
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Theses Electronic Theses and Dissertations

2012

Visualization And Collision Detection Of Direct Metal Deposition Visualization And Collision Detection Of Direct Metal Deposition

Sufyan S.D. Fehe
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/theses

Recommended Citation Recommended Citation
Fehe, Sufyan S.D., "Visualization And Collision Detection Of Direct Metal Deposition" (2012). Theses. 83.
https://digital.library.ncat.edu/theses/83

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/83?utm_source=digital.library.ncat.edu%2Ftheses%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

VISUALIZATION AND COLLISION DETECTION OF DIRECT METAL

DEPOSITION

by

Sufyan S.D. Fehe

A thesis submitted to the graduate faculty

 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department: Mechanical Engineering

Major: Mechanical Engineering

Major Professor: Dr. Shih-Liang Wang

North Carolina A&T State University

Greensboro, North Carolina

2012

i

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Sufyan S.D. Fehe

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2012

Approved by:

Dr. Shih-Liang Wang

Major Professor

Dr. Samuel Owusu-Ofori

Committee Member

Dr. Sun Yi

Committee Member

Dr. Samuel Owusu-Ofori

Department Chairperson

Dr.Sanjiv Sarin

Associate Vice Chancellor for Research

and Dean of Graduate Studies

ii

DEDICATION

I dedicate this Master’s Thesis to my parents; my late father Salifu Moro and my mother

Binta Daud for their support and comfort through my entire education. I dedicate this

thesis to God, for the protection and favor he bestowed on me from birth to this time.

iii

BIOGRAPHICAL SKETCH

Sufyan S.D. Fehe was born June 22, 1976 in Accra, Ghana. He received the

Bachelor of Science in Agricultural Engineering from Kwame Nkrumah University of

Science and Technology in 2001. He is currently a candidate for the Master of Science

degree in Mechanical Engineering.

iv

ACKNOWLEDGMENT

I am very grateful to my advisor, Dr. Shih-Liang Wang for the guidance and

support during challenging times in the course of the research. I wish to express my

appreciation to my thesis committee members, Dr. Samuel Owusu-Ofori and Dr. Sun Yi

for their time and review of my thesis. I thank my colleagues for all discussions, it helped

me a lot.

From Missouri S&T University I wish to express my appreciation to Dr. Frank

Liou (Professor in Mechanical Engineering & Director of the Interdisciplinary

Manufacturing Engineering Education Program), Dr. Jianzhong Ruan (Post Doctoral

Fellow in Mechanical Engineering) and Todd Sparks (Ph.D. Student in Mechanical

Engineering) for their support, discussions and answers to questions I ask them in a

prompt manner. I thank them for giving me materials to use as a head start in the

research. I also appreciate the reception and courtesy they gave me when I visited

Missouri for more enlightenment on this research.

I also want to acknowledge Product Innovation and Engineering (PINE), LLC for

the financial support in the course of this work. PINE’s funding is through a NSF Small

Business Technology Transfer Project SBIR/STTR Phase IIA supplement research

project entitled “Process Visualization for Hybrid Manufacturing Systems.” I also thank

Amit Raj Thatipalli former Master Engineering student at Missouri S&T University for

sharing his ideas with me pertaining to his research. Lastly, I wish to thank my family for

all the prayers and support.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

ABBREVIATIONS ... ix

ABSTRACT…. ... x

CHAPTER 1. INTRODUCTION ... 1

1.1 Direct Metal Deposition ...1

1.2 Problem Statement ..2

1.3 Research Objectives ...3

1.4 Thesis Layout ...3

CHAPTER 2. VISUALIZATION OF THE DEPOSITION PROCESS USING SWEPT

VOLUME ... 6

2.1 Literature Review ...6

2.2 Selection of the Computer Programming Language ..7

2.3 Importance of G-codes in the Visualization Process ..8

2.4 Extraction of the Coordinate Values from the G-codes ...8

2.5 Swept Volume Procedure ...10

2.6 Cross Section Overlap ..12

2.7 Direct Metal deposition Visualization Results ...14

2.8 Comparison with Previous Work ...17

2.9 Observations and Conclusions..18

CHAPTER 3. COLLISION DETECTION OF THE DEPOSITION PROCESS USING

OCTREE AND ORIENTED BOUNDING BOX..................................... 19

3.1 Literature Review ...19

vi

3.2 Selection of the Computer Programming Language ..22

3.3 Octree Data Structure ...23

3.4 Creation and Split of the Octree Boxes ..24

3.5 Oriented Bounding Box Collision Detection Test and Results28

3.6 Comparison with Previous Work ...35

3.7 Observations and Conclusions..36

CHAPTER 4. DISCUSSION AND RECOMMENDATION ... 38

4.1 Summary and Discussion ...38

4.2. Recommendation and Future Work ...39

REFERENCES ... 40

APPENDIX A. VYPYTHON, NUMPY AND PYOGENGL OVERVIEW 43

APPENDIX B. INSTRUCTIONS TO INSTALL AND RUN VISUALIZATION

PROGRAM ON WINDOWS .. 44

APPENDIX C. INSTRUCTIONS TO INSTALL AND RUN COLLISION DETECTION

PROGRAM ON WINDOWS .. 49

APPENDIX D. HOW TO INPUT OR CHANGE THE CAD MODLES AND THEIR

RELATIVE POSITIONS. ... 53

APPENDIX E. G-CODE TEXT FILE .. 56

APPENDIX F. VISUALIZATION PROGRAM MODULES .. 57

APPENDIX G. COLLISION DETECTION PROGRAM MODULES 65

vii

LIST OF FIGURES

FIGURE PAGE

1.1. Laser Metal Deposition Process .. 3

1.2. Hybrid manufacturing system in Missouri S&T LAMP Laboratory 4

1.3. Direct metal deposition process with part rotated through orientations (a), (b), (c)

and (d) to complete the process .. 5

2.1. Algorithm for parsing G-codes.. 9

2.2. A cross-sectional shape swept along a straight and a curve path. 10

2.3. Angle measured between two line segments ... 11

2.4. Sweep algorithm and extrusion with and without spikes 12

2.5. (a) is 3D view of a cross section swept with 50% width overlap, (b) 2D top view

showing the overlaps... 13

2.6. Flow chart for visualization of the deposition process .. 14

2.7. (a) 3D CAD model, (b) Actual deposited part from MST 15

2.8. (a) Inccurate toolpath, (b) Desired toolpath .. 16

2.9. (a) a 2.0 mm cross-sectional width, (b) a 0.8 mm cross-sectional width

visualization results ... 17

2.10. (a) Voxel placement result, (b) Swept volume result. ... 17

3.1. (a) 3D Structure of an octree and index codes of octants, (b) The tree structure of

an octree .. 23

3.2. A simplified 2D axis aligned bounding box .. 24

3.3. Simplified 2D axis aligned bounding box split into two axis aligned bounding

boxes ... 25

3.4. A partitioned box showing it’s occupancy values ... 26

viii

3.5. Octree representation of a 3D CAD model showing (a) 9 depth partitioning, (b) 15

depth partitioning .. 27

3.6. Algorithm for creating Octree-OBB of the CAD models 28

3.7. Oriented bounding box (OBB) with local axis .. 29

3.8. The vector L forms a separating axis .. 29

3.9. Algorithm for separating axis collision detection ... 30

3.10. Two sets of OBBs in collision ... 30

3.11. Flow chart for OBB collision detection .. 33

3.12. Flow chart for Octree creation... 34

3.13. (a) No collision between component I and nozzle, (b) Octree representation of

the model ... 35

3.14. (a) Nozzle collides with component I, (b) Octree representation of the model .. 35

3.15. (a) single axis aligned bounding box collision test, (b) Octree oriented bounding

box collision detection test... 36

ix

ABBREVIATIONS

CAD Computer Aided Design

AM Additive Manufacturing

DMD Direct Metal Deposition

STL Standard Tessellation Language

CNC Computer Numerical Control

AABB Axis Aligned Bounding Box

CAM Computer Aided manufacturing

3D Three Dimensional

BSP Binary Spatial Partitioning

HBV Hierarchical Bounding Volume

CGAL Computational Geometry Algorithms Libraries

OBB Oriented Bounding Box

LAMP

GAMMA

K-DOPs

 Laser Additive Manufacturing Process

Geometric Algorithms for Modeling Motion and

Animation

K planes Discrete Oriented Polytope

x

ABSTRACT

Sufyan S.D. Fehe. VISUALIZATION AND COLLISION DETECTION OF DIRECT

METAL DEPOSITION. (Major Professor: Dr. Shih-Liang Wang), North Carolina

Agricultural and Technical State University.

Direct metal deposition (DMD) is a manufacturing technique that manufactures

solid metal parts from bottom to top using powdered metal and a focused laser. In this

research, the swept volume technique was used as framework to develop a computer

program to perform volumetric visualization of the deposition process as a pre-processor,

before the actual metal deposition commences. The program extracts coordinate values

from a G-code; these extracted values constitute a point. These points are then defined as

a swept path using VPython extrusion object library. A cross section is then swept

through these points to perform the volumetric visualization of the deposition process.

In a DMD system computer numerical control (CNC) machine components can

collide during deposition, a computer program can be used to facilitate collision detection

if components within the build perimeter collide. In this research, open source oriented

bounding boxes (OBB) intersection and open source octree implementation were used to

develop a computer program, to detect the collision between CAD models of two components

within a graphic scene. The collision detection test is performed by holding one CAD

model fixed while the other model is set into translation. The CAD models will collide, if

the line distance from the center between their OBBs is equal to the sum of their

projected radii onto the reference axis of approach.

1

CHAPTER 1

INTRODUCTION

1.1 Direct Metal Deposition

Direct metal deposition (DMD) is a technique used to manufacture or build solid

metal parts from bottom to top using powdered metal and a focused laser. There are many

different DMD systems which are commercially available or are currently being

developed. Each system may use different materials, different G-codes and different

techniques for the build process. Below are the pre-processing stages for DMD.

I. Create a 3D computer aided design (CAD) model

II. Convert CAD model into Standard Tessellation language (STL) model

III. Slice STL model into layers

IV. Generate the tool path for each sliced layer

Volumetric visualization of the deposition process starts at stage IV before actual

deposition commences. A lot of research has been done in this field and many techniques

and algorithms have been proposed for DMD visualization. Visualization processes

before actual execution of work finds its application in medical fields, oil and gas fields,

NASA space programs and many more diverse engineering applications. POM Group is a

company in Michigan that has done a lot of work in this field and has manufactured

DMD machines for sale with visualization and collision detection capabilities. Missouri S

& T University has done extensive work in this area too. Figure 1.1(Ch. Sweta Dhaveji,

2011) below is a DMD process at Missouri S&T University laboratory. Some of the

2

techniques used for volumetric visualization processes are voxel-based, swept volumes,

octrees etc. The choice of technique to use for the visualization process is determined by

the nature of the problem and the desired output.

Collision detection starts after stage IV when deposition has to commence. The

deposition or build process poses possible collision between stationary or dynamic

computer numerical control (CNC) machine components. A lot of research work has

been done in this area and new techniques have been developed to solve and improve

current algorithms. Collision detection is widely used and applied in the game industry,

robotics and in CNC machining. There are many different techniques used in collision

detection. Examples of bounding volumes techniques are; hierarchical bounding volumes

(HBV), axis aligned bounding box (AABB), oriented bounding box (OBB), k-planes

discrete oriented polytopes (K-DOPs), convex hulls, ray-triangle etc.

1.2 Problem Statement

Below are problems during a deposition process that necessitated the research:

I. Parts are either completely built, or sample deposition is performed for user to

determine the accurateness of the part built from the generated G-code. This may

lead to material wastage if it is realized the deposition will not build the part to its

required specifications.

II. In a DMD system, stationary or moving CNC machine components within the

build perimeter can collide into each other during the deposition process. This can

cause damage to the nozzle assembly, work piece etc.

3

Figure 1.1. Laser Metal Deposition Process

1.3 Research Objectives

The main objectives of this research are outlined below:

I. Use the swept volume technique to develop a computer program to be used as a

pre-processor, for volumetric visualization of the deposition process before actual

deposition commences.

II. Use open source oriented bounding box (OBB) intersection technique (Gomez,

1999) and open source octree implementation (Kenwright, 2002) as framework to

develop a computer program, to detect the collision between CAD models of two

colliding components in a graphic scene.

1.4 Thesis Layout

This thesis has been organized into four chapters. Chapter 1 is dedicated to

introduction of the subject matter and the specific objective of the research work. Chapter

4

2 is solely dedicated to DMD visualization, literature review, methodology, algorithms,

mathematical concepts, and the computer programming language used to develop the

program. Chapter 3 focuses on collision detection during deposition, literature review,

methodology, algorithms, mathematical concepts, and the computer programming

language used to develop the program. Chapter 4 discusses the methods and algorithms

used. Other ensuing difficulties encountered are discussed and recommendations are

made for future work. Figure 1.2 modified (Ren et al., 2010) below is a hybrid direct

metal deposition (DMD) manufacturing system. This system builds solid parts from

bottom to top and performs the surface finishing on the same system. Figure 1.3 (Ren, et

al., 2010) below is a DMD process.

Figure 1.2. Hybrid manufacturing system in Missouri S&T LAMP Laboratory

5

Figure 1.3. Direct metal deposition process with part rotated through orientations

(a), (b), (c) and (d) to complete the process

6

CHAPTER 2

 VISUALIZATION OF THE DEPOSITION PROCESS USING SWEPT VOLUME

2.1 Literature Review

Thatipalli in his master’s project work used the voxel-based technique to perform

visualization of 5-axis direct metal deposition (DMD) process (Thatipalli, 2011). His

visualization program sequentially places voxel size of 0.1 in x 0.1 in at the center of the

3D trajectory (X, Y, and Z) of the G-code to visualize the deposition process. Because

voxels are sequentially placed by insertion, voxels placed on curved path lines will have

to be rotated again to give a smooth rendered surface. This technique works well if the G-

codes are discretely generated to fill every space. The technique is inefficient if the G-

codes are made of line segments.

 An octree approach that is used for simulation and visualization of multi-axis

additive manufacturing (AM) system was presented (Dhaveji et al., 2011; Don, 1991).

The algorithm uses octree technique to simulate and visualize the deposition of the part

geometry and its progressive changes. The concept of this algorithm is in three folds; i.e.

a 3D object is generated, an octree document is created and the AM process is then

implemented. A general overview on voxel-based visualization techniques used in AM

processes was catalogued (Chandru et al., 1995). In their paper, they presented various

technical issues that borders on memory requirements and rendering complexities when

using voxel algorithm for visualization of AM process. They also indicated in their paper

7

the development of software called “G-WoRP” that will in future solve many of the

voxel-based techniques problems in AM processes.

3D printing is one out of the many techniques used in AM. The process planning

is similar to that of DMD. The difference between the two manufacturing processes is

DMD uses either an electron beam or laser beam as the source of energy to melt metal

powder as deposits to build the part, while 3D printing traditionally uses an ultra violet

(UV) light to cure extruded resin.

Direct placement primitive technique (DPP) (Jee et al., 2000; Sachs et al., 1990)

was also researched. The algorithm presented in their paper is only restricted to the part

geometry of the object being deposited using DPP. The size of a resulting DPP

corresponds to the powder-binder agglomerate formed by a single droplet. The DPPs are

successively deposited to form the virtual shape of the actual object. The resolution of the

virtual object depends on the size of the DPP.

2.2 Selection of the Computer Programming Language

Python programming language, its visual module Vpython and the extrusion

object library was chosen as the platform to develop the computer program. Python was

chosen over other programming languages like C++ and Computational Geometry

Algorithms Libraries (CGAL) because, Python is a high level programming language that

is far easy to learn and implement with very fast OpenGL rendering graphics in a short

time. Python is also cross-platform for Windows, Mac and Linux and can be converted to

C++ as well. Overview of VPython is provided in Appendix A.

8

2.3 Importance of G-codes in the Visualization Process

The single most important data required for visualization of the deposition

process is the G-code text file. Most G-codes are generated from computer aided

manufacturing (CAM) software or other special stand-alone software. Geometric and

volumetric information for the actual deposition process is extracted from the G-code.

Similarly extracted data from G-codes are used for the volumetric visualization of DMD.

G-code instructs a DMD machine nozzle/tool what type of action to take at a

given point in time. In DMD, G01 code means linear interpolation, it is the common

workhorse for material deposition. M-codes are ignored because the program seeks to

perform a real time volumetric visualization of DMD where M-codes are not required. A

sample G-code text file with zigzag path used in this research to perform the visualization

test is provided in Appendix E.

2.4 Extraction of the Coordinate Values from the G-codes

The program matches G-code lines starting with letters G, X, Y, and Z,

characters. The corresponding coordinate values of X, Y and Z represents a 3D trajectory

or a point. Coordinate values of X, Y, and Z constitute the path which a cross section will

be swept through. Each parsed G-code line is given a line name and stored by the

program in sequence from the first G-code line to the last G-code line. Instructions to

install and run the program are found in Appendix B. The algorithm for parsing the G-

code lines to extract the required coordinate values is provided in Figure 2.1.

9

Figure 2.1. Algorithm for parsing G-codes

Below is an example of a three G-code line to be parsed:

M108 R3.146

G1 X28.63 Y28.64 Z0.15 F1080.0

G1 X28.63 Y-28.64 Z0.15 F1080.0

After parsing the G-code above, the information below is extracted for the DMD

visualization process.

 ('G1', {'Y': 28.64, 'X': 28.63, 'Z': 0.15}),

 ('G1', {'Y': -28.64, 'X': 28.63, 'Z': 0.15}),

ALGORITHM FOR PARSING G-CODE:

1. Import G-code as a text file

2. Match letters X, Y, Z and G-code in text file

3. Match floating points in text file

4. Match spaces in text file

5. Check G-code line for validity

6. Lines with X,Y,Z and characters G constitute a valid line: else line is invalid

7. Set line number= 0

8. Start parsing the G-code text file

9. Line number = line number +1 (naming the parsed lines)

10. Elements = X,Y,Z coordinate values in line (9)

11. For all non zero elements: store X,Y,Z values in a string format

12. Define Ret =[]

13. Append Ret (elements)

14. Return Ret (return all the coordinate values for every line parsed in sequence)

10

2.5 Swept Volume Procedure

The extrusion object library of Vpython is used to define all the 3D trajectories or

points of the G-code as a swept path. Sweep is performed by sweeping a cross section

through a defined swept path; the volume created through the sweep process is called the

swept volume. The paths are defined by the 3D trajectories or points (X, Y, Z) extracted

from the G-codes. The path starts from the first G-code point (X1, Y1, Z1) to the last G-

code point (Xn, Yn, Zn) in sequence. The process of sweeping the cross section in real

time forms the basis for the volumetric visualization of the deposition process. The

rendered model should then look the same as the original 3D CAD model but a little

bigger because of overlap during the sweeping process. Figure 2.2 below shows examples

of a cross section swept along different paths.

Figure 2.2. A cross-sectional shape swept along a straight and a curve path.

11

The extrusion object library is used to define the 3D trajectories or points for the sweep

process. A line segment is defined by two successive points. If the angle between two

line segments is greater than 90˚ as shown in Figure 2.3 below, the extrusion object

library generates unwanted spikes when performing the sweep at the corner points. This

problem is resolved by performing a piecewise extrusion when the angle is greater than

90˚. In performing the piecewise extrusion, the extrusion object stops at the corner point

where the angle is greater 90˚ and extrudes from that current point to the next point,

hence the artificial spikes are not generated. This makes the sweep process and the

rendered model look smoother. Figure 2.4 is the sweep implementation algorithm; it

shows also extrusions with and without spikes. In the visualization program,

“AnimatedPath.py” is the program compiler that defines all the points extracted from the

G-code for the sweep process.

Figure 2.3. Angle measured between two line segments

AB

BC

θ > 90o

12

Figure 2.4. Sweep algorithm and extrusion with and without spikes

2.6 Cross Section Overlap

The track width used in the actual deposition process is taken into account when

performing the sweep. The deposition track width becomes the width of the cross section

for the sweep process. Solidness of the rendered model is a function of the cross section

width and the extent to which the cross section will overlap. Experiments shows that the

track width is close to the laser spot diameter, which is approximately 2.54·10
–3

m

THE SWEEP ALGORITHM:

1. Point (X,Y,Z) = lines parsed from G -code

2. Point (X,Y,Z) = 0

3. Point = point +1

4. Sweeping path is defined by VPython extrusion object library

5. Swept path = first point of G -code to last point of G -code

6. If angle between two line segments is > 9 0˚ (u- turns) extrusion generates spikes

7. If angle > 90˚ perform the sweep piece-wise

8. Do sweep from current point to next poin t

9. Define shape and size of cross section to sweep

10. Sweep (extrusion) = sweep the cross section (line 9) through the swept path (line 5)

11. Output rendering on screen

13

(0.1in/2.54 mm) with overlap of 50% at a nozzle standoff distance of 1.27·10
–2

 m (Lie et

al., 2009; Ren, et al., 2010). Figure 2.5 below shows a 3D and 2D view of an overlapping

cross section. The experimental parameters above are used for the visualization of the

deposition process in this research unless otherwise stated. Figure 2.6 is the flow chart for

visualization of the deposition process.

Figure 2.5. (a) is 3D view of a cross section swept with 50% width overlap, (b) 2D

top view showing the overlaps

The cross section width and the percent overlap used in this research are based on

actual deposition experiments performed at Missouri S&T University. The G-code used

in this research to test the program was generated with a track width of 2.5 mm and

center line spacing of 1.25 mm based on 50% track width overlap. The track width and

the spacing between center lines in DMD are determined by the type of material (metal

powder).

14

Figure 2.6. Flow chart for visualization of the deposition process

2.7 Direct Metal deposition Visualization Results

The program was tested using data from Missouri S &T University. The G-code

text files can be found in the Appendix E. Data from Missouri S &T University includes

a 3D CAD model, photo of the actual deposited part and the G-code used for the actual

deposition. Figure 2.7 below shows the 3D CAD model and picture of the deposited part.

Stop

Output rendering

Sweep cross section through extrusion path

Input cross section width

Extract and store coordinate values

Yes

Discard line
No

Check if lines are valid

Read G-code text line by line

Start

Input G-code text file

Parse next line

Extrusion path=extracted coordinate values

15

The G-code is generated for Fadal CNC machine (model VMC3016) as shown in section

1.4 Figure 1.2. Instructions to run the visualization program are in Appendix B.

Figure 2.7. (a) 3D CAD model, (b) Actual deposited part from MST

 The program was used to test and visualize the deposition process using the first

G-code generated for the model. The visualization results as indicated in Figure 2.8

shows inaccurate G-code path that will not build the part to its actual geometry or

specifications. This pre-process visualization result indicates to the user to check, correct

or regenerate a new G-code for the deposition process because of inaccuracies with the

first attempt. For every generated G-code, pre-process verification is performed until the

correct G-code is generated to build a solid part to look like the actual model.

16

Figure 2.8. (a) Inccurate toolpath, (b) Desired toolpath

The rendered model should always retain the geometric features of the actual 3D

CAD model and it must be solid along the build path without unwanted voids. The

exactness of the rendered model geometry to that of the actual 3D CAD model depends

on the width of the cross section, the extent of the cross section overlap within the center

lines and the shape of the cross section. The cross section width used is normally the

track width used in the actual deposition process. As indicated in section 2.6, the

experimental parameters of 2.5 mm cross section width and 50% cross section overlap

renders a part that is solid without voids. The rendered model will always come out solid

when the cross section width overlaps within the center lines or when the cross section

width is greater than 1.25 mm. Figure 2.9 (a) is a 2.0 mm cross-sectional width

visualization result without voids, while Figure 2.9 (b) is a 0.8 mm cross-sectional width

visualization result with voids because 0.8 mm is less than the 1.25 mm centerline

spacing.

17

Figure 2.9. (a) a 2.0 mm cross-sectional width, (b) a 0.8 mm cross-sectional width

visualization results

2.8 Comparison with Previous Work

The G-code generated for the LAMP logo of Missouri S&T University is tested

using voxel placement (insertion) technique (Thatipalli, 2011) and swept volume

technique used in this research. Whereas voxel placement needs further rotation of the

placed voxel to get smooth surface the swept volume technique does not and it gives

better surface smoothness. Figure 2.10 below shows the visualization results of the two

techniques compared.

Figure 2.10. (a) Voxel placement result, (b) Swept volume result.

18

2.9 Observations and Conclusions

I. When models with changing geometry or slope sides are animated, the surface of

the rendered model around those sides comes out uneven (stair case effect).

II. The program sometimes runs slowly during real time animation of bigger models

with massive G-codes.

Computer program for real time visualization of DMD process has been

developed and implemented. The program is robust and capable of visualizing G-codes

during the deposition process. The program is designed to output a one-time rendering or

mimic the steady deposition process in real time. Users can pause the visualization

process, zoom in or out for closer view. Users can also rotate and pan during the

visualization process for different angle of views. The program is capable of visualizing

any DMD process when the G-code format is the same as the one used in this research.

The program can also be tweaked to parse other characters from the G-code other than X,

Y, Z and G characters.

19

CHAPTER 3

COLLISION DETECTION OF THE DEPOSITION PROCESS USING OCTREE

AND ORIENTED BOUNDING BOX

3.1 Literature Review

 Literature review on some of the techniques used for collision detection in 5-axis

CNC manufacturing was presented (Tang et al., 2007). Their collision detection

algorithm was base on a sweep plane approach, where octree of bounding sphere

algorithm is used. The colliding bounding spheres are further checked with the sweep

plane algorithm to ensure false collision or interference is not reported. The algorithm

presented in their paper is capable of performing collision detections between tool and

work piece as well as between other parts of the CNC machine.

The method based on hierarchical orientated bounding box (OBB) and octree

space partition for the global interference detection was also presented in 5-axis NC

machining (Ding et al., 2004). In this algorithm, the cutter and cutter holder are modeled

by a hierarchical OBB structure, whereas the work piece surfaces are approximated by an

octree. The interference detection is conducted between the tool OBBs and the gray

octants of the surface octree with the separating axis theorem. They summarized and

classified the various collision techniques into the following broad form i.e. Vector based

methods, convex hull based methods, bounding volume methods, C-space based

methods, Analytical methods, Swept volume methods and Space partition methods.

An algorithm for rapidly detecting, and correcting collision between a manually

predefined tool and an arbitrary work piece was presented (Balasubramaniam et al., 2002;

20

Balasubramaniam et al., 2003). The tool is modeled by using implicit equations and the

work piece is modeled as a cloud of points. The algorithm is based on hierarchical

bounding boxes, called k-DOPs, for both tool and work piece. The tool and work piece

are preprocessed to form their respective hierarchical bounding boxes. The collision

detection algorithm returns the points of the object that are in collision with the tool.

However, the point-cloud representation for the work piece tends to lose efficiency as the

number of sampled points is increased in order to obtain a good approximation for the

machined part. Configuration space (C-space) approach to tool path generation that

provides gouge-free and collision-free tool paths was also presented (Choi et al., 1997).

However, the proposed approach is limited to three-axis machining. Jun et al proposed a

searching method in the machining C-space to find the optimal tool orientation by

considering the local gouging, rear gouging and global tool collision in five-axis

machining (Jun et al., 2003).

 In conducting collision check and collision avoidance, tool path generation

module, post processing and machine simulations are integrated into one system

(Lauwers et al., 2003). The algorithm is use to detect collisions between the tool and

work piece, the machine and part, the tool and machine or among moving machine

components. However, this algorithm cannot be applied for a general form of the tool

since a cylindrical approximation was assumed. Moreover, the change of the work piece

geometry was not taken into account.

 Classification of collision detection base on their systematic solving

characteristics was presented (Jiménez et al., 2001). The reason is that most collision

21

detection techniques are tailored to particular applications, others stem from theoretical

concerns and their diverse origins and aims often hide their common ground which they

all originate from. They broadly classified collision detection techniques as spatio-

temporal intersection, swept volume interference, multiple interface detection and

trajectory parameterization.

GAMMA research group of University of North Carolina (UNC) have compiled

many open source collision detection libraries on their website. “V-COLLIDE”

(Jonathan D. Cohen, 1998) is a collision detection library for large dynamic

environments, and unite the N-body processing algorithm of I-COLLIDE with the pair

processing algorithm of RAPID. Consequently, it is designed to operate on large numbers

of static or moving polygonal objects, and the models may be unstructured.

“SOLID” ("SOLID 3.5," 2007) is an open source library for interference detection

of multiple 3D polygonal objects undergoing rigid motion. The shapes used by SOLID

are polygon soups. The library exploits frame coherence by maintaining a set of pairs of

proximate objects using incremental sweep and pruning on hierarchies of axis-aligned

bounding boxes. Though slower for close proximity scenarios, its performance is

comparable to that of V-COLLIDE in other cases.

“SWIFT++” (Ming Lin, 2001) from the GAMMA group is an open source library

for collision detection approximation, exact distance computation, and contact

determination between closed and bounded polyhedral models. It decomposes the

boundary of each polyhedra into convex patches and pre-computes a hierarchy of convex

22

polytopes. It uses the SWIFT library to perform the underlying computations between the

bounding volumes.

“PIVOT2D” (Kenneth E. Hoff III, 2001) from the GAMMA group is an open

source software for collision detection. It computes generalized proximity information

between arbitrary objects using graphics hardware. It uses multi-pass rendering

techniques and accelerated distance computation, and provides an approximate solution

for different proximity queries. These include collision detection, distance computation,

local penetration depth, contact region and normals, etc. It involves no preprocessing and

can handle deformable models.

“DeformCD” (Min Tang, 2007) from the GAMMA group is a fast collision

detection library designed to accelerate calculation for deforming objects. Deforming

objects, whose vertices are vibrating, an AABB refitting solution is used for collision

detection. The efficiency of the AABB-refitting schema is compared with OBB-rebuild

and AABB-rebuild schemas with timing. They achieved 5-10 times of speed up.

Currently the library supports only windows platforms.

3.2 Selection of the Computer Programming Language

C++ programming language was considered first because most of the open source

collision detection libraries (SWIFT++ and SOLID) are implemented using C++. C++

was not chosen because more time is required for its mastery. PyOpenGL module which

is built on Python was chosen so that the computer programs for visualization and

collision detection will have the same platform. Open source Oriented Bounding Box

23

(OBB) intersection (Gomez, 1999) and open source Octree implementation (Kenwright,

2002) libraries are used as a framework to develop the collision detection program. Over

view of PyOpenGL is in Appendix A.

3.3 Octree Data Structure

Octree is a hierarchical data structure that describes how the objects in a scene are

distributed throughout the three dimensional space occupied by the scene (Trung Thanh

et al., 2007). Octrees as shown in figure 3.1 (Ding, et al., 2004) below are created by

recursive subdivision of a cube representing the parent node into eight smaller cubes

called children; each child is then divided further into eight octants. Subdivision can

proceed to any desired level of accuracy determined by the type of application and

intended results. The level of subdivision is termed depth in this research. Blank octants

are empty (0), grey octants (1) are partially full and black octants (2) are full. Octrees can

therefore be used to represent a solid 3D part to its near-net shape.

Figure 3.1. (a) 3D Structure of an octree and index codes of octants, (b) the tree

structure of an octree

24

3.4 Creation and Split of the Octree Boxes

The algorithm for creating the octree is based on (Kenwright, 2002) open source

octree implementation algorithm. A bounding box is created to enclose the entire 3D

CAD model; the bounding box is then split with three evenly divided planes to create

eight child boxes within the top box. The procedure is repeated on each child until the

desired depth is reached. The bounding boxes are represented in two ways in the

program. When the box is axis-aligned then it is represented by two diagonal points, one

at the corner of the box with the lowest coordinate values i.e. C1, and the other one with

the highest coordinate values i.e. C2 as shown in Figure 3.2.

Figure 3.2. A simplified 2D axis aligned bounding box

Splitting of the boxes is performed in axis-aligned boxes. This is because, first the

tree is built and then they are rotated along with the mesh. The box in figure 3.2 above is

defined by the coordinates C1=(X1, Y1, Z1) and C2=(X2, Y2, Z2). The coordinates in C1

are lower than the ones in C2 i.e. X1<X2, Y1<Y2 and Z1<Z2.

The center of the box is:

(3.1)

Dimension of the box is:

25

 (3.2)

The distance between the two boxes from the center is:

 (3.3)

To split the box into two, there are three possibilities, left to right, front to back,

or top to bottom. Suppose the x-axis is the one that goes horizontally, so if we are

splitting the box defined by C1 and C2 into a right and left halves, the two new boxes (a

and b) upper and lower coordinates will be given as: C1a = C1, C1b = ((X1+X2)/2, Y2, Z2)

and that of the second box will be C2a = ((X1+X2)/2, Y1, Z1) and C2b = C2 as shown in

Figure 3.3 below.

Figure 3.3. Simplified 2D axis aligned bounding box split into two axis aligned

bounding boxes

The coordinate information of the octree boxes, equations 3.1, 3.2 and 3.3 above

are used to develop and implement the collision detection program. In the collision

detection program, “splitBox” is a function in “octree.py” compiler; this is the method

that does the actual splitting of the box into two. In the program, “OctreeBoxIter” is a

function in “octree.py” compiler; this is an iterator that gives the coordinates of the eight

cells that would result from splitting a single box into eight sub-cells. That is, applying all

three cuts: X, Y and Z at a time.

26

Each of those 8 cells is checked to see if it is fully occupied by the object, fully

empty, or partially occupied. In the program, that value is stored in the occupancy list in

“octree.py”, which stores an “int” for each of the eight cells. If the box content is 0, it

means it is empty. When it is 1 means intersecting or partially full and when it is 2 means

the box is fully enclosing its object. The idea is to leave one of the halves fully empty or

fully contained if possible. For example, if it was 2D, then there would be two possible

cuts: left-right, or top-bottom. Suppose a box as shown in Figure 3.4 below had the 4 sub-

cells with occupancy values 0 2 and 1 1 .Here the program will choose to perform the

splitting leaving one of the quarters fully empty (just the 0) and the other quarter fully

occupied (2). The bottom quarters will be partially filled with occupancy values of 1.

Figure 3.4. A partitioned box showing it’s occupancy values

In “octree.py”, the occupancy list contains 8 values, one for each sub-cell. The list

"test_box_indices" in octree.py tells the program which cells lie on the same half with

respect to a given axis. For example: ((0, 2, 4, 6), 2) means, in axis 2 (z), cells 0, 2, 4 and

6 lie on the same side. In other words, if occupancy [0], occupancy [2], occupancy [4]

and occupancy [6] are all 0 (empty) or all 2 (full), then the box should be cut slicing axis

Z. Now, once a box is split into two, one half would be union of the 4 cells that were

27

tested that lied in that half, and the other half would be the other 4 cells. For example, if

one half would be the union of cells (0,2,4,6), the other half would contain (1,3,5,7).

The number of partition required determines how close the octree structure will

represent the 3D CAD model to its near- net shape. The algorithm used in this research

sets the portioning depth to 9 so as to free up some computer graphic memory. Figure 3.5

below is an example of an octree representation of a 3D CAD model. It shows a 9 and 15

depth of partitioning of the 3D model and its octant occupancy. The 9 depth portioning as

can be seen shows partially filled grids along the slant side of the model; hence the OBBs

are not tightly fitting the model. The 15 depth of portioning as can be seen shows the

OBBs are tightly fitting the model along its slant sides. This is so because, during the 15

depth partitioning all partially filled grids are further refined by splitting. This makes the

OBBs of the model fit tightly along the slant sides having partially filled grids. Figure 3.6

is the algorithm for creating octree-OBBs of the CAD models. The Python compiler that

creates the octrees is “octree.py” in Appendix C, it also references “cube.py” and

“intersections.py” compilers.

Figure 3.5. Octree representation of a 3D CAD model showing (a) 9 depth

partitioning, (b) 15 depth partitioning

28

Figure 3.6. Algorithm for creating Octree-OBB of the CAD models

3.5 Oriented Bounding Box Collision Detection Test and Results

 The separating axis theorem as illustrated in Figures 3.7 (Gomez, 1999) and

Figure 3.8 (Gottschalk et al., 1996) are used to implement the collision test between

OBBs of the 3D CAD models. Splitting of the 3D CAD model using octrees as outlined

in section 3.4 effectively represents the actual 3D model to a certain resolution. The

octrees are rotated with their objects so are the bounding boxes too. Hence, the axis

aligned boxes of the octants behave as oriented bounding boxes (OBB) rotating with their

local coordinates. The collision detection is performed at the local point where the two

CAD models make contact. The contacting OBBs at that point are checked for collision.

Interference occurs when there is an overlap along the local maximum and minimum

OCTREE CREATION ALGORITHM

1. Input 3D CAD in STL ASCII format

2. Extract min and max X,Y,Z coordinates of the CAD model

3. Create the bounding box to contain the CAD model

4. C1 = min lower end of bounding box coordinates (X1,Y1,Z1)

5. C2 = max upper end of bounding box coordinates (X2,Y2,Z2)

6. Center of box =(C1 + C2)/2

7. Size of box = C2 – C1

8. Split the bounding box into eight octants using three planes (top-down, front-back, right-left)

9. Check split boxes occupancy: empty=0, partially full=1,full =2

10. If octants in (9) are partially full further split octants into eight children

11. For created octants in step 10, update the bounding box coordinates of the octants

12. Perform octant splitting nine times (depth =9)

13. Create OBB-Octrees of CAD model

29

coordinate axis x, y, z of the contacting OBBs. If the line distance between two OBBs is

greater than the sum of the two radii then the OBBs do not intersect. L is the reference

axis of approach to project the radii of the two OBBs onto. T is the vector from one OBB

center to another. A
1
, A

2
, B

1
 and B

2
 are the local coordinate axis of boxes A and B.

Figures 3.7 and Figure 3.8 below explain the principle where L is a unit vector. a1, a2 and

a3 are half-widths (or radii) of box A.

Figure 3.7. Oriented bounding box (OBB) with local axis

Figure 3.8. The vector L forms a separating axis

The radius of the projection of box A onto L is

 (3.5)

The same is true for B, and L forms a separating axis if

30

 (3.6)

Note that L does not have to be a unit vector for this test to work. The boxes A and B are

disjoint if none of the 6 principal local axes and their 9 cross products forms a separating

axis (Gomez, 1999). Figure 3.9 below is the algorithm for collision detection base on the

separating axis theorem, Python compiler “intsersections.py” in Appendix C performs the

collision detection which also references “linear.py”. Figure 3.10 below is a case where

two OBBs will collide when |T.L| = ra + rb.

Figure 3.9. Algorithm for separating axis collision detection

Figure 3.10. Two sets of OBBs in collision

COLLISION DETECTION ALGORITHM:

1. From separating axis theorem

2. Check collision between any two OBBs of CAD models within proximity

3. ra and rb define the projected radiuses of two bounding boxes(OBB)

4. T is the line distance between the two bounding boxes

5. If |T.L| > ra +rb no collision between boxes

6. If |T.L| < ra +rb will intersect

7. If |T.L| = ra + rb the boxes will collide

8. If step (7) is satisfied

9. Report collision = true

10. Else report collision = false

31

 In the program, “boxBoxOverlap” is a function in “intersections.py” compiler that

performs the collision detection between any two contacting OBBs in the graphic scene.

When the two OBBs collide then the line distance between the centers of the touching

OBBs is equal to the sum of the projected radii of the two contacting OBBs. If we were

interested in the intersection of the contacting OBBs, the sum of the two contacting

OBBs radii will have to be greater than the line distance between the OBBs centers. It

also means the OBBs are overlapping along all six coordinate axis of x, y and z. Figure

3.11 is the flow chart for the OBB collision detection based on the separating axis

theorem, refer to “intersections.py” which also references “linear.py” in Appendix C.

Figure 3.12 is the flow chart for the creation of octrees, “Octree.py” which also

references “cube.py” and “intsersections.py” in Appendix C performs the octree creation

of the CAD models. In Appendix D are instructions on how to input or change the CAD

models. The collision detection test starts with an input of the 3D CAD models, the

octree representation of the CAD model is then created with each octant or child placed

in its OBB. Base on the separating axis theorem, the CAD models are translated within

the graphic scene to test for collision. If the sum of the projected radii and the line

distance between two contacting OBBs are equal then the OBBs are colliding which also

means the two components are colliding at that point. At the point where the OBBs make

contact, the program performs a routine operation to determine if other octants within

proximity are also colliding. If any two OBBs of the CAD models at the point of contact

satisfy the condition of the separating axis theorem, the program will detect collision or

the translation of the movable component comes to a halt.

32

 The collision detection program was used to perform rigid body collision

detection test between a 3D CAD STL model of a workpiece and a 3D CAD STL model

of a cutting tool in a graphic scene. The CAD model of the workpiece was design to have

an already built component I. Figure 3.13 (a) and (b) shows a build process where

component II is to be built. As can be seen, the nozzle does not collide with component I

and will build component II without the nozzle colliding with component I. Figure 3.14

(a) and (b) also shows a built process where the nozzle collides with component I as it

builds component II to its middle section. Instructions to run the collision detection

program are in Appendix C.

33

Start

Input OBB-Octree of CAD models

T=distance between two OBBs

ra+rb= sum radiuses of two OBBs

Set dynamic scene=translate objects

Check collision between 2 OBBs within proximity

If |T.L| = ra +rb

Report collision

Report separated

No else

muted

Stop

Yes

Figure 3.11. Flow chart for OBB collision detection

34

Figure 3.12. Flow chart for Octree creation

Else

If depth=9

Stop recursive division

Full = 2 Check box occupancy

Partially full = 1

Create octree of the CAD model

Else if

Stop recursive division

If

Empty = 0

Recursively divide octants into eight octants

Recursively divide box into eight octants

Create CAD bounding box with max and min values

Start

Extract max and min coordinate values

Input 3D CAD model

Stop

35

Figure 3.13. (a) No collision between component I and nozzle, (b) Octree

representation of the model

Figure 3.14. (a) Nozzle collides with component I, (b) Octree representation of the

model

3.6 Comparison with Previous Work

The octree based collision detection program in this research was compared with

AABB collision detection (Thatipalli, 2011) by testing. In Figure 3.15 the two techniques

(a) and (b) are used to perform a collision detection test between a CAD model of a

workpiece and a CAD model of a nozzle. The nozzle target point is to the top middle of

component II. In Figure 3.15 (b), the octree-OBB collision detection technique represents

36

the CAD models better with the OBBs tightly fitting the CAD models; collision between

the CAD models is more realistic since the models are closely touching. In Figure 3.15

(b), the single AABB technique and its representation of the CAD models are very

conservative. Collision between CAD models bounded by a single AABB is not very

realistic since the models are not closely touching. The AABB technique leaves a lot of

space between the CAD model and its bounding box.

Figure 3.15. (a) Single axis aligned bounding box collision test, (b) Octree oriented

bounding box collision detection test

3.7 Observations and Conclusions

I. For the octree to represent a CAD model with tightly fitting OBBs, the splitting

process requires higher depth of partitioning this makes the program run slow.

The program sometimes runs slow when the CAD models to be partitioned have

quadratic surfaces.

II. The program is ideal for rigid body collision detection where the CAD model is

decomposed to plan the build sequence before deposition commences.

37

Computer program for collision detection has been developed and implemented

using octree-OBBs. The program can detect the collision between CAD models of two

components within a graphic scene; the program used octrees to represent the CAD

models to their near-net shapes for enhanced collision detection tests using higher dept of

partitioning. Users can pan and rotate the models within the graphic scene for different

angle of views, perform zoom in and out operations. Users can also toggle between STL

mesh surfaces and octree-OBB boxes, or have the STL mesh lines and octree-OBB boxes

removed.

38

CHAPTER 4

DISCUSSION AND RECOMMENDATION

4.1 Summary and Discussion

Swept volume technique has been used to develop and implement computer

program for visualization of the deposition process in this research. The program extracts

coordinate information from G-codes and uses them as swept path. Users can pause the

active visualization process, zoom in and out for closer view. Users can rotate and pan

during the visualization process for different angle of views during the sweep process.

Octree-OBBs have been used to develop and implement computer program, to

detect collision between CAD models of two components within a graphic scene. The

CAD models of the components are well represented to their near-net shapes by the

octrees for enhanced collision detection. Users can rotate the models in the graphic scene

for different angle of views. Users can choose which model to translate at any time and

flip between octrees boxes and STL meshes.

 “SWIFT++” is open source collision detection library software developed by

GAMMA group at University of North Carolina at Chapel Hill. It is a robust program

that can perform collision detection tests such as exact distance computation, contact

determination and tolerance. This program could not be used because there are bugs

which needed to be fixed. “SOLID” is another open source collision detection software

considered, the bugs were fairly easy to fix. The program is version 3.5.6 developed with

a single axis aligned bounding box. SOLID reports objects penetration depth, it does not

39

use hierarchies of bounding boxes which makes it not very suitable for contact collision

detection.

4.2. Recommendation and Future Work

The stair case effect that makes the surface of rendered models uneven due to

change of object geometry or slope sides should be looked at and made finer.

Optimization of the program to speed up the visualization process of models with

massive G-code data should also be looked at.

Collision detection with octree should look at growth of the part being deposited.

This requires updating the oriented bounding boxes (OBBs) as the part geometry

changes. OBB-Rebuild can solve this problem or hierarchies of axis aligned bounding

boxes (AABB). “DeformCD” is an open source collision detection library used for

collision detection of deformable objects. It uses the OBB-Rebuild technique for collision

detection test. This program shows great promise for future work of DMD collision

detection because it accounts for part changes or deformity during the deposition process.

Future work should also be geared towards transitioning the collision detection

program to follow the tool path during deposition. One way to do this is to develop a

python script compiler that will extract and update the coordinate values from the G-code

for the translation of the CAD models. This will effectively eliminate the manual

keyboard manipulation used to translate the models to perform collision detection.

40

 REFERENCES

Balasubramaniam, M., Ho, S., Sarma, S., & Adachi, Y. (2002). Generation of collision-

free 5-axis tool paths using a haptic surface. Computer-Aided Design, 34(4), 267-279.

Balasubramaniam, M., Sarma, S. E., & Marciniak, K. (2003). Collision-free finishing

toolpaths from visibility data. Computer-Aided Design, 35(4), 359-374.

Ch. Sweta Dhaveji, T. E. S., Jianzhong Ruan,Frank W. Liou. (2011). Generic Visual

Simulation of Manufacturing Equipment.

Chandru, V., Manohar, S., & Prakash, C. E. (1995). Voxel-based modeling for layered

manufacturing. Computer Graphics and Applications, IEEE, 15(6), 42-47.

Choi, B. K., Kim, D. H., & Jerard, R. B. (1997). C-space approach to tool-path

generation for die and mould machining. Computer-Aided Design, 29(9), 657-669.

Dhaveji, C. S., Sparks, T. E., Ruan, J., & Liou, F. W. (2011). Octree Approach for

Simulation of Additive Manufacturing Toolpath. Paper presented at the International

Solid Freeform Fabrication Symposium.

Ding, S., Mannan, M. A., & Poo, A. N. (2004). Oriented bounding box and octree based

global interference detection in 5-axis machining of free-form surfaces. Computer-Aided

Design, 36(13), 1281-1294.

Don, L. (1991). Modeling dynamic surfaces with octrees. Computers & Graphics,

15(3), 383-387.

Gomez, M. (1999). Simple Intersection Tests For Games. Retrieved 03/14/2012, from

http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.ph

p?page=5

Gottschalk, S., Lin, M. C., & Manocha, D. (1996). OBBTree: {A} Hierarchical Structure

for Rapid Interference Detection. Computer Graphics, 30(Annual Conference Series),

171-180.

Jee, H. J., & Sachs, E. (2000). A visual simulation technique for 3D printing. Adv. Eng.

Softw., 31(2), 97-106.

Jiménez, P., Thomas, F., & Torras, C. (2001). 3D collision detection: a survey.

Computers & Graphics, 25(2), 269-285.

http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5
http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5

41

Jonathan D. Cohen, S. G., Dinesh Manocha. (1998). V-COLLIDE. (03/05/2012).

Retrieved from http://gamma.cs.unc.edu/V-COLLIDE/

Jun, C.-S., Cha, K., & Lee, Y.-S. (2003). Optimizing tool orientations for 5-axis

machining by configuration-space search method. Computer-Aided Design, 35(6), 549-

566.

Kenneth E. Hoff III, A. Z., Ming Lin,Dinesh Manocha. (2001). PIVOT. (03/14/2012).

Retrieved from http://gamma.cs.unc.edu/PIVOT

Kenwright, B. (2002). Octrees and 3D Worlds. Retrieved 03/14/2012, 2012, from

http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php

Lauwers, B., Dejonghe, P., & Kruth, J. P. (2003). Optimal and collision free tool posture

in five-axis machining through the tight integration of tool path generation and machine

simulation. Computer-Aided Design, 35(5), 421-432.

Lie, T., Jianzhong, R., Sparks, T. E., Landers, R. G., & Liou, F. (2009, 10-12 June 2009).

Layer-to-layer height control of Laser Metal Deposition processes. Paper presented at the

American Control Conference, 2009. ACC '09.

Min Tang, D. M. (2007). DeformCD 1.0. 2012(03/15/2012). Retrieved from

http://gamma.cs.unc.edu/DEFORMCD/index.html

Ming Lin, S. E. (2001). SWIFT++. Retrieved from

http://gamma.cs.unc.edu/SWIFT++/download.html

Ren, L., Sparks, T., Ruan, J., & Liou, F. (2010). Integrated Process Planning for a

Multiaxis Hybrid Manufacturing System. Journal of Manufacturing Science and

Engineering, 132(2).

Sachs, E., Cima, M., & Cornie, J. (1990). Three-Dimensional Printing: Rapid Tooling

and Prototypes Directly from a CAD Model. CIRP Annals - Manufacturing Technology,

39(1), 201-204.

SOLID 3.5. (2007). 2012(18/01/2012). Retrieved from http://www.dtecta.com/

Tang, T. D., Bohez, E. L. J., & Koomsap, P. (2007). The sweep plane algorithm for

global collision detection with workpiece geometry update for five-axis NC machining.

Comput. Aided Des., 39(11), 1012-1024.

Thatipalli, A. R. (2011). Visualization Of Laser Deposition Process Of A 5-Axis CNC

Machine Using A Voxel Based System. Unpublished Masters Project Report, Missouri

S&T University, Missouri.

http://gamma.cs.unc.edu/V-COLLIDE/
http://gamma.cs.unc.edu/PIVOT
http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php
http://gamma.cs.unc.edu/DEFORMCD/index.html
http://gamma.cs.unc.edu/SWIFT++/download.html
http://www.dtecta.com/

42

Trung Thanh, P., Yong Hyun, K., & Sung Lim, K. (2007, 26-29 Aug. 2007).

Development of a Software for Effective Cutting Simulation using Advanced Octree

Algorithm. Paper presented at the Computational Science and its Applications, 2007.

ICCSA 2007. International Conference on Computational Science and Its Applications

(ICCSA).

43

APPENDIX A

VYPYTHON, NUMPY AND PYOGENGL OVERVIEW

VPYTHON:

VPython is the Python programming language plus a 3D graphics module called "Visual".

VPython is a simple rendering tool for 3D objects and graphs. VPython allows users to create

objects such as spheres and cones in 3D space and displays these objects in a window. Real-

time, navigable 3D animations are generated as a side effect of computations.

(http://www.vpython.org/index.html).

VPython is still being developed with a lot of contributions and modifications coming from

independent contributors. The visualization program developed in this thesis made use of some of

the latest additions to VPyhon library. The research program was developed using the new

extrusion object library of VPython aided by the shape and path libraries. These libraries

constituted the main frame of the research. The program was designed and implemented on

windows 7 platform. How to install VPython on windows is in Appendix B.

PYOPENGL:

 PyOpenGL is the cross platform Python binding to OpenGL and related APIs. The binding is

created using the standard Python 2.5 ctypes library, and is provided under an extremely liberal

BSD-style Open-Source license. PyOpenGL includes support for OpenGL v1.1 through 3.2,

GLU, GLUT v3.7 (and FreeGLUT), and GLE 3. It also includes support for hundreds of

OpenGL extensions (http://pyopengl.sourceforge.net/).

PyOpenGL was chosen as the platform to develop the collision detection program in this research

because of prior experience with OpenGL. NeHe Productions

(http://nehe.gamedev.net/tutorial/lessons_01__05/22004/) has a lot of tutorials on various 3D

topics in OpenGL. This made the use and learning of PyOpenGL fairly easy because of free

available tutorials with source codes. PyOpenGL was mainly used to handle the graphic aspect of

the collision detection program. The OpenGL graphic library does the rendering when STL CAD

files are imported and displayed in the window. Most of PyOpenGL dependencies come with the

installation of Python-2.7. How to install PyOpenGL is provided in Appendix C or from

(http://www.lfd.uci.edu/~gohlke/pythonlibs/).

NUMPY:
Numpy is an extension of the Python programming language. It adds support for large, multi-

dimensional arrays and matrices, along with a large library of high-level mathematical functions

to operate of these arrays and matrices. The Numpy libraries are used in this research to perform

the matrix and vector computations when translating or rotating the CAD models. How to install

Numpy is provided in Appendix C or from (http://www.lfd.uci.edu/~gohlke/pythonlibs/)

http://www.vpython.org/index.html
http://pyopengl.sourceforge.net/
http://nehe.gamedev.net/tutorial/lessons_01__05/22004/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

44

APPENDIX B

INSTRUCTIONS TO INSTALL AND RUN VISUALIZATION PROGRAM ON

WINDOWS

 INSTAL PYTHON AND ITS EXTENSIONS TO RUN THE PROGRAM:

1. Install “Python-2.7” from this link

(http://www.vpython.org/contents/download_windows.html).

. When the page is displayed scroll down the screen till you get to this portion of

the screen shown below, click “python-2.7” in oval to install.

2. Follow this link to download and install “VPython and python 2.7” from:

 (VPython-Win-Py2.7-5.73) this page is direct link to download VPython

and Python

3. Or from (http://www.vpython.org/contents/download_windows.html). This will

install Python 2.7 and VPython 5.7 simultaneously. When the page is displayed

scroll down the screen till you get to this portion of the screen shown below, click

“VPython-Py-2.7-5.72” in oval to install:

This last stage completes the installation to run the visualization program.

http://www.vpython.org/contents/download_windows.html
http://www.vpython.org/contents/download/VPython-Win-Py2.7-5.73.exe
http://www.vpython.org/contents/download_windows.html

45

HOW TO RUN THE VISUALIZATION PROGRAM:

1. Unzip folder “visualization” extract and save all the files into one folder. All G-

codes are text files and have (.txt) extension. All Python files have (.py)

extension. The files in the folder appear on screen like this below when extracted:

 File “gparser.py” is a python script compiler for extracting X,Y and Z

coordinate values

 File “AnimatedPath.py” is a python script compiler for defining the

swept path

 File “main.py” is the main python script used to run the visualization

program, it references compilers “gparser.py” and “AnimatedPath.py”

 Files “todcode, lamplogo, gkn,trial” are G-code text files from MST

 Files “sculp, hairgel, cone, 3Dprinting” are G-code text files generated

using open source 3D printing G-code generator called ReplicatorG to

test the program.

2. To run the program execute: “main.py”. Right click “main” and then click (Edit

with Idle) this opens the python script in the idle. See snap shot below

46

When this operation is performed, the window shown below will be

displayed on the screen. This is the first seventeen command lines of the

python script.

 When the window above appears press key “F5” on the keyboard to run

the animation/simulation. Or from the task bar click ‘run’ click “Run

Module with F5” see snap shot below.

47

This will run the animation/simulation process with “todcode” as input G-

code text file. While the animation/simulation is running the following

operations can be performed i.e. lines 4 to 9

3. Pressing space key on the keyboard will toggle play/pause

4. Pressing “+” (plus sign) and “-“ (minus sign) keys will make animation faster

or slower
5. Left/Right arrow keys will play animation forward/backwards

6. Home/End keys seek begin/end of animation

7. Pressing “0” key moves to begin, pressing “9” key moves to the end

8. Right click mouse, hold and move will give different angle of views

9. Simultaneously right and left click mouse and hold, drag back and forth to

zoom in and zoom out

To change the cross section width (track width), G-code text file, screen size and

animation time close current visualization window and repeat stage 2 above and follow

lines 10 to 14 below.

48

10. Command line argument "-t 30" will set the speed to play the animation. The time

is based on the feed rate. Current animation time is set to 750 seconds based on

the feed rate of the input G-code.

11. Command line argument “args=["todcode.txt"]” inputs or changes G-code text

file. Current G-code file name is green “todcode”

12. Command line argument "-w width" sets the cross section width. Current cross

section width is set to 2.5.

13. Command line argument "-n nsides" sets the shape of the cross section. Current

cross section shape is 4 (square). 0 to 2 will sweep a circular shape.

14. Command line argument "-f" toggles full-screen. Current setting is “False” to get

a full screen change to “True”

49

APPENDIX C

INSTRUCTIONS TO INSTALL AND RUN COLLISION DETECTION

PROGRAM ON WINDOWS

INSTALL THE EXTENSIONS: NUMPY 2.7 AND PYOPENGL

1. Install Python 2.7 if not already installed. Follow step 1 in Appendix B to install

Python 2.7.

2. Follow link (http://www.lfd.uci.edu/~gohlke/pythonlibs/) to download and install

(numpy-MKL-1.6.1.-win32-py2.7.exe). When the page is displayed scroll down

the screen till you get to this portion of the screen shown below, click name in

oval to install numpy.

3. Follow link (http://www.lfd.uci.edu/~gohlke/pythonlibs/) to download and install

(PyOpenGL-3.0.1.win32-py2.7.exe). When the page is displayed scroll down the

screen till you get to this portion of the screen shown below, click name in oval to

PyOpenGL:

This last stage completes the installation process to successfully run the collision

detection program.

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

50

HOW TO RUN THE COLLISION DETECTION PROGRAM:

1. Unzip folder “Octree-OBB” and save all the files into one folder. The files in the

folder appear on screen like this below:

 Folder “fehe” contains list of ASCII CAD STL files

 File “linear.py” is a python script compiler for setting (computing) the

translations and rotations of the CAD object in the scene.

 File “arcball.py” is a python script compiler that sets the scene dimension

based on the size of the CAD and to allow mouse interactions and

rotations. It can be downloaded from

(http://nehe.gamedev.net/tutorial/arcball_rotation/19003/)

 File “grid.py” is a python script compiler that divides the scene into grids.

 File “Intersections.py” is a python script compiler that uses OBBs to

perform the collision detection test. It can be downloaded from

(http://www.gamasutra.com/view/feature/131790/simple_intersection_test

s_for_games.php?page=5)

 File “Mouseinteractions.py” is a python script compiler used to perform

zoom, pan and rotations operations.

 File “scene.py” is a python script compiler keep records of the models,

and allows interactions with grids, octrees, translation and rotation of the

CAD models.

 File “cube.py” is a python compiler that creates OBBs of the CAD

models.

 File “mesh.py” is a python script compiler that represents the vertexes,

points and faces of the CAD models.

 File “stl.py” is a python script that imports the 3D CAD file in stl formats.

 File “octree.py” is a python script that creates the octree of the CAD

models. It can be downloaded from.

(http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php)

http://nehe.gamedev.net/tutorial/arcball_rotation/19003/
http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5
http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5
http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php

51

 File “scene.ini” is for changing the CAD models and their relative

distances and depth of partitioning.

 File “main” is the main python script use to run the collision detection

program.

 Below is the Program Compilers Dependency

 To run program execute “main.py”. Right click file “main” and then

click (Edit with Idle) this opens the python script in the idle.

 The first sixteen command lines of the python script in idle appears on the screen as

shown below:

STL.py

Grid.py Scene.py

Main.py

Octree.py

Intersections.py Cube.py Mesh.py

Archball.py

Linear.py

Mouse Interaction.py

Fehe

Scene.ini

52

 Press key “F5” on the keyboard to run the simulation. Or from the task

bar click “run” and click “Run Module with F5” as shown below.

 While the animation/simulation is still active, the following operations can

be performed i.e. lines 2 to 10

2. F1 – will toggle octree leaves

3. F2 – will toggle mesh lines

4. F3 – will toggle transparency

5. Left click the mouse and move to rotate the scene around (different angle of

views).

6. Press CONTROL and hold, left click and hold mouse, move around to pan the

view.

7. Press and hold down SHIFT key, drag mouse back and forth, to zoom in or zoom

out of the scene.

8. To select which object to move, press number 0 on keyboard to translate the

first object while holding the second object fixed. Press number 1 on keyboard to

reverse the process.

9. To move the object around, use the arrows, HOME and END keys.

10. To rotate the object, press CONTROL and use the arrows, HOME and END

keys.

53

APPENDIX D

HOW TO INPUT OR CHANGE THE CAD MODLES AND THEIR RELATIVE

POSITIONS.

1. Use SolidWorks to Create CAD STL files. Create the CAD object, go to file from

task bar and choose save as.

 Click on Save As a new window below will show up. Click on save as

type

 When save as type is clicked, the window below will show up

 Click on STL (*.stl) to save the CAD object to a chosen folder or “fehe”.

54

2. To change the CAD models, set the depth of partitioning and the positions of the

CAD models in the scene follow lines 2 to 3 below.

3. The 3D STL CAD files are in folder “fehe” right click and open the folder

Below in the oval are the CAD files in the folder “fehe”

4. To input or change the 3D CAD models (STL ASCII format), depth of

partitioning and positioning of the CAD models: open file “scene.ini” in

WordPad and make the changes by typing the file name of the CAD model from

folder “fehe”

55

 When “scene.ini” is open the WordPad window below will show up. In

oval user can change CAD files by choosing from the folder “fehe”.

“pos” is the relative position of the CAD models in the scene. “Color”

will give the CAD model its color. “depth” will set the number of times

to split a CAD model. Save the file after the changes are made. To run the

animation repeat procedure in Appendix C.

56

APPENDIX E

G-CODE TEXT FILE

Below is a truncated sample G-code (todcode). “todcode” can be found in the zipped

visualization program folder.

0 0 M64

0 12 G90

900 12 G4P20000

0 12 F750.0

900 12 G1X 8.4951 Y 0.135 Z 0.0

0 12 M65

900 12 G4P50

0 12 G1X 10.4263 Y 0.135 Z 0.0

900 12 G1X 12.6851 Y 1.4553 Z 0.0

0 12 G1X 6.8531 Y 1.385 Z 0.0

900 12 G1X 6.3717 Y 2.635 Z 0.0

0 12 G1X 15.5004 Y 2.635 Z 0.0

900 12 G1X 16.4491 Y 3.885 Z 0.0

0 12 G1X 6.4343 Y 3.885 Z 0.0

900 12 G1X 7.0835 Y 5.135 Z 0.0

0 12 G1X 16.9854 Y 5.135 Z 0.0

900 12 G1X 17.7818 Y 6.385 Z 0.0

0 12 G1X 11.098 Y 6.3696 Z 0.0

900 12 G1X 13.3519 Y 7.635 Z 0.0

0 12 G1X 18.6918 Y 7.635 Z 0.0

900 12 G1X 20.0562 Y 8.885 Z 0.0

0 12 G1X 14.5672 Y 8.885 Z 0.0

900 12 G1X 15.3469 Y 10.135 Z 0.0

0 12 G1X 23.5652 Y 10.135 Z 0.0

900 12 G1X 26.8813 Y 11.385 Z 0.0

0 12 G1X 15.8331 Y 11.385 Z 0.0

900 12 G1X 16.0977 Y 12.635 Z 0.0

0 12 G1X 27.7038 Y 12.635 Z 0.0

900 12 G1X 28.0823 Y 13.885 Z 0.0

0 12 G1X 16.3181 Y 13.885 Z 0.0

900 12 G1X 16.5385 Y 15.13

Where, F is the feed rate specifications in mm/min or in/min, G1 is linear motion mode,

M64/M65 are on and off, respectively, of the optional M-code, G90 is absolute

coordinate mode, G4 is a dwell cycle and X,Y,Z all refer to coordinate values.

57

APPENDIX F

VISUALIZATION PROGRAM MODULES
main.py

#!/usr/bin/python

-*- coding: utf-8 -*-

#Main Program: Will load the file specified on the command line and animate it on the screen

from visual import display, color, arrow, vector, shapes, extrusion, mag, math, box

import gparser

import time

import optparse

import AnimatedPath

#Parse command line arguments

parser = optparse.OptionParser()

parser.add_option("-t", "--time", default=50,

 action="store", type="float", dest="animation_duration",

 help=u"How many seconds the animation should last", metavar="SECONDS")

parser.add_option("-n", "--nsides", default=4,

 action="store", type="int", dest="extrusion_ngon",

 help=u"How many facets on the extrusion", metavar="NSIDES")

parser.add_option("-w", "--width", default=2,

 action="store", type="int", dest="extrusion_width",

 help=u"Width of the extrusion", metavar="WIDTH")

parser.add_option("-f", "--full", "--full-screen", default=False,

 action="store_true", dest="fullscreen",

 help=u"Full screen mode")

(options, args) = parser.parse_args()

print " KEYBOARD FUNCTIONS"

print "--press space bar : to pause/play animation"

print "--press + and - : to speed/slow animation"

print "--press arrow keys: to play animation back and forth"

print "--press 0 and 9 : move to begining and end of animation"

print "--left and right click mouse and hold: drag to zoom in and out"

print "-- right click mouse and hold, move to get diffrent angle views"

#User can specify a single file to open. If none is specified, we open a default file

if len(args) == 0:

 args=["hairgel.txt"]

if len(args) != 1:

 parser.error("incorrect number of arguments, you should specify ONE G-code file")

#Initializes extrusion shape.

AnimatedPath.extrusionShapeWidth = options.extrusion_width

if options.extrusion_ngon >= 3:

 AnimatedPath.extrusionShape =

shapes.rectangle(width=options.extrusion_width,height=options.extrusion_width,roundness=0)

else:

 AnimatedPath.extrusionShape = shapes.circle(radius=options.extrusion_width)

#Creates the scene object

scene=display(

 title="simulation",

58

 width=650,height=400,

 fullscreen=options.fullscreen,

 autocenter=False,

 autoscale=False,

 background=color.black,

 forward=vector(1,1,-1),

 up=(0,0,1)

)

fileContents = gparser.parseFile(args[0]) #Parsed G-Code file

unrecognized_instrs = set() #Set if unrecognized intructions, to warn after the parsing is done

totalDistance = 0 #Total distance the printer will have to move. Used as time key during animation

on = True #Printer defaults to "On"

currentPos = vector(0,0,0) #Current position of the printer header

range_min = currentPos #Range of coordinates, used to center and zoom the scene properly

range_max = currentPos

animated_paths = [] #List of the AnimatedPaths printed

current_path_points = [] #List of tuples (time, point) of the current path being drawn

head_path = [(0,currentPos)] #List of tuples (time, point) where the head has passed

#"Executes" each instruction in the file

for instr in fileContents:

 instrType = instr[0] #Type of the instruction: G1, M64, etc

 instrArgs = instr[1] #Instruction parameters: X,Y,Z,etc

 #I'm not sure about instructions M101, M102, M103 and M108, but it seems to be working OK this way

 if False: #To make a regular identation

 pass

 #Instructions to set the printing "ON"

 elif instrType=="M101" or instrType=="M108" or instrType=="M103" or instrType=="M65" :

 on=True

 #Instructions to set the printing "OFF"

 elif instrType=="M102" or instrType=="M64" :

 on=False

 #If there is pending set of points, add a new AnimatedPath for them

 if len(current_path_points):

 animated_paths.append(AnimatedPath.AnimatedPath(current_path_points))

 current_path_points=[]

 #Instruction to move the printer header. The most import instruction!

 elif instrType=="G1":

 #new position is in the arguments

 pos=vector(instrArgs['X'],instrArgs['Y'],instrArgs['Z'])

 #Updates total distance travelled and scene ranges

 totalDistance += mag(pos-currentPos)

 range_min = vector(min(range_min[0], pos[0]), min(range_min[1], pos[1]), min(range_min[2], pos[2]))

 range_max = vector(max(range_max[0], pos[0]), max(range_max[1], pos[1]), max(range_max[2], pos[2]))

 #Add the new point to the header path animation

 head_path.append((totalDistance, pos))

 if on:

 #If on, add the new point to the current path being drawn

 current_path_points.append((totalDistance, pos))

59

 #Updates current position

 currentPos=pos

 #Instruction not recognied. Add to warning list

 else:

 unrecognized_instrs.add(instrType)

#If there is pending set of points adter EOF, add a new AnimatedPath for them

if len(current_path_points):

 animated_paths.append(AnimatedPath.AnimatedPath(current_path_points))

 current_path_points=[]

#Display "Finished" message, with some useful information

if len(unrecognized_instrs):

 print "Warn: G-Codes not recognized: "+ ", ".join(unrecognized_instrs)

print "Parse completed. Segments:" + str(len(animated_paths)) + ", Length:"+str(totalDistance)

#sets the scene center/size

range_min = vector(

 range_min[0]-options.extrusion_width,

 range_min[1]-options.extrusion_width,

 range_min[2]-options.extrusion_width)

range_max = vector(

 range_max[0]+options.extrusion_width,

 range_max[1]+options.extrusion_width,

 range_max[2]+options.extrusion_width + 5*options.extrusion_width)

scene_radius = mag(range_max-range_min) + options.extrusion_width

scene.center = (range_min+range_max)/2

scene.range = scene_radius*vector(1,1,1)

#Printer header - A cone pointing to the current position of the printer header

printer_head_height=1*options.extrusion_width

printer_head = arrow(pos=(0,0,-options.extrusion_width), axis=(0,0,-printer_head_height),

shaftwidth=printer_head_height/3, color=color.red)

#deposition platform

box_padding=scene_radius/20

floor_center = vector((range_min[0]+range_max[0])/2, (range_min[1]+range_max[1])/2, range_min[2])

floor_size = (range_max-range_min) + (2*box_padding, 2*box_padding, 0)

floor = box(pos=floor_center, length=floor_size[0] , height=floor_size[1], width=options.extrusion_width/10, color=

color.blue)

#Draw a wired box around the scene

box_vertexes = []

for z in (range_min[2], range_max[2]+box_padding):

 for y in (range_min[1]-box_padding, range_max[1]+box_padding):

 for x in (range_min[0]-box_padding, range_max[0]+box_padding):

 box_vertexes.append((x,y,z))

box_edges = [#(0,1), (1,3), (3,2), (2,0),

(0,4), (1,5), (2,6), (3,7),

(4,5), (5,7), (7,6), (6,4)

]

for x in box_edges:

60

 extrusion(pos=[box_vertexes[x[0]], box_vertexes[x[1]]], shape=shapes.ngon(np=4, radius=0.5), color=(.2,.5,1))#

actual deposition

#Runs the animation

lastNow = time.time()

animation_time = 0

speed = totalDistance / options.animation_duration

running=True

while True:

 now = time.time()

 delta_time = now -lastNow

 lastNow = now

 # Handle keyboard events

 while scene.kb.keys:

 s = scene.kb.getkey() # get keyboard info

 #print "Key typed: '" + s + "'"

 #Space: toggle running/not running

 if s == ' ':

 running = not running

 if running:

 start = time.time() - animation_time

 #Home/End/Numbers - Move to absolute position

 if s == 'home':

 animation_time = 0

 if s == 'end':

 animation_time = totalDistance

 if len(s)==1 and s >= "0" and s<="9":

 animation_time = int(s) / 9.0 * totalDistance

 #Right/Left - Rogle moving forward/backward

 if s == 'right':

 speed = abs(speed)

 if s == 'left':

 speed = -abs(speed)

 #+/- Faster/Slower

 if s == '+':

 speed = speed*1.3

 if s == '-':

 speed = speed/1.3

 #If running, move the animation one step

 if running:

 animation_time += delta_time * speed

 #animation_time is bound to the interval [0, totalDistance]

 animation_time = max(0, min(totalDistance, animation_time))

 #Updates printer header position and extruded paths accordingly to the current time

 printer_head.pos = AnimatedPath.interpolatePath(head_path, animation_time) - printer_head.axis +

(0,0,options.extrusion_width)

 for p in animated_paths:

 p.setTime(animation_time)

61

AnimatedPath.py

-*- coding: utf-8 -*-

from visual import extrusion, color, vector

import math

#Will be initialized on the main method

extrusionShape = None

extrusionShapeWidth = 0

#An animated path is a 3D object which will display incrementally based on the time, creating an animation

class AnimatedPath:

 #Creates the path from a list of tuples from parsed g-code lines

 def __init__(self, points, color=color.white):

 self.extrusion=extrusion(pos=[], shape=extrusionShape, color=color,visible=False)# actual deposition

 self.points = points

 self.firstTime = points[0][0]

 self.lastTime = points[len(points)-1][0]

 self.now = self.firstTime

 def setTime(self, time):

 #Don't do any modification if not needed

 if time == self.lastTime:

 return

 if time <= self.firstTime and self.now <= self.firstTime:

 return

 if time >= self.lastTime and self.now >= self.lastTime:

 return

 self.now = time

 newpos=[]

 prev=None

 for p in self.points:

 if p[0] < time:

 newpos.append(p[1])

 else: #The current segment is still being created, will interpolate this (last) point to create the animation

 if prev:

 alpha = (time-prev[0]) / (p[0]-prev[0])

 newpos.append(alpha*p[1] + (1-alpha)*prev[1])

 break;

 prev = p

 i=1

 while i < len(newpos):

 prev = newpos[i-1]

 cur = newpos[i]

 if (cur-prev).mag < extrusionShapeWidth/10.0:

 newpos.pop(i)

 continue

 i=i+1

 #Post-processing step 2 - If we have U turnrs,i.e anngle >90 the extrusion library generates unpleasing glitches.

 #workaround.

62

 i=1

 while i < len(newpos)-1:

 #An angle is defined by 3 points: Current, previous and next

 p_prev = newpos[i-1]

 p_cur = newpos[i]

 p_next = newpos[i+1]

 #Gets length and direction of the segments prev<->current and current<->next

 dist1 = (p_cur -p_prev).mag

 dist2 = (p_next-p_cur).mag

 dir1 = (p_cur -p_prev).norm()

 dir2 = (p_next-p_cur).norm()

 #If the angle between the segments is too big (ang>90 == U-turn), we will break this corner in two

 ang = math.degrees(vector.diff_angle(dir1, dir2))

 if ang > 90:

 #Distance betwen the new endpoint to cur.

 #Should be approx extrusionShapeRadius to look good, and must be smaller than dist1 and dist2

 d = min(dist1/30, dist2/30, extrusionShapeWidth)

 #Uses linear interpolation to find the new endpoints

 alpha1 = d/dist1

 alpha2 = d/dist2

 p1=alpha1*p_prev + (1-alpha1)*p_cur

 p2=alpha2*p_next + (1-alpha2)*p_cur

 #Replaces the old endpoint with the new values

 newpos[i] = p1

 newpos.insert(i+1, p2)

 i=i+1

 i=i+1

 if len(newpos) == 0: # We can optimize a little if the list is empty

 self.extrusion.visible=False

 else: # Updates the extrusion object with new values

 self.extrusion.pos=newpos

 self.extrusion.visible=True

def interpolatePath(points, time):

 prev=None

 for p in points:

 if p[0] > time:

 if prev:

 alpha = (time-prev[0]) / (p[0]-prev[0])

 return alpha*p[1] + (1-alpha)*prev[1]

 else:

 return p[1]

 prev = p

 return prev[1]

63

gparse.py

-*- coding: utf-8 -*-

import re

#This will parse a G-Codes file into a list of instructions.

#The first element in the G-Code indentifies the instruction. This is kept as the "key" of each element

#The remaining elements are stored in a dictionary

#Invalid lines are ignores

e.g.

;M113 S1.0

M108 R3.146

(<surroundingLoop>)

(<loop> outer)

G1 X28.63 Y28.64 Z0.15 F1080.0

G1 X28.63 Y-28.64 Z0.15 F1080.0

G1 X-28.41 Y-28.64 Z0.15 F1080.0

M108 R35.0

M102

G1 X-28.63 Y-28.64 Z0.

Becomes

[

('M108', {'R': 3.146}),

('G1', {'Y': 28.64, 'X': 28.63, 'Z': 0.15, 'F': 1080.0}),

('G1', {'Y': -28.64, 'X': 28.63, 'Z': 0.15, 'F': 1080.0}),

('G1', {'Y': -28.64, 'X': -28.41, 'Z': 0.15, 'F': 1080.0}),

('M108', {'R': 35.0}),

('M102', {}),

('G1', {'Y': -28.64, 'X': -28.63, 'Z': 0.0})

]

def parse(infile):

 linenum=0

 letter_re="[A-Z]" #Regular expression to match the letter

 double_re="[-+]?\d*\.?\d+" #Regular expression to match floating point numbers

 space_re="\s*" #Regular expression to match spaces, if present

 #Regular expression to match each pair Letter+Nubmer in the G_codes.

 #May not be the best way, but seems to be working

 regexp_element=re.compile("(" + letter_re + ")" + space_re + "(" + double_re + ")")

 #Regular expression to check if line is valid.

 #It will be valid if it starts with a capital letter (GOOD) or a number (A problema with the TOD sample?)

 regexp_validLine=re.compile(space_re + "(" + letter_re + "|" + double_re + ")")

 ret=[]

 while True:

 linenum=linenum+1

 line = infile.readline()

 if not line:

 break

 if not regexp_validLine.match(line):

 #print "Ignoring " + line

 continue

64

 elements = regexp_element.findall(line)

 if len(elements) == 0:

 continue

 firstElement=None

 values={}

 for e in elements:

 if firstElement is None:

 firstElement = e[0]+e[1]

 else:

 values[e[0]] = float(e[1])

 ret.append((firstElement, values))

 #print str(firstElement) + " - " + str(values)

 return ret

#Same as Parse, but receives a file path instead of a file object

def parseFile(path):

 infile = open(path, "r")

 ret = parse(infile)

 infile.close()

 return ret

if __name__ == "__main__":

 f = open("objects/cone.txt","r")

 print parseFile("objects/cone.txt")

65

APPENDIX G

COLLISION DETECTION PROGRAM MODULES

main.py

from OpenGL.GL import *

from OpenGL.GLUT import *

from OpenGL.GLU import *

import ConfigParser

from scene import Scene

from octree import Octree

from grid import Grid

from stl import loadSTL

from linear import *

from mouseinteraction import MouseInteraction

scene = None

action = None

click_pos = None

WINDOW_WIDTH = 1500

WINDOW_HEIGHT = 1000

mouse_interaction = MouseInteraction(WINDOW_WIDTH, WINDOW_HEIGHT)

this function gets called by GLUT when the sceene needs to be redrawn, for example:

- when the viewport is first created

- after whe viewport changes (window resize)

- when glutPostRedisplay is called

print "--KEYBOARD FUNCTIONS--"

print "--left click mouse and hold, move to get diff angle of views"

print "--Press 0 key to activate first object to translate, press 1 will activate second object"

print "--use arrows,HOME and END keys to translate the selected object around"

print "--Press CTRL key and hold : use arrows, HOME and END keys to rotate object"

print "--Press and hold SHIFT key: left click and hold mouse, drag mouse back and forth to Zoom in and out"

print "--press and hold CTRL key: left click and mouse, move mouse around to pan scene"

print "--Press F1 to show only octree boxes"

print "--Press F2 to show only STL mesh lines"

print "--press F3 will make the CAD models transparent"

def DrawScene():

 # clear the viewport and the depth buffer (z-buffer)

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 # set up the position of the camera

 glLoadIdentity();

66

 glTranslatef(0,0,-200.0)

 mouse_interaction.applyTransform()

 scene.draw()

 # tell GLUT to swap the front and back buffers

 try:

 # sometimes this fails (bug in pyopengl?)

 # if that happens (program seems to freeze), try resizing the viewport

 glutSwapBuffers();

 except:

 pass

def InitOpenGL(Width, Height):

 glShadeModel(GL_FLAT)

 # color we want to use when clearing the viewport

 glClearColor(0.0, 0.0, 0.0, 0.0)

 # enable the z-buffer (so objects get occluded correctly)

 glEnable(GL_DEPTH_TEST)

 # enable lights in general, and in particular light #0

 glEnable (GL_LIGHT0)

 glEnable (GL_LIGHTING)

 # tell OpenGL it should use the color we assign to the object as the diffuse component

 # (makes specifying the color of the object easier)

 glEnable (GL_COLOR_MATERIAL)

 # make sure normals are always normalized, even if we change the scale of things

 glEnable (GL_NORMALIZE);

this function gets called by GLUT when the viewport is first created and when

the viewport is resized.

def onResize(w, h):

 if h <= 2: h = 2

 if w <= 2: w = 2

 glViewport(0, 0, w, h)

 # select the projection matrix (to set up the perspective projection)

 glMatrixMode(GL_PROJECTION)

 glLoadIdentity()

 # view frustum angle set to 45 degrees, viewport aspect ratio, near plane, far plane

 gluPerspective(45.0, float(w)/float(h), 1, 1000.0)

 # select the modelview matrix now

 glMatrixMode (GL_MODELVIEW);

 glLoadIdentity ();

 mouse_interaction.vpResize(w,h)

 return

this function gets called by GLUT when a key is pressed

67

def onKeyPressed(key, x, y):

 global scene

 if key == chr(27): # 27 is the ascii value of the ESC key

 sys.exit(0)

 if key >= '0' and key <= '9':

 scene.selectObject(ord(key) - ord('0'))

def onSpecialKeyPressed(key, x, y):

 if key in

(GLUT_KEY_LEFT,GLUT_KEY_RIGHT,GLUT_KEY_UP,GLUT_KEY_DOWN,GLUT_KEY_END,GLUT_KEY_

HOME):

 scene.storeTransform()

 if glutGetModifiers() & GLUT_ACTIVE_CTRL:

 # pressing control + arrow makes the object rotate

 if key == GLUT_KEY_LEFT: scene.rotate(Vector3f(-1,0,0),10)

 elif key == GLUT_KEY_RIGHT: scene.rotate(Vector3f(1,0,0),10)

 elif key == GLUT_KEY_UP: scene.rotate(Vector3f(0,1,0),10)

 elif key == GLUT_KEY_DOWN: scene.rotate(Vector3f(0,-1,0),10)

 elif key == GLUT_KEY_END: scene.rotate(Vector3f(0,0,-1),10)

 elif key == GLUT_KEY_HOME: scene.rotate(Vector3f(0,0,1),10)

 else:

 # pressing control + arrow makes the object move

 if key == GLUT_KEY_LEFT: scene.translate(Vector3f(-1,0,0))

 elif key == GLUT_KEY_RIGHT: scene.translate(Vector3f(1,0,0))

 elif key == GLUT_KEY_UP: scene.translate(Vector3f(0,1,0))

 elif key == GLUT_KEY_DOWN: scene.translate(Vector3f(0,-1,0))

 elif key == GLUT_KEY_END: scene.translate(Vector3f(0,0,-1))

 elif key == GLUT_KEY_HOME: scene.translate(Vector3f(0,0,1))

 if scene.checkCollisions():

 scene.restoreTransform()

 elif key == GLUT_KEY_F1:

 scene.toggleHelperGroup("octree")

 elif key == GLUT_KEY_F2:

 scene.toggleFaceEdges()

 elif key == GLUT_KEY_F3:

 scene.toggleTranslucent()

 glutPostRedisplay()

def onClick(button, state, x, y):

 if state == GLUT_DOWN:

 if glutGetModifiers() & GLUT_ACTIVE_CTRL:

 action = mouse_interaction.PAN_ACTION

 elif glutGetModifiers() & GLUT_ACTIVE_SHIFT:

 action = mouse_interaction.ZOOM_ACTION

 else:

 action = mouse_interaction.ROTATE_ACTION

 mouse_interaction.click(x,y, action)

 elif state == GLUT_UP:

68

 mouse_interaction.release()

def onDrag(x, y):

 mouse_interaction.drag(x,y)

 glutPostRedisplay();

def loadScene():

 # split a vector represented as a string into float components

 def asVector(txt):

 return map(lambda a:float(a.strip()), txt.split(','))

 scene = Scene()

 config = ConfigParser.SafeConfigParser()

 config.read("scene.ini")

 for s_name in config.sections():

 print s_name

 if s_name.lower().startswith("object."):

 objname = s_name[7:]

 filename = config.get(s_name,'file')

 if filename is not None:

 print "Loading file %s"%filename

 if config.has_option(s_name,'pos'):

 position = asVector(config.get(s_name,'pos'))

 else:

 position = Vector3f()

 if config.has_option(s_name,'color'):

 color = asVector(config.get(s_name, 'color'))

 else:

 color = None

 mesh = loadSTL(filename)

 if config.has_option(s_name,'depth'):

 depth = int(config.get(s_name,'depth'))

 else:

 depth = 9

 mesh.setPosition(position)

 mesh.setName(objname or "object")

 mesh.setColor(color or (0.5,0.5,0.5))

 scene.addInteractive(mesh)

 oct = Octree(mesh, max_depth = depth)

 scene.addHelper(oct,"octree")

 scene.addHelper(Grid(200, 20),"grid")

 return scene

69

def main():

 global scene

 # boilerplate GLUT initialization code

 glutInit(sys.argv)

 # tell glut we need a viewport with:

 # - truecolor capabilities with alpha channel (transparency)

 # - double buffer (to avoid flicker when drawing)

 # - depth buffer (to have correct occlusion of objects)

 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)

 glutInitWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT)

 # open the window

 window = glutCreateWindow("")

 # register some callbacks that will call GLUT when something happens (key pressed, mouse move, etc)

 glutReshapeFunc(onResize)

 glutKeyboardFunc(onKeyPressed)

 glutSpecialFunc(onSpecialKeyPressed)

 glutDisplayFunc(DrawScene)

 # load everything

 scene = loadScene()

 #glutIdleFunc(Draw)

 glutMouseFunc (onClick)

 glutMotionFunc (onDrag)

 # initialize openGL

 InitOpenGL(WINDOW_WIDTH, WINDOW_HEIGHT)

 glutMainLoop()

if __name__=="__main__":

 main()

intersections.py

import numpy as N

from linear import *

returns (t,u,v) where

t - distance along the ray where intersects the triangle

u,v - barycentric coordinates on the triangle

def lineno():

 import inspect

 """Returns the current line number in our program."""

 return inspect.currentframe().f_back.f_lineno

def rayTriangleIntersection(ray_origin, ray_direction, triverts):

70

 e1 = triverts[1]-triverts[0]

 e2 = triverts[2]-triverts[0]

 pvec = N.cross(ray_direction, e2)

 det = N.dot(e1, pvec)

 if det > -EPSILON and det < EPSILON:

 return None

 inv_det = 1.0 / det

 tvec = ray_origin - triverts[0]

 u = N.dot(tvec,pvec) * inv_det

 if u < 0.0 or u > 1.0:

 return None

 qvec = N.cross(tvec, e1)

 v = N.dot(ray_direction, qvec) * inv_det

 if v < 0.0 or (u+v) > 1.0:

 return None

 t = N.dot(e2, qvec) * inv_det

 return t,u,v

The following code is based on code by Tomas Akenine-Moller

http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/

def planeBoxOverlap(normal, vert, maxbox):

 vmin = Vector3f()

 vmax = Vector3f()

 for coord in (0,1,2):

 v = vert[coord]

 if normal[coord] > 0.0:

 vmin[coord] = -maxbox[coord] - v

 vmax[coord] = maxbox[coord] - v

 else:

 vmin[coord] = maxbox[coord] - v

 vmax[coord] = -maxbox[coord] - v

 if N.dot(normal, vmin) > 0.0:

 return False

 if N.dot(normal, vmax) >= 0.0:

 return True

 return False

def triangleBoxOverlap(box_center, box_half_size, triverts):

 """

 Use separating axis theorem to test overlap between triangle and box

 need to test for overlap in these directions:

 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle

71

 we do not even need to test these)

 2) normal of the triangle

 3) crossproduct(edge from tri, {x,y,z}-directin)

 this gives 3x3=9 more tests

 """

 # test the triangle against a box centered at the origin

 v0 = triverts[0] - box_center

 v1 = triverts[1] - box_center

 v2 = triverts[2] - box_center

 #======================== X-tests ========================

 def axisTestX01(a, b, fa, fb):

 p0 = a * v0[1] - b*v0[2]

 p2 = a * v2[1] - b*v2[2]

 if p0 < p2:

 min_val = p0

 max_val = p2

 else:

 min_val = p2

 max_val = p0

 rad = fa * box_half_size[1] + fb * box_half_size[2]

 return min_val > rad or max_val < -rad

 def axisTestX2(a, b, fa, fb):

 p0 = a * v0[1] - b*v0[2]

 p1 = a * v1[1] - b*v1[2]

 if p0 < p1:

 min_val = p0

 max_val = p1

 else:

 min_val = p1

 max_val = p0

 rad = fa * box_half_size[1] + fb * box_half_size[2]

 return min_val > rad or max_val < -rad

 #======================== Y-tests ========================

 def axisTestY02(a, b, fa, fb):

 p0 = -a * v0[0] + b*v0[2]

 p2 = -a * v2[0] + b*v2[2]

 if p0 < p2:

 min_val = p0

 max_val = p2

 else:

 min_val = p2

 max_val = p0

 rad = fa * box_half_size[0] + fb * box_half_size[2]

72

 return min_val > rad or max_val < -rad

 def axisTestY1(a, b, fa, fb):

 p0 = -a * v0[0] + b*v0[2]

 p1 = -a * v1[0] + b*v1[2]

 if p0 < p1:

 min_val = p0

 max_val = p1

 else:

 min_val = p1

 max_val = p0

 rad = fa * box_half_size[0] + fb * box_half_size[2]

 return min_val > rad or max_val < -rad

 #======================== Z-tests ========================

 def axisTestZ12(a, b, fa, fb):

 p1 = a * v1[0] - b*v1[1]

 p2 = a * v2[0] - b*v2[1]

 if p2 < p1:

 min_val = p2

 max_val = p1

 else:

 min_val = p1

 max_val = p

 rad = fa * box_half_size[0] + fb * box_half_size[1]

 return min_val > rad or max_val < -rad

 def axisTestZ0(a, b, fa, fb):

 p0 = a * v0[0] - b*v0[1]

 p1 = a * v1[0] - b*v1[1]

 if p0 < p1:

 min_val = p0

 max_val = p1

 else:

 min_val = p1

 max_val = p0

 rad = fa * box_half_size[0] + fb * box_half_size[1]

 return min_val > rad or max_val < -rad

 # edges

 e0 = v1-v0

 e1 = v2-v1

 e2 = v0-v2

 # TEST 1

 fex = abs(e0[0])

73

 fey = abs(e0[1])

 fez = abs(e0[2])

 if (axisTestX01(e0[2], e0[1], fez, fey) or

 axisTestY02(e0[2], e0[0], fez, fex) or

 axisTestZ12(e0[1], e0[0], fey, fex)):

 return False

 fex = abs(e1[0])

 fey = abs(e1[1])

 fez = abs(e1[2])

 if (axisTestX01(e1[2], e1[1], fez, fey) or

 axisTestY02(e1[2], e1[0], fez, fex) or

 axisTestZ0(e1[1], e1[0], fey, fex)):

 return False

 fex = abs(e2[0])

 fey = abs(e2[1])

 fez = abs(e2[2])

 if (axisTestX2(e2[2], e2[1], fez, fey) or

 axisTestY1(e2[2], e2[0], fez, fex) or

 axisTestZ12(e2[1], e2[0], fey, fex)):

 return False

 # TEST 2

 # first test overlap in the {x,y,z}-directions

 # find min, max of the triangle each direction, and test for overlap in

 # that direction -- this is equivalent to testing a minimal AABB around

 # the triangle against the AABB

 # test in X

 if (min(v0[0], v1[0], v2[0]) > box_half_size[0] or

 max(v0[0], v1[0], v2[0]) < -box_half_size[0]):

 return False

 # test in Y

 if(min(v0[1], v1[1], v2[1]) > box_half_size[1] or

 max(v0[1], v1[1], v2[1]) < -box_half_size[1]):

 return False

 # test in Z

 if (min(v0[2], v1[2], v2[2]) > box_half_size[2] or

 max(v0[2], v1[2], v2[2]) < -box_half_size[2]):

 return False

 # TEST 3

 # test if the box intersects the plane of the triangle

 # compute plane equation of triangle: normal*x+d=0

 normal = N.cross(e0,e1)

 if not planeBoxOverlap(normal,v0,box_half_size):

 return False

74

 return True # box and triangle overlap

The following is code based on code by Miguel Gomez

http://www.gamasutra.com/view/feature/131790/simple_intersection_tests_for_games.php?page=5

box_frame_1, box_frame_2 must be of type numpy.matrix

def boxBoxOverlap(box_center_1, box_half_size_1, box_frame_1, box_center_2, box_half_size_2, box_frame_2,

R=None):

 if R is None:

 R = box_frame_1 * box_frame_2.T

 v = (box_center_2 - box_center_1)

 T = N.dot(box_frame_1, v.T) # T is column vector

 three = (0,1,2)

 a = box_half_size_1

 b = box_half_size_2

 Rabs = N.abs(R)

 for i in three:

 rb = N.dot(b, Rabs[i].T)

 t = abs(T[i])

 if t > a[i] + rb:

 return False

 for i in three:

 ra = N.dot(a, Rabs[:,i])

 t = abs(N.dot(R[:,i].T,T))

 if t > box_half_size_2[i] + ra:

 return False

 # L = A0 x B0

 ra = a[1]*abs(R[2,0]) + a[2]*abs(R[1,0])

 rb = b[1]*abs(R[0,2]) + b[2]*abs(R[0,1])

 t = abs(T[2]*R[1,0] - T[1]*R[2,0])

 if t > ra+rb:

 return False

 # L = A0 x B1

 ra = a[1]*abs(R[2,1]) + a[2]*abs(R[1,1])

 rb = b[0]*abs(R[0,2]) + b[2]*abs(R[0,0])

 t = abs(T[2]*R[1,1] - T[1]*R[2,1])

 if t > ra+rb:

 return False

 # L = A0 x B2

 ra = a[1]*abs(R[2,2]) + a[2]*abs(R[1,2])

 rb = b[0]*abs(R[0,1]) + b[1]*abs(R[0,0])

 t = abs(T[2]*R[1,2] - T[1]*R[2,2])

75

 if t > ra+rb:

 return False

 # L = A1 x B0

 ra = a[0]*abs(R[2,0]) + a[2]*abs(R[0,0])

 rb = b[1]*abs(R[1,2]) + b[2]*abs(R[1,1])

 t = abs(T[0]*R[2,0] - T[2]*R[0,0])

 if t > ra+rb:

 return False

 # L = A1 x B1

 ra = a[0]*abs(R[2,1]) + a[2]*abs(R[0,1])

 rb = b[0]*abs(R[1,2]) + b[2]*abs(R[1,0])

 t = abs(T[0]*R[2,1] - T[2]*R[0,1])

 if t > ra+rb:

 return False

 # L = A1 x B2

 ra = a[0]*abs(R[2,2]) + a[2]*abs(R[0,2])

 rb = b[0]*abs(R[1,1]) + b[1]*abs(R[1,0])

 t = abs(T[0]*R[2,2] - T[2]*R[0,2])

 if t > ra+rb:

 return False

 # L = A2 x B0

 ra = a[0]*abs(R[1,0]) + a[1]*abs(R[0,0])

 rb = b[1]*abs(R[2,2]) + b[2]*abs(R[2,1])

 t = abs(T[1]*R[0,0] - T[0]*R[1,0])

 if t > ra+rb:

 return False

 # L = A2 x B1

 ra = a[0]*abs(R[1,1]) + a[1]*abs(R[0,1])

 rb = b[0]*abs(R[2,2]) + b[2]*abs(R[2,0])

 t = abs(T[1]*R[0,1] - T[0]*R[1,1])

 if t > ra+rb:

 return False

 # L = A2 x B2

 ra = a[0]*abs(R[1,2]) + a[1]*abs(R[0,2])

 rb = b[0]*abs(R[2,1]) + b[1]*abs(R[2,0])

 t = abs(T[1]*R[0,2] - T[0]*R[1,2])

 if t > ra+rb:

 return False

76

 return True

octree.py

from OpenGL.GL import *

from OpenGL.GLUT import *

from OpenGL.GLU import *

from linear import *

from cube import drawCube

from intersections import boxBoxOverlap

" ideas from http://www.xbdev.net/maths_of_3d/octree/tutorial/index.php"

class Octree:

 class OctreeLeaf:

 def __init__(self, box):

 self.center = (box[0] + box[1]) * 0.5

 self.size_2 = (box[1] - box[0]) * 0.5

 # this is so it can

 self.is_leaf = True

 # this is so it can get inserted in the to_test_queue (in the Octree.intersects method)

 self.cells = [self]

 class OctreeNode:

 def largestAxis(self):

 size = self.bounds[1] - self.bounds[0]

 axis = 0

 d = size[0]

 if size[1] > d:

 axis = 1

 d = size[1]

 if size[2] > d:

 axis = 2

 d = size[2]

 return axis

 def KDboxIter(self):

 axis = self.largestAxis()

 return self.splitBox(axis)

 def intersects(self, node, c1, t1, c2, t2, R):

 return boxBoxOverlap(self.center*t1 + c1, self.size_2, t1, node.center*t2 + c2,

node.size_2, t2, R)

 # split the bounds of this OctreeNode into 8 boxes

 def octreeBoxIter(self):

 size_2 = self.size_2

 pos = Vector3f()

77

 pos[0] = self.bounds[0][0]

 for x in (0,1):

 pos[1] = self.bounds[0][1]

 for y in (0,1):

 # unroll the z loop

 pos[2] = self.bounds[0][2]

 yield (pos.copy(), pos+size_2)

 pos[2] += size_2[2]

 yield (pos.copy(), pos+size_2)

 pos[1] += size_2[1]

 pos[0] += size_2[0]

 # list of boxes contained in a given half (with respect to a given axis).

 # for example, for axis 0 (X), boxes 0,1,2 and 3 lie on the "left" half, while

 # boxes 4,5,6 and 7 lie on the "right" half

 test_box_indices =[

 ((0,2,4,6),2),

 ((1,3,5,7),2),

 ((0,1,4,5),1),

 ((2,3,6,7),1),

 ((0,1,2,3),0),

 ((4,5,6,7),0),

]

 def splitBox(self, axis):

 size = self.bounds[1] - self.bounds[0]

 d2 = size[axis] * 0.5

 pos = self.bounds[0].copy()

 if axis == 0:

 corner = (d2, size[1], size[2])

 boxes = [(pos.copy(), pos + corner), None]

 pos[0] += d2

 boxes[1] = (pos.copy(), pos + corner)

 elif axis == 1:

 corner = (size[0], d2, size[2])

 boxes = [(pos.copy(), pos + corner), None]

 pos[1] += d2

 boxes[1] = (pos.copy(), pos + corner)

 elif axis == 2:

 corner = (size[0], size[1], d2)

 boxes = [(pos.copy(), pos + corner), None]

 pos[2] += d2

 boxes[1] = (pos.copy(), pos + corner)

 return boxes

 def __init__(self, mesh, bounds, max_depth, max_error):

 # check if all the boxes listed in box_indices taken from the occupancy list

 # are either empty (code returned by mesh.intersectsAABB is 0) or

 # full (code == 2).

 def checkBoxesStatus(occupancy, box_indices):

 empty_test_passes = True

 full_test_passes = True

78

 for box_num in box_indices:

 if occupancy[box_num] != 0: empty_test_passes = False

 if occupancy[box_num] != 2: full_test_passes = False

 return empty_test_passes, full_test_passes

 self.is_leaf = False

 self.bounds = N.array(bounds,"f")

 size = bounds[1] - bounds[0]

 self.size_2 = size * 0.5

 self.center = (bounds[0] + bounds[1])*0.5

 occupancy = []

 boxes = []

 for box in self.octreeBoxIter():

 occupancy.append(mesh.intersectsAABB(box))

 boxes.append(box)

 if max_depth <= 0 or max(size) < max_error:

 # if we're at the max depth, then just store true (if contains any portion of the

mesh)

 # or false at the cells

 self.cells = [oc != 0 for oc in occupancy]

 self.boxes = boxes

 else:

 # otherwise, pick a good axis to split the cell in two. If possible, choose

 # an axis that leaves one half either completely full or completely empty

 # if such axis doesn't exist, then pick the largest one

 split_axis = None

 for test, axis in self.test_box_indices:

 empty_test_passes, full_test_passes = checkBoxesStatus(occupancy,

test)

 if empty_test_passes or full_test_passes:

 split_axis = axis

 break

 if split_axis is None:

 # no half is either full empty or completely full

 split_axis = self.largestAxis()

 self.boxes = self.splitBox(split_axis)

 self.cells = [

 Octree.OctreeNode(mesh, self.boxes[0],

max_depth-1, max_error),

 Octree.OctreeNode(mesh, self.boxes[1],

max_depth-1, max_error)

]

 else:

 # one (or both) of the halves is completely empty or completely full

 # complementary test (the other boxes not in test)

 ctest = [x for x in range(8) if x not in test]

 passed_test_boxes = [box for box_num,box in enumerate(boxes) if

box_num in test]

79

 other_test_boxes = [box for box_num,box in enumerate(boxes) if

box_num in ctest]

 # the min/max of the first/last box in "test" and "ctest" are actually

the corners of the

 # combined boxes in each group.

 self.boxes = [(passed_test_boxes[0][0],passed_test_boxes[-1][1]),

(other_test_boxes[0][0],other_test_boxes[-1][1])]

 # full_test_passes and empty_test_passes refer to the contents of

self.boxes[0],

 # that is to the boxes in passed_test_boxes

 self.cells = [full_test_passes, None]

 # now check the occupancy of boxes -not- in test (those in ctest)

 empty_test_passes, full_test_passes = checkBoxesStatus(occupancy,

ctest)

 if empty_test_passes or full_test_passes:

 self.cells[1] = full_test_passes

 else:

 self.cells[1] = Octree.OctreeNode(mesh, self.boxes[1],

max_depth-1, max_error)

 def draw(self, level=0):

 bounds = self.bounds

 size_2 = self.size_2

 cells = self.cells

 i = 0

 for cell, box in zip(self.cells, self.boxes):

 if cell is False:

 continue

 if cell is True:

 glColor4f(0.0,1.0,0.0,0.5)

 drawCube(box[0], box[1])

 else:

 cell.draw(level+1)

 glColor4f(1.0,1.0,1.0,0.1)

 drawCube(self.bounds[0], self.bounds[1])

 def __init__(self, mesh, max_depth = 9, max_error = 0.1):

 print "Building octree (max depth=%s)"%max_depth

 self.mesh = mesh

 mesh.octree = self

 bounds = (mesh.bounds[0], mesh.bounds[1])

 self.root = Octree.OctreeNode(mesh, bounds, max_depth, max_error)

80

 def intersects(self, octree):

 # tranlsation part

 c1 = self.mesh.transform[3,0:3]

 c2 = octree.mesh.transform[3,0:3]

 # rotation part

 t1 = self.mesh.transform[0:3,0:3]

 t2 = octree.mesh.transform[0:3,0:3]

 # mapping from one orientation to the other

 R = t1 * t2.T

 if not boxBoxOverlap(self.root.center * t1 + c1, self.root.size_2, t1,

 octree.root.center*t2 + c2, octree.root.size_2, t2,

R):

 return False

 #inter = self.root.intersects(octree.root, c1,t1,c2,t2,R)

 #if inter == False:

 # return False

 to_test_queue = [(self.root, octree.root)]

 while len(to_test_queue)>0:

 g1,g2 = to_test_queue.pop(0)

 # we put this cycle here so we don't do the tests and instantiation of OctreeLeaf

 # many times inside the cycle of i,cell

 cell2_list = []

 for j,cell2 in enumerate(g2.cells):

 if cell2 == False: continue

 if cell2 == True:

 cell2 = self.OctreeLeaf(g2.boxes[j])

 cell2_list.append(cell2)

 # check all the cells in the first group against all the cells in the second group

 for i,cell1 in enumerate(g1.cells):

 if cell1 == False: continue

 if cell1 == True:

 cell1 = self.OctreeLeaf(g1.boxes[i])

 for cell2 in cell2_list:

 if not boxBoxOverlap(cell1.center * t1 + c1, cell1.size_2, t1,

cell2.center*t2 + c2, cell2.size_2, t2, R):

 continue

 if not (cell1.is_leaf and cell2.is_leaf):

 to_test_queue.append((cell1,cell2))

 else:

 return True

 return False

 def draw(self):

 glPushMatrix()

 glMultMatrixf(self.mesh.transform)

81

 glEnable(GL_BLEND)

 glBlendFunc(GL_SRC_ALPHA, GL_ONE)

 if self.mesh.getTranslucent():

 glDisable(GL_DEPTH_TEST)

 self.root.draw()

 if self.mesh.getTranslucent():

 glEnable(GL_DEPTH_TEST)

 glDisable(GL_BLEND)

 glPopMatrix()

linear.py

import numpy as N

#inspired by code from NeHe

EPSILON = 0.00001

def Matrix4f ():

 return N.matrix(N.identity (4, 'f'))

def Matrix3f ():

 return N.matrix(N.identity (3, 'f'))

def Quat4f (x=None, y=None, z=None, w=None):

 if x is None:

 return N.zeros (4, 'f')

 else:

 return N.array((float(x),float(y),float(z),float(w)),'f')

def Vector3f (x=None, y=None, z=None):

 if x is None:

 return N.zeros (3, 'f')

 else:

 return N.array((float(x),float(y),float(z)),'f')

def Vector2f (x=None, y=None):

 if x is None:

 return N.zeros (2, 'f')

 else:

 return N.array((float(x),float(y)),'f')

def Point3f (x=None, y=None, z=None):

 if x is None:

 return N.zeros (3, 'f')

 else:

 return N.array((float(x),float(y),float(z)),'f')

def Point2f (x = 0.0, y = 0.0):

 pt = N.zeros (2, 'f')

 pt [0] = x

 pt [1] = y

 return pt

def VectorDot(u, v):

 return N.dot (u,v)

82

def VectorCross(u, v):

 return N.cross(u,v)

def VectorLength (u):

 return N.linalg.norm(u)

def Matrix3fSetIdentity ():

 return N.identity (3, 'f')

def Matrix3fMulMatrix3f (matrix_a, matrix_b):

 return N.dot(matrix_a, matrix_b)

def Matrix4fDet (matrix):

 X = 0

 Y = 1

 Z = 2

 s = sqrt (

 ((matrix [X,X] * matrix [X,X]) + (matrix [X,Y] * matrix [X,Y]) + (matrix [X,Z] * matrix [X,Z]) +

 (matrix [Y,X] * matrix [Y,X]) + (matrix [Y,Y] * matrix [Y,Y]) + (matrix [Y,Z] * matrix [Y,Z]) +

 (matrix [Z,X] * matrix [Z,X]) + (matrix [Z,Y] * matrix [Z,Y]) + (matrix [Z,Z] * matrix [Z,Z])) /

3.0)

 return s

def Matrix4fSetRotationScaleFromMatrix3f(three_by_three_matrix):

 matrix = Matrix4f ()

 matrix [0:3,0:3] = three_by_three_matrix

 return matrix

def Matrix3fSetRotationFromQuat4f (q1):

 # Converts the quaternion q1 into a new equivalent 3x3 rotation matrix.

 X = 0

 Y = 1

 Z = 2

 W = 3

 matrix = Matrix3f ()

 n = N.dot(q1, q1)

 s = 0.0

 if (n > 0.0):

 s = 2.0 / n

 xs = q1 [X] * s; ys = q1 [Y] * s; zs = q1 [Z] * s

 wx = q1 [W] * xs; wy = q1 [W] * ys; wz = q1 [W] * zs

 xx = q1 [X] * xs; xy = q1 [X] * ys; xz = q1 [X] * zs

 yy = q1 [Y] * ys; yz = q1 [Y] * zs; zz = q1 [Z] * zs

 # This math all comes about by way of algebra, complex math, and trig identities.

 # See Lengyel pages 88-92

 matrix [X,X] = 1.0 - (yy + zz); matrix [Y,X] = xy - wz; matrix [Z,X] = xz +

wy;

 matrix [X,Y] = xy + wz; matrix [Y,Y] = 1.0 - (xx + zz); matrix [Z,Y] = yz - wx;

 matrix [X,Z] = xz - wy; matrix [Y,Z] = yz + wx; matrix [Z,Z] = 1.0 - (xx + yy)

83

 return matrix

mesh.py

from OpenGL.GL import *

from intersections import triangleBoxOverlap, rayTriangleIntersection, EPSILON

import numpy as N

import random

from linear import *

class Vertex:

 """ This class represents a single point in 3D along with its normal """

 def __init__(self, x, y, z, nx, ny, nz):

 self.pos = Point3f(x,y,z)

 self.normal = Vector3f(nx,ny,nz)

 self.octree = None

 def isSimilarTo(self, pt):

 v = self.pos - pt.pos

 d = N.dot(v,v) # get the squared magnitude of the vector v

 if d > EPSILON:

 return False

 v = self.normal - pt.normal

 d = N.dot(v,v)

 if d > EPSILON:

 return False

 return True

 def __str__(self):

 return "<%f,%f,%f> %s"%(self.x, self.y, self.z, self.pos)

 # some properties to access the components by name (x,y,z,nx,ny,nz) rather than by index

 def set_x(self,val):

 self.pos[0] = val

 def set_y(self,val):

 self.pos[1] = val

 def set_z(self,val):

 self.pos[2] = val

 def set_nx(self,val):

 self.normal[0] = val

 def set_ny(self,val):

 self.normal[1] = val

 def set_nz(self,val):

 self.normal[2] = val

84

 def get_x(self):

 return self.pos[0]

 def get_y(self):

 return self.pos[1]

 def get_z(self):

 return self.pos[2]

 def get_nx(self):

 return self.normal[0]

 def get_ny(self):

 return self.normal[1]

 def get_nz(self):

 return self.normal[2]

 x = property(get_x, set_x)

 y = property(get_y, set_y)

 z = property(get_z, set_z)

 nx = property(get_nx, set_nx)

 ny = property(get_ny, set_ny)

 nz = property(get_nz, set_nz)

class Mesh:

 """ This class represents a mesh (points and faces) """

 DRAW_TRANSLUCENT = 1

 DRAW_EDGES = 2

 def __init__(self):

 self.name = ""

 self.orientation = Matrix3f()

 self.translation = Vector3f()

 self.color = (0.5,0.5,0.5)

 self.transform = Matrix4f()

 # list of all Point instances used in the mesh

 self.vertices= []

 # list of all Vector instances used in the mesh

 self.faces = []

 self._draw = None

 self.draw_mode = 0

 def getTranslucent(self):

 return bool(self.draw_mode & self.DRAW_TRANSLUCENT)

 def setTranslucent(self, enable):

 if enable:

 self.draw_mode |= self.DRAW_TRANSLUCENT

 else:

85

 self.draw_mode &= ~self.DRAW_TRANSLUCENT

 def getDrawEdges(self):

 return bool(self.draw_mode & self.DRAW_EDGES)

 def setEdges(self, enable):

 if enable:

 self.draw_mode |= self.DRAW_EDGES

 else:

 self.draw_mode &= ~self.DRAW_EDGES

 def intersects(self, mesh):

 inter = self.octree.intersects(mesh.octree)

 print inter

 return inter

 # see if we have another point already with the same (or almost same)

 # position and normal. Otherwise, store the new point.

 # return the index of the vertex in the list.

 def _getVertexIndex(self, vtx):

 for i,v in enumerate(self.vertices):

 if vtx.isSimilarTo(v):

 return i

 # this is a new vertex. Add it to the list

 self.vertices.append(vtx)

 return len(self.vertices)-1

 # vertices and normals are lists of Vector3f

 def addPoly(self, vertices, normals=None):

 if normals == None:

 normal = VectorCross(vertices[1] - vertices[0], vertices[2] - vertices[0]);

 norm = VectorLength(normal)

 if norm > 0.0001:

 normal /= norm

 else:

 normal = Vector3f(0,0,0)

 normals = [normal] * len(vertices)

 v_indices = []

 for v,n in zip(vertices,normals):

 vtx = self._getVertexIndex(Vertex(v[0], v[1], v[2], n[0], n[1], n[2]))

 v_indices.append(vtx)

 self.faces.append(tuple(v_indices))

 def setColor(self, rgb):

 self.color = rgb

 def setName(self, name):

 self.name = name

86

 @property

 def bounds(self):

 if not self._draw:

 # make sure self.pos_data has been calculated

 self._setupOpenGLData()

 return N.min(self.pos_data, axis=0), N.max(self.pos_data, axis=0)

 # vec must be a 3-element vector

 def setPosition(self, vec):

 self.transform[3,0:3] = vec

 # mtx must be a 3x3 matrix

 def setOrientationMatrix(self, mtx):

 self.transform[0:3,0:3] = mtx

 def _setupOpenGLData(self):

 """based on code at:

http://bazaar.launchpad.net/~mcfletch/openglcontext/trunk/view/head:/OpenGLContext/drawcube.py """

 triangle_vertex_indices = []

 edge_vertex_indices = []

 # to keep track of edges already processed

 edges = {}

 tot_vertices = len(self.vertices)

 pos_data = self.pos_data = N.zeros((tot_vertices,3),"f")

 normal_data = N.zeros((tot_vertices,3),"f")

 i = 0

 for v in self.vertices:

 pos_data[i] = v.pos

 normal_data[i] = v.normal

 i+=1

 for f in self.faces:

 triangle_vertex_indices.extend(f)

 # store in vtx_pair the two indices that conform an edge of the facet, with lowest index

first

 # this is so we can test if we have already added that edge and skip it

 # otherwise, we add the indices of both end points to the edge_vertex_indices list

 prev_v_idx = f[-1] # last vertex

 for v_idx in f:

 if prev_v_idx > v_idx:

 vtx_pair = (v_idx, prev_v_idx)

 else:

 vtx_pair = (prev_v_idx,v_idx)

 if vtx_pair not in edges:

 edges[vtx_pair] = True

 edge_vertex_indices.extend(vtx_pair)

87

 prev_v_idx = v_idx

 triangle_vertex_indices = N.array(triangle_vertex_indices, N.uint32)

 edge_vertex_indices = N.array(edge_vertex_indices, N.uint32)

 def draw(self):

 glPushMatrix()

 glMultMatrixf(self.transform)

 glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS)

 try:

 glEnable (GL_POLYGON_OFFSET_FILL);

 if self.draw_mode & self.DRAW_TRANSLUCENT:

 glEnable(GL_BLEND)

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

 glPolygonOffset(1.0,1.0);

 glEnableClientState(GL_VERTEX_ARRAY)

 glEnableClientState(GL_NORMAL_ARRAY)

 glVertexPointerf(pos_data)

 glNormalPointerf(normal_data)

 glColor4f(self.color[0], self.color[1], self.color[2],0.3);

 glDrawElementsui(GL_TRIANGLES, triangle_vertex_indices)

 if self.draw_mode & self.DRAW_EDGES:

 glDisable(GL_LIGHTING)

 glDisableClientState(GL_NORMAL_ARRAY)

 glDrawElementsui(GL_LINES, edge_vertex_indices)

 glEnable(GL_LIGHTING)

 if self.draw_mode & self.DRAW_TRANSLUCENT:

 glDisable(GL_BLEND)

 finally:

 glDisable (GL_POLYGON_OFFSET_FILL);

 glPopClientAttrib()

 glPopMatrix()

 self._draw = draw;

 def draw(self):

 """ Send everything to OpenGL for rendering """

 if not self._draw:

 self._setupOpenGLData()

 self._draw(self)

 # get a tuple with the vertices (as Vector3f) of the given face

 def faceVertices(self, face):

 return tuple(self.vertices[i].pos for i in face)

 def rayFaceIntersection(self, face, ray_origin, ray_dir):

88

 return rayTriangleIntersection(ray_origin, ray_dir, self.faceVertices(face))

 # Tests whether the passed AABB ("the box") and the polyhedron ("the mesh") intersect, and returns:

 # 0 - the box and the mesh don't intersect at all

 # 1 - the box intersects the mesh, or the mesh is fully contained in the box

 # 2 - the box is fully contained in the mesh

 def intersectsAABB(self, box):

 c_min,c_max = box

 # make sure the bounds can be calculated

 if not self._draw:

 self._setupOpenGLData()

 # TEST 1

 # If all the vertices of the mesh are all to the same side of the box, then the box and the mesh don't

intersect.

 # That is, we're checking if the bounding box of the mesh doesn't intersect the other box.

 mesh_min, mesh_max = self.bounds

 if ((mesh_min[0] > c_max[0]).all() or (mesh_max[0] < c_min[0]).all() or # test in X

 (mesh_min[1] > c_max[1]).all() or (mesh_max[1] < c_min[1]).all() or # test in Y

 (mesh_min[2] > c_max[2]).all() or (mesh_max[2] < c_min[2]).all()): # test in Z

 return 0

 # TEST 2

 # If all the vertices of the mesh are inside the box, then it is fully contained in the box

 if ((mesh_min[0] >= c_min[0]).all() and (mesh_max[0] <= c_max[0]).all() and

 (mesh_min[1] >= c_min[1]).all() and (mesh_max[1] <= c_max[1]).all() and

 (mesh_min[2] >= c_min[2]).all() and (mesh_max[2] <= c_max[2]).all()) :

 return 1

 # TEST 3

 # Check if any face of the mesh intersects the box

 # NOTE: this assumes all faces are triangles

 box_center = (c_max + c_min)/2

 # we subtract epsilon so boxes that are touching the edges of the mesh don't get marked as

intersecting

 # the mesh

 #

 box_half_size = (c_max - c_min)/2 - EPSILON

 triverts = N.zeros((3,3), "f")

 for f in self.faces:

 for v_num, v_idx in enumerate(f):

 triverts[v_num] = self.vertices[v_idx].pos

 if triangleBoxOverlap(box_center, box_half_size, triverts):

 return 1

 # TEST 4

 # At this point, we know the box is either fully contained in or fully outside the mesh.

 # Shoot a random ray from the center of the box. If it hits an even number

 # of mesh faces, then the center (and hence the box) is outside the polyhedron,

 # otherwise it's inside.

 # To avoid floating point imprecisions, if the ray hits a polygon (almost) on its edge,

89

 # we discard the ray and try another random one

 while True:

 # generate a random vector

 ray_dir = N.array(map(lambda a:random.uniform(-1,1), range(3)), "f")

 # make sure the vector is not too small... if it is, pick another one

 mag = N.dot(ray_dir, ray_dir)

 if mag < 0.01:

 continue

 # flip the parity whenever we hit a polygon (False means we're outside)

 parity = False

 ok = True

 for face in self.faces:

 inter = self.rayFaceIntersection(face, box_center, ray_dir)

 if inter is None:

 continue

 t,u,v = inter

 if t < EPSILON: continue

 parity = not parity

 # we hit an edge of a triangle, generate another ray

 if u < EPSILON or v < EPSILON or (1-u-v) < EPSILON:

 ok = False

 break

 if ok:

 break

 if parity:

 return 2

 return 0

archball.py

from linear import *

from math import sqrt

EPSILON = 0.00001

based on Arcball from the NeHe site (example 48)

plus ideas from http://www.opengl.org/wiki/Trackball

class Arcball:

 def __init__ (self, NewWidth, NewHeight):

 self.v1 = Vector3f()

 self.v2 = Vector3f()

 self.m_AdjustWidth = 1.0

 self.m_AdjustHeight = 1.0

 self.setBounds (NewWidth, NewHeight)

90

 def setBounds (self, NewWidth, NewHeight):

 # //Set new bounds

 assert (NewWidth > 1.0 and NewHeight > 1.0), "Invalid width or height for bounds."

 # //Set adjustment factor for width/height

 self.m_AdjustWidth = 1.0 / ((NewWidth - 1.0) * 0.5)

 self.m_AdjustHeight = 1.0 / ((NewHeight - 1.0) * 0.5)

 def _mapToSphere (self, screen_pt):

 # Given a new window coordinate, will modify NewVec in place

 X = 0

 Y = 1

 Z = 2

 # //Copy paramter into temp point

 pt = Vector3f(screen_pt[0], screen_pt[1], 0)

 # //Adjust point coords and scale down to range of [-1 ... 1]

 pt[X] = (screen_pt[X] * self.m_AdjustWidth) - 1.0

 pt[Y] = 1.0 - (screen_pt[Y] * self.m_AdjustHeight)

 pt[Z] = 0

 sphere_radius = 0.8

 r2 = sphere_radius*sphere_radius

 len_sq = N.dot(pt, pt)

 if len_sq < (r2*0.5):

 z = sqrt(r2 - len_sq)

 else:

 z = (r2*0.5) / sqrt(len_sq)

 pt[Z] = z

 len_sq = N.dot(pt,pt)

 return pt / sqrt(len_sq)

 def click (self, NewPt):

 # //Mouse down (Point2f

 self.v1 = self._mapToSphere (NewPt)

 return

 def drag (self, NewPt):

 # //Mouse drag, calculate rotation (Point2f Quat4f)

 """ drag (Point2f mouse_coord) -> new_quaternion_rotation_vec

 """

 X = 0

 Y = 1

 Z = 2

 W = 3

 self.v2 = self._mapToSphere (NewPt)

 # //Compute the vector perpendicular to the begin and end vectors

 # Perp = Vector3f ()

 perp = N.cross(self.v1, self.v2);

91

 quat = Quat4f ()

 # //Compute the length of the perpendicular vector

 if (N.dot(perp,perp) > EPSILON): # //if its non-zero

 # //We're ok, so return the perpendicular vector as the transform after all

 quat[0:3] = perp

 # //In the quaternion values, w is cosine (theta / 2), where theta is rotation angle

 quat[W] = N.dot(self.v1, self.v2);

 return quat

stl.py

import numpy as N

from mesh import Mesh

def loadSTL(fname):

 # an iterator that will yield all the lines in the file,

 # skipping empty lines

 def getLines(fname):

 with open(fname) as f:

 for line in f.readlines():

 line = line.strip()

 if line == "": continue

 yield line

 mesh = Mesh()

 for line in getLines(fname):

 if line.startswith("solid"):

 mesh.name = line.split()[1:]

 continue

 if line.startswith("outer loop"):

 vertices = []

 continue

 if line.startswith("vertex"):

 pieces = line.split()

 vertices.append(N.array(map(float, pieces[1:4]),"f"))

 continue

 # we add a face to the mesh whenever we find a line that starts with "endloop"

 if line.startswith("endloop"):

 mesh.addPoly(vertices)

 return mesh

if __name__ == "__main__":

 mesh = loadSTL("fehe/static.STL")

 mesh._setupOpenGLData()

92

scene.py

import math

from linear import *

import numpy as N

this class keeps record of the elements to draw and allows interaction

with them:

- pieces

- octrees

- grid

class Scene:

 def __init__(self):

 self.inter = []

 self.helpers = {}

 self.disabled = set()

 self.current_object = 0

 def addInteractive(self, obj):

 self.inter.append(obj)

 def addHelper(self, helper, group=0):

 try:

 self.helpers[group].append(helper)

 except:

 self.helpers[group] = [helper]

 def disableHelperGroup(self, helper_group):

 self.disabled.add(helper_group)

 def enableHelperGroup(self, helper_group):

 self.disabled.remove(helper_group)

 def toggleHelperGroup(self, helper_group):

 if helper_group in self.disabled:

 self.enableHelperGroup(helper_group)

 else:

 self.disableHelperGroup(helper_group)

 def toggleTranslucent(self):

 t = not self.inter[0].getTranslucent()

 for d in self.inter:

 d.setTranslucent(t)

 def toggleFaceEdges(self):

 t = not self.inter[0].getDrawEdges()

 for d in self.inter:

 d.setEdges(t)

 def draw(self):

 for d in self.inter:

93

 d.draw()

 for group in self.helpers:

 if group not in self.disabled:

 for h in self.helpers[group]:

 h.draw()

 def setCameraPosition(self, cam_pos, cam_target, up = None):

 glLoadIdentity();

 if up_vector is None:

 up = (0,1,0)

 gluLookAt(cam_pos[0], cam_pos[1], cam_pos[2], cam_target[0], cam_target[1], cam_target[2],

up[0], up[1], up[2])

 def selectObject(self, num):

 self.current_object = max(min(len(self.inter)-1, num), 0)

 print "Object selected: ",self.current_object

 def translate(self, amount):

 t = self.inter[self.current_object].transform

 t[3,0] += amount[0]

 t[3,1] += amount[1]

 t[3,2] += amount[2]

 def rotate(self, axis, amount = 10):

 len = N.dot(axis,axis)

 matrix = Matrix3f()

 if len < EPSILON:

 return matrix

 axis /= len

 angle = amount * (math.pi/180.0)

 s = math.sin(angle*0.5)

 quat = Quat4f(axis[0]*s, axis[1]*s, axis[2]*s, math.cos(angle*0.5))

 matrix = Matrix3fSetRotationFromQuat4f(quat)

 t = self.inter[self.current_object].transform[0:3,0:3]

 self.inter[self.current_object].transform[0:3,0:3] = t*matrix

 def storeTransform(self):

 self.stored_transform = self.inter[self.current_object].transform.copy()

 def restoreTransform(self):

 self.inter[self.current_object].transform = self.stored_transform

 def checkCollisions(self):

 # check the current object against all others

 current = self.inter[self.current_object]

 for i,obj in enumerate(self.inter):

 if i == self.current_object:

 continue

 if obj.intersects(current):

 return True

 return False

94

mouseinteractions.py

from OpenGL.GL import *

from arcball import Arcball

from linear import *

import math

class MouseInteraction:

 PAN_ACTION = 0

 ROTATE_ACTION = 1

 ZOOM_ACTION = 2

 def __init__(self, vp_width, vp_height):

 self.arcball = Arcball(vp_width, vp_height)

 self.vp_width = vp_width

 self.vp_height = vp_height

 self.transform_matrix = Matrix4f()

 self.manipulation_matrix = None

 def vpResize(self, vp_width, vp_height):

 self.arcball.setBounds(vp_width,vp_height)

 def applyTransform(self):

 if self.manipulation_matrix is not None:

 glMultMatrixf(self.manipulation_matrix)

 glMultMatrixf(self.transform_matrix)

 def click(self, x, y, action):

 cp = (x,y)

 self.click_pos = cp

 self.action = action

 if action == self.ROTATE_ACTION:

 self.arcball.click(cp)

 elif self.action == self.PAN_ACTION:

 self.manipulation_matrix = Matrix4f()

 elif self.action == self.ZOOM_ACTION:

 self.manipulation_matrix = Matrix4f()

 def release(self):

 if self.manipulation_matrix is not None:

 self.transform_matrix = self.transform_matrix * self.manipulation_matrix

 self.manipulation_matrix = None

 def drag(self, x, y):

 if self.action == self.ROTATE_ACTION:

 rot_quat = self.arcball.drag((x,y))

 self.manipulation_matrix =

Matrix4fSetRotationScaleFromMatrix3f(Matrix3fSetRotationFromQuat4f(rot_quat))

 elif self.action == self.PAN_ACTION:

 self.manipulation_matrix[3,0] = (x - self.click_pos[0])*0.2

 self.manipulation_matrix[3,1] = (self.click_pos[1] - y)*0.2

 elif self.action == self.ZOOM_ACTION:

 s = math.exp(float(x - self.click_pos[0]) / self.vp_width)

95

 self.manipulation_matrix[0,0] = s

 self.manipulation_matrix[1,1] = s

 self.manipulation_matrix[2,2] = s

grid.py

from OpenGL.GL import *

import numpy

from linear import *

class Grid:

 def __init__(self, scale, divisions):

 self.points = []

 points = []

 indices1 = []

 indices2 = []

 self.color2 = (0.8,0.8,0.8)

 self.color1 = (0.3,0.3,0.3)

 j = 0

 for i in range(-divisions, divisions+1):

 if i == 0: continue # skip the axes for now

 t = float(i) / float(divisions)

 points.append(Vector3f(t * scale, scale, 0))

 points.append(Vector3f(t * scale, -scale, 0))

 points.append(Vector3f(scale, t*scale, 0))

 points.append(Vector3f(-scale, t*scale, 0))

 indices1.extend([j,j+1, j+2, j+3])

 j += 4

 # positions of the axes

 points.append(Vector3f(0, scale, 0))

 points.append(Vector3f(0, -scale, 0))

 points.append(Vector3f(scale, 0, 0))

 points.append(Vector3f(-scale, 0, 0))

 indices2 = [j,j+1, j+2, j+3]

 self.points = numpy.array(points, "f")

 self.indices1= numpy.array(indices1, N.uint32)

 self.indices2 = numpy.array(indices2, N.uint32)

 def draw(self):

 glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS)

 try:

 glEnableClientState(GL_VERTEX_ARRAY)

 glVertexPointerf(self.points)

 # we don't want lighting to affect the grid

 glDisable(GL_LIGHTING)

96

 # draw the grid

 glColor3f(self.color1[0], self.color1[1], self.color1[2]);

 glDrawElementsui(GL_LINES, self.indices1)

 # draw the axes

 glColor3f(self.color2[0], self.color2[1], self.color2[2]);

 glDrawElementsui(GL_LINES, self.indices2)

 glEnable(GL_LIGHTING)

 finally:

 glPopClientAttrib()

cube.py

from OpenGL.GL import *

from OpenGL.GLUT import *

from OpenGL.GLU import *

c1 and c2 are opposite corners of the cube

def drawCube(c1, c2):

 glPushMatrix()

 center = (c1 + c2)/2;

 size = (c2 - c1)

 glTranslatef(center[0], center[1], center[2])

 glScalef(size[0], size[1], size[2])

 glutWireCube(1.0);

 glPopMatrix()

	Visualization And Collision Detection Of Direct Metal Deposition
	Recommended Citation

	Dissertation Proposal: DESIGN OF THERMAL MANAGEMENT METHODS FOR HIGH HEAT FLUX APPLICATIONS USING TWO-PHASE SPRAY COOLING TECHNIQUES

