPSILON = 0.00001 

 

def Matrix4f (): 

 return N.matrix(N.identity (4, 'f')) 

 

def Matrix3f (): 

 return N.matrix(N.identity (3, 'f')) 

 

def Quat4f (x=None, y=None, z=None, w=None): 

 if x is None: 

  return N.zeros (4, 'f') 

 else: 

  return N.array((float(x),float(y),float(z),float(w)),'f') 

 

def Vector3f (x=None, y=None, z=None): 

 if x is None: 

  return N.zeros (3, 'f') 

 else: 

  return N.array((float(x),float(y),float(z)),'f') 

 

def Vector2f (x=None, y=None): 

 if x is None: 

  return N.zeros (2, 'f') 

 else: 

  return N.array((float(x),float(y)),'f') 

 

def Point3f (x=None, y=None, z=None): 

 if x is None: 

  return N.zeros (3, 'f') 

 else: 

  return N.array((float(x),float(y),float(z)),'f') 

 

def Point2f (x = 0.0, y = 0.0): 

 pt = N.zeros (2, 'f') 

 pt [0] = x 

 pt [1] = y 

 return pt 

 

def VectorDot(u, v): 

 return N.dot (u,v) 
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def VectorCross(u, v): 

 return N.cross(u,v) 

 

def VectorLength (u): 

 return N.linalg.norm(u) 

  

def Matrix3fSetIdentity (): 

 return N.identity (3, 'f') 

 

def Matrix3fMulMatrix3f (matrix_a, matrix_b): 

 return N.dot( matrix_a, matrix_b ) 

 

 

 

 

def Matrix4fDet (matrix): 

 X = 0 

 Y = 1 

 Z = 2 

 s = sqrt (  

  ( (matrix [X,X] * matrix [X,X]) + (matrix [X,Y] * matrix [X,Y]) + (matrix [X,Z] * matrix [X,Z]) + 

  (matrix [Y,X] * matrix [Y,X]) + (matrix [Y,Y] * matrix [Y,Y]) + (matrix [Y,Z] * matrix [Y,Z]) + 

  (matrix [Z,X] * matrix [Z,X]) + (matrix [Z,Y] * matrix [Z,Y]) + (matrix [Z,Z] * matrix [Z,Z]) ) / 

3.0 ) 

 return s 

 

def Matrix4fSetRotationScaleFromMatrix3f(three_by_three_matrix): 

 matrix = Matrix4f () 

 matrix [0:3,0:3] = three_by_three_matrix 

 return matrix 

 

def Matrix3fSetRotationFromQuat4f (q1): 

 # Converts the quaternion q1 into a new equivalent 3x3 rotation matrix.  

 X = 0 

 Y = 1 

 Z = 2 

 W = 3 

 

 matrix = Matrix3f () 

 n = N.dot(q1, q1) 

 s = 0.0 

 if (n > 0.0): 

  s = 2.0 / n 

 xs = q1 [X] * s;  ys = q1 [Y] * s;  zs = q1 [Z] * s 

 wx = q1 [W] * xs; wy = q1 [W] * ys; wz = q1 [W] * zs 

 xx = q1 [X] * xs; xy = q1 [X] * ys; xz = q1 [X] * zs 

 yy = q1 [Y] * ys; yz = q1 [Y] * zs; zz = q1 [Z] * zs 

 # This math all comes about by way of algebra, complex math, and trig identities. 

 # See Lengyel pages 88-92 

 

 matrix [X,X] = 1.0 - (yy + zz); matrix [Y,X] = xy - wz;    matrix [Z,X] = xz + 

wy; 

 matrix [X,Y] =       xy + wz;   matrix [Y,Y] = 1.0 - (xx + zz); matrix [Z,Y] = yz - wx; 

 matrix [X,Z] =       xz - wy;   matrix [Y,Z] = yz + wx;           matrix [Z,Z] = 1.0 - (xx + yy) 
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 return matrix 

 

 

mesh.py 
 

from OpenGL.GL import * 

from intersections import triangleBoxOverlap, rayTriangleIntersection, EPSILON 

import numpy as N 

import random 

from linear import *  

class Vertex: 

 """ This class represents a single point in 3D along with its normal """ 

 

 def __init__(self, x, y, z, nx, ny, nz): 

  self.pos = Point3f(x,y,z) 

  self.normal = Vector3f(nx,ny,nz) 

  self.octree = None 

 

 def isSimilarTo(self, pt): 

  v = self.pos - pt.pos 

  d = N.dot(v,v) # get the squared magnitude of the vector v 

 

  if d > EPSILON: 

   return False 

 

  v = self.normal - pt.normal 

  d = N.dot(v,v) 

 

  if d > EPSILON: 

   return False 

 

  return True 

 

 def __str__(self): 

  return "<%f,%f,%f>  %s"%(self.x, self.y, self.z, self.pos) 

 

 # some properties to access the components by name (x,y,z,nx,ny,nz) rather than by index 

  

 def set_x(self,val): 

  self.pos[0] = val 

 

 def set_y(self,val): 

  self.pos[1] = val 

 

 def set_z(self,val): 

  self.pos[2] = val 

 

 def set_nx(self,val): 

  self.normal[0] = val 

 

 def set_ny(self,val): 

  self.normal[1] = val 

 

 def set_nz(self,val): 

  self.normal[2] = val 
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 def get_x(self): 

  return self.pos[0] 

 def get_y(self): 

  return self.pos[1] 

 

 def get_z(self): 

  return self.pos[2] 

 

 

 def get_nx(self): 

  return self.normal[0] 

 

 def get_ny(self): 

  return self.normal[1] 

 

 def get_nz(self): 

  return self.normal[2] 

 

 x = property(get_x, set_x) 

 y = property(get_y, set_y) 

 z = property(get_z, set_z) 

 

 nx = property(get_nx, set_nx) 

 ny = property(get_ny, set_ny) 

 nz = property(get_nz, set_nz) 

 

class Mesh: 

 """ This class represents a mesh (points and faces) """ 

 

 DRAW_TRANSLUCENT = 1 

 DRAW_EDGES = 2 

 

 def __init__(self): 

  self.name = "" 

  self.orientation = Matrix3f() 

  self.translation = Vector3f() 

  self.color = (0.5,0.5,0.5) 

  self.transform = Matrix4f() 

 

  # list of all Point instances used in the mesh 

  self.vertices= [] 

 

  # list of all Vector instances used in the mesh 

  self.faces = [] 

 

  self._draw = None 

  self.draw_mode = 0 

 

 def getTranslucent(self): 

  return bool(self.draw_mode & self.DRAW_TRANSLUCENT) 

 

 def setTranslucent(self, enable): 

  if enable: 

   self.draw_mode |= self.DRAW_TRANSLUCENT 

  else: 
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   self.draw_mode &= ~self.DRAW_TRANSLUCENT 

 

 

 def getDrawEdges(self): 

  return bool(self.draw_mode & self.DRAW_EDGES) 

 

 def setEdges(self, enable): 

  if enable: 

   self.draw_mode |= self.DRAW_EDGES 

  else: 

   self.draw_mode &= ~self.DRAW_EDGES 

 

 def intersects(self, mesh): 

  inter = self.octree.intersects(mesh.octree) 

  print inter 

  return inter 

  

 # see if we have another point already with the same (or almost same) 

 # position and normal. Otherwise, store the new point. 

 # return the index of the vertex in the list. 

 def _getVertexIndex(self, vtx): 

  for i,v in enumerate(self.vertices): 

   if vtx.isSimilarTo(v): 

    return i 

  

  # this is a new vertex. Add it to the list 

  self.vertices.append(vtx) 

  return len(self.vertices)-1 

 

 

 # vertices and normals are lists of Vector3f 

 def addPoly(self, vertices, normals=None): 

  if normals == None: 

   normal = VectorCross(vertices[1] - vertices[0], vertices[2] - vertices[0]); 

   norm = VectorLength(normal) 

   if norm > 0.0001: 

    normal /= norm 

   else: 

    normal = Vector3f(0,0,0) 

    

   normals = [normal] * len(vertices) 

 

  v_indices = [] 

  for v,n in zip(vertices,normals): 

   vtx = self._getVertexIndex( Vertex(v[0], v[1], v[2],  n[0], n[1], n[2]) ) 

   v_indices.append( vtx ) 

 

  self.faces.append( tuple(v_indices) ) 

 

 def setColor(self, rgb): 

  self.color = rgb 

 

 

 def setName(self, name): 

  self.name = name 
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 @property 

 def bounds(self): 

  if not self._draw: 

   # make sure self.pos_data has been calculated 

   self._setupOpenGLData() 

    

  return N.min(self.pos_data, axis=0), N.max(self.pos_data, axis=0) 

   

 # vec must be a 3-element vector 

 def setPosition(self, vec): 

  self.transform[3,0:3] = vec 

 

 # mtx must be a 3x3 matrix 

 def setOrientationMatrix(self, mtx): 

  self.transform[0:3,0:3] = mtx 

 

 def _setupOpenGLData(self): 

  """based on code at: 

http://bazaar.launchpad.net/~mcfletch/openglcontext/trunk/view/head:/OpenGLContext/drawcube.py """ 

 

  triangle_vertex_indices = [] 

  edge_vertex_indices = [] 

 

  # to keep track of edges already processed 

  edges = {} 

 

  tot_vertices = len(self.vertices) 

 

  pos_data = self.pos_data = N.zeros((tot_vertices,3),"f") 

  normal_data = N.zeros((tot_vertices,3),"f") 

 

  i = 0 

  for v in self.vertices: 

   pos_data[i] = v.pos 

   normal_data[i] = v.normal 

   i+=1 

 

  for f in self.faces: 

   triangle_vertex_indices.extend(f) 

 

   # store in vtx_pair the two indices that conform an edge of the facet, with lowest index 

first 

   # this is so we can test if we have already added that edge and skip it 

   # otherwise, we add the indices of both end points to the edge_vertex_indices list 

 

   prev_v_idx = f[-1] # last vertex 

   for v_idx in f: 

     

    if prev_v_idx > v_idx: 

     vtx_pair = (v_idx, prev_v_idx) 

    else: 

     vtx_pair = (prev_v_idx,v_idx) 

 

    if vtx_pair not in edges: 

     edges[vtx_pair] = True 

     edge_vertex_indices.extend( vtx_pair ) 
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    prev_v_idx = v_idx 

 

  triangle_vertex_indices = N.array( triangle_vertex_indices, N.uint32) 

  edge_vertex_indices = N.array( edge_vertex_indices, N.uint32) 

 

  def draw(self): 

   glPushMatrix() 

   glMultMatrixf(self.transform) 

 

   glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS) 

   try: 

    glEnable (GL_POLYGON_OFFSET_FILL); 

 

    if self.draw_mode & self.DRAW_TRANSLUCENT: 

     glEnable(GL_BLEND) 

     glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 

 

    glPolygonOffset(1.0,1.0); 

    glEnableClientState(GL_VERTEX_ARRAY) 

    glEnableClientState(GL_NORMAL_ARRAY) 

    glVertexPointerf(pos_data) 

    glNormalPointerf(normal_data) 

   

    glColor4f(self.color[0], self.color[1], self.color[2],0.3); 

 

    glDrawElementsui( GL_TRIANGLES, triangle_vertex_indices) 

 

    if self.draw_mode & self.DRAW_EDGES: 

     glDisable(GL_LIGHTING) 

     glDisableClientState(GL_NORMAL_ARRAY) 

     glDrawElementsui( GL_LINES, edge_vertex_indices) 

     glEnable(GL_LIGHTING) 

 

    if self.draw_mode & self.DRAW_TRANSLUCENT: 

     glDisable(GL_BLEND) 

 

   finally: 

    glDisable (GL_POLYGON_OFFSET_FILL); 

    glPopClientAttrib() 

    glPopMatrix() 

 

  self._draw = draw; 

 

 def draw(self): 

  """ Send everything to OpenGL for rendering """ 

  if not self._draw: 

   self._setupOpenGLData() 

 

  self._draw(self) 

 

 # get a tuple with the vertices (as Vector3f) of the given face 

 def faceVertices(self, face): 

  return tuple(self.vertices[i].pos for i in face) 

 

 def rayFaceIntersection(self, face, ray_origin, ray_dir): 
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  return rayTriangleIntersection(ray_origin, ray_dir, self.faceVertices(face)) 

 

 # Tests whether the passed AABB ("the box") and the polyhedron ("the mesh") intersect, and returns: 

 #   0 - the box and the mesh don't intersect at all 

 #   1 - the box intersects the mesh, or the mesh is fully contained in the box 

 #   2 - the box is fully contained in the mesh 

 def intersectsAABB(self, box): 

  c_min,c_max = box 

 

  # make sure the bounds can be calculated 

  if not self._draw: 

   self._setupOpenGLData() 

 

  # TEST 1 

  # If all the vertices of the mesh are all to the same side of the box, then the box and the mesh don't 

intersect. 

  # That is, we're checking if the bounding box of the mesh doesn't intersect the other box. 

  

  mesh_min, mesh_max = self.bounds 

  

  if ((mesh_min[0] > c_max[0]).all() or (mesh_max[0] < c_min[0]).all() or # test in X 

      (mesh_min[1] > c_max[1]).all() or (mesh_max[1] < c_min[1]).all() or # test in Y 

      (mesh_min[2] > c_max[2]).all() or (mesh_max[2] < c_min[2]).all()):   # test in Z 

     return 0 

 

 

  # TEST 2 

  # If all the vertices of the mesh are inside the box, then it is fully contained in the box 

  if ((mesh_min[0] >= c_min[0]).all() and (mesh_max[0] <= c_max[0]).all() and 

      (mesh_min[1] >= c_min[1]).all() and (mesh_max[1] <= c_max[1]).all() and 

      (mesh_min[2] >= c_min[2]).all() and (mesh_max[2] <= c_max[2]).all()) : 

     return 1 

 

  # TEST 3 

  # Check if any face of the mesh intersects the box 

  # NOTE: this assumes all faces are triangles 

  box_center = (c_max + c_min)/2 

  # we subtract epsilon so boxes that are touching the edges of the mesh don't get marked as 

intersecting 

  # the mesh 

  #  

  box_half_size = (c_max - c_min)/2 - EPSILON 

  triverts = N.zeros((3,3), "f") 

  for f in self.faces: 

   for v_num, v_idx in enumerate(f): 

    triverts[v_num] = self.vertices[v_idx].pos 

 

   if triangleBoxOverlap(box_center, box_half_size, triverts): 

    return 1 

 

  # TEST 4 

  # At this point, we know the box is either fully contained in or fully outside the mesh. 

  # Shoot a random ray from the center of the box. If it hits an even number 

  # of mesh faces, then the center (and hence the box) is outside the polyhedron, 

  # otherwise it's inside. 

  # To avoid floating point imprecisions, if the ray hits a polygon (almost) on its edge, 
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  # we discard the ray and try another random one 

 

  while True: 

   # generate a random vector 

   ray_dir = N.array(map(lambda a:random.uniform(-1,1), range(3)), "f") 

 

   # make sure the vector is not too small... if it is, pick another one 

   mag = N.dot(ray_dir, ray_dir)  

 

   if mag < 0.01: 

    continue 

 

   # flip the parity whenever we hit a polygon (False means we're outside) 

   parity = False 

 

   ok = True 

   for face in self.faces: 

    inter = self.rayFaceIntersection(face, box_center, ray_dir) 

    if inter is None: 

     continue 

 

    t,u,v = inter 

    if t < EPSILON: continue 

 

    parity = not parity 

 

    # we hit an edge of a triangle, generate another ray 

    if u < EPSILON or v < EPSILON or (1-u-v) < EPSILON: 

     ok = False 

     break 

 

   if ok: 

    break 

   

  if parity: 

   return 2 

   

  return 0 

 

archball.py 
 

from linear import * 

from math import sqrt 

EPSILON = 0.00001 

 

# based on Arcball from the NeHe site (example 48)  

# plus ideas from http://www.opengl.org/wiki/Trackball 

 

class Arcball: 

 def __init__ (self, NewWidth, NewHeight): 

  self.v1 = Vector3f() 

  self.v2 = Vector3f() 

  self.m_AdjustWidth = 1.0 

  self.m_AdjustHeight = 1.0 

  self.setBounds (NewWidth, NewHeight) 
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 def setBounds (self, NewWidth, NewHeight): 

  # //Set new bounds 

  assert (NewWidth > 1.0 and NewHeight > 1.0), "Invalid width or height for bounds." 

  # //Set adjustment factor for width/height 

  self.m_AdjustWidth = 1.0 / ((NewWidth - 1.0) * 0.5) 

  self.m_AdjustHeight = 1.0 / ((NewHeight - 1.0) * 0.5) 

 

 def _mapToSphere (self, screen_pt): 

  # Given a new window coordinate, will modify NewVec in place 

  X = 0 

  Y = 1 

  Z = 2 

 

  # //Copy paramter into temp point 

  pt = Vector3f(screen_pt[0], screen_pt[1], 0) 

  # //Adjust point coords and scale down to range of [-1 ... 1] 

  pt[X] = (screen_pt[X] * self.m_AdjustWidth) - 1.0 

  pt[Y] = 1.0 - (screen_pt[Y] * self.m_AdjustHeight) 

  pt[Z] = 0 

 

  sphere_radius = 0.8 

  r2 = sphere_radius*sphere_radius 

 

  len_sq = N.dot(pt, pt) 

 

  if len_sq < (r2*0.5): 

   z = sqrt(r2 - len_sq) 

  else: 

   z = (r2*0.5) / sqrt(len_sq) 

 

  pt[Z] = z 

 

  len_sq = N.dot(pt,pt) 

 

  return pt / sqrt(len_sq) 

 

 

 def click (self, NewPt): 

  # //Mouse down (Point2f 

  self.v1 = self._mapToSphere (NewPt) 

  return 

 

 def drag (self, NewPt): 

  # //Mouse drag, calculate rotation (Point2f Quat4f) 

  """ drag (Point2f mouse_coord) -> new_quaternion_rotation_vec 

  """ 

  X = 0 

  Y = 1 

  Z = 2 

  W = 3 

 

  self.v2 = self._mapToSphere (NewPt) 

 

  # //Compute the vector perpendicular to the begin and end vectors 

  # Perp = Vector3f () 

  perp = N.cross(self.v1, self.v2); 
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  quat = Quat4f () 

  # //Compute the length of the perpendicular vector 

  if (N.dot(perp,perp) > EPSILON):  #    //if its non-zero 

   # //We're ok, so return the perpendicular vector as the transform after all 

   quat[0:3] = perp 

   # //In the quaternion values, w is cosine (theta / 2), where theta is rotation angle 

   quat[W] = N.dot(self.v1, self.v2); 

    

  return quat 

 

stl.py 
 

import numpy as N 

 

from mesh import Mesh 

 

def loadSTL(fname): 

  

 # an iterator that will yield all the lines in the file,  

 # skipping empty lines 

 def getLines(fname): 

  with open(fname) as f: 

   for line in f.readlines(): 

    line = line.strip() 

    if line == "": continue 

    yield line 

  

 mesh = Mesh() 

 

 for line in getLines(fname): 

  if line.startswith("solid"): 

   mesh.name = line.split()[1:] 

   continue 

 

  if line.startswith("outer loop"): 

   vertices = [] 

   continue 

 

  if line.startswith("vertex"): 

   pieces = line.split() 

   vertices.append( N.array(map(float, pieces[1:4]),"f") ) 

   continue 

   

  # we add a face to the mesh whenever we find a line that starts with "endloop" 

  if line.startswith("endloop"): 

   mesh.addPoly(vertices) 

 

 return mesh 

    

if __name__ == "__main__": 

 mesh = loadSTL("fehe/static.STL") 

 

 mesh._setupOpenGLData() 
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scene.py 
 

import math 

from linear import * 

import numpy as N 

 

# this class keeps record of the elements to draw and allows interaction 

# with them: 

#  - pieces 

#  - octrees 

#  - grid 

class Scene: 

 def __init__(self): 

  self.inter = [] 

  self.helpers =  {} 

  self.disabled = set() 

  self.current_object = 0 

 

 def addInteractive(self, obj): 

  self.inter.append(obj) 

 

 def addHelper(self, helper, group=0): 

  try: 

   self.helpers[group].append(helper) 

  except: 

   self.helpers[group] = [helper] 

 

 def disableHelperGroup(self, helper_group): 

  self.disabled.add(helper_group) 

 

 def enableHelperGroup(self, helper_group): 

  self.disabled.remove(helper_group) 

 

 def toggleHelperGroup(self, helper_group): 

  if helper_group in self.disabled: 

   self.enableHelperGroup(helper_group) 

  else: 

   self.disableHelperGroup(helper_group) 

  

 def toggleTranslucent(self): 

  t = not self.inter[0].getTranslucent() 

 

  for d in self.inter: 

   d.setTranslucent(t) 

 

 def toggleFaceEdges(self): 

  t = not self.inter[0].getDrawEdges() 

 

  for d in self.inter: 

   d.setEdges(t) 

 

 def draw(self): 

  for d in self.inter: 
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   d.draw() 

 

  for group in self.helpers: 

   if group not in self.disabled: 

    for h in self.helpers[group]: 

     h.draw() 

  

 def setCameraPosition(self, cam_pos, cam_target, up = None): 

  glLoadIdentity(); 

  if up_vector is None: 

   up = (0,1,0) 

  gluLookAt(cam_pos[0], cam_pos[1], cam_pos[2], cam_target[0], cam_target[1], cam_target[2], 

up[0], up[1], up[2]) 

 

 def selectObject(self, num): 

  self.current_object =  max(min(len(self.inter)-1, num), 0) 

  print "Object selected: ",self.current_object 

 

 def translate(self, amount): 

  t = self.inter[self.current_object].transform 

  t[3,0] += amount[0] 

  t[3,1] += amount[1] 

  t[3,2] += amount[2] 

 

 def rotate(self, axis, amount = 10): 

  len = N.dot(axis,axis) 

  matrix = Matrix3f() 

  if len < EPSILON: 

   return matrix 

  axis /= len 

  angle = amount * (math.pi/180.0) 

  s = math.sin(angle*0.5) 

  quat = Quat4f(axis[0]*s, axis[1]*s, axis[2]*s, math.cos(angle*0.5)) 

  matrix = Matrix3fSetRotationFromQuat4f(quat) 

  t = self.inter[self.current_object].transform[0:3,0:3] 

  self.inter[self.current_object].transform[0:3,0:3] = t*matrix 

 

 def storeTransform(self): 

  self.stored_transform = self.inter[self.current_object].transform.copy() 

 

 def restoreTransform(self): 

  self.inter[self.current_object].transform = self.stored_transform 

 

 def checkCollisions(self): 

  # check the current object against all others 

  current = self.inter[self.current_object] 

 

  for i,obj in enumerate(self.inter): 

   if i == self.current_object: 

    continue 

   

   if obj.intersects(current): 

    return True 

 

  return False 
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mouseinteractions.py 
 

from OpenGL.GL import * 

from arcball import Arcball 

from linear import * 

import math 

class MouseInteraction: 

 PAN_ACTION = 0 

 ROTATE_ACTION = 1 

 ZOOM_ACTION = 2 

 

 def __init__(self, vp_width, vp_height): 

  self.arcball = Arcball(vp_width, vp_height) 

  self.vp_width = vp_width 

  self.vp_height = vp_height 

 

  self.transform_matrix = Matrix4f() 

  self.manipulation_matrix = None 

 

 def vpResize(self, vp_width, vp_height): 

  self.arcball.setBounds(vp_width,vp_height) 

 def applyTransform(self): 

   

  if self.manipulation_matrix is not None: 

   glMultMatrixf(self.manipulation_matrix) 

 

  glMultMatrixf(self.transform_matrix) 

 def click(self, x, y, action): 

  cp = (x,y) 

  self.click_pos = cp 

  self.action = action 

  if action == self.ROTATE_ACTION: 

   self.arcball.click( cp ) 

  elif self.action == self.PAN_ACTION:    

   self.manipulation_matrix = Matrix4f() 

  elif self.action == self.ZOOM_ACTION: 

   self.manipulation_matrix = Matrix4f()   

 

 def release(self): 

  if self.manipulation_matrix is not None: 

   self.transform_matrix = self.transform_matrix * self.manipulation_matrix 

   self.manipulation_matrix = None 

 

 def drag(self, x, y): 

  if self.action == self.ROTATE_ACTION: 

   rot_quat = self.arcball.drag( (x,y) ) 

   self.manipulation_matrix = 

Matrix4fSetRotationScaleFromMatrix3f(Matrix3fSetRotationFromQuat4f(rot_quat)) 

  elif self.action == self.PAN_ACTION:    

   self.manipulation_matrix[3,0] = (x - self.click_pos[0])*0.2 

   self.manipulation_matrix[3,1] = (self.click_pos[1] - y)*0.2 

  elif self.action == self.ZOOM_ACTION: 

   s = math.exp(float(x - self.click_pos[0]) / self.vp_width) 



95 

   self.manipulation_matrix[0,0] = s 

   self.manipulation_matrix[1,1] = s 

   self.manipulation_matrix[2,2] = s 

   

grid.py 
 

from OpenGL.GL import * 

import numpy 

from linear import * 

class Grid: 

 def __init__(self, scale, divisions): 

  self.points = [] 

 

  points = [] 

  indices1 = [] 

  indices2 = [] 

 

  self.color2 = (0.8,0.8,0.8) 

  self.color1 = (0.3,0.3,0.3) 

 

  j = 0 

  for i in range(-divisions, divisions+1): 

   if i == 0: continue # skip the axes for now 

 

   t = float(i) / float(divisions) 

 

   points.append( Vector3f(t * scale, scale, 0) ) 

   points.append( Vector3f(t * scale, -scale, 0) ) 

   points.append( Vector3f(scale, t*scale, 0) ) 

   points.append( Vector3f(-scale, t*scale, 0) ) 

 

   indices1.extend( [j,j+1, j+2, j+3] ) 

   j += 4 

 

  # positions of the axes 

  

  points.append( Vector3f(0, scale, 0) ) 

  points.append( Vector3f(0, -scale, 0) ) 

  points.append( Vector3f(scale, 0, 0) ) 

  points.append( Vector3f(-scale, 0, 0) ) 

 

  indices2 = [j,j+1, j+2, j+3] 

  

  self.points = numpy.array( points, "f" ) 

  self.indices1= numpy.array( indices1, N.uint32) 

  self.indices2 = numpy.array( indices2, N.uint32) 

 

 

 def draw(self): 

  glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS) 

  try: 

   glEnableClientState(GL_VERTEX_ARRAY) 

   glVertexPointerf(self.points) 

 

   # we don't want lighting to affect the grid 

   glDisable(GL_LIGHTING) 
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   # draw the grid 

 

   glColor3f(self.color1[0], self.color1[1], self.color1[2]); 

 

   glDrawElementsui( GL_LINES, self.indices1) 

 

   # draw the axes 

 

   glColor3f(self.color2[0], self.color2[1], self.color2[2]); 

 

   glDrawElementsui( GL_LINES, self.indices2) 

 

   glEnable(GL_LIGHTING) 

 

  finally: 

   glPopClientAttrib() 

 

  

  

cube.py 
 

 

from OpenGL.GL import * 

from OpenGL.GLUT import * 

from OpenGL.GLU import * 

 

# c1 and c2 are opposite corners of the cube 

def drawCube(c1, c2): 

 glPushMatrix() 

 center = (c1 + c2)/2; 

 size = (c2 - c1) 

 

 glTranslatef( center[0], center[1], center[2]) 

 glScalef( size[0], size[1], size[2]) 

 glutWireCube(1.0); 

 

 glPopMatrix() 
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