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Abstract. This work was presented in two parts at Dagstuhl seminar
08021. The two presentations described work in progress, including a
“backward bound” for a combined backward/forward error analysis for
the problem mentioned in the title.

We seek rigorous proofs that representations of computed sets, produced
by algorithms to compute Boolean operations, are well formed, and that
the algorithms are correct. Such proofs should eventually take account
of the use of finite-precision arithmetic, although the proofs presented
here do not.

The representations studied are based on subdivision surfaces. Such rep-
resentations are being used more and more frequently in place of trimmed
NURBS representations, and the robustness analysis for these new rep-
resentations is simpler than for trimmed NURBS.

The particular subdivision-surface representation used is based on the
Loop subdivision scheme. The analysis is broken into three parts. First,
it is established that the input operands are well-formed two-dimensional
manifolds without boundary. This can be done with existing methods.
Secondly, we introduce the so-called “limit mesh”, and view the limit
meshes corresponding to the input sets as defining an approximate prob-
lem in the sense of a backward error analysis. The presentations men-
tioned above described a proof of the corresponding error bound. The
third part of the analysis corresponds to the “forward bound”: this re-
mains to be done.

Keywords. Robustness, finite-precision arithmetic, Boolean operations,
subdivision surfaces

1 Introduction

The problem considered here forms part of the “robustness problem” in solid
modelling. We seek rigorous proofs that representations are well formed, and
that algorithms operating on these representations are correct.
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The robustness problem has received a great deal of attention over the last
two decades. Much of the work focused on representations based on trimmed-
NURBS representations, or on simplified versions of this representation based
on planar faces. The trimmed-NURBS representation has been quite carefully
defined by de facto industrial standards [1], and by international standards [2].

There are serious difficulties involved in providing rigorous bounds in the
case of trimmed-NURBS representations. These difficulties arise from the use
of low-order polynomial approximations for inter-patch boundaries (in both the
parametric and object-space domains), as well as from the use of finite-precision
arithmetic. A fundamental fact to be noted is that errors introduced from these
sources may lead to representations that are not well-formed. This means that
it is not a matter of small errors leading to representations that are more or less
in error, depending, say, on the condition of the problem to be solved. Rather,
small errors may lead to representations that do not define any subset of IR3.
These difficulties are described in [3] and [4], and references to the literature on
the subject are given there.

In recent years, the subdivision-surface approach [5] has gained popularity
as a representation method for solids in IR3. One of the main reasons for this
is that the problems, mentioned above, of matching boundaries, are avoided.
Corresponding to this fact is the possibility of giving rigorous proofs for standard
algorithms, such as Boolean intersection of objects defined by the subdivision-
surface representation. Such proofs are very difficult in the trimmed-NURBS
case [4]. In short, we are concerned here with an easier case (subdivision-surface
models) than the trimmed-NURBS case, but this easier case corresponds to
what is likely to be the primary representation method used in the medium-
term future.

This document corresponds to two presentations, given by the authors at
Dagstuhl Seminar 08021, January 6-11, 2008. These presentations described work
in progress, as explained below. Detailed proofs will be given in the first author’s
PhD thesis [6] and in a subsequent paper.

2 Problem outline

Subdivision surfaces may be viewed as generalizations of uniform tensor-product
B-splines. The generalization may occur in two separate directions.

First of all, uniform tensor-product B-splines are defined on the doubly bi-
infinite two-dimensional grid Z

2, and the corresponding subdivision algorithms
provide, as they proceed, a progressively better approximation to the B-spline
surface. In contrast, subdivision-surface algorithms work in an arbitrary locally-
planar mesh, which means that the boundaries of the objects concerned may
have the generality of an arbitrary two-manifold (in fact, it is even possible
to define subdivision algorithms generating so-called “non-manifold” objects).
Furthermore, variants of these subdivision algorithms, such as the Catmull-Clark
and Doo-Sabin algorithms, permit non-regularity in the locally-planar mesh, i.e.,
the meshes may have topology different from regular planar tilings.
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Secondly, many subdivision algorithms, including the Loop method, which is
studied in this paper, are based on splines that are more general than the tensor-
product B-splines. Some, such as the Loop method, are based on box splines,
which include the tensor-product B-splines as a special case. Others, such as the√

3 method and the Kobbelt method, are based on an even more general class
of splines.

The locally-planar mesh defining a subdivision surface is a logical structure,
with control points attached to the logical vertices of the mesh. The control
points are in IRN , where often N = 3. The surfaces generated by the subdivision
algorithms mentioned above can be manipulated to change their position and
orientation, and they can be generalized to include so-called hard or crease edges,
for the purpose of various modelling operations. Further, classical solid-modelling
operations such as regularized Boolean intersection [7] are also of interest, and
algorithms to realize such operations have been presented in the literature [8].

One interesting fact about subdivision surfaces generated by standard meth-
ods, such as the Loop method, is that it is possible to “push” any given control
point to the limit, i.e., to find the point in the surface to which the given control
point will converge as a result of the subdivision process. In [6] a new algorithm
for Boolean operations will be presented, which is based on the use of the limit
mesh obtained by pushing control points to their limit. In this paper we dis-
cuss certain bounds on the position of the corresponding surfaces, to be used in
showing that the algorithm is stable.

The remainder of the paper is organized as follows. In the next section we give
an outline of the classical backward error analysis, as it applies in the context
of solid modelling. Then, in Section 4, the derivation and statement, of the
bound described in the previous paragraph, are presented. Section 5 concludes
the paper.

3 Backward error analysis

The backward error analysis in numerical analysis has as goal a proof that a
method has found approximately the right solution to approximately the right
problem [3,4,9]. The difference between this kind of analysis, and a simple “for-
ward” analysis, is that all or part of the error is associated with the problem
to be solved. This is very convenient in a context where there is uncertainty in
the input data: for example, we may be able to show that the algorithm finds
a solution to a problem that is no further from the input problem than the un-
certainty. In this case, the algorithm has given us an answer that is as good as
we can hope for. It does not mean that the error will be small: if the problem
is ill-conditioned, the error will be large even though we have solved a problem
that is close to the problem presented to the method. But if the problem is ill-
conditioned, we must live with a large error in any case, due to the effect of the
uncertainty in the input data.

In our context, the following is an outline of the backward error analysis
for the problem of computing the regularized Boolean intersection S1 ∩∗ S2 of
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two solids S1 and S2. Each of these solids Si is a three-dimensional manifold
with boundary, each is a subset of IR3, and each is defined by its boundary
∂Si, i = 1, 2. The boundary ∂Si is implicitly defined by the following pair: a
locally-planar triangular mesh M̆ , and the Loop subdivision method.

Outline of backward error analysis in Boolean-operation case

The outline is as follows.

1. Establish a priori or a posteriori that the input arguments ∂S1 and ∂S2 are
well-formed two-dimensional manifolds without boundary.

2. Introduce a mesh M̄i that is topologically the same (homeomorphic) as the
input argument ∂Si, i = 1, 2. View the M̄i as defining the approximate prob-
lem, actually solved by the numerical method, in the sense of the backward
error analysis.

3. Bound the difference between ∂Si and M̄i on a face-by-face basis.

We may then write ∂Si
∼= M̄i, where this means that the boundaries ∂Si of the

input sets are geometrically close to the sets M̄i, and that they are topologically
the same. We would then like to prove that the algorithm finds the exact in-
tersection of the approximate problem of computing the regularized intersection
of the two sets having boundaries M̄1 and M̄2, respectively. This would be a
pure backward analysis. If only a weaker theorem is possible, so that the word
“exact” in the last sentence is replaced by an analysis involving some error, then
the analysis is a combined forward-backward analysis [9].

The first item in the list can be accomplished by means of methods like that
of Volino and Thalmann [10,11], to detect possible illegal intersections between
adjacent faces of the solids. This approach has been used before in the context of
subdivision-surface models by, for example Grinspun and Schröder [12]. Methods
like those of Kobbelt [13], or Wu and Peters [14,15], can be used to detect the
possible illegal intersection of faces that are supposed to be disjoint.

For the second item in the list, for each of the two input arguments ∂Si, i =
1, 2, we introduce a mesh obtained by pushing all of the objects’ control points
to their respective limits. It is this that we call the limit mesh M̄i, and we view
the surface obtained by linearly interpolating between the limit points as the
surface of the set defining an input to the approximate problem.

The third item in the list, bounding the difference between ∂Si and M̄i, is
discussed in the next section.

Preliminary discussion

There are two contributions envisaged in this paper. One is to suggest an al-
gorithm for Boolean intersection that will be more accurate and more efficient,
since the limit mesh is a better approximation to the boundary of the solid
than the original control mesh. The second is to give at least part of a back-
ward error analysis, as described above. This does not mean, however, that both
contributions will be simultaneously useful for any particular example.
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The bounds on the error in mesh approximations that can be computed at
reasonable computational cost are not small, unless subdivision has proceeded
nearly to convergence. This is true of the bounds that have appeared previously
in the literature, and it is true of the bounds described here. Suppose first that
we are dealing with the case when few iterations have been effected. It is in
this case that use of the limit mesh, as opposed to the original control mesh,
will give an improved result, in the sense of a forward error analysis. Unless the
uncertainty in the input data is very large, however, this will not necessarily
be reflected in the backward error analysis. If the uncertainty in the input data
is small, say on the order of a pixel width, the backward error analysis will
be unable to affirm that the method has given a satisfactory result. Although
perhaps disappointing, this is worthwhile information in itself: the purpose of
an error analysis is not to show that all methods give satisfactory results, but,
rather, to describe under what conditions the method gives satisfactory results.

On the other hand, if the method has been iterated close to convergence, the
backward error analysis will be able to affirm that a satisfactory result has been
obtained, whether or not the limit mesh has been used. Again, this is useful
information, even if using the limit mesh provides no special advantage in this
case.

4 Bounding the facewise difference between ∂Si and M̄i

The subdivision algorithm studied is the Loop method, with a parametrization
suggested in [14]. In this section a bound on the facewise difference between ∂Si

and M̄i is given. Improved bounds will be given in [6].
An extraordinary vertex v0 (valence n 6= 6) is set to be the origin in the u-v

domain, its one-ring neighbors form a unit n-gon, and Ωn represents the domain
of the triangular patch corresponding to the triangle 0-1-2 (Figure 1, left).

4.1 Representations

To simplify the notation, we omit the subscript i on ∂Si. At subdivision level ι,
we distinguish amongst three different representations: the control mesh M̆ ι, the
limit mesh M̄ ι and the limit surface ∂S. Now, having introduced the index ι in
order to be precise, we immediately suppress it in order to simplify the notation.

Control mesh M̆

Each face F̆ of the control mesh M̆ of a Loop subdivision-surface model can be
evaluated as

F̆ (u, v) =

2∑

i=0

pi · b̄i(u, v) (1)

where pi, i = 0, 1, 2 are the control points and b̄i is a function defining piecewise-
linear interpolation between the control points: b̄i(u, v) is equal to one at vertex
i, equal to zero at vertices that are immediate neighbours of i, linear on the
polygon centered at i, and zero elsewhere (see Figure 1, right).
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Fig. 1. Left: a base mesh used to generate the basis functions for the triangle
0-1-2 (irregular case: vertex with valence n = 5) [14]; right: the resulting basis
function bi at node i = 2 evaluated at level four, and b̄i.

Limit mesh M̄

The limit mesh M̄ of a subdivision-surface model is formed by pushing the
vertices of the control mesh M̆ to their corresponding limit positions. Under
Loop subdivision, each face F̄ of M̄ can be evaluated as

F̄ (u, v) =

2∑

i=0

p̄i · b̄i(u, v) (2)

where p̄i are the limit position points of the control points pi, i = 0, 1, 2 which
can be computed by applying a limit position matrix [16,17] to the original
control points pi.

Limit surface ∂S

A limit patch F of the limit surface ∂S under Loop subdivision can be evaluated
as a linear combination of basis functions with the original control points as
weights

F (u, v) =

n+5∑

i=0

pi · bi(u, v) (3)

where pi, i = 0, . . . , n + 5 are the control points (with (x, y, z) coordinates) of
the control mesh M̆ , n is the valence of the control point corresponding to i = 0
(see Figure 1) of the limit patch in question, and bi is the function, centered at
vertex i embedded in the u-v plane, defined by applying Loop subdivision to the
unit impulse centered in the i-th vertex.
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As in [14,15], we can extract a linear function ` interpolating the three ver-
tices p0,p1,p2 of the central triangle, and rewrite the limit patch F (u, v) as:

F (u, v) = `(u, v) +

n+5∑

i=3

di · bi(u, v). (4)

Here, di is the vector whose components correspond to the difference between
`(ui, vi) and pi along each axis as

di = pi − `(ui, vi), i = 0, . . . , n + 5, (5)

and for i = 0, 1, 2, di = 0 by definition. (Our notation differs slightly from
[14,15]: in particular, we use boldface to denote elements of IR3.) Then,

`(u, v) +

n+5∑

i=3

dibi(u, v) = `(u, v) +

n+5∑

i=3

[pi − `(ui, vi)]bi(u, v)

= F (u, v) + {`(u, v) −
n+5∑

i=0

`(u, v)bi(u, v)}

≡ F (u, v)

since Loop subdivision scheme reproduces linear functions.
For each vertex vi, i = 3, . . . , n + 5, we can find its barycentric coordinates

(si, ti, 1 − si − ti) with respect to the three vertices v0,v1,v2 of the central
triangle in the parametric domain (u-v domain), i.e.

vi = si · v0 + ti · v1 + (1 − si − ti) · v2, i = 3, . . . , n + 5.

Then the linear function ` can be expressed as

`(u, v) = s · p0 + t · p1 + (1 − s − t) · p2, u, v ∈ R2. (6)

and therefore

`(ui, vi) = si · p0 + ti · p1 + (1 − si − ti) · p2 i = 0, . . . , n + 5. (7)

Thus, the difference di can be computed as:

di = pi − (si · p0 + ti · p1 + (1 − si − ti) · p2), i = 0, . . . , n + 5, (8)

where p0, p1 and p2 correspond to the vertices of the central triangle in the
control mesh M̆ .

4.2 Error bound

Due to the application of the Loop subdivision to the parametric plane, the
domain Ω as defined in [14] of the limit patch F is the limit of the subdivision
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applied to the initial mesh of the parameteric u-v domain. Similarly, the domain
Ω̄ of its corresponding face F̄ of the limit mesh M̄ is a triangle in the initial
mesh of the parametric u-v domain itself. We define a mapping function φ :
(u, v) → (u′, v′), where (u′, v′) ∈ Ω and (u, v) ∈ Ω̄; then, the difference between
the limit surface ∂S and the surface corresponding to the limit mesh M̄ can be
defined as:

||F ((φ(u, v)) − F̄ (u, v))||, (u, v) ∈ Ω̄.

Let Ni be the indices of points in the one-ring neighborhood of control point
pi, and Li denote the Laplacian coordinate of pi, defined as:

Li = pl −
1

ni

∑

j∈Ni

pj

where i ∈ I, the index set of mesh vertices, ni is the valence of vertex pi, and
each pj is a one-ring neighbor of vertex pi. In the proof below we have i = 0, 1, 2
and n0 = n, n1 = n2 = 6.

Lemma 1. For (u′, v′) ∈ Ω, (u, v) ∈ Ω̄ and (u′, v′) = φ(u, v),

||F (u′, v′) − F̄ (u, v)|| = ||
2∑

i=0

αi · b̄i(u, v) · ni · Li +

n+5∑

i=3

di · bi(φ(u, v))|| (9)

Proof.

||F (u′, v′) − F̄ (u, v)|| = ||F (φ(u, v) − F̄ (u, v)||

= ||
n+5∑

i=0

pi · bi(φ(u, v)) −
2∑

i=0

p̄i · b̄i(u, v)||

= ||
2∑

i=0

pi · b̄i(u, v) +

n+5∑

i=3

di · bi(φ(u, v)) −
2∑

i=0

p̄i · b̄i(u, v)||

= ||
2∑

i=0

(pi − p̄i) · b̄i(u, v) +
n+5∑

i=3

di · bi(φ(u, v))||

With the limit position mask we have

pi − p̄i = pi − [(1 − ni · αi) · pi + αi ·
∑

j∈Ni

pj ]

= pi − (1 − ni · αi) · pi − αi ·
∑

j∈Ni

pj

= ni · αi · pi − αi ·
∑

j∈Ni

pj

= ni · αi · (pi −
1

ni

·
∑

j∈Ni

pj)

= ni · αi · Li, i = 0, 1, 2,
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where Ni is the one-ring neighborhood of control point pi. Then we have

‖F (u′, v′) − F̄ (u, v)‖ = ‖
2∑

i=0

(pi − p̄i) · b̄i(u, v) +

n+5∑

i=3

di · bi(φ(u, v))‖

= ‖
2∑

i=0

αi · b̄i(u, v) · ni · Li +
n+5∑

i=3

di · bi(φ(u, v))‖

Definition 1. The weighted Laplacian coordinate can be denoted as

L̃i = pi −
1

µi

·
∑

j∈Ni

ωj · pj (10)

with µi =
∑

j∈Ni
ωj, and i ∈ I.

Note that the ωj may also depend on i. If
ωj

µi
= 1/ni, then L̃i = Li.

With the above definition for the weighted Laplacian operator, we have

Lemma 2.
n+5∑

i=3

di · bi(φ(u, v)) = −
2∑

i=0

µi · L̃i (11)

where the weights ui are available from [6].

The proof of this Lemma, and of the subsequent theorem, are omitted here.

Let F (u, v) denote the limit surface face and let F̄ (u, v) represent the limit
mesh face. We have

Theorem 1. For (u′, v′) ∈ Ω, (u, v) ∈ Ω̄ and (u′, v′) = φ(u, v), we have

‖F (u′, v′) − F̄ (u, v)‖ = ‖
2∑

i=0

αi · b̄i(u, v) · ni · Li − µi · L̃i‖

≤ ‖
2∑

i=0

αi · b̄i(u, v) · ni · Li‖ + ‖
2∑

i=0

µiL̃i‖.

There is normally some cancellation in the difference in the righthand side
of the equality in the theorem, and the bound can be modified to take account
of this. Improved bounds will be given in [6].

5 Conclusion

In this paper we have described how an intersection algorithm, based on the use
of the limit mesh obtained by pushing control points to their respective limits,
can be used to provide more accurate intersections in the sense of a forward error
analysis. We have also given a preliminary bound that could be used as the basis
of a backward error analysis for this algorithm; improved bounds, however, will
be given in [6].
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