15 research outputs found

    Nordhaus-Gaddum for Treewidth

    Get PDF
    We prove that for every graph GG with nn vertices, the treewidth of GG plus the treewidth of the complement of GG is at least n−2n-2. This bound is tight

    Nordhaus-Gaddum bounds for locating domination

    Full text link
    A dominating set S of graph G is called metric-locating-dominating if it is also locating, that is, if every vertex v is uniquely determined by its vector of distances to the vertices in S. If moreover, every vertex v not in S is also uniquely determined by the set of neighbors of v belonging to S, then it is said to be locating-dominating. Locating, metric-locating-dominating and locating-dominating sets of minimum cardinality are called b-codes, e-codes and l-codes, respectively. A Nordhaus-Gaddum bound is a tight lower or upper bound on the sum or product of a parameter of a graph G and its complement G. In this paper, we present some Nordhaus-Gaddum bounds for the location number b, the metric-location-number e and the location-domination number l. Moreover, in each case, the graph family attaining the corresponding bound is characterized.Comment: 7 pages, 2 figure

    Strong Subgraph Connectivity of Digraphs:A Survey

    Get PDF

    An updated survey on rainbow connections of graphs - a dynamic survey

    Get PDF
    The concept of rainbow connection was introduced by Chartrand, Johns, McKeon and Zhang in 2008. Nowadays it has become a new and active subject in graph theory. There is a book on this topic by Li and Sun in 2012, and a survey paper by Li, Shi and Sun in 2013. More and more researchers are working in this field, and many new papers have been published in journals. In this survey we attempt to bring together most of the new results and papers that deal with this topic. We begin with an introduction, and then try to organize the work into the following categories, rainbow connection coloring of edge-version, rainbow connection coloring of vertex-version, rainbow kk-connectivity, rainbow index, rainbow connection coloring of total-version, rainbow connection on digraphs, rainbow connection on hypergraphs. This survey also contains some conjectures, open problems and questions for further study

    Complementary Vanishing Graphs

    Full text link
    Given a graph GG with vertices {v1,…,vn}\{v_1,\ldots,v_n\}, we define S(G)\mathcal{S}(G) to be the set of symmetric matrices A=[ai,j]A=[a_{i,j}] such that for i≠ji\ne j we have ai,j≠0a_{i,j}\ne 0 if and only if vivj∈E(G)v_iv_j\in E(G). Motivated by the Graph Complement Conjecture, we say that a graph GG is complementary vanishing if there exist matrices A∈S(G)A \in \mathcal{S}(G) and B∈S(G‾)B \in \mathcal{S}(\overline{G}) such that AB=OAB=O. We provide combinatorial conditions for when a graph is or is not complementary vanishing, and we characterize which graphs are complementary vanishing in terms of certain minimal complementary vanishing graphs. In addition to this, we determine which graphs on at most 88 vertices are complementary vanishing

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Study of the Gromov hyperbolicity constant on graphs

    Get PDF
    The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical hyperbolic space and Riemannian manifolds of negative sectional curvature. It is remarkable that a simple concept leads to such a rich general theory. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of any geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In this Ph. D. Thesis we characterize the hyperbolicity constant of interval graphs and circular-arc graphs. Likewise, we provide relationships between dominant sets and the hyperbolicity constant. Finally, we study the invariance of the hyperbolicity constant when the graphs are transformed by several operators.Programa de Doctorado en Ingeniería Matemática por la Universidad Carlos III de MadridPresidente: Domingo de Guzmán Pestana Galván.- Secretaria: Ana Portilla Ferreira.- Vocal: Eva Tourís Loj

    A Linear Kernel for Planar Total Dominating Set

    Full text link
    A total dominating set of a graph G=(V,E)G=(V,E) is a subset D⊆VD \subseteq V such that every vertex in VV is adjacent to some vertex in DD. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most 410k410k vertices, where kk is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.Comment: 33 pages, 13 figure
    corecore